xref: /openbmc/qemu/qapi/migration.json (revision 159fb790)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the
20#     target VM
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
26# @skipped: number of skipped zero pages.  Always zero, only provided
27#     for compatibility (since 1.5)
28#
29# @normal: number of normal pages (since 1.2)
30#
31# @normal-bytes: number of normal bytes sent (since 1.2)
32#
33# @dirty-pages-rate: number of pages dirtied by second by the guest
34#     (since 1.3)
35#
36# @mbps: throughput in megabits/sec.  (since 1.6)
37#
38# @dirty-sync-count: number of times that dirty ram was synchronized
39#     (since 2.1)
40#
41# @postcopy-requests: The number of page requests received from the
42#     destination (since 2.7)
43#
44# @page-size: The number of bytes per page for the various page-based
45#     statistics (since 2.10)
46#
47# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48#
49# @pages-per-second: the number of memory pages transferred per second
50#     (Since 4.0)
51#
52# @precopy-bytes: The number of bytes sent in the pre-copy phase
53#     (since 7.0).
54#
55# @downtime-bytes: The number of bytes sent while the guest is paused
56#     (since 7.0).
57#
58# @postcopy-bytes: The number of bytes sent during the post-copy phase
59#     (since 7.0).
60#
61# @dirty-sync-missed-zero-copy: Number of times dirty RAM
62#     synchronization could not avoid copying dirty pages.  This is
63#     between 0 and @dirty-sync-count * @multifd-channels.  (since
64#     7.1)
65#
66# Features:
67#
68# @deprecated: Member @skipped is always zero since 1.5.3
69#
70# Since: 0.14
71##
72{ 'struct': 'MigrationStats',
73  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
74           'duplicate': 'int',
75           'skipped': { 'type': 'int', 'features': [ 'deprecated' ] },
76           'normal': 'int',
77           'normal-bytes': 'int', 'dirty-pages-rate': 'int',
78           'mbps': 'number', 'dirty-sync-count': 'int',
79           'postcopy-requests': 'int', 'page-size': 'int',
80           'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
81           'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
82           'postcopy-bytes': 'uint64',
83           'dirty-sync-missed-zero-copy': 'uint64' } }
84
85##
86# @XBZRLECacheStats:
87#
88# Detailed XBZRLE migration cache statistics
89#
90# @cache-size: XBZRLE cache size
91#
92# @bytes: amount of bytes already transferred to the target VM
93#
94# @pages: amount of pages transferred to the target VM
95#
96# @cache-miss: number of cache miss
97#
98# @cache-miss-rate: rate of cache miss (since 2.1)
99#
100# @encoding-rate: rate of encoded bytes (since 5.1)
101#
102# @overflow: number of overflows
103#
104# Since: 1.2
105##
106{ 'struct': 'XBZRLECacheStats',
107  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
108           'cache-miss': 'int', 'cache-miss-rate': 'number',
109           'encoding-rate': 'number', 'overflow': 'int' } }
110
111##
112# @CompressionStats:
113#
114# Detailed migration compression statistics
115#
116# @pages: amount of pages compressed and transferred to the target VM
117#
118# @busy: count of times that no free thread was available to compress
119#     data
120#
121# @busy-rate: rate of thread busy
122#
123# @compressed-size: amount of bytes after compression
124#
125# @compression-rate: rate of compressed size
126#
127# Since: 3.1
128##
129{ 'struct': 'CompressionStats',
130  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
131           'compressed-size': 'int', 'compression-rate': 'number' } }
132
133##
134# @MigrationStatus:
135#
136# An enumeration of migration status.
137#
138# @none: no migration has ever happened.
139#
140# @setup: migration process has been initiated.
141#
142# @cancelling: in the process of cancelling migration.
143#
144# @cancelled: cancelling migration is finished.
145#
146# @active: in the process of doing migration.
147#
148# @postcopy-active: like active, but now in postcopy mode.  (since
149#     2.5)
150#
151# @postcopy-paused: during postcopy but paused.  (since 3.0)
152#
153# @postcopy-recover: trying to recover from a paused postcopy.  (since
154#     3.0)
155#
156# @completed: migration is finished.
157#
158# @failed: some error occurred during migration process.
159#
160# @colo: VM is in the process of fault tolerance, VM can not get into
161#     this state unless colo capability is enabled for migration.
162#     (since 2.8)
163#
164# @pre-switchover: Paused before device serialisation.  (since 2.11)
165#
166# @device: During device serialisation when pause-before-switchover is
167#     enabled (since 2.11)
168#
169# @wait-unplug: wait for device unplug request by guest OS to be
170#     completed.  (since 4.2)
171#
172# Since: 2.3
173##
174{ 'enum': 'MigrationStatus',
175  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
176            'active', 'postcopy-active', 'postcopy-paused',
177            'postcopy-recover', 'completed', 'failed', 'colo',
178            'pre-switchover', 'device', 'wait-unplug' ] }
179##
180# @VfioStats:
181#
182# Detailed VFIO devices migration statistics
183#
184# @transferred: amount of bytes transferred to the target VM by VFIO
185#     devices
186#
187# Since: 5.2
188##
189{ 'struct': 'VfioStats',
190  'data': {'transferred': 'int' } }
191
192##
193# @MigrationInfo:
194#
195# Information about current migration process.
196#
197# @status: @MigrationStatus describing the current migration status.
198#     If this field is not returned, no migration process has been
199#     initiated
200#
201# @ram: @MigrationStats containing detailed migration status, only
202#     returned if status is 'active' or 'completed'(since 1.2)
203#
204# @disk: @MigrationStats containing detailed disk migration status,
205#     only returned if status is 'active' and it is a block migration
206#
207# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
208#     migration statistics, only returned if XBZRLE feature is on and
209#     status is 'active' or 'completed' (since 1.2)
210#
211# @total-time: total amount of milliseconds since migration started.
212#     If migration has ended, it returns the total migration time.
213#     (since 1.2)
214#
215# @downtime: only present when migration finishes correctly total
216#     downtime in milliseconds for the guest.  (since 1.3)
217#
218# @expected-downtime: only present while migration is active expected
219#     downtime in milliseconds for the guest in last walk of the dirty
220#     bitmap.  (since 1.3)
221#
222# @setup-time: amount of setup time in milliseconds *before* the
223#     iterations begin but *after* the QMP command is issued.  This is
224#     designed to provide an accounting of any activities (such as
225#     RDMA pinning) which may be expensive, but do not actually occur
226#     during the iterative migration rounds themselves.  (since 1.6)
227#
228# @cpu-throttle-percentage: percentage of time guest cpus are being
229#     throttled during auto-converge.  This is only present when
230#     auto-converge has started throttling guest cpus.  (Since 2.7)
231#
232# @error-desc: the human readable error description string.  Clients
233#     should not attempt to parse the error strings.  (Since 2.7)
234#
235# @postcopy-blocktime: total time when all vCPU were blocked during
236#     postcopy live migration.  This is only present when the
237#     postcopy-blocktime migration capability is enabled.  (Since 3.0)
238#
239# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
240#     This is only present when the postcopy-blocktime migration
241#     capability is enabled.  (Since 3.0)
242#
243# @compression: migration compression statistics, only returned if
244#     compression feature is on and status is 'active' or 'completed'
245#     (Since 3.1)
246#
247# @socket-address: Only used for tcp, to know what the real port is
248#     (Since 4.0)
249#
250# @vfio: @VfioStats containing detailed VFIO devices migration
251#     statistics, only returned if VFIO device is present, migration
252#     is supported by all VFIO devices and status is 'active' or
253#     'completed' (since 5.2)
254#
255# @blocked-reasons: A list of reasons an outgoing migration is
256#     blocked.  Present and non-empty when migration is blocked.
257#     (since 6.0)
258#
259# @dirty-limit-throttle-time-per-round: Maximum throttle time
260#     (in microseconds) of virtual CPUs each dirty ring full round,
261#     which shows how MigrationCapability dirty-limit affects the
262#     guest during live migration.  (Since 8.1)
263#
264# @dirty-limit-ring-full-time: Estimated average dirty ring full time
265#     (in microseconds) for each dirty ring full round.  The value
266#     equals the dirty ring memory size divided by the average dirty
267#     page rate of the virtual CPU, which can be used to observe the
268#     average memory load of the virtual CPU indirectly.  Note that
269#     zero means guest doesn't dirty memory.  (Since 8.1)
270#
271# Features:
272#
273# @deprecated: Member @disk is deprecated because block migration is.
274#     Member @compression is deprecated because it is unreliable and
275#     untested.  It is recommended to use multifd migration, which
276#     offers an alternative compression implementation that is
277#     reliable and tested.
278#
279# Since: 0.14
280##
281{ 'struct': 'MigrationInfo',
282  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
283           '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] },
284           '*vfio': 'VfioStats',
285           '*xbzrle-cache': 'XBZRLECacheStats',
286           '*total-time': 'int',
287           '*expected-downtime': 'int',
288           '*downtime': 'int',
289           '*setup-time': 'int',
290           '*cpu-throttle-percentage': 'int',
291           '*error-desc': 'str',
292           '*blocked-reasons': ['str'],
293           '*postcopy-blocktime': 'uint32',
294           '*postcopy-vcpu-blocktime': ['uint32'],
295           '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] },
296           '*socket-address': ['SocketAddress'],
297           '*dirty-limit-throttle-time-per-round': 'uint64',
298           '*dirty-limit-ring-full-time': 'uint64'} }
299
300##
301# @query-migrate:
302#
303# Returns information about current migration process.  If migration
304# is active there will be another json-object with RAM migration
305# status and if block migration is active another one with block
306# migration status.
307#
308# Returns: @MigrationInfo
309#
310# Since: 0.14
311#
312# Examples:
313#
314#     1. Before the first migration
315#
316#     -> { "execute": "query-migrate" }
317#     <- { "return": {} }
318#
319#     2. Migration is done and has succeeded
320#
321#     -> { "execute": "query-migrate" }
322#     <- { "return": {
323#             "status": "completed",
324#             "total-time":12345,
325#             "setup-time":12345,
326#             "downtime":12345,
327#             "ram":{
328#               "transferred":123,
329#               "remaining":123,
330#               "total":246,
331#               "duplicate":123,
332#               "normal":123,
333#               "normal-bytes":123456,
334#               "dirty-sync-count":15
335#             }
336#          }
337#        }
338#
339#     3. Migration is done and has failed
340#
341#     -> { "execute": "query-migrate" }
342#     <- { "return": { "status": "failed" } }
343#
344#     4. Migration is being performed and is not a block migration:
345#
346#     -> { "execute": "query-migrate" }
347#     <- {
348#           "return":{
349#              "status":"active",
350#              "total-time":12345,
351#              "setup-time":12345,
352#              "expected-downtime":12345,
353#              "ram":{
354#                 "transferred":123,
355#                 "remaining":123,
356#                 "total":246,
357#                 "duplicate":123,
358#                 "normal":123,
359#                 "normal-bytes":123456,
360#                 "dirty-sync-count":15
361#              }
362#           }
363#        }
364#
365#     5. Migration is being performed and is a block migration:
366#
367#     -> { "execute": "query-migrate" }
368#     <- {
369#           "return":{
370#              "status":"active",
371#              "total-time":12345,
372#              "setup-time":12345,
373#              "expected-downtime":12345,
374#              "ram":{
375#                 "total":1057024,
376#                 "remaining":1053304,
377#                 "transferred":3720,
378#                 "duplicate":123,
379#                 "normal":123,
380#                 "normal-bytes":123456,
381#                 "dirty-sync-count":15
382#              },
383#              "disk":{
384#                 "total":20971520,
385#                 "remaining":20880384,
386#                 "transferred":91136
387#              }
388#           }
389#        }
390#
391#     6. Migration is being performed and XBZRLE is active:
392#
393#     -> { "execute": "query-migrate" }
394#     <- {
395#           "return":{
396#              "status":"active",
397#              "total-time":12345,
398#              "setup-time":12345,
399#              "expected-downtime":12345,
400#              "ram":{
401#                 "total":1057024,
402#                 "remaining":1053304,
403#                 "transferred":3720,
404#                 "duplicate":10,
405#                 "normal":3333,
406#                 "normal-bytes":3412992,
407#                 "dirty-sync-count":15
408#              },
409#              "xbzrle-cache":{
410#                 "cache-size":67108864,
411#                 "bytes":20971520,
412#                 "pages":2444343,
413#                 "cache-miss":2244,
414#                 "cache-miss-rate":0.123,
415#                 "encoding-rate":80.1,
416#                 "overflow":34434
417#              }
418#           }
419#        }
420##
421{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
422
423##
424# @MigrationCapability:
425#
426# Migration capabilities enumeration
427#
428# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
429#     Encoding). This feature allows us to minimize migration traffic
430#     for certain work loads, by sending compressed difference of the
431#     pages
432#
433# @rdma-pin-all: Controls whether or not the entire VM memory
434#     footprint is mlock()'d on demand or all at once.  Refer to
435#     docs/rdma.txt for usage.  Disabled by default.  (since 2.0)
436#
437# @zero-blocks: During storage migration encode blocks of zeroes
438#     efficiently.  This essentially saves 1MB of zeroes per block on
439#     the wire.  Enabling requires source and target VM to support
440#     this feature.  To enable it is sufficient to enable the
441#     capability on the source VM. The feature is disabled by default.
442#     (since 1.6)
443#
444# @compress: Use multiple compression threads to accelerate live
445#     migration.  This feature can help to reduce the migration
446#     traffic, by sending compressed pages.  Please note that if
447#     compress and xbzrle are both on, compress only takes effect in
448#     the ram bulk stage, after that, it will be disabled and only
449#     xbzrle takes effect, this can help to minimize migration
450#     traffic.  The feature is disabled by default.  (since 2.4)
451#
452# @events: generate events for each migration state change (since 2.4)
453#
454# @auto-converge: If enabled, QEMU will automatically throttle down
455#     the guest to speed up convergence of RAM migration.  (since 1.6)
456#
457# @postcopy-ram: Start executing on the migration target before all of
458#     RAM has been migrated, pulling the remaining pages along as
459#     needed.  The capacity must have the same setting on both source
460#     and target or migration will not even start.  NOTE: If the
461#     migration fails during postcopy the VM will fail.  (since 2.6)
462#
463# @x-colo: If enabled, migration will never end, and the state of the
464#     VM on the primary side will be migrated continuously to the VM
465#     on secondary side, this process is called COarse-Grain LOck
466#     Stepping (COLO) for Non-stop Service.  (since 2.8)
467#
468# @release-ram: if enabled, qemu will free the migrated ram pages on
469#     the source during postcopy-ram migration.  (since 2.9)
470#
471# @block: If enabled, QEMU will also migrate the contents of all block
472#     devices.  Default is disabled.  A possible alternative uses
473#     mirror jobs to a builtin NBD server on the destination, which
474#     offers more flexibility.  (Since 2.10)
475#
476# @return-path: If enabled, migration will use the return path even
477#     for precopy.  (since 2.10)
478#
479# @pause-before-switchover: Pause outgoing migration before
480#     serialising device state and before disabling block IO (since
481#     2.11)
482#
483# @multifd: Use more than one fd for migration (since 4.0)
484#
485# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
486#     (since 2.12)
487#
488# @postcopy-blocktime: Calculate downtime for postcopy live migration
489#     (since 3.0)
490#
491# @late-block-activate: If enabled, the destination will not activate
492#     block devices (and thus take locks) immediately at the end of
493#     migration.  (since 3.0)
494#
495# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
496#     that is accessible on the destination machine.  (since 4.0)
497#
498# @validate-uuid: Send the UUID of the source to allow the destination
499#     to ensure it is the same.  (since 4.2)
500#
501# @background-snapshot: If enabled, the migration stream will be a
502#     snapshot of the VM exactly at the point when the migration
503#     procedure starts.  The VM RAM is saved with running VM.
504#     (since 6.0)
505#
506# @zero-copy-send: Controls behavior on sending memory pages on
507#     migration.  When true, enables a zero-copy mechanism for sending
508#     memory pages, if host supports it.  Requires that QEMU be
509#     permitted to use locked memory for guest RAM pages.  (since 7.1)
510#
511# @postcopy-preempt: If enabled, the migration process will allow
512#     postcopy requests to preempt precopy stream, so postcopy
513#     requests will be handled faster.  This is a performance feature
514#     and should not affect the correctness of postcopy migration.
515#     (since 7.1)
516#
517# @switchover-ack: If enabled, migration will not stop the source VM
518#     and complete the migration until an ACK is received from the
519#     destination that it's OK to do so.  Exactly when this ACK is
520#     sent depends on the migrated devices that use this feature.  For
521#     example, a device can use it to make sure some of its data is
522#     sent and loaded in the destination before doing switchover.
523#     This can reduce downtime if devices that support this capability
524#     are present.  'return-path' capability must be enabled to use
525#     it.  (since 8.1)
526#
527# @dirty-limit: If enabled, migration will throttle vCPUs as needed to
528#     keep their dirty page rate within @vcpu-dirty-limit.  This can
529#     improve responsiveness of large guests during live migration,
530#     and can result in more stable read performance.  Requires KVM
531#     with accelerator property "dirty-ring-size" set.  (Since 8.1)
532#
533# @mapped-ram: Migrate using fixed offsets in the migration file for
534#     each RAM page.  Requires a migration URI that supports seeking,
535#     such as a file.  (since 9.0)
536#
537# Features:
538#
539# @deprecated: Member @block is deprecated.  Use blockdev-mirror with
540#     NBD instead.  Member @compress is deprecated because it is
541#     unreliable and untested.  It is recommended to use multifd
542#     migration, which offers an alternative compression
543#     implementation that is reliable and tested.
544#
545# @unstable: Members @x-colo and @x-ignore-shared are experimental.
546#
547# Since: 1.2
548##
549{ 'enum': 'MigrationCapability',
550  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
551           { 'name': 'compress', 'features': [ 'deprecated' ] },
552           'events', 'postcopy-ram',
553           { 'name': 'x-colo', 'features': [ 'unstable' ] },
554           'release-ram',
555           { 'name': 'block', 'features': [ 'deprecated' ] },
556           'return-path', 'pause-before-switchover', 'multifd',
557           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
558           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
559           'validate-uuid', 'background-snapshot',
560           'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
561           'dirty-limit', 'mapped-ram'] }
562
563##
564# @MigrationCapabilityStatus:
565#
566# Migration capability information
567#
568# @capability: capability enum
569#
570# @state: capability state bool
571#
572# Since: 1.2
573##
574{ 'struct': 'MigrationCapabilityStatus',
575  'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
576
577##
578# @migrate-set-capabilities:
579#
580# Enable/Disable the following migration capabilities (like xbzrle)
581#
582# @capabilities: json array of capability modifications to make
583#
584# Since: 1.2
585#
586# Example:
587#
588#     -> { "execute": "migrate-set-capabilities" , "arguments":
589#          { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
590#     <- { "return": {} }
591##
592{ 'command': 'migrate-set-capabilities',
593  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
594
595##
596# @query-migrate-capabilities:
597#
598# Returns information about the current migration capabilities status
599#
600# Returns: @MigrationCapabilityStatus
601#
602# Since: 1.2
603#
604# Example:
605#
606#     -> { "execute": "query-migrate-capabilities" }
607#     <- { "return": [
608#           {"state": false, "capability": "xbzrle"},
609#           {"state": false, "capability": "rdma-pin-all"},
610#           {"state": false, "capability": "auto-converge"},
611#           {"state": false, "capability": "zero-blocks"},
612#           {"state": false, "capability": "compress"},
613#           {"state": true, "capability": "events"},
614#           {"state": false, "capability": "postcopy-ram"},
615#           {"state": false, "capability": "x-colo"}
616#        ]}
617##
618{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
619
620##
621# @MultiFDCompression:
622#
623# An enumeration of multifd compression methods.
624#
625# @none: no compression.
626#
627# @zlib: use zlib compression method.
628#
629# @zstd: use zstd compression method.
630#
631# Since: 5.0
632##
633{ 'enum': 'MultiFDCompression',
634  'data': [ 'none', 'zlib',
635            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
636
637##
638# @MigMode:
639#
640# @normal: the original form of migration.  (since 8.2)
641#
642# @cpr-reboot: The migrate command stops the VM and saves state to the
643#     URI.  After quitting QEMU, the user resumes by running QEMU
644#     -incoming.
645#
646#     This mode allows the user to quit QEMU, optionally update and
647#     reboot the OS, and restart QEMU.  If the user reboots, the URI
648#     must persist across the reboot, such as by using a file.
649#
650#     Unlike normal mode, the use of certain local storage options
651#     does not block the migration, but the user must not modify the
652#     contents of guest block devices between the quit and restart.
653#
654#     This mode supports VFIO devices provided the user first puts the
655#     guest in the suspended runstate, such as by issuing
656#     guest-suspend-ram to the QEMU guest agent.
657#
658#     Best performance is achieved when the memory backend is shared
659#     and the @x-ignore-shared migration capability is set, but this
660#     is not required.  Further, if the user reboots before restarting
661#     such a configuration, the shared memory must persist across the
662#     reboot, such as by backing it with a dax device.
663#
664#     @cpr-reboot may not be used with postcopy, background-snapshot,
665#     or COLO.
666#
667#     (since 8.2)
668##
669{ 'enum': 'MigMode',
670  'data': [ 'normal', 'cpr-reboot' ] }
671
672##
673# @ZeroPageDetection:
674#
675# @none: Do not perform zero page checking.
676#
677# @legacy: Perform zero page checking in main migration thread.
678#
679# @multifd: Perform zero page checking in multifd sender thread if
680#     multifd migration is enabled, else in the main migration thread
681#     as for @legacy.
682#
683# Since: 9.0
684##
685{ 'enum': 'ZeroPageDetection',
686  'data': [ 'none', 'legacy', 'multifd' ] }
687
688##
689# @BitmapMigrationBitmapAliasTransform:
690#
691# @persistent: If present, the bitmap will be made persistent or
692#     transient depending on this parameter.
693#
694# Since: 6.0
695##
696{ 'struct': 'BitmapMigrationBitmapAliasTransform',
697  'data': {
698      '*persistent': 'bool'
699  } }
700
701##
702# @BitmapMigrationBitmapAlias:
703#
704# @name: The name of the bitmap.
705#
706# @alias: An alias name for migration (for example the bitmap name on
707#     the opposite site).
708#
709# @transform: Allows the modification of the migrated bitmap.  (since
710#     6.0)
711#
712# Since: 5.2
713##
714{ 'struct': 'BitmapMigrationBitmapAlias',
715  'data': {
716      'name': 'str',
717      'alias': 'str',
718      '*transform': 'BitmapMigrationBitmapAliasTransform'
719  } }
720
721##
722# @BitmapMigrationNodeAlias:
723#
724# Maps a block node name and the bitmaps it has to aliases for dirty
725# bitmap migration.
726#
727# @node-name: A block node name.
728#
729# @alias: An alias block node name for migration (for example the node
730#     name on the opposite site).
731#
732# @bitmaps: Mappings for the bitmaps on this node.
733#
734# Since: 5.2
735##
736{ 'struct': 'BitmapMigrationNodeAlias',
737  'data': {
738      'node-name': 'str',
739      'alias': 'str',
740      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
741  } }
742
743##
744# @MigrationParameter:
745#
746# Migration parameters enumeration
747#
748# @announce-initial: Initial delay (in milliseconds) before sending
749#     the first announce (Since 4.0)
750#
751# @announce-max: Maximum delay (in milliseconds) between packets in
752#     the announcement (Since 4.0)
753#
754# @announce-rounds: Number of self-announce packets sent after
755#     migration (Since 4.0)
756#
757# @announce-step: Increase in delay (in milliseconds) between
758#     subsequent packets in the announcement (Since 4.0)
759#
760# @compress-level: Set the compression level to be used in live
761#     migration, the compression level is an integer between 0 and 9,
762#     where 0 means no compression, 1 means the best compression
763#     speed, and 9 means best compression ratio which will consume
764#     more CPU.
765#
766# @compress-threads: Set compression thread count to be used in live
767#     migration, the compression thread count is an integer between 1
768#     and 255.
769#
770# @compress-wait-thread: Controls behavior when all compression
771#     threads are currently busy.  If true (default), wait for a free
772#     compression thread to become available; otherwise, send the page
773#     uncompressed.  (Since 3.1)
774#
775# @decompress-threads: Set decompression thread count to be used in
776#     live migration, the decompression thread count is an integer
777#     between 1 and 255. Usually, decompression is at least 4 times as
778#     fast as compression, so set the decompress-threads to the number
779#     about 1/4 of compress-threads is adequate.
780#
781# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
782#     bytes_xfer_period to trigger throttling.  It is expressed as
783#     percentage.  The default value is 50.  (Since 5.0)
784#
785# @cpu-throttle-initial: Initial percentage of time guest cpus are
786#     throttled when migration auto-converge is activated.  The
787#     default value is 20.  (Since 2.7)
788#
789# @cpu-throttle-increment: throttle percentage increase each time
790#     auto-converge detects that migration is not making progress.
791#     The default value is 10.  (Since 2.7)
792#
793# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
794#     the tail stage of throttling, the Guest is very sensitive to CPU
795#     percentage while the @cpu-throttle -increment is excessive
796#     usually at tail stage.  If this parameter is true, we will
797#     compute the ideal CPU percentage used by the Guest, which may
798#     exactly make the dirty rate match the dirty rate threshold.
799#     Then we will choose a smaller throttle increment between the one
800#     specified by @cpu-throttle-increment and the one generated by
801#     ideal CPU percentage.  Therefore, it is compatible to
802#     traditional throttling, meanwhile the throttle increment won't
803#     be excessive at tail stage.  The default value is false.  (Since
804#     5.1)
805#
806# @tls-creds: ID of the 'tls-creds' object that provides credentials
807#     for establishing a TLS connection over the migration data
808#     channel.  On the outgoing side of the migration, the credentials
809#     must be for a 'client' endpoint, while for the incoming side the
810#     credentials must be for a 'server' endpoint.  Setting this to a
811#     non-empty string enables TLS for all migrations.  An empty
812#     string means that QEMU will use plain text mode for migration,
813#     rather than TLS.  (Since 2.7)
814#
815# @tls-hostname: migration target's hostname for validating the
816#     server's x509 certificate identity.  If empty, QEMU will use the
817#     hostname from the migration URI, if any.  A non-empty value is
818#     required when using x509 based TLS credentials and the migration
819#     URI does not include a hostname, such as fd: or exec: based
820#     migration.  (Since 2.7)
821#
822#     Note: empty value works only since 2.9.
823#
824# @tls-authz: ID of the 'authz' object subclass that provides access
825#     control checking of the TLS x509 certificate distinguished name.
826#     This object is only resolved at time of use, so can be deleted
827#     and recreated on the fly while the migration server is active.
828#     If missing, it will default to denying access (Since 4.0)
829#
830# @max-bandwidth: maximum speed for migration, in bytes per second.
831#     (Since 2.8)
832#
833# @avail-switchover-bandwidth: to set the available bandwidth that
834#     migration can use during switchover phase.  NOTE!  This does not
835#     limit the bandwidth during switchover, but only for calculations
836#     when making decisions to switchover.  By default, this value is
837#     zero, which means QEMU will estimate the bandwidth
838#     automatically.  This can be set when the estimated value is not
839#     accurate, while the user is able to guarantee such bandwidth is
840#     available when switching over.  When specified correctly, this
841#     can make the switchover decision much more accurate.
842#     (Since 8.2)
843#
844# @downtime-limit: set maximum tolerated downtime for migration.
845#     maximum downtime in milliseconds (Since 2.8)
846#
847# @x-checkpoint-delay: The delay time (in ms) between two COLO
848#     checkpoints in periodic mode.  (Since 2.8)
849#
850# @block-incremental: Affects how much storage is migrated when the
851#     block migration capability is enabled.  When false, the entire
852#     storage backing chain is migrated into a flattened image at the
853#     destination; when true, only the active qcow2 layer is migrated
854#     and the destination must already have access to the same backing
855#     chain as was used on the source.  (since 2.10)
856#
857# @multifd-channels: Number of channels used to migrate data in
858#     parallel.  This is the same number that the number of sockets
859#     used for migration.  The default value is 2 (since 4.0)
860#
861# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
862#     needs to be a multiple of the target page size and a power of 2
863#     (Since 2.11)
864#
865# @max-postcopy-bandwidth: Background transfer bandwidth during
866#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
867#     (Since 3.0)
868#
869# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
870#     (Since 3.1)
871#
872# @multifd-compression: Which compression method to use.  Defaults to
873#     none.  (Since 5.0)
874#
875# @multifd-zlib-level: Set the compression level to be used in live
876#     migration, the compression level is an integer between 0 and 9,
877#     where 0 means no compression, 1 means the best compression
878#     speed, and 9 means best compression ratio which will consume
879#     more CPU. Defaults to 1.  (Since 5.0)
880#
881# @multifd-zstd-level: Set the compression level to be used in live
882#     migration, the compression level is an integer between 0 and 20,
883#     where 0 means no compression, 1 means the best compression
884#     speed, and 20 means best compression ratio which will consume
885#     more CPU. Defaults to 1.  (Since 5.0)
886#
887# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
888#     aliases for the purpose of dirty bitmap migration.  Such aliases
889#     may for example be the corresponding names on the opposite site.
890#     The mapping must be one-to-one, but not necessarily complete: On
891#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
892#     will be ignored.  On the destination, encountering an unmapped
893#     alias in the incoming migration stream will result in a report,
894#     and all further bitmap migration data will then be discarded.
895#     Note that the destination does not know about bitmaps it does
896#     not receive, so there is no limitation or requirement regarding
897#     the number of bitmaps received, or how they are named, or on
898#     which nodes they are placed.  By default (when this parameter
899#     has never been set), bitmap names are mapped to themselves.
900#     Nodes are mapped to their block device name if there is one, and
901#     to their node name otherwise.  (Since 5.2)
902#
903# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
904#     limit during live migration.  Should be in the range 1 to
905#     1000ms.  Defaults to 1000ms.  (Since 8.1)
906#
907# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
908#     Defaults to 1.  (Since 8.1)
909#
910# @mode: Migration mode.  See description in @MigMode.  Default is
911#     'normal'.  (Since 8.2)
912#
913# @zero-page-detection: Whether and how to detect zero pages.
914#     See description in @ZeroPageDetection.  Default is 'multifd'.
915#     (since 9.0)
916#
917# Features:
918#
919# @deprecated: Member @block-incremental is deprecated.  Use
920#     blockdev-mirror with NBD instead.  Members @compress-level,
921#     @compress-threads, @decompress-threads and @compress-wait-thread
922#     are deprecated because @compression is deprecated.
923#
924# @unstable: Members @x-checkpoint-delay and
925#     @x-vcpu-dirty-limit-period are experimental.
926#
927# Since: 2.4
928##
929{ 'enum': 'MigrationParameter',
930  'data': ['announce-initial', 'announce-max',
931           'announce-rounds', 'announce-step',
932           { 'name': 'compress-level', 'features': [ 'deprecated' ] },
933           { 'name': 'compress-threads', 'features': [ 'deprecated' ] },
934           { 'name': 'decompress-threads', 'features': [ 'deprecated' ] },
935           { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] },
936           'throttle-trigger-threshold',
937           'cpu-throttle-initial', 'cpu-throttle-increment',
938           'cpu-throttle-tailslow',
939           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
940           'avail-switchover-bandwidth', 'downtime-limit',
941           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
942           { 'name': 'block-incremental', 'features': [ 'deprecated' ] },
943           'multifd-channels',
944           'xbzrle-cache-size', 'max-postcopy-bandwidth',
945           'max-cpu-throttle', 'multifd-compression',
946           'multifd-zlib-level', 'multifd-zstd-level',
947           'block-bitmap-mapping',
948           { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
949           'vcpu-dirty-limit',
950           'mode',
951           'zero-page-detection'] }
952
953##
954# @MigrateSetParameters:
955#
956# @announce-initial: Initial delay (in milliseconds) before sending
957#     the first announce (Since 4.0)
958#
959# @announce-max: Maximum delay (in milliseconds) between packets in
960#     the announcement (Since 4.0)
961#
962# @announce-rounds: Number of self-announce packets sent after
963#     migration (Since 4.0)
964#
965# @announce-step: Increase in delay (in milliseconds) between
966#     subsequent packets in the announcement (Since 4.0)
967#
968# @compress-level: Set the compression level to be used in live
969#     migration, the compression level is an integer between 0 and 9,
970#     where 0 means no compression, 1 means the best compression
971#     speed, and 9 means best compression ratio which will consume
972#     more CPU.
973#
974# @compress-threads: Set compression thread count to be used in live
975#     migration, the compression thread count is an integer between 1
976#     and 255.
977#
978# @compress-wait-thread: Controls behavior when all compression
979#     threads are currently busy.  If true (default), wait for a free
980#     compression thread to become available; otherwise, send the page
981#     uncompressed.  (Since 3.1)
982#
983# @decompress-threads: Set decompression thread count to be used in
984#     live migration, the decompression thread count is an integer
985#     between 1 and 255. Usually, decompression is at least 4 times as
986#     fast as compression, so set the decompress-threads to the number
987#     about 1/4 of compress-threads is adequate.
988#
989# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
990#     bytes_xfer_period to trigger throttling.  It is expressed as
991#     percentage.  The default value is 50.  (Since 5.0)
992#
993# @cpu-throttle-initial: Initial percentage of time guest cpus are
994#     throttled when migration auto-converge is activated.  The
995#     default value is 20.  (Since 2.7)
996#
997# @cpu-throttle-increment: throttle percentage increase each time
998#     auto-converge detects that migration is not making progress.
999#     The default value is 10.  (Since 2.7)
1000#
1001# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1002#     the tail stage of throttling, the Guest is very sensitive to CPU
1003#     percentage while the @cpu-throttle -increment is excessive
1004#     usually at tail stage.  If this parameter is true, we will
1005#     compute the ideal CPU percentage used by the Guest, which may
1006#     exactly make the dirty rate match the dirty rate threshold.
1007#     Then we will choose a smaller throttle increment between the one
1008#     specified by @cpu-throttle-increment and the one generated by
1009#     ideal CPU percentage.  Therefore, it is compatible to
1010#     traditional throttling, meanwhile the throttle increment won't
1011#     be excessive at tail stage.  The default value is false.  (Since
1012#     5.1)
1013#
1014# @tls-creds: ID of the 'tls-creds' object that provides credentials
1015#     for establishing a TLS connection over the migration data
1016#     channel.  On the outgoing side of the migration, the credentials
1017#     must be for a 'client' endpoint, while for the incoming side the
1018#     credentials must be for a 'server' endpoint.  Setting this to a
1019#     non-empty string enables TLS for all migrations.  An empty
1020#     string means that QEMU will use plain text mode for migration,
1021#     rather than TLS.  This is the default.  (Since 2.7)
1022#
1023# @tls-hostname: migration target's hostname for validating the
1024#     server's x509 certificate identity.  If empty, QEMU will use the
1025#     hostname from the migration URI, if any.  A non-empty value is
1026#     required when using x509 based TLS credentials and the migration
1027#     URI does not include a hostname, such as fd: or exec: based
1028#     migration.  (Since 2.7)
1029#
1030#     Note: empty value works only since 2.9.
1031#
1032# @tls-authz: ID of the 'authz' object subclass that provides access
1033#     control checking of the TLS x509 certificate distinguished name.
1034#     This object is only resolved at time of use, so can be deleted
1035#     and recreated on the fly while the migration server is active.
1036#     If missing, it will default to denying access (Since 4.0)
1037#
1038# @max-bandwidth: maximum speed for migration, in bytes per second.
1039#     (Since 2.8)
1040#
1041# @avail-switchover-bandwidth: to set the available bandwidth that
1042#     migration can use during switchover phase.  NOTE!  This does not
1043#     limit the bandwidth during switchover, but only for calculations
1044#     when making decisions to switchover.  By default, this value is
1045#     zero, which means QEMU will estimate the bandwidth
1046#     automatically.  This can be set when the estimated value is not
1047#     accurate, while the user is able to guarantee such bandwidth is
1048#     available when switching over.  When specified correctly, this
1049#     can make the switchover decision much more accurate.
1050#     (Since 8.2)
1051#
1052# @downtime-limit: set maximum tolerated downtime for migration.
1053#     maximum downtime in milliseconds (Since 2.8)
1054#
1055# @x-checkpoint-delay: The delay time (in ms) between two COLO
1056#     checkpoints in periodic mode.  (Since 2.8)
1057#
1058# @block-incremental: Affects how much storage is migrated when the
1059#     block migration capability is enabled.  When false, the entire
1060#     storage backing chain is migrated into a flattened image at the
1061#     destination; when true, only the active qcow2 layer is migrated
1062#     and the destination must already have access to the same backing
1063#     chain as was used on the source.  (since 2.10)
1064#
1065# @multifd-channels: Number of channels used to migrate data in
1066#     parallel.  This is the same number that the number of sockets
1067#     used for migration.  The default value is 2 (since 4.0)
1068#
1069# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1070#     needs to be a multiple of the target page size and a power of 2
1071#     (Since 2.11)
1072#
1073# @max-postcopy-bandwidth: Background transfer bandwidth during
1074#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1075#     (Since 3.0)
1076#
1077# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1078#     (Since 3.1)
1079#
1080# @multifd-compression: Which compression method to use.  Defaults to
1081#     none.  (Since 5.0)
1082#
1083# @multifd-zlib-level: Set the compression level to be used in live
1084#     migration, the compression level is an integer between 0 and 9,
1085#     where 0 means no compression, 1 means the best compression
1086#     speed, and 9 means best compression ratio which will consume
1087#     more CPU. Defaults to 1.  (Since 5.0)
1088#
1089# @multifd-zstd-level: Set the compression level to be used in live
1090#     migration, the compression level is an integer between 0 and 20,
1091#     where 0 means no compression, 1 means the best compression
1092#     speed, and 20 means best compression ratio which will consume
1093#     more CPU. Defaults to 1.  (Since 5.0)
1094#
1095# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1096#     aliases for the purpose of dirty bitmap migration.  Such aliases
1097#     may for example be the corresponding names on the opposite site.
1098#     The mapping must be one-to-one, but not necessarily complete: On
1099#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1100#     will be ignored.  On the destination, encountering an unmapped
1101#     alias in the incoming migration stream will result in a report,
1102#     and all further bitmap migration data will then be discarded.
1103#     Note that the destination does not know about bitmaps it does
1104#     not receive, so there is no limitation or requirement regarding
1105#     the number of bitmaps received, or how they are named, or on
1106#     which nodes they are placed.  By default (when this parameter
1107#     has never been set), bitmap names are mapped to themselves.
1108#     Nodes are mapped to their block device name if there is one, and
1109#     to their node name otherwise.  (Since 5.2)
1110#
1111# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1112#     limit during live migration.  Should be in the range 1 to
1113#     1000ms.  Defaults to 1000ms.  (Since 8.1)
1114#
1115# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1116#     Defaults to 1.  (Since 8.1)
1117#
1118# @mode: Migration mode.  See description in @MigMode.  Default is
1119#     'normal'.  (Since 8.2)
1120#
1121# @zero-page-detection: Whether and how to detect zero pages.
1122#     See description in @ZeroPageDetection.  Default is 'multifd'.
1123#     (since 9.0)
1124#
1125# Features:
1126#
1127# @deprecated: Member @block-incremental is deprecated.  Use
1128#     blockdev-mirror with NBD instead.  Members @compress-level,
1129#     @compress-threads, @decompress-threads and @compress-wait-thread
1130#     are deprecated because @compression is deprecated.
1131#
1132# @unstable: Members @x-checkpoint-delay and
1133#     @x-vcpu-dirty-limit-period are experimental.
1134#
1135# TODO: either fuse back into MigrationParameters, or make
1136#     MigrationParameters members mandatory
1137#
1138# Since: 2.4
1139##
1140{ 'struct': 'MigrateSetParameters',
1141  'data': { '*announce-initial': 'size',
1142            '*announce-max': 'size',
1143            '*announce-rounds': 'size',
1144            '*announce-step': 'size',
1145            '*compress-level': { 'type': 'uint8',
1146                                 'features': [ 'deprecated' ] },
1147            '*compress-threads':  { 'type': 'uint8',
1148                                    'features': [ 'deprecated' ] },
1149            '*compress-wait-thread':  { 'type': 'bool',
1150                                        'features': [ 'deprecated' ] },
1151            '*decompress-threads':  { 'type': 'uint8',
1152                                      'features': [ 'deprecated' ] },
1153            '*throttle-trigger-threshold': 'uint8',
1154            '*cpu-throttle-initial': 'uint8',
1155            '*cpu-throttle-increment': 'uint8',
1156            '*cpu-throttle-tailslow': 'bool',
1157            '*tls-creds': 'StrOrNull',
1158            '*tls-hostname': 'StrOrNull',
1159            '*tls-authz': 'StrOrNull',
1160            '*max-bandwidth': 'size',
1161            '*avail-switchover-bandwidth': 'size',
1162            '*downtime-limit': 'uint64',
1163            '*x-checkpoint-delay': { 'type': 'uint32',
1164                                     'features': [ 'unstable' ] },
1165            '*block-incremental': { 'type': 'bool',
1166                                    'features': [ 'deprecated' ] },
1167            '*multifd-channels': 'uint8',
1168            '*xbzrle-cache-size': 'size',
1169            '*max-postcopy-bandwidth': 'size',
1170            '*max-cpu-throttle': 'uint8',
1171            '*multifd-compression': 'MultiFDCompression',
1172            '*multifd-zlib-level': 'uint8',
1173            '*multifd-zstd-level': 'uint8',
1174            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1175            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1176                                            'features': [ 'unstable' ] },
1177            '*vcpu-dirty-limit': 'uint64',
1178            '*mode': 'MigMode',
1179            '*zero-page-detection': 'ZeroPageDetection'} }
1180
1181##
1182# @migrate-set-parameters:
1183#
1184# Set various migration parameters.
1185#
1186# Since: 2.4
1187#
1188# Example:
1189#
1190#     -> { "execute": "migrate-set-parameters" ,
1191#          "arguments": { "multifd-channels": 5 } }
1192#     <- { "return": {} }
1193##
1194{ 'command': 'migrate-set-parameters', 'boxed': true,
1195  'data': 'MigrateSetParameters' }
1196
1197##
1198# @MigrationParameters:
1199#
1200# The optional members aren't actually optional.
1201#
1202# @announce-initial: Initial delay (in milliseconds) before sending
1203#     the first announce (Since 4.0)
1204#
1205# @announce-max: Maximum delay (in milliseconds) between packets in
1206#     the announcement (Since 4.0)
1207#
1208# @announce-rounds: Number of self-announce packets sent after
1209#     migration (Since 4.0)
1210#
1211# @announce-step: Increase in delay (in milliseconds) between
1212#     subsequent packets in the announcement (Since 4.0)
1213#
1214# @compress-level: compression level
1215#
1216# @compress-threads: compression thread count
1217#
1218# @compress-wait-thread: Controls behavior when all compression
1219#     threads are currently busy.  If true (default), wait for a free
1220#     compression thread to become available; otherwise, send the page
1221#     uncompressed.  (Since 3.1)
1222#
1223# @decompress-threads: decompression thread count
1224#
1225# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1226#     bytes_xfer_period to trigger throttling.  It is expressed as
1227#     percentage.  The default value is 50.  (Since 5.0)
1228#
1229# @cpu-throttle-initial: Initial percentage of time guest cpus are
1230#     throttled when migration auto-converge is activated.  (Since
1231#     2.7)
1232#
1233# @cpu-throttle-increment: throttle percentage increase each time
1234#     auto-converge detects that migration is not making progress.
1235#     (Since 2.7)
1236#
1237# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1238#     the tail stage of throttling, the Guest is very sensitive to CPU
1239#     percentage while the @cpu-throttle -increment is excessive
1240#     usually at tail stage.  If this parameter is true, we will
1241#     compute the ideal CPU percentage used by the Guest, which may
1242#     exactly make the dirty rate match the dirty rate threshold.
1243#     Then we will choose a smaller throttle increment between the one
1244#     specified by @cpu-throttle-increment and the one generated by
1245#     ideal CPU percentage.  Therefore, it is compatible to
1246#     traditional throttling, meanwhile the throttle increment won't
1247#     be excessive at tail stage.  The default value is false.  (Since
1248#     5.1)
1249#
1250# @tls-creds: ID of the 'tls-creds' object that provides credentials
1251#     for establishing a TLS connection over the migration data
1252#     channel.  On the outgoing side of the migration, the credentials
1253#     must be for a 'client' endpoint, while for the incoming side the
1254#     credentials must be for a 'server' endpoint.  An empty string
1255#     means that QEMU will use plain text mode for migration, rather
1256#     than TLS.  (Since 2.7)
1257#
1258#     Note: 2.8 omits empty @tls-creds instead.
1259#
1260# @tls-hostname: migration target's hostname for validating the
1261#     server's x509 certificate identity.  If empty, QEMU will use the
1262#     hostname from the migration URI, if any.  (Since 2.7)
1263#
1264#     Note: 2.8 omits empty @tls-hostname instead.
1265#
1266# @tls-authz: ID of the 'authz' object subclass that provides access
1267#     control checking of the TLS x509 certificate distinguished name.
1268#     (Since 4.0)
1269#
1270# @max-bandwidth: maximum speed for migration, in bytes per second.
1271#     (Since 2.8)
1272#
1273# @avail-switchover-bandwidth: to set the available bandwidth that
1274#     migration can use during switchover phase.  NOTE!  This does not
1275#     limit the bandwidth during switchover, but only for calculations
1276#     when making decisions to switchover.  By default, this value is
1277#     zero, which means QEMU will estimate the bandwidth
1278#     automatically.  This can be set when the estimated value is not
1279#     accurate, while the user is able to guarantee such bandwidth is
1280#     available when switching over.  When specified correctly, this
1281#     can make the switchover decision much more accurate.
1282#     (Since 8.2)
1283#
1284# @downtime-limit: set maximum tolerated downtime for migration.
1285#     maximum downtime in milliseconds (Since 2.8)
1286#
1287# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1288#     (Since 2.8)
1289#
1290# @block-incremental: Affects how much storage is migrated when the
1291#     block migration capability is enabled.  When false, the entire
1292#     storage backing chain is migrated into a flattened image at the
1293#     destination; when true, only the active qcow2 layer is migrated
1294#     and the destination must already have access to the same backing
1295#     chain as was used on the source.  (since 2.10)
1296#
1297# @multifd-channels: Number of channels used to migrate data in
1298#     parallel.  This is the same number that the number of sockets
1299#     used for migration.  The default value is 2 (since 4.0)
1300#
1301# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1302#     needs to be a multiple of the target page size and a power of 2
1303#     (Since 2.11)
1304#
1305# @max-postcopy-bandwidth: Background transfer bandwidth during
1306#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1307#     (Since 3.0)
1308#
1309# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1310#     (Since 3.1)
1311#
1312# @multifd-compression: Which compression method to use.  Defaults to
1313#     none.  (Since 5.0)
1314#
1315# @multifd-zlib-level: Set the compression level to be used in live
1316#     migration, the compression level is an integer between 0 and 9,
1317#     where 0 means no compression, 1 means the best compression
1318#     speed, and 9 means best compression ratio which will consume
1319#     more CPU. Defaults to 1.  (Since 5.0)
1320#
1321# @multifd-zstd-level: Set the compression level to be used in live
1322#     migration, the compression level is an integer between 0 and 20,
1323#     where 0 means no compression, 1 means the best compression
1324#     speed, and 20 means best compression ratio which will consume
1325#     more CPU. Defaults to 1.  (Since 5.0)
1326#
1327# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1328#     aliases for the purpose of dirty bitmap migration.  Such aliases
1329#     may for example be the corresponding names on the opposite site.
1330#     The mapping must be one-to-one, but not necessarily complete: On
1331#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1332#     will be ignored.  On the destination, encountering an unmapped
1333#     alias in the incoming migration stream will result in a report,
1334#     and all further bitmap migration data will then be discarded.
1335#     Note that the destination does not know about bitmaps it does
1336#     not receive, so there is no limitation or requirement regarding
1337#     the number of bitmaps received, or how they are named, or on
1338#     which nodes they are placed.  By default (when this parameter
1339#     has never been set), bitmap names are mapped to themselves.
1340#     Nodes are mapped to their block device name if there is one, and
1341#     to their node name otherwise.  (Since 5.2)
1342#
1343# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1344#     limit during live migration.  Should be in the range 1 to
1345#     1000ms.  Defaults to 1000ms.  (Since 8.1)
1346#
1347# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1348#     Defaults to 1.  (Since 8.1)
1349#
1350# @mode: Migration mode.  See description in @MigMode.  Default is
1351#        'normal'.  (Since 8.2)
1352#
1353# @zero-page-detection: Whether and how to detect zero pages.
1354#     See description in @ZeroPageDetection.  Default is 'multifd'.
1355#     (since 9.0)
1356#
1357# Features:
1358#
1359# @deprecated: Member @block-incremental is deprecated.  Use
1360#     blockdev-mirror with NBD instead.  Members @compress-level,
1361#     @compress-threads, @decompress-threads and @compress-wait-thread
1362#     are deprecated because @compression is deprecated.
1363#
1364# @unstable: Members @x-checkpoint-delay and
1365#     @x-vcpu-dirty-limit-period are experimental.
1366#
1367# Since: 2.4
1368##
1369{ 'struct': 'MigrationParameters',
1370  'data': { '*announce-initial': 'size',
1371            '*announce-max': 'size',
1372            '*announce-rounds': 'size',
1373            '*announce-step': 'size',
1374            '*compress-level': { 'type': 'uint8',
1375                                 'features': [ 'deprecated' ] },
1376            '*compress-threads': { 'type': 'uint8',
1377                                   'features': [ 'deprecated' ] },
1378            '*compress-wait-thread': { 'type': 'bool',
1379                                       'features': [ 'deprecated' ] },
1380            '*decompress-threads': { 'type': 'uint8',
1381                                     'features': [ 'deprecated' ] },
1382            '*throttle-trigger-threshold': 'uint8',
1383            '*cpu-throttle-initial': 'uint8',
1384            '*cpu-throttle-increment': 'uint8',
1385            '*cpu-throttle-tailslow': 'bool',
1386            '*tls-creds': 'str',
1387            '*tls-hostname': 'str',
1388            '*tls-authz': 'str',
1389            '*max-bandwidth': 'size',
1390            '*avail-switchover-bandwidth': 'size',
1391            '*downtime-limit': 'uint64',
1392            '*x-checkpoint-delay': { 'type': 'uint32',
1393                                     'features': [ 'unstable' ] },
1394            '*block-incremental': { 'type': 'bool',
1395                                    'features': [ 'deprecated' ] },
1396            '*multifd-channels': 'uint8',
1397            '*xbzrle-cache-size': 'size',
1398            '*max-postcopy-bandwidth': 'size',
1399            '*max-cpu-throttle': 'uint8',
1400            '*multifd-compression': 'MultiFDCompression',
1401            '*multifd-zlib-level': 'uint8',
1402            '*multifd-zstd-level': 'uint8',
1403            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1404            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1405                                            'features': [ 'unstable' ] },
1406            '*vcpu-dirty-limit': 'uint64',
1407            '*mode': 'MigMode',
1408            '*zero-page-detection': 'ZeroPageDetection'} }
1409
1410##
1411# @query-migrate-parameters:
1412#
1413# Returns information about the current migration parameters
1414#
1415# Returns: @MigrationParameters
1416#
1417# Since: 2.4
1418#
1419# Example:
1420#
1421#     -> { "execute": "query-migrate-parameters" }
1422#     <- { "return": {
1423#              "multifd-channels": 2,
1424#              "cpu-throttle-increment": 10,
1425#              "cpu-throttle-initial": 20,
1426#              "max-bandwidth": 33554432,
1427#              "downtime-limit": 300
1428#           }
1429#        }
1430##
1431{ 'command': 'query-migrate-parameters',
1432  'returns': 'MigrationParameters' }
1433
1434##
1435# @migrate-start-postcopy:
1436#
1437# Followup to a migration command to switch the migration to postcopy
1438# mode.  The postcopy-ram capability must be set on both source and
1439# destination before the original migration command.
1440#
1441# Since: 2.5
1442#
1443# Example:
1444#
1445#     -> { "execute": "migrate-start-postcopy" }
1446#     <- { "return": {} }
1447##
1448{ 'command': 'migrate-start-postcopy' }
1449
1450##
1451# @MIGRATION:
1452#
1453# Emitted when a migration event happens
1454#
1455# @status: @MigrationStatus describing the current migration status.
1456#
1457# Since: 2.4
1458#
1459# Example:
1460#
1461#     <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1462#         "event": "MIGRATION",
1463#         "data": {"status": "completed"} }
1464##
1465{ 'event': 'MIGRATION',
1466  'data': {'status': 'MigrationStatus'}}
1467
1468##
1469# @MIGRATION_PASS:
1470#
1471# Emitted from the source side of a migration at the start of each
1472# pass (when it syncs the dirty bitmap)
1473#
1474# @pass: An incrementing count (starting at 1 on the first pass)
1475#
1476# Since: 2.6
1477#
1478# Example:
1479#
1480#     <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1481#           "event": "MIGRATION_PASS", "data": {"pass": 2} }
1482##
1483{ 'event': 'MIGRATION_PASS',
1484  'data': { 'pass': 'int' } }
1485
1486##
1487# @COLOMessage:
1488#
1489# The message transmission between Primary side and Secondary side.
1490#
1491# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1492#
1493# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1494#     checkpointing
1495#
1496# @checkpoint-reply: SVM gets PVM's checkpoint request
1497#
1498# @vmstate-send: VM's state will be sent by PVM.
1499#
1500# @vmstate-size: The total size of VMstate.
1501#
1502# @vmstate-received: VM's state has been received by SVM.
1503#
1504# @vmstate-loaded: VM's state has been loaded by SVM.
1505#
1506# Since: 2.8
1507##
1508{ 'enum': 'COLOMessage',
1509  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1510            'vmstate-send', 'vmstate-size', 'vmstate-received',
1511            'vmstate-loaded' ] }
1512
1513##
1514# @COLOMode:
1515#
1516# The COLO current mode.
1517#
1518# @none: COLO is disabled.
1519#
1520# @primary: COLO node in primary side.
1521#
1522# @secondary: COLO node in slave side.
1523#
1524# Since: 2.8
1525##
1526{ 'enum': 'COLOMode',
1527  'data': [ 'none', 'primary', 'secondary'] }
1528
1529##
1530# @FailoverStatus:
1531#
1532# An enumeration of COLO failover status
1533#
1534# @none: no failover has ever happened
1535#
1536# @require: got failover requirement but not handled
1537#
1538# @active: in the process of doing failover
1539#
1540# @completed: finish the process of failover
1541#
1542# @relaunch: restart the failover process, from 'none' -> 'completed'
1543#     (Since 2.9)
1544#
1545# Since: 2.8
1546##
1547{ 'enum': 'FailoverStatus',
1548  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1549
1550##
1551# @COLO_EXIT:
1552#
1553# Emitted when VM finishes COLO mode due to some errors happening or
1554# at the request of users.
1555#
1556# @mode: report COLO mode when COLO exited.
1557#
1558# @reason: describes the reason for the COLO exit.
1559#
1560# Since: 3.1
1561#
1562# Example:
1563#
1564#     <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1565#          "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1566##
1567{ 'event': 'COLO_EXIT',
1568  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1569
1570##
1571# @COLOExitReason:
1572#
1573# The reason for a COLO exit.
1574#
1575# @none: failover has never happened.  This state does not occur in
1576#     the COLO_EXIT event, and is only visible in the result of
1577#     query-colo-status.
1578#
1579# @request: COLO exit is due to an external request.
1580#
1581# @error: COLO exit is due to an internal error.
1582#
1583# @processing: COLO is currently handling a failover (since 4.0).
1584#
1585# Since: 3.1
1586##
1587{ 'enum': 'COLOExitReason',
1588  'data': [ 'none', 'request', 'error' , 'processing' ] }
1589
1590##
1591# @x-colo-lost-heartbeat:
1592#
1593# Tell qemu that heartbeat is lost, request it to do takeover
1594# procedures.  If this command is sent to the PVM, the Primary side
1595# will exit COLO mode.  If sent to the Secondary, the Secondary side
1596# will run failover work, then takes over server operation to become
1597# the service VM.
1598#
1599# Features:
1600#
1601# @unstable: This command is experimental.
1602#
1603# Since: 2.8
1604#
1605# Example:
1606#
1607#     -> { "execute": "x-colo-lost-heartbeat" }
1608#     <- { "return": {} }
1609##
1610{ 'command': 'x-colo-lost-heartbeat',
1611  'features': [ 'unstable' ],
1612  'if': 'CONFIG_REPLICATION' }
1613
1614##
1615# @migrate_cancel:
1616#
1617# Cancel the current executing migration process.
1618#
1619# Notes: This command succeeds even if there is no migration process
1620#     running.
1621#
1622# Since: 0.14
1623#
1624# Example:
1625#
1626#     -> { "execute": "migrate_cancel" }
1627#     <- { "return": {} }
1628##
1629{ 'command': 'migrate_cancel' }
1630
1631##
1632# @migrate-continue:
1633#
1634# Continue migration when it's in a paused state.
1635#
1636# @state: The state the migration is currently expected to be in
1637#
1638# Since: 2.11
1639#
1640# Example:
1641#
1642#     -> { "execute": "migrate-continue" , "arguments":
1643#          { "state": "pre-switchover" } }
1644#     <- { "return": {} }
1645##
1646{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1647
1648##
1649# @MigrationAddressType:
1650#
1651# The migration stream transport mechanisms.
1652#
1653# @socket: Migrate via socket.
1654#
1655# @exec: Direct the migration stream to another process.
1656#
1657# @rdma: Migrate via RDMA.
1658#
1659# @file: Direct the migration stream to a file.
1660#
1661# Since: 8.2
1662##
1663{ 'enum': 'MigrationAddressType',
1664  'data': [ 'socket', 'exec', 'rdma', 'file' ] }
1665
1666##
1667# @FileMigrationArgs:
1668#
1669# @filename: The file to receive the migration stream
1670#
1671# @offset: The file offset where the migration stream will start
1672#
1673# Since: 8.2
1674##
1675{ 'struct': 'FileMigrationArgs',
1676  'data': { 'filename': 'str',
1677            'offset': 'uint64' } }
1678
1679##
1680# @MigrationExecCommand:
1681#
1682# @args: command (list head) and arguments to execute.
1683#
1684# Since: 8.2
1685##
1686{ 'struct': 'MigrationExecCommand',
1687  'data': {'args': [ 'str' ] } }
1688
1689##
1690# @MigrationAddress:
1691#
1692# Migration endpoint configuration.
1693#
1694# @transport: The migration stream transport mechanism
1695#
1696# Since: 8.2
1697##
1698{ 'union': 'MigrationAddress',
1699  'base': { 'transport' : 'MigrationAddressType'},
1700  'discriminator': 'transport',
1701  'data': {
1702    'socket': 'SocketAddress',
1703    'exec': 'MigrationExecCommand',
1704    'rdma': 'InetSocketAddress',
1705    'file': 'FileMigrationArgs' } }
1706
1707##
1708# @MigrationChannelType:
1709#
1710# The migration channel-type request options.
1711#
1712# @main: Main outbound migration channel.
1713#
1714# Since: 8.1
1715##
1716{ 'enum': 'MigrationChannelType',
1717  'data': [ 'main' ] }
1718
1719##
1720# @MigrationChannel:
1721#
1722# Migration stream channel parameters.
1723#
1724# @channel-type: Channel type for transferring packet information.
1725#
1726# @addr: Migration endpoint configuration on destination interface.
1727#
1728# Since: 8.1
1729##
1730{ 'struct': 'MigrationChannel',
1731  'data': {
1732      'channel-type': 'MigrationChannelType',
1733      'addr': 'MigrationAddress' } }
1734
1735##
1736# @migrate:
1737#
1738# Migrates the current running guest to another Virtual Machine.
1739#
1740# @uri: the Uniform Resource Identifier of the destination VM
1741#
1742# @channels: list of migration stream channels with each stream in the
1743#     list connected to a destination interface endpoint.
1744#
1745# @blk: do block migration (full disk copy)
1746#
1747# @inc: incremental disk copy migration
1748#
1749# @detach: this argument exists only for compatibility reasons and is
1750#     ignored by QEMU
1751#
1752# @resume: resume one paused migration, default "off".  (since 3.0)
1753#
1754# Features:
1755#
1756# @deprecated: Members @inc and @blk are deprecated.  Use
1757#     blockdev-mirror with NBD instead.
1758#
1759# Since: 0.14
1760#
1761# Notes:
1762#
1763#     1. The 'query-migrate' command should be used to check
1764#        migration's progress and final result (this information is
1765#        provided by the 'status' member)
1766#
1767#     2. All boolean arguments default to false
1768#
1769#     3. The user Monitor's "detach" argument is invalid in QMP and
1770#        should not be used
1771#
1772#     4. The uri argument should have the Uniform Resource Identifier
1773#        of default destination VM. This connection will be bound to
1774#        default network.
1775#
1776#     5. For now, number of migration streams is restricted to one,
1777#        i.e. number of items in 'channels' list is just 1.
1778#
1779#     6. The 'uri' and 'channels' arguments are mutually exclusive;
1780#        exactly one of the two should be present.
1781#
1782# Example:
1783#
1784#     -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1785#     <- { "return": {} }
1786#
1787#     -> { "execute": "migrate",
1788#          "arguments": {
1789#              "channels": [ { "channel-type": "main",
1790#                              "addr": { "transport": "socket",
1791#                                        "type": "inet",
1792#                                        "host": "10.12.34.9",
1793#                                        "port": "1050" } } ] } }
1794#     <- { "return": {} }
1795#
1796#     -> { "execute": "migrate",
1797#          "arguments": {
1798#              "channels": [ { "channel-type": "main",
1799#                              "addr": { "transport": "exec",
1800#                                        "args": [ "/bin/nc", "-p", "6000",
1801#                                                  "/some/sock" ] } } ] } }
1802#     <- { "return": {} }
1803#
1804#     -> { "execute": "migrate",
1805#          "arguments": {
1806#              "channels": [ { "channel-type": "main",
1807#                              "addr": { "transport": "rdma",
1808#                                        "host": "10.12.34.9",
1809#                                        "port": "1050" } } ] } }
1810#     <- { "return": {} }
1811#
1812#     -> { "execute": "migrate",
1813#          "arguments": {
1814#              "channels": [ { "channel-type": "main",
1815#                              "addr": { "transport": "file",
1816#                                        "filename": "/tmp/migfile",
1817#                                        "offset": "0x1000" } } ] } }
1818#     <- { "return": {} }
1819#
1820##
1821{ 'command': 'migrate',
1822  'data': {'*uri': 'str',
1823           '*channels': [ 'MigrationChannel' ],
1824           '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] },
1825           '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] },
1826           '*detach': 'bool', '*resume': 'bool' } }
1827
1828##
1829# @migrate-incoming:
1830#
1831# Start an incoming migration, the qemu must have been started with
1832# -incoming defer
1833#
1834# @uri: The Uniform Resource Identifier identifying the source or
1835#     address to listen on
1836#
1837# @channels: list of migration stream channels with each stream in the
1838#     list connected to a destination interface endpoint.
1839#
1840# Since: 2.3
1841#
1842# Notes:
1843#
1844#     1. It's a bad idea to use a string for the uri, but it needs to
1845#        stay compatible with -incoming and the format of the uri is
1846#        already exposed above libvirt.
1847#
1848#     2. QEMU must be started with -incoming defer to allow
1849#        migrate-incoming to be used.
1850#
1851#     3. The uri format is the same as for -incoming
1852#
1853#     4. For now, number of migration streams is restricted to one,
1854#        i.e. number of items in 'channels' list is just 1.
1855#
1856#     5. The 'uri' and 'channels' arguments are mutually exclusive;
1857#        exactly one of the two should be present.
1858#
1859# Example:
1860#
1861#     -> { "execute": "migrate-incoming",
1862#          "arguments": { "uri": "tcp:0:4446" } }
1863#     <- { "return": {} }
1864#
1865#     -> { "execute": "migrate-incoming",
1866#          "arguments": {
1867#              "channels": [ { "channel-type": "main",
1868#                              "addr": { "transport": "socket",
1869#                                        "type": "inet",
1870#                                        "host": "10.12.34.9",
1871#                                        "port": "1050" } } ] } }
1872#     <- { "return": {} }
1873#
1874#     -> { "execute": "migrate-incoming",
1875#          "arguments": {
1876#              "channels": [ { "channel-type": "main",
1877#                              "addr": { "transport": "exec",
1878#                                        "args": [ "/bin/nc", "-p", "6000",
1879#                                                  "/some/sock" ] } } ] } }
1880#     <- { "return": {} }
1881#
1882#     -> { "execute": "migrate-incoming",
1883#          "arguments": {
1884#              "channels": [ { "channel-type": "main",
1885#                              "addr": { "transport": "rdma",
1886#                                        "host": "10.12.34.9",
1887#                                        "port": "1050" } } ] } }
1888#     <- { "return": {} }
1889##
1890{ 'command': 'migrate-incoming',
1891             'data': {'*uri': 'str',
1892                      '*channels': [ 'MigrationChannel' ] } }
1893
1894##
1895# @xen-save-devices-state:
1896#
1897# Save the state of all devices to file.  The RAM and the block
1898# devices of the VM are not saved by this command.
1899#
1900# @filename: the file to save the state of the devices to as binary
1901#     data.  See xen-save-devices-state.txt for a description of the
1902#     binary format.
1903#
1904# @live: Optional argument to ask QEMU to treat this command as part
1905#     of a live migration.  Default to true.  (since 2.11)
1906#
1907# Since: 1.1
1908#
1909# Example:
1910#
1911#     -> { "execute": "xen-save-devices-state",
1912#          "arguments": { "filename": "/tmp/save" } }
1913#     <- { "return": {} }
1914##
1915{ 'command': 'xen-save-devices-state',
1916  'data': {'filename': 'str', '*live':'bool' } }
1917
1918##
1919# @xen-set-global-dirty-log:
1920#
1921# Enable or disable the global dirty log mode.
1922#
1923# @enable: true to enable, false to disable.
1924#
1925# Since: 1.3
1926#
1927# Example:
1928#
1929#     -> { "execute": "xen-set-global-dirty-log",
1930#          "arguments": { "enable": true } }
1931#     <- { "return": {} }
1932##
1933{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1934
1935##
1936# @xen-load-devices-state:
1937#
1938# Load the state of all devices from file.  The RAM and the block
1939# devices of the VM are not loaded by this command.
1940#
1941# @filename: the file to load the state of the devices from as binary
1942#     data.  See xen-save-devices-state.txt for a description of the
1943#     binary format.
1944#
1945# Since: 2.7
1946#
1947# Example:
1948#
1949#     -> { "execute": "xen-load-devices-state",
1950#          "arguments": { "filename": "/tmp/resume" } }
1951#     <- { "return": {} }
1952##
1953{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1954
1955##
1956# @xen-set-replication:
1957#
1958# Enable or disable replication.
1959#
1960# @enable: true to enable, false to disable.
1961#
1962# @primary: true for primary or false for secondary.
1963#
1964# @failover: true to do failover, false to stop.  Cannot be specified
1965#     if 'enable' is true.  Default value is false.
1966#
1967# Example:
1968#
1969#     -> { "execute": "xen-set-replication",
1970#          "arguments": {"enable": true, "primary": false} }
1971#     <- { "return": {} }
1972#
1973# Since: 2.9
1974##
1975{ 'command': 'xen-set-replication',
1976  'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1977  'if': 'CONFIG_REPLICATION' }
1978
1979##
1980# @ReplicationStatus:
1981#
1982# The result format for 'query-xen-replication-status'.
1983#
1984# @error: true if an error happened, false if replication is normal.
1985#
1986# @desc: the human readable error description string, when @error is
1987#     'true'.
1988#
1989# Since: 2.9
1990##
1991{ 'struct': 'ReplicationStatus',
1992  'data': { 'error': 'bool', '*desc': 'str' },
1993  'if': 'CONFIG_REPLICATION' }
1994
1995##
1996# @query-xen-replication-status:
1997#
1998# Query replication status while the vm is running.
1999#
2000# Returns: A @ReplicationStatus object showing the status.
2001#
2002# Example:
2003#
2004#     -> { "execute": "query-xen-replication-status" }
2005#     <- { "return": { "error": false } }
2006#
2007# Since: 2.9
2008##
2009{ 'command': 'query-xen-replication-status',
2010  'returns': 'ReplicationStatus',
2011  'if': 'CONFIG_REPLICATION' }
2012
2013##
2014# @xen-colo-do-checkpoint:
2015#
2016# Xen uses this command to notify replication to trigger a checkpoint.
2017#
2018# Example:
2019#
2020#     -> { "execute": "xen-colo-do-checkpoint" }
2021#     <- { "return": {} }
2022#
2023# Since: 2.9
2024##
2025{ 'command': 'xen-colo-do-checkpoint',
2026  'if': 'CONFIG_REPLICATION' }
2027
2028##
2029# @COLOStatus:
2030#
2031# The result format for 'query-colo-status'.
2032#
2033# @mode: COLO running mode.  If COLO is running, this field will
2034#     return 'primary' or 'secondary'.
2035#
2036# @last-mode: COLO last running mode.  If COLO is running, this field
2037#     will return same like mode field, after failover we can use this
2038#     field to get last colo mode.  (since 4.0)
2039#
2040# @reason: describes the reason for the COLO exit.
2041#
2042# Since: 3.1
2043##
2044{ 'struct': 'COLOStatus',
2045  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
2046            'reason': 'COLOExitReason' },
2047  'if': 'CONFIG_REPLICATION' }
2048
2049##
2050# @query-colo-status:
2051#
2052# Query COLO status while the vm is running.
2053#
2054# Returns: A @COLOStatus object showing the status.
2055#
2056# Example:
2057#
2058#     -> { "execute": "query-colo-status" }
2059#     <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
2060#
2061# Since: 3.1
2062##
2063{ 'command': 'query-colo-status',
2064  'returns': 'COLOStatus',
2065  'if': 'CONFIG_REPLICATION' }
2066
2067##
2068# @migrate-recover:
2069#
2070# Provide a recovery migration stream URI.
2071#
2072# @uri: the URI to be used for the recovery of migration stream.
2073#
2074# Example:
2075#
2076#     -> { "execute": "migrate-recover",
2077#          "arguments": { "uri": "tcp:192.168.1.200:12345" } }
2078#     <- { "return": {} }
2079#
2080# Since: 3.0
2081##
2082{ 'command': 'migrate-recover',
2083  'data': { 'uri': 'str' },
2084  'allow-oob': true }
2085
2086##
2087# @migrate-pause:
2088#
2089# Pause a migration.  Currently it only supports postcopy.
2090#
2091# Example:
2092#
2093#     -> { "execute": "migrate-pause" }
2094#     <- { "return": {} }
2095#
2096# Since: 3.0
2097##
2098{ 'command': 'migrate-pause', 'allow-oob': true }
2099
2100##
2101# @UNPLUG_PRIMARY:
2102#
2103# Emitted from source side of a migration when migration state is
2104# WAIT_UNPLUG. Device was unplugged by guest operating system.  Device
2105# resources in QEMU are kept on standby to be able to re-plug it in
2106# case of migration failure.
2107#
2108# @device-id: QEMU device id of the unplugged device
2109#
2110# Since: 4.2
2111#
2112# Example:
2113#
2114#     <- { "event": "UNPLUG_PRIMARY",
2115#          "data": { "device-id": "hostdev0" },
2116#          "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2117##
2118{ 'event': 'UNPLUG_PRIMARY',
2119  'data': { 'device-id': 'str' } }
2120
2121##
2122# @DirtyRateVcpu:
2123#
2124# Dirty rate of vcpu.
2125#
2126# @id: vcpu index.
2127#
2128# @dirty-rate: dirty rate.
2129#
2130# Since: 6.2
2131##
2132{ 'struct': 'DirtyRateVcpu',
2133  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
2134
2135##
2136# @DirtyRateStatus:
2137#
2138# Dirty page rate measurement status.
2139#
2140# @unstarted: measuring thread has not been started yet
2141#
2142# @measuring: measuring thread is running
2143#
2144# @measured: dirty page rate is measured and the results are available
2145#
2146# Since: 5.2
2147##
2148{ 'enum': 'DirtyRateStatus',
2149  'data': [ 'unstarted', 'measuring', 'measured'] }
2150
2151##
2152# @DirtyRateMeasureMode:
2153#
2154# Method used to measure dirty page rate.  Differences between
2155# available methods are explained in @calc-dirty-rate.
2156#
2157# @page-sampling: use page sampling
2158#
2159# @dirty-ring: use dirty ring
2160#
2161# @dirty-bitmap: use dirty bitmap
2162#
2163# Since: 6.2
2164##
2165{ 'enum': 'DirtyRateMeasureMode',
2166  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
2167
2168##
2169# @TimeUnit:
2170#
2171# Specifies unit in which time-related value is specified.
2172#
2173# @second: value is in seconds
2174#
2175# @millisecond: value is in milliseconds
2176#
2177# Since: 8.2
2178##
2179{ 'enum': 'TimeUnit',
2180  'data': ['second', 'millisecond'] }
2181
2182##
2183# @DirtyRateInfo:
2184#
2185# Information about measured dirty page rate.
2186#
2187# @dirty-rate: an estimate of the dirty page rate of the VM in units
2188#     of MiB/s.  Value is present only when @status is 'measured'.
2189#
2190# @status: current status of dirty page rate measurements
2191#
2192# @start-time: start time in units of second for calculation
2193#
2194# @calc-time: time period for which dirty page rate was measured,
2195#     expressed and rounded down to @calc-time-unit.
2196#
2197# @calc-time-unit: time unit of @calc-time  (Since 8.2)
2198#
2199# @sample-pages: number of sampled pages per GiB of guest memory.
2200#     Valid only in page-sampling mode (Since 6.1)
2201#
2202# @mode: mode that was used to measure dirty page rate (Since 6.2)
2203#
2204# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
2205#     specified (Since 6.2)
2206#
2207# Since: 5.2
2208##
2209{ 'struct': 'DirtyRateInfo',
2210  'data': {'*dirty-rate': 'int64',
2211           'status': 'DirtyRateStatus',
2212           'start-time': 'int64',
2213           'calc-time': 'int64',
2214           'calc-time-unit': 'TimeUnit',
2215           'sample-pages': 'uint64',
2216           'mode': 'DirtyRateMeasureMode',
2217           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
2218
2219##
2220# @calc-dirty-rate:
2221#
2222# Start measuring dirty page rate of the VM.  Results can be retrieved
2223# with @query-dirty-rate after measurements are completed.
2224#
2225# Dirty page rate is the number of pages changed in a given time
2226# period expressed in MiB/s.  The following methods of calculation are
2227# available:
2228#
2229# 1. In page sampling mode, a random subset of pages are selected and
2230#    hashed twice: once at the beginning of measurement time period,
2231#    and once again at the end.  If two hashes for some page are
2232#    different, the page is counted as changed.  Since this method
2233#    relies on sampling and hashing, calculated dirty page rate is
2234#    only an estimate of its true value.  Increasing @sample-pages
2235#    improves estimation quality at the cost of higher computational
2236#    overhead.
2237#
2238# 2. Dirty bitmap mode captures writes to memory (for example by
2239#    temporarily revoking write access to all pages) and counting page
2240#    faults.  Information about modified pages is collected into a
2241#    bitmap, where each bit corresponds to one guest page.  This mode
2242#    requires that KVM accelerator property "dirty-ring-size" is *not*
2243#    set.
2244#
2245# 3. Dirty ring mode is similar to dirty bitmap mode, but the
2246#    information about modified pages is collected into ring buffer.
2247#    This mode tracks page modification per each vCPU separately.  It
2248#    requires that KVM accelerator property "dirty-ring-size" is set.
2249#
2250# @calc-time: time period for which dirty page rate is calculated.
2251#     By default it is specified in seconds, but the unit can be set
2252#     explicitly with @calc-time-unit.  Note that larger @calc-time
2253#     values will typically result in smaller dirty page rates because
2254#     page dirtying is a one-time event.  Once some page is counted
2255#     as dirty during @calc-time period, further writes to this page
2256#     will not increase dirty page rate anymore.
2257#
2258# @calc-time-unit: time unit in which @calc-time is specified.
2259#     By default it is seconds.  (Since 8.2)
2260#
2261# @sample-pages: number of sampled pages per each GiB of guest memory.
2262#     Default value is 512.  For 4KiB guest pages this corresponds to
2263#     sampling ratio of 0.2%.  This argument is used only in page
2264#     sampling mode.  (Since 6.1)
2265#
2266# @mode: mechanism for tracking dirty pages.  Default value is
2267#     'page-sampling'.  Others are 'dirty-bitmap' and 'dirty-ring'.
2268#     (Since 6.1)
2269#
2270# Since: 5.2
2271#
2272# Example:
2273#
2274#     -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
2275#                                                     'sample-pages': 512} }
2276#     <- { "return": {} }
2277#
2278#     Measure dirty rate using dirty bitmap for 500 milliseconds:
2279#
2280#     -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
2281#         "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
2282#
2283#     <- { "return": {} }
2284##
2285{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
2286                                         '*calc-time-unit': 'TimeUnit',
2287                                         '*sample-pages': 'int',
2288                                         '*mode': 'DirtyRateMeasureMode'} }
2289
2290##
2291# @query-dirty-rate:
2292#
2293# Query results of the most recent invocation of @calc-dirty-rate.
2294#
2295# @calc-time-unit: time unit in which to report calculation time.
2296#     By default it is reported in seconds.  (Since 8.2)
2297#
2298# Since: 5.2
2299#
2300# Examples:
2301#
2302#     1. Measurement is in progress:
2303#
2304#     <- {"status": "measuring", "sample-pages": 512,
2305#         "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2306#         "calc-time-unit": "second"}
2307#
2308#     2. Measurement has been completed:
2309#
2310#     <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
2311#         "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2312#         "calc-time-unit": "second"}
2313##
2314{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
2315                                 'returns': 'DirtyRateInfo' }
2316
2317##
2318# @DirtyLimitInfo:
2319#
2320# Dirty page rate limit information of a virtual CPU.
2321#
2322# @cpu-index: index of a virtual CPU.
2323#
2324# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
2325#     CPU, 0 means unlimited.
2326#
2327# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
2328#
2329# Since: 7.1
2330##
2331{ 'struct': 'DirtyLimitInfo',
2332  'data': { 'cpu-index': 'int',
2333            'limit-rate': 'uint64',
2334            'current-rate': 'uint64' } }
2335
2336##
2337# @set-vcpu-dirty-limit:
2338#
2339# Set the upper limit of dirty page rate for virtual CPUs.
2340#
2341# Requires KVM with accelerator property "dirty-ring-size" set.  A
2342# virtual CPU's dirty page rate is a measure of its memory load.  To
2343# observe dirty page rates, use @calc-dirty-rate.
2344#
2345# @cpu-index: index of a virtual CPU, default is all.
2346#
2347# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2348#
2349# Since: 7.1
2350#
2351# Example:
2352#
2353#     -> {"execute": "set-vcpu-dirty-limit"}
2354#         "arguments": { "dirty-rate": 200,
2355#                        "cpu-index": 1 } }
2356#     <- { "return": {} }
2357##
2358{ 'command': 'set-vcpu-dirty-limit',
2359  'data': { '*cpu-index': 'int',
2360            'dirty-rate': 'uint64' } }
2361
2362##
2363# @cancel-vcpu-dirty-limit:
2364#
2365# Cancel the upper limit of dirty page rate for virtual CPUs.
2366#
2367# Cancel the dirty page limit for the vCPU which has been set with
2368# set-vcpu-dirty-limit command.  Note that this command requires
2369# support from dirty ring, same as the "set-vcpu-dirty-limit".
2370#
2371# @cpu-index: index of a virtual CPU, default is all.
2372#
2373# Since: 7.1
2374#
2375# Example:
2376#
2377#     -> {"execute": "cancel-vcpu-dirty-limit"},
2378#         "arguments": { "cpu-index": 1 } }
2379#     <- { "return": {} }
2380##
2381{ 'command': 'cancel-vcpu-dirty-limit',
2382  'data': { '*cpu-index': 'int'} }
2383
2384##
2385# @query-vcpu-dirty-limit:
2386#
2387# Returns information about virtual CPU dirty page rate limits, if
2388# any.
2389#
2390# Since: 7.1
2391#
2392# Example:
2393#
2394#     -> {"execute": "query-vcpu-dirty-limit"}
2395#     <- {"return": [
2396#            { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2397#            { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2398##
2399{ 'command': 'query-vcpu-dirty-limit',
2400  'returns': [ 'DirtyLimitInfo' ] }
2401
2402##
2403# @MigrationThreadInfo:
2404#
2405# Information about migrationthreads
2406#
2407# @name: the name of migration thread
2408#
2409# @thread-id: ID of the underlying host thread
2410#
2411# Since: 7.2
2412##
2413{ 'struct': 'MigrationThreadInfo',
2414  'data': {'name': 'str',
2415           'thread-id': 'int'} }
2416
2417##
2418# @query-migrationthreads:
2419#
2420# Returns information of migration threads
2421#
2422# Returns: @MigrationThreadInfo
2423#
2424# Since: 7.2
2425##
2426{ 'command': 'query-migrationthreads',
2427  'returns': ['MigrationThreadInfo'] }
2428
2429##
2430# @snapshot-save:
2431#
2432# Save a VM snapshot
2433#
2434# @job-id: identifier for the newly created job
2435#
2436# @tag: name of the snapshot to create
2437#
2438# @vmstate: block device node name to save vmstate to
2439#
2440# @devices: list of block device node names to save a snapshot to
2441#
2442# Applications should not assume that the snapshot save is complete
2443# when this command returns.  The job commands / events must be used
2444# to determine completion and to fetch details of any errors that
2445# arise.
2446#
2447# Note that execution of the guest CPUs may be stopped during the time
2448# it takes to save the snapshot.  A future version of QEMU may ensure
2449# CPUs are executing continuously.
2450#
2451# It is strongly recommended that @devices contain all writable block
2452# device nodes if a consistent snapshot is required.
2453#
2454# If @tag already exists, an error will be reported
2455#
2456# Example:
2457#
2458#     -> { "execute": "snapshot-save",
2459#          "arguments": {
2460#             "job-id": "snapsave0",
2461#             "tag": "my-snap",
2462#             "vmstate": "disk0",
2463#             "devices": ["disk0", "disk1"]
2464#          }
2465#        }
2466#     <- { "return": { } }
2467#     <- {"event": "JOB_STATUS_CHANGE",
2468#         "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2469#         "data": {"status": "created", "id": "snapsave0"}}
2470#     <- {"event": "JOB_STATUS_CHANGE",
2471#         "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2472#         "data": {"status": "running", "id": "snapsave0"}}
2473#     <- {"event": "STOP",
2474#         "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2475#     <- {"event": "RESUME",
2476#         "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2477#     <- {"event": "JOB_STATUS_CHANGE",
2478#         "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2479#         "data": {"status": "waiting", "id": "snapsave0"}}
2480#     <- {"event": "JOB_STATUS_CHANGE",
2481#         "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2482#         "data": {"status": "pending", "id": "snapsave0"}}
2483#     <- {"event": "JOB_STATUS_CHANGE",
2484#         "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2485#         "data": {"status": "concluded", "id": "snapsave0"}}
2486#     -> {"execute": "query-jobs"}
2487#     <- {"return": [{"current-progress": 1,
2488#                     "status": "concluded",
2489#                     "total-progress": 1,
2490#                     "type": "snapshot-save",
2491#                     "id": "snapsave0"}]}
2492#
2493# Since: 6.0
2494##
2495{ 'command': 'snapshot-save',
2496  'data': { 'job-id': 'str',
2497            'tag': 'str',
2498            'vmstate': 'str',
2499            'devices': ['str'] } }
2500
2501##
2502# @snapshot-load:
2503#
2504# Load a VM snapshot
2505#
2506# @job-id: identifier for the newly created job
2507#
2508# @tag: name of the snapshot to load.
2509#
2510# @vmstate: block device node name to load vmstate from
2511#
2512# @devices: list of block device node names to load a snapshot from
2513#
2514# Applications should not assume that the snapshot load is complete
2515# when this command returns.  The job commands / events must be used
2516# to determine completion and to fetch details of any errors that
2517# arise.
2518#
2519# Note that execution of the guest CPUs will be stopped during the
2520# time it takes to load the snapshot.
2521#
2522# It is strongly recommended that @devices contain all writable block
2523# device nodes that can have changed since the original @snapshot-save
2524# command execution.
2525#
2526# Example:
2527#
2528#     -> { "execute": "snapshot-load",
2529#          "arguments": {
2530#             "job-id": "snapload0",
2531#             "tag": "my-snap",
2532#             "vmstate": "disk0",
2533#             "devices": ["disk0", "disk1"]
2534#          }
2535#        }
2536#     <- { "return": { } }
2537#     <- {"event": "JOB_STATUS_CHANGE",
2538#         "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2539#         "data": {"status": "created", "id": "snapload0"}}
2540#     <- {"event": "JOB_STATUS_CHANGE",
2541#         "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2542#         "data": {"status": "running", "id": "snapload0"}}
2543#     <- {"event": "STOP",
2544#         "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2545#     <- {"event": "RESUME",
2546#         "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2547#     <- {"event": "JOB_STATUS_CHANGE",
2548#         "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2549#         "data": {"status": "waiting", "id": "snapload0"}}
2550#     <- {"event": "JOB_STATUS_CHANGE",
2551#         "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2552#         "data": {"status": "pending", "id": "snapload0"}}
2553#     <- {"event": "JOB_STATUS_CHANGE",
2554#         "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2555#         "data": {"status": "concluded", "id": "snapload0"}}
2556#     -> {"execute": "query-jobs"}
2557#     <- {"return": [{"current-progress": 1,
2558#                     "status": "concluded",
2559#                     "total-progress": 1,
2560#                     "type": "snapshot-load",
2561#                     "id": "snapload0"}]}
2562#
2563# Since: 6.0
2564##
2565{ 'command': 'snapshot-load',
2566  'data': { 'job-id': 'str',
2567            'tag': 'str',
2568            'vmstate': 'str',
2569            'devices': ['str'] } }
2570
2571##
2572# @snapshot-delete:
2573#
2574# Delete a VM snapshot
2575#
2576# @job-id: identifier for the newly created job
2577#
2578# @tag: name of the snapshot to delete.
2579#
2580# @devices: list of block device node names to delete a snapshot from
2581#
2582# Applications should not assume that the snapshot delete is complete
2583# when this command returns.  The job commands / events must be used
2584# to determine completion and to fetch details of any errors that
2585# arise.
2586#
2587# Example:
2588#
2589#     -> { "execute": "snapshot-delete",
2590#          "arguments": {
2591#             "job-id": "snapdelete0",
2592#             "tag": "my-snap",
2593#             "devices": ["disk0", "disk1"]
2594#          }
2595#        }
2596#     <- { "return": { } }
2597#     <- {"event": "JOB_STATUS_CHANGE",
2598#         "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2599#         "data": {"status": "created", "id": "snapdelete0"}}
2600#     <- {"event": "JOB_STATUS_CHANGE",
2601#         "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2602#         "data": {"status": "running", "id": "snapdelete0"}}
2603#     <- {"event": "JOB_STATUS_CHANGE",
2604#         "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2605#         "data": {"status": "waiting", "id": "snapdelete0"}}
2606#     <- {"event": "JOB_STATUS_CHANGE",
2607#         "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2608#         "data": {"status": "pending", "id": "snapdelete0"}}
2609#     <- {"event": "JOB_STATUS_CHANGE",
2610#         "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2611#         "data": {"status": "concluded", "id": "snapdelete0"}}
2612#     -> {"execute": "query-jobs"}
2613#     <- {"return": [{"current-progress": 1,
2614#                     "status": "concluded",
2615#                     "total-progress": 1,
2616#                     "type": "snapshot-delete",
2617#                     "id": "snapdelete0"}]}
2618#
2619# Since: 6.0
2620##
2621{ 'command': 'snapshot-delete',
2622  'data': { 'job-id': 'str',
2623            'tag': 'str',
2624            'devices': ['str'] } }
2625