1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# ********* 7# Migration 8# ********* 9## 10 11{ 'include': 'common.json' } 12{ 'include': 'sockets.json' } 13 14## 15# @MigrationStats: 16# 17# Detailed migration status. 18# 19# @transferred: amount of bytes already transferred to the target VM 20# 21# @remaining: amount of bytes remaining to be transferred to the 22# target VM 23# 24# @total: total amount of bytes involved in the migration process 25# 26# @duplicate: number of duplicate (zero) pages (since 1.2) 27# 28# @normal: number of normal pages (since 1.2) 29# 30# @normal-bytes: number of normal bytes sent (since 1.2) 31# 32# @dirty-pages-rate: number of pages dirtied by second by the guest 33# (since 1.3) 34# 35# @mbps: throughput in megabits/sec. (since 1.6) 36# 37# @dirty-sync-count: number of times that dirty ram was synchronized 38# (since 2.1) 39# 40# @postcopy-requests: The number of page requests received from the 41# destination (since 2.7) 42# 43# @page-size: The number of bytes per page for the various page-based 44# statistics (since 2.10) 45# 46# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 47# 48# @pages-per-second: the number of memory pages transferred per second 49# (Since 4.0) 50# 51# @precopy-bytes: The number of bytes sent in the pre-copy phase 52# (since 7.0). 53# 54# @downtime-bytes: The number of bytes sent while the guest is paused 55# (since 7.0). 56# 57# @postcopy-bytes: The number of bytes sent during the post-copy phase 58# (since 7.0). 59# 60# @dirty-sync-missed-zero-copy: Number of times dirty RAM 61# synchronization could not avoid copying dirty pages. This is 62# between 0 and @dirty-sync-count * @multifd-channels. 63# (since 7.1) 64# 65# Since: 0.14 66## 67{ 'struct': 'MigrationStats', 68 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 69 'duplicate': 'int', 70 'normal': 'int', 71 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 72 'mbps': 'number', 'dirty-sync-count': 'int', 73 'postcopy-requests': 'int', 'page-size': 'int', 74 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 75 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 76 'postcopy-bytes': 'uint64', 77 'dirty-sync-missed-zero-copy': 'uint64' } } 78 79## 80# @XBZRLECacheStats: 81# 82# Detailed XBZRLE migration cache statistics 83# 84# @cache-size: XBZRLE cache size 85# 86# @bytes: amount of bytes already transferred to the target VM 87# 88# @pages: amount of pages transferred to the target VM 89# 90# @cache-miss: number of cache miss 91# 92# @cache-miss-rate: rate of cache miss (since 2.1) 93# 94# @encoding-rate: rate of encoded bytes (since 5.1) 95# 96# @overflow: number of overflows 97# 98# Since: 1.2 99## 100{ 'struct': 'XBZRLECacheStats', 101 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 102 'cache-miss': 'int', 'cache-miss-rate': 'number', 103 'encoding-rate': 'number', 'overflow': 'int' } } 104 105## 106# @CompressionStats: 107# 108# Detailed migration compression statistics 109# 110# @pages: amount of pages compressed and transferred to the target VM 111# 112# @busy: count of times that no free thread was available to compress 113# data 114# 115# @busy-rate: rate of thread busy 116# 117# @compressed-size: amount of bytes after compression 118# 119# @compression-rate: rate of compressed size 120# 121# Since: 3.1 122## 123{ 'struct': 'CompressionStats', 124 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 125 'compressed-size': 'int', 'compression-rate': 'number' } } 126 127## 128# @MigrationStatus: 129# 130# An enumeration of migration status. 131# 132# @none: no migration has ever happened. 133# 134# @setup: migration process has been initiated. 135# 136# @cancelling: in the process of cancelling migration. 137# 138# @cancelled: cancelling migration is finished. 139# 140# @active: in the process of doing migration. 141# 142# @postcopy-active: like active, but now in postcopy mode. 143# (since 2.5) 144# 145# @postcopy-paused: during postcopy but paused. (since 3.0) 146# 147# @postcopy-recover-setup: setup phase for a postcopy recovery 148# process, preparing for a recovery phase to start. (since 9.1) 149# 150# @postcopy-recover: trying to recover from a paused postcopy. 151# (since 3.0) 152# 153# @completed: migration is finished. 154# 155# @failed: some error occurred during migration process. 156# 157# @colo: VM is in the process of fault tolerance, VM can not get into 158# this state unless colo capability is enabled for migration. 159# (since 2.8) 160# 161# @pre-switchover: Paused before device serialisation. (since 2.11) 162# 163# @device: During device serialisation (also known as switchover phase). 164# Before 9.2, this is only used when (1) in precopy, and (2) when 165# pre-switchover capability is enabled. After 10.0, this state will 166# always be present for every migration procedure as the switchover 167# phase. (since 2.11) 168# 169# @wait-unplug: wait for device unplug request by guest OS to be 170# completed. (since 4.2) 171# 172# Since: 2.3 173## 174{ 'enum': 'MigrationStatus', 175 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 176 'active', 'postcopy-active', 'postcopy-paused', 177 'postcopy-recover-setup', 178 'postcopy-recover', 'completed', 'failed', 'colo', 179 'pre-switchover', 'device', 'wait-unplug' ] } 180## 181# @VfioStats: 182# 183# Detailed VFIO devices migration statistics 184# 185# @transferred: amount of bytes transferred to the target VM by VFIO 186# devices 187# 188# Since: 5.2 189## 190{ 'struct': 'VfioStats', 191 'data': {'transferred': 'int' } } 192 193## 194# @MigrationInfo: 195# 196# Information about current migration process. 197# 198# @status: `MigrationStatus` describing the current migration status. 199# If this field is not returned, no migration process has been 200# initiated 201# 202# @ram: `MigrationStats` containing detailed migration status, only 203# returned if status is 'active' or 'completed'(since 1.2) 204# 205# @xbzrle-cache: `XBZRLECacheStats` containing detailed XBZRLE 206# migration statistics, only returned if XBZRLE feature is on and 207# status is 'active' or 'completed' (since 1.2) 208# 209# @total-time: total amount of milliseconds since migration started. 210# If migration has ended, it returns the total migration time. 211# (since 1.2) 212# 213# @downtime: only present when migration finishes correctly total 214# downtime in milliseconds for the guest. (since 1.3) 215# 216# @expected-downtime: only present while migration is active expected 217# downtime in milliseconds for the guest in last walk of the dirty 218# bitmap. (since 1.3) 219# 220# @setup-time: amount of setup time in milliseconds *before* the 221# iterations begin but *after* the QMP command is issued. This is 222# designed to provide an accounting of any activities (such as 223# RDMA pinning) which may be expensive, but do not actually occur 224# during the iterative migration rounds themselves. (since 1.6) 225# 226# @cpu-throttle-percentage: percentage of time guest cpus are being 227# throttled during auto-converge. This is only present when 228# auto-converge has started throttling guest cpus. (Since 2.7) 229# 230# @error-desc: the human readable error description string. Clients 231# should not attempt to parse the error strings. (Since 2.7) 232# 233# @postcopy-blocktime: total time when all vCPU were blocked during 234# postcopy live migration. This is only present when the 235# postcopy-blocktime migration capability is enabled. (Since 3.0) 236# 237# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 238# This is only present when the postcopy-blocktime migration 239# capability is enabled. (Since 3.0) 240# 241# @postcopy-latency: average remote page fault latency (in ns). Note that 242# this doesn't include all faults, but only the ones that require a 243# remote page request. So it should be always bigger than the real 244# average page fault latency. This is only present when the 245# postcopy-blocktime migration capability is enabled. (Since 10.1) 246# 247# @postcopy-latency-dist: remote page fault latency distributions. Each 248# element of the array is the number of faults that fall into the 249# bucket period. For the N-th bucket (N>=0), the latency window is 250# [2^Nus, 2^(N+1)us). For example, the 8th element stores how many 251# remote faults got resolved within [256us, 512us) window. This is only 252# present when the postcopy-blocktime migration capability is enabled. 253# (Since 10.1) 254# 255# @postcopy-vcpu-latency: average remote page fault latency per vCPU (in 256# ns). It has the same definition of @postcopy-latency, but instead 257# this is the per-vCPU statistics. This is only present when the 258# postcopy-blocktime migration capability is enabled. (Since 10.1) 259# 260# @postcopy-non-vcpu-latency: average remote page fault latency for all 261# faults happend in non-vCPU threads (in ns). It has the same 262# definition of @postcopy-latency but this only provides statistics to 263# non-vCPU faults. This is only present when the postcopy-blocktime 264# migration capability is enabled. (Since 10.1) 265# 266# @socket-address: Only used for tcp, to know what the real port is 267# (Since 4.0) 268# 269# @vfio: `VfioStats` containing detailed VFIO devices migration 270# statistics, only returned if VFIO device is present, migration 271# is supported by all VFIO devices and status is 'active' or 272# 'completed' (since 5.2) 273# 274# @blocked-reasons: A list of reasons an outgoing migration is 275# blocked. Present and non-empty when migration is blocked. 276# (since 6.0) 277# 278# @dirty-limit-throttle-time-per-round: Maximum throttle time (in 279# microseconds) of virtual CPUs each dirty ring full round, which 280# shows how `MigrationCapability` dirty-limit affects the guest 281# during live migration. (Since 8.1) 282# 283# @dirty-limit-ring-full-time: Estimated average dirty ring full time 284# (in microseconds) for each dirty ring full round. The value 285# equals the dirty ring memory size divided by the average dirty 286# page rate of the virtual CPU, which can be used to observe the 287# average memory load of the virtual CPU indirectly. Note that 288# zero means guest doesn't dirty memory. (Since 8.1) 289# 290# Features: 291# 292# @unstable: Members @postcopy-latency, @postcopy-vcpu-latency, 293# @postcopy-latency-dist, @postcopy-non-vcpu-latency are experimental. 294# 295# Since: 0.14 296## 297{ 'struct': 'MigrationInfo', 298 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 299 '*vfio': 'VfioStats', 300 '*xbzrle-cache': 'XBZRLECacheStats', 301 '*total-time': 'int', 302 '*expected-downtime': 'int', 303 '*downtime': 'int', 304 '*setup-time': 'int', 305 '*cpu-throttle-percentage': 'int', 306 '*error-desc': 'str', 307 '*blocked-reasons': ['str'], 308 '*postcopy-blocktime': 'uint32', 309 '*postcopy-vcpu-blocktime': ['uint32'], 310 '*postcopy-latency': { 311 'type': 'uint64', 'features': [ 'unstable' ] }, 312 '*postcopy-latency-dist': { 313 'type': ['uint64'], 'features': [ 'unstable' ] }, 314 '*postcopy-vcpu-latency': { 315 'type': ['uint64'], 'features': [ 'unstable' ] }, 316 '*postcopy-non-vcpu-latency': { 317 'type': 'uint64', 'features': [ 'unstable' ] }, 318 '*socket-address': ['SocketAddress'], 319 '*dirty-limit-throttle-time-per-round': 'uint64', 320 '*dirty-limit-ring-full-time': 'uint64'} } 321 322## 323# @query-migrate: 324# 325# Return information about current migration process. If migration 326# is active there will be another json-object with RAM migration 327# status. 328# 329# Since: 0.14 330# 331# .. qmp-example:: 332# :title: Before the first migration 333# 334# -> { "execute": "query-migrate" } 335# <- { "return": {} } 336# 337# .. qmp-example:: 338# :title: Migration is done and has succeeded 339# 340# -> { "execute": "query-migrate" } 341# <- { "return": { 342# "status": "completed", 343# "total-time":12345, 344# "setup-time":12345, 345# "downtime":12345, 346# "ram":{ 347# "transferred":123, 348# "remaining":123, 349# "total":246, 350# "duplicate":123, 351# "normal":123, 352# "normal-bytes":123456, 353# "dirty-sync-count":15 354# } 355# } 356# } 357# 358# .. qmp-example:: 359# :title: Migration is done and has failed 360# 361# -> { "execute": "query-migrate" } 362# <- { "return": { "status": "failed" } } 363# 364# .. qmp-example:: 365# :title: Migration is being performed 366# 367# -> { "execute": "query-migrate" } 368# <- { 369# "return":{ 370# "status":"active", 371# "total-time":12345, 372# "setup-time":12345, 373# "expected-downtime":12345, 374# "ram":{ 375# "transferred":123, 376# "remaining":123, 377# "total":246, 378# "duplicate":123, 379# "normal":123, 380# "normal-bytes":123456, 381# "dirty-sync-count":15 382# } 383# } 384# } 385# 386# .. qmp-example:: 387# :title: Migration is being performed and XBZRLE is active 388# 389# -> { "execute": "query-migrate" } 390# <- { 391# "return":{ 392# "status":"active", 393# "total-time":12345, 394# "setup-time":12345, 395# "expected-downtime":12345, 396# "ram":{ 397# "total":1057024, 398# "remaining":1053304, 399# "transferred":3720, 400# "duplicate":10, 401# "normal":3333, 402# "normal-bytes":3412992, 403# "dirty-sync-count":15 404# }, 405# "xbzrle-cache":{ 406# "cache-size":67108864, 407# "bytes":20971520, 408# "pages":2444343, 409# "cache-miss":2244, 410# "cache-miss-rate":0.123, 411# "encoding-rate":80.1, 412# "overflow":34434 413# } 414# } 415# } 416## 417{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 418 419## 420# @MigrationCapability: 421# 422# Migration capabilities enumeration 423# 424# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 425# Encoding). This feature allows us to minimize migration traffic 426# for certain work loads, by sending compressed difference of the 427# pages 428# 429# @rdma-pin-all: Controls whether or not the entire VM memory 430# footprint is mlock()'d on demand or all at once. Refer to 431# docs/rdma.txt for usage. Disabled by default. (since 2.0) 432# 433# @zero-blocks: During storage migration encode blocks of zeroes 434# efficiently. This essentially saves 1MB of zeroes per block on 435# the wire. Enabling requires source and target VM to support 436# this feature. To enable it is sufficient to enable the 437# capability on the source VM. The feature is disabled by 438# default. (since 1.6) 439# 440# @events: generate events for each migration state change (since 2.4) 441# 442# @auto-converge: If enabled, QEMU will automatically throttle down 443# the guest to speed up convergence of RAM migration. (since 1.6) 444# 445# @postcopy-ram: Start executing on the migration target before all of 446# RAM has been migrated, pulling the remaining pages along as 447# needed. The capacity must have the same setting on both source 448# and target or migration will not even start. **Note:** if the 449# migration fails during postcopy the VM will fail. (since 2.6) 450# 451# @x-colo: If enabled, migration will never end, and the state of the 452# VM on the primary side will be migrated continuously to the VM 453# on secondary side, this process is called COarse-Grain LOck 454# Stepping (COLO) for Non-stop Service. (since 2.8) 455# 456# @release-ram: if enabled, QEMU will free the migrated ram pages on 457# the source during postcopy-ram migration. (since 2.9) 458# 459# @return-path: If enabled, migration will use the return path even 460# for precopy. (since 2.10) 461# 462# @pause-before-switchover: Pause outgoing migration before 463# serialising device state and before disabling block IO 464# (since 2.11) 465# 466# @multifd: Use more than one fd for migration (since 4.0) 467# 468# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 469# (since 2.12) 470# 471# @postcopy-blocktime: Calculate downtime for postcopy live migration 472# (since 3.0) 473# 474# @late-block-activate: If enabled, the destination will not activate 475# block devices (and thus take locks) immediately at the end of 476# migration. (since 3.0) 477# 478# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 479# that is accessible on the destination machine. (since 4.0) 480# 481# @validate-uuid: Send the UUID of the source to allow the destination 482# to ensure it is the same. (since 4.2) 483# 484# @background-snapshot: If enabled, the migration stream will be a 485# snapshot of the VM exactly at the point when the migration 486# procedure starts. The VM RAM is saved with running VM. 487# (since 6.0) 488# 489# @zero-copy-send: Controls behavior on sending memory pages on 490# migration. When true, enables a zero-copy mechanism for sending 491# memory pages, if host supports it. Requires that QEMU be 492# permitted to use locked memory for guest RAM pages. (since 7.1) 493# 494# @postcopy-preempt: If enabled, the migration process will allow 495# postcopy requests to preempt precopy stream, so postcopy 496# requests will be handled faster. This is a performance feature 497# and should not affect the correctness of postcopy migration. 498# (since 7.1) 499# 500# @switchover-ack: If enabled, migration will not stop the source VM 501# and complete the migration until an ACK is received from the 502# destination that it's OK to do so. Exactly when this ACK is 503# sent depends on the migrated devices that use this feature. For 504# example, a device can use it to make sure some of its data is 505# sent and loaded in the destination before doing switchover. 506# This can reduce downtime if devices that support this capability 507# are present. 'return-path' capability must be enabled to use 508# it. (since 8.1) 509# 510# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 511# keep their dirty page rate within @vcpu-dirty-limit. This can 512# improve responsiveness of large guests during live migration, 513# and can result in more stable read performance. Requires KVM 514# with accelerator property "dirty-ring-size" set. (Since 8.1) 515# 516# @mapped-ram: Migrate using fixed offsets in the migration file for 517# each RAM page. Requires a migration URI that supports seeking, 518# such as a file. (since 9.0) 519# 520# Features: 521# 522# @unstable: Members @x-colo and @x-ignore-shared are experimental. 523# @deprecated: Member @zero-blocks is deprecated as being part of 524# block migration which was already removed. 525# 526# Since: 1.2 527## 528{ 'enum': 'MigrationCapability', 529 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 530 { 'name': 'zero-blocks', 'features': [ 'deprecated' ] }, 531 'events', 'postcopy-ram', 532 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 533 'release-ram', 534 'return-path', 'pause-before-switchover', 'multifd', 535 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 536 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 537 'validate-uuid', 'background-snapshot', 538 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 539 'dirty-limit', 'mapped-ram'] } 540 541## 542# @MigrationCapabilityStatus: 543# 544# Migration capability information 545# 546# @capability: capability enum 547# 548# @state: capability state bool 549# 550# Since: 1.2 551## 552{ 'struct': 'MigrationCapabilityStatus', 553 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 554 555## 556# @migrate-set-capabilities: 557# 558# Enable/Disable the following migration capabilities (like xbzrle) 559# 560# @capabilities: json array of capability modifications to make 561# 562# Since: 1.2 563# 564# .. qmp-example:: 565# 566# -> { "execute": "migrate-set-capabilities" , "arguments": 567# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 568# <- { "return": {} } 569## 570{ 'command': 'migrate-set-capabilities', 571 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 572 573## 574# @query-migrate-capabilities: 575# 576# Return information about the current migration capabilities status 577# 578# Since: 1.2 579# 580# .. qmp-example:: 581# 582# -> { "execute": "query-migrate-capabilities" } 583# <- { "return": [ 584# {"state": false, "capability": "xbzrle"}, 585# {"state": false, "capability": "rdma-pin-all"}, 586# {"state": false, "capability": "auto-converge"}, 587# {"state": false, "capability": "zero-blocks"}, 588# {"state": true, "capability": "events"}, 589# {"state": false, "capability": "postcopy-ram"}, 590# {"state": false, "capability": "x-colo"} 591# ]} 592## 593{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 594 595## 596# @MultiFDCompression: 597# 598# An enumeration of multifd compression methods. 599# 600# @none: no compression. 601# 602# @zlib: use zlib compression method. 603# 604# @zstd: use zstd compression method. 605# 606# @qatzip: use qatzip compression method. (Since 9.2) 607# 608# @qpl: use qpl compression method. Query Processing Library(qpl) is 609# based on the deflate compression algorithm and use the Intel 610# In-Memory Analytics Accelerator(IAA) accelerated compression and 611# decompression. (Since 9.1) 612# 613# @uadk: use UADK library compression method. (Since 9.1) 614# 615# Since: 5.0 616## 617{ 'enum': 'MultiFDCompression', 618 'prefix': 'MULTIFD_COMPRESSION', 619 'data': [ 'none', 'zlib', 620 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' }, 621 { 'name': 'qatzip', 'if': 'CONFIG_QATZIP'}, 622 { 'name': 'qpl', 'if': 'CONFIG_QPL' }, 623 { 'name': 'uadk', 'if': 'CONFIG_UADK' } ] } 624 625## 626# @MigMode: 627# 628# @normal: the original form of migration. (since 8.2) 629# 630# @cpr-reboot: The `migrate` command stops the VM and saves state to the 631# URI. After quitting QEMU, the user resumes by running QEMU 632# -incoming. 633# 634# This mode allows the user to quit QEMU, optionally update and 635# reboot the OS, and restart QEMU. If the user reboots, the URI 636# must persist across the reboot, such as by using a file. 637# 638# Unlike normal mode, the use of certain local storage options 639# does not block the migration, but the user must not modify the 640# contents of guest block devices between the quit and restart. 641# 642# This mode supports VFIO devices provided the user first puts the 643# guest in the suspended runstate, such as by issuing 644# guest-suspend-ram to the QEMU guest agent. 645# 646# Best performance is achieved when the memory backend is shared 647# and the @x-ignore-shared migration capability is set, but this 648# is not required. Further, if the user reboots before restarting 649# such a configuration, the shared memory must persist across the 650# reboot, such as by backing it with a dax device. 651# 652# @cpr-reboot may not be used with postcopy, background-snapshot, 653# or COLO. 654# 655# (since 8.2) 656# 657# @cpr-transfer: This mode allows the user to transfer a guest to a 658# new QEMU instance on the same host with minimal guest pause 659# time by preserving guest RAM in place. 660# 661# Devices and their pinned pages are also preserved for VFIO and 662# IOMMUFD. (since 10.1) 663# 664# The user starts new QEMU on the same host as old QEMU, with 665# command-line arguments to create the same machine, plus the 666# -incoming option for the main migration channel, like normal 667# live migration. In addition, the user adds a second -incoming 668# option with channel type "cpr". This CPR channel must support 669# file descriptor transfer with SCM_RIGHTS, i.e. it must be a 670# UNIX domain socket. 671# 672# To initiate CPR, the user issues a migrate command to old QEMU, 673# adding a second migration channel of type "cpr" in the channels 674# argument. Old QEMU stops the VM, saves state to the migration 675# channels, and enters the postmigrate state. Execution resumes 676# in new QEMU. 677# 678# New QEMU reads the CPR channel before opening a monitor, hence 679# the CPR channel cannot be specified in the list of channels for 680# a `migrate-incoming` command. It may only be specified on the 681# command line. 682# 683# The main channel address cannot be a file type, and for an 684# inet socket, the port cannot be 0 (meaning dynamically choose 685# a port). 686# 687# Memory-backend objects must have the share=on attribute, but 688# memory-backend-epc is not supported. The VM must be started 689# with the '-machine aux-ram-share=on' option. 690# 691# When using -incoming defer, you must issue the `migrate` command 692# to old QEMU before issuing any monitor commands to new QEMU. 693# However, new QEMU does not open and read the migration stream 694# until you issue the `migrate-incoming` command. 695# 696# (since 10.0) 697## 698{ 'enum': 'MigMode', 699 'data': [ 'normal', 'cpr-reboot', 'cpr-transfer' ] } 700 701## 702# @ZeroPageDetection: 703# 704# @none: Do not perform zero page checking. 705# 706# @legacy: Perform zero page checking in main migration thread. 707# 708# @multifd: Perform zero page checking in multifd sender thread if 709# multifd migration is enabled, else in the main migration thread 710# as for @legacy. 711# 712# Since: 9.0 713## 714{ 'enum': 'ZeroPageDetection', 715 'data': [ 'none', 'legacy', 'multifd' ] } 716 717## 718# @BitmapMigrationBitmapAliasTransform: 719# 720# @persistent: If present, the bitmap will be made persistent or 721# transient depending on this parameter. 722# 723# Since: 6.0 724## 725{ 'struct': 'BitmapMigrationBitmapAliasTransform', 726 'data': { 727 '*persistent': 'bool' 728 } } 729 730## 731# @BitmapMigrationBitmapAlias: 732# 733# @name: The name of the bitmap. 734# 735# @alias: An alias name for migration (for example the bitmap name on 736# the opposite site). 737# 738# @transform: Allows the modification of the migrated bitmap. 739# (since 6.0) 740# 741# Since: 5.2 742## 743{ 'struct': 'BitmapMigrationBitmapAlias', 744 'data': { 745 'name': 'str', 746 'alias': 'str', 747 '*transform': 'BitmapMigrationBitmapAliasTransform' 748 } } 749 750## 751# @BitmapMigrationNodeAlias: 752# 753# Maps a block node name and the bitmaps it has to aliases for dirty 754# bitmap migration. 755# 756# @node-name: A block node name. 757# 758# @alias: An alias block node name for migration (for example the node 759# name on the opposite site). 760# 761# @bitmaps: Mappings for the bitmaps on this node. 762# 763# Since: 5.2 764## 765{ 'struct': 'BitmapMigrationNodeAlias', 766 'data': { 767 'node-name': 'str', 768 'alias': 'str', 769 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 770 } } 771 772## 773# @MigrationParameter: 774# 775# Migration parameters enumeration 776# 777# @announce-initial: Initial delay (in milliseconds) before sending 778# the first announce (Since 4.0) 779# 780# @announce-max: Maximum delay (in milliseconds) between packets in 781# the announcement (Since 4.0) 782# 783# @announce-rounds: Number of self-announce packets sent after 784# migration (Since 4.0) 785# 786# @announce-step: Increase in delay (in milliseconds) between 787# subsequent packets in the announcement (Since 4.0) 788# 789# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 790# bytes_xfer_period to trigger throttling. It is expressed as 791# percentage. The default value is 50. (Since 5.0) 792# 793# @cpu-throttle-initial: Initial percentage of time guest cpus are 794# throttled when migration auto-converge is activated. The 795# default value is 20. (Since 2.7) 796# 797# @cpu-throttle-increment: throttle percentage increase each time 798# auto-converge detects that migration is not making progress. 799# The default value is 10. (Since 2.7) 800# 801# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage. 802# At the tail stage of throttling, the Guest is very sensitive to 803# CPU percentage while the @cpu-throttle -increment is excessive 804# usually at tail stage. If this parameter is true, we will 805# compute the ideal CPU percentage used by the Guest, which may 806# exactly make the dirty rate match the dirty rate threshold. 807# Then we will choose a smaller throttle increment between the one 808# specified by @cpu-throttle-increment and the one generated by 809# ideal CPU percentage. Therefore, it is compatible to 810# traditional throttling, meanwhile the throttle increment won't 811# be excessive at tail stage. The default value is false. 812# (Since 5.1) 813# 814# @tls-creds: ID of the 'tls-creds' object that provides credentials 815# for establishing a TLS connection over the migration data 816# channel. On the outgoing side of the migration, the credentials 817# must be for a 'client' endpoint, while for the incoming side the 818# credentials must be for a 'server' endpoint. Setting this to a 819# non-empty string enables TLS for all migrations. An empty 820# string means that QEMU will use plain text mode for migration, 821# rather than TLS. (Since 2.7) 822# 823# @tls-hostname: migration target's hostname for validating the 824# server's x509 certificate identity. If empty, QEMU will use the 825# hostname from the migration URI, if any. A non-empty value is 826# required when using x509 based TLS credentials and the migration 827# URI does not include a hostname, such as fd: or exec: based 828# migration. (Since 2.7) 829# 830# Note: empty value works only since 2.9. 831# 832# @tls-authz: ID of the 'authz' object subclass that provides access 833# control checking of the TLS x509 certificate distinguished name. 834# This object is only resolved at time of use, so can be deleted 835# and recreated on the fly while the migration server is active. 836# If missing, it will default to denying access (Since 4.0) 837# 838# @max-bandwidth: maximum speed for migration, in bytes per second. 839# (Since 2.8) 840# 841# @avail-switchover-bandwidth: to set the available bandwidth that 842# migration can use during switchover phase. **Note:** this does 843# not limit the bandwidth during switchover, but only for 844# calculations when making decisions to switchover. By default, 845# this value is zero, which means QEMU will estimate the bandwidth 846# automatically. This can be set when the estimated value is not 847# accurate, while the user is able to guarantee such bandwidth is 848# available when switching over. When specified correctly, this 849# can make the switchover decision much more accurate. 850# (Since 8.2) 851# 852# @downtime-limit: set maximum tolerated downtime for migration. 853# maximum downtime in milliseconds (Since 2.8) 854# 855# @x-checkpoint-delay: The delay time (in ms) between two COLO 856# checkpoints in periodic mode. (Since 2.8) 857# 858# @multifd-channels: Number of channels used to migrate data in 859# parallel. This is the same number that the number of sockets 860# used for migration. The default value is 2 (since 4.0) 861# 862# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 863# needs to be a multiple of the target page size and a power of 2 864# (Since 2.11) 865# 866# @max-postcopy-bandwidth: Background transfer bandwidth during 867# postcopy. Defaults to 0 (unlimited). In bytes per second. 868# (Since 3.0) 869# 870# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 871# (Since 3.1) 872# 873# @multifd-compression: Which compression method to use. Defaults to 874# none. (Since 5.0) 875# 876# @multifd-zlib-level: Set the compression level to be used in live 877# migration, the compression level is an integer between 0 and 9, 878# where 0 means no compression, 1 means the best compression 879# speed, and 9 means best compression ratio which will consume 880# more CPU. Defaults to 1. (Since 5.0) 881# 882# @multifd-qatzip-level: Set the compression level to be used in live 883# migration. The level is an integer between 1 and 9, where 1 means 884# the best compression speed, and 9 means the best compression 885# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 886# 887# @multifd-zstd-level: Set the compression level to be used in live 888# migration, the compression level is an integer between 0 and 20, 889# where 0 means no compression, 1 means the best compression 890# speed, and 20 means best compression ratio which will consume 891# more CPU. Defaults to 1. (Since 5.0) 892# 893# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 894# aliases for the purpose of dirty bitmap migration. Such aliases 895# may for example be the corresponding names on the opposite site. 896# The mapping must be one-to-one, but not necessarily complete: On 897# the source, unmapped bitmaps and all bitmaps on unmapped nodes 898# will be ignored. On the destination, encountering an unmapped 899# alias in the incoming migration stream will result in a report, 900# and all further bitmap migration data will then be discarded. 901# Note that the destination does not know about bitmaps it does 902# not receive, so there is no limitation or requirement regarding 903# the number of bitmaps received, or how they are named, or on 904# which nodes they are placed. By default (when this parameter 905# has never been set), bitmap names are mapped to themselves. 906# Nodes are mapped to their block device name if there is one, and 907# to their node name otherwise. (Since 5.2) 908# 909# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 910# limit during live migration. Should be in the range 1 to 911# 1000ms. Defaults to 1000ms. (Since 8.1) 912# 913# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 914# Defaults to 1. (Since 8.1) 915# 916# @mode: Migration mode. See description in `MigMode`. Default is 917# 'normal'. (Since 8.2) 918# 919# @zero-page-detection: Whether and how to detect zero pages. 920# See description in `ZeroPageDetection`. Default is 'multifd'. 921# (since 9.0) 922# 923# @direct-io: Open migration files with O_DIRECT when possible. This 924# only has effect if the @mapped-ram capability is enabled. 925# (Since 9.1) 926# 927# Features: 928# 929# @unstable: Members @x-checkpoint-delay and 930# @x-vcpu-dirty-limit-period are experimental. 931# 932# Since: 2.4 933## 934{ 'enum': 'MigrationParameter', 935 'data': ['announce-initial', 'announce-max', 936 'announce-rounds', 'announce-step', 937 'throttle-trigger-threshold', 938 'cpu-throttle-initial', 'cpu-throttle-increment', 939 'cpu-throttle-tailslow', 940 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 941 'avail-switchover-bandwidth', 'downtime-limit', 942 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 943 'multifd-channels', 944 'xbzrle-cache-size', 'max-postcopy-bandwidth', 945 'max-cpu-throttle', 'multifd-compression', 946 'multifd-zlib-level', 'multifd-zstd-level', 947 'multifd-qatzip-level', 948 'block-bitmap-mapping', 949 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 950 'vcpu-dirty-limit', 951 'mode', 952 'zero-page-detection', 953 'direct-io'] } 954 955## 956# @MigrateSetParameters: 957# 958# @announce-initial: Initial delay (in milliseconds) before sending 959# the first announce (Since 4.0) 960# 961# @announce-max: Maximum delay (in milliseconds) between packets in 962# the announcement (Since 4.0) 963# 964# @announce-rounds: Number of self-announce packets sent after 965# migration (Since 4.0) 966# 967# @announce-step: Increase in delay (in milliseconds) between 968# subsequent packets in the announcement (Since 4.0) 969# 970# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 971# bytes_xfer_period to trigger throttling. It is expressed as 972# percentage. The default value is 50. (Since 5.0) 973# 974# @cpu-throttle-initial: Initial percentage of time guest cpus are 975# throttled when migration auto-converge is activated. The 976# default value is 20. (Since 2.7) 977# 978# @cpu-throttle-increment: throttle percentage increase each time 979# auto-converge detects that migration is not making progress. 980# The default value is 10. (Since 2.7) 981# 982# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage. 983# At the tail stage of throttling, the Guest is very sensitive to 984# CPU percentage while the @cpu-throttle -increment is excessive 985# usually at tail stage. If this parameter is true, we will 986# compute the ideal CPU percentage used by the Guest, which may 987# exactly make the dirty rate match the dirty rate threshold. 988# Then we will choose a smaller throttle increment between the one 989# specified by @cpu-throttle-increment and the one generated by 990# ideal CPU percentage. Therefore, it is compatible to 991# traditional throttling, meanwhile the throttle increment won't 992# be excessive at tail stage. The default value is false. 993# (Since 5.1) 994# 995# @tls-creds: ID of the 'tls-creds' object that provides credentials 996# for establishing a TLS connection over the migration data 997# channel. On the outgoing side of the migration, the credentials 998# must be for a 'client' endpoint, while for the incoming side the 999# credentials must be for a 'server' endpoint. Setting this to a 1000# non-empty string enables TLS for all migrations. An empty 1001# string means that QEMU will use plain text mode for migration, 1002# rather than TLS. This is the default. (Since 2.7) 1003# 1004# @tls-hostname: migration target's hostname for validating the 1005# server's x509 certificate identity. If empty, QEMU will use the 1006# hostname from the migration URI, if any. A non-empty value is 1007# required when using x509 based TLS credentials and the migration 1008# URI does not include a hostname, such as fd: or exec: based 1009# migration. (Since 2.7) 1010# 1011# Note: empty value works only since 2.9. 1012# 1013# @tls-authz: ID of the 'authz' object subclass that provides access 1014# control checking of the TLS x509 certificate distinguished name. 1015# This object is only resolved at time of use, so can be deleted 1016# and recreated on the fly while the migration server is active. 1017# If missing, it will default to denying access (Since 4.0) 1018# 1019# @max-bandwidth: maximum speed for migration, in bytes per second. 1020# (Since 2.8) 1021# 1022# @avail-switchover-bandwidth: to set the available bandwidth that 1023# migration can use during switchover phase. **Note:** this does 1024# not limit the bandwidth during switchover, but only for 1025# calculations when making decisions to switchover. By default, 1026# this value is zero, which means QEMU will estimate the bandwidth 1027# automatically. This can be set when the estimated value is not 1028# accurate, while the user is able to guarantee such bandwidth is 1029# available when switching over. When specified correctly, this 1030# can make the switchover decision much more accurate. 1031# (Since 8.2) 1032# 1033# @downtime-limit: set maximum tolerated downtime for migration. 1034# maximum downtime in milliseconds (Since 2.8) 1035# 1036# @x-checkpoint-delay: The delay time (in ms) between two COLO 1037# checkpoints in periodic mode. (Since 2.8) 1038# 1039# @multifd-channels: Number of channels used to migrate data in 1040# parallel. This is the same number that the number of sockets 1041# used for migration. The default value is 2 (since 4.0) 1042# 1043# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1044# needs to be a multiple of the target page size and a power of 2 1045# (Since 2.11) 1046# 1047# @max-postcopy-bandwidth: Background transfer bandwidth during 1048# postcopy. Defaults to 0 (unlimited). In bytes per second. 1049# (Since 3.0) 1050# 1051# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1052# (Since 3.1) 1053# 1054# @multifd-compression: Which compression method to use. Defaults to 1055# none. (Since 5.0) 1056# 1057# @multifd-zlib-level: Set the compression level to be used in live 1058# migration, the compression level is an integer between 0 and 9, 1059# where 0 means no compression, 1 means the best compression 1060# speed, and 9 means best compression ratio which will consume 1061# more CPU. Defaults to 1. (Since 5.0) 1062# 1063# @multifd-qatzip-level: Set the compression level to be used in live 1064# migration. The level is an integer between 1 and 9, where 1 means 1065# the best compression speed, and 9 means the best compression 1066# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 1067# 1068# @multifd-zstd-level: Set the compression level to be used in live 1069# migration, the compression level is an integer between 0 and 20, 1070# where 0 means no compression, 1 means the best compression 1071# speed, and 20 means best compression ratio which will consume 1072# more CPU. Defaults to 1. (Since 5.0) 1073# 1074# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1075# aliases for the purpose of dirty bitmap migration. Such aliases 1076# may for example be the corresponding names on the opposite site. 1077# The mapping must be one-to-one, but not necessarily complete: On 1078# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1079# will be ignored. On the destination, encountering an unmapped 1080# alias in the incoming migration stream will result in a report, 1081# and all further bitmap migration data will then be discarded. 1082# Note that the destination does not know about bitmaps it does 1083# not receive, so there is no limitation or requirement regarding 1084# the number of bitmaps received, or how they are named, or on 1085# which nodes they are placed. By default (when this parameter 1086# has never been set), bitmap names are mapped to themselves. 1087# Nodes are mapped to their block device name if there is one, and 1088# to their node name otherwise. (Since 5.2) 1089# 1090# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1091# limit during live migration. Should be in the range 1 to 1092# 1000ms. Defaults to 1000ms. (Since 8.1) 1093# 1094# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1095# Defaults to 1. (Since 8.1) 1096# 1097# @mode: Migration mode. See description in `MigMode`. Default is 1098# 'normal'. (Since 8.2) 1099# 1100# @zero-page-detection: Whether and how to detect zero pages. 1101# See description in `ZeroPageDetection`. Default is 'multifd'. 1102# (since 9.0) 1103# 1104# @direct-io: Open migration files with O_DIRECT when possible. This 1105# only has effect if the @mapped-ram capability is enabled. 1106# (Since 9.1) 1107# 1108# Features: 1109# 1110# @unstable: Members @x-checkpoint-delay and 1111# @x-vcpu-dirty-limit-period are experimental. 1112# 1113# TODO: either fuse back into `MigrationParameters`, or make 1114# `MigrationParameters` members mandatory 1115# 1116# Since: 2.4 1117## 1118{ 'struct': 'MigrateSetParameters', 1119 'data': { '*announce-initial': 'size', 1120 '*announce-max': 'size', 1121 '*announce-rounds': 'size', 1122 '*announce-step': 'size', 1123 '*throttle-trigger-threshold': 'uint8', 1124 '*cpu-throttle-initial': 'uint8', 1125 '*cpu-throttle-increment': 'uint8', 1126 '*cpu-throttle-tailslow': 'bool', 1127 '*tls-creds': 'StrOrNull', 1128 '*tls-hostname': 'StrOrNull', 1129 '*tls-authz': 'StrOrNull', 1130 '*max-bandwidth': 'size', 1131 '*avail-switchover-bandwidth': 'size', 1132 '*downtime-limit': 'uint64', 1133 '*x-checkpoint-delay': { 'type': 'uint32', 1134 'features': [ 'unstable' ] }, 1135 '*multifd-channels': 'uint8', 1136 '*xbzrle-cache-size': 'size', 1137 '*max-postcopy-bandwidth': 'size', 1138 '*max-cpu-throttle': 'uint8', 1139 '*multifd-compression': 'MultiFDCompression', 1140 '*multifd-zlib-level': 'uint8', 1141 '*multifd-qatzip-level': 'uint8', 1142 '*multifd-zstd-level': 'uint8', 1143 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1144 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1145 'features': [ 'unstable' ] }, 1146 '*vcpu-dirty-limit': 'uint64', 1147 '*mode': 'MigMode', 1148 '*zero-page-detection': 'ZeroPageDetection', 1149 '*direct-io': 'bool' } } 1150 1151## 1152# @migrate-set-parameters: 1153# 1154# Set various migration parameters. 1155# 1156# Since: 2.4 1157# 1158# .. qmp-example:: 1159# 1160# -> { "execute": "migrate-set-parameters" , 1161# "arguments": { "multifd-channels": 5 } } 1162# <- { "return": {} } 1163## 1164{ 'command': 'migrate-set-parameters', 'boxed': true, 1165 'data': 'MigrateSetParameters' } 1166 1167## 1168# @MigrationParameters: 1169# 1170# The optional members aren't actually optional. 1171# 1172# @announce-initial: Initial delay (in milliseconds) before sending 1173# the first announce (Since 4.0) 1174# 1175# @announce-max: Maximum delay (in milliseconds) between packets in 1176# the announcement (Since 4.0) 1177# 1178# @announce-rounds: Number of self-announce packets sent after 1179# migration (Since 4.0) 1180# 1181# @announce-step: Increase in delay (in milliseconds) between 1182# subsequent packets in the announcement (Since 4.0) 1183# 1184# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1185# bytes_xfer_period to trigger throttling. It is expressed as 1186# percentage. The default value is 50. (Since 5.0) 1187# 1188# @cpu-throttle-initial: Initial percentage of time guest cpus are 1189# throttled when migration auto-converge is activated. 1190# (Since 2.7) 1191# 1192# @cpu-throttle-increment: throttle percentage increase each time 1193# auto-converge detects that migration is not making progress. 1194# (Since 2.7) 1195# 1196# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage. 1197# At the tail stage of throttling, the Guest is very sensitive to 1198# CPU percentage while the @cpu-throttle -increment is excessive 1199# usually at tail stage. If this parameter is true, we will 1200# compute the ideal CPU percentage used by the Guest, which may 1201# exactly make the dirty rate match the dirty rate threshold. 1202# Then we will choose a smaller throttle increment between the one 1203# specified by @cpu-throttle-increment and the one generated by 1204# ideal CPU percentage. Therefore, it is compatible to 1205# traditional throttling, meanwhile the throttle increment won't 1206# be excessive at tail stage. The default value is false. 1207# (Since 5.1) 1208# 1209# @tls-creds: ID of the 'tls-creds' object that provides credentials 1210# for establishing a TLS connection over the migration data 1211# channel. On the outgoing side of the migration, the credentials 1212# must be for a 'client' endpoint, while for the incoming side the 1213# credentials must be for a 'server' endpoint. An empty string 1214# means that QEMU will use plain text mode for migration, rather 1215# than TLS. (Since 2.7) 1216# 1217# Note: 2.8 omits empty @tls-creds instead. 1218# 1219# @tls-hostname: migration target's hostname for validating the 1220# server's x509 certificate identity. If empty, QEMU will use the 1221# hostname from the migration URI, if any. (Since 2.7) 1222# 1223# Note: 2.8 omits empty @tls-hostname instead. 1224# 1225# @tls-authz: ID of the 'authz' object subclass that provides access 1226# control checking of the TLS x509 certificate distinguished name. 1227# (Since 4.0) 1228# 1229# @max-bandwidth: maximum speed for migration, in bytes per second. 1230# (Since 2.8) 1231# 1232# @avail-switchover-bandwidth: to set the available bandwidth that 1233# migration can use during switchover phase. **Note:** this does 1234# not limit the bandwidth during switchover, but only for 1235# calculations when making decisions to switchover. By default, 1236# this value is zero, which means QEMU will estimate the bandwidth 1237# automatically. This can be set when the estimated value is not 1238# accurate, while the user is able to guarantee such bandwidth is 1239# available when switching over. When specified correctly, this 1240# can make the switchover decision much more accurate. 1241# (Since 8.2) 1242# 1243# @downtime-limit: set maximum tolerated downtime for migration. 1244# maximum downtime in milliseconds (Since 2.8) 1245# 1246# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1247# (Since 2.8) 1248# 1249# @multifd-channels: Number of channels used to migrate data in 1250# parallel. This is the same number that the number of sockets 1251# used for migration. The default value is 2 (since 4.0) 1252# 1253# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1254# needs to be a multiple of the target page size and a power of 2 1255# (Since 2.11) 1256# 1257# @max-postcopy-bandwidth: Background transfer bandwidth during 1258# postcopy. Defaults to 0 (unlimited). In bytes per second. 1259# (Since 3.0) 1260# 1261# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1262# (Since 3.1) 1263# 1264# @multifd-compression: Which compression method to use. Defaults to 1265# none. (Since 5.0) 1266# 1267# @multifd-zlib-level: Set the compression level to be used in live 1268# migration, the compression level is an integer between 0 and 9, 1269# where 0 means no compression, 1 means the best compression 1270# speed, and 9 means best compression ratio which will consume 1271# more CPU. Defaults to 1. (Since 5.0) 1272# 1273# @multifd-qatzip-level: Set the compression level to be used in live 1274# migration. The level is an integer between 1 and 9, where 1 means 1275# the best compression speed, and 9 means the best compression 1276# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 1277# 1278# @multifd-zstd-level: Set the compression level to be used in live 1279# migration, the compression level is an integer between 0 and 20, 1280# where 0 means no compression, 1 means the best compression 1281# speed, and 20 means best compression ratio which will consume 1282# more CPU. Defaults to 1. (Since 5.0) 1283# 1284# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1285# aliases for the purpose of dirty bitmap migration. Such aliases 1286# may for example be the corresponding names on the opposite site. 1287# The mapping must be one-to-one, but not necessarily complete: On 1288# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1289# will be ignored. On the destination, encountering an unmapped 1290# alias in the incoming migration stream will result in a report, 1291# and all further bitmap migration data will then be discarded. 1292# Note that the destination does not know about bitmaps it does 1293# not receive, so there is no limitation or requirement regarding 1294# the number of bitmaps received, or how they are named, or on 1295# which nodes they are placed. By default (when this parameter 1296# has never been set), bitmap names are mapped to themselves. 1297# Nodes are mapped to their block device name if there is one, and 1298# to their node name otherwise. (Since 5.2) 1299# 1300# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1301# limit during live migration. Should be in the range 1 to 1302# 1000ms. Defaults to 1000ms. (Since 8.1) 1303# 1304# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1305# Defaults to 1. (Since 8.1) 1306# 1307# @mode: Migration mode. See description in `MigMode`. Default is 1308# 'normal'. (Since 8.2) 1309# 1310# @zero-page-detection: Whether and how to detect zero pages. 1311# See description in `ZeroPageDetection`. Default is 'multifd'. 1312# (since 9.0) 1313# 1314# @direct-io: Open migration files with O_DIRECT when possible. This 1315# only has effect if the @mapped-ram capability is enabled. 1316# (Since 9.1) 1317# 1318# Features: 1319# 1320# @unstable: Members @x-checkpoint-delay and 1321# @x-vcpu-dirty-limit-period are experimental. 1322# 1323# Since: 2.4 1324## 1325{ 'struct': 'MigrationParameters', 1326 'data': { '*announce-initial': 'size', 1327 '*announce-max': 'size', 1328 '*announce-rounds': 'size', 1329 '*announce-step': 'size', 1330 '*throttle-trigger-threshold': 'uint8', 1331 '*cpu-throttle-initial': 'uint8', 1332 '*cpu-throttle-increment': 'uint8', 1333 '*cpu-throttle-tailslow': 'bool', 1334 '*tls-creds': 'str', 1335 '*tls-hostname': 'str', 1336 '*tls-authz': 'str', 1337 '*max-bandwidth': 'size', 1338 '*avail-switchover-bandwidth': 'size', 1339 '*downtime-limit': 'uint64', 1340 '*x-checkpoint-delay': { 'type': 'uint32', 1341 'features': [ 'unstable' ] }, 1342 '*multifd-channels': 'uint8', 1343 '*xbzrle-cache-size': 'size', 1344 '*max-postcopy-bandwidth': 'size', 1345 '*max-cpu-throttle': 'uint8', 1346 '*multifd-compression': 'MultiFDCompression', 1347 '*multifd-zlib-level': 'uint8', 1348 '*multifd-qatzip-level': 'uint8', 1349 '*multifd-zstd-level': 'uint8', 1350 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1351 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1352 'features': [ 'unstable' ] }, 1353 '*vcpu-dirty-limit': 'uint64', 1354 '*mode': 'MigMode', 1355 '*zero-page-detection': 'ZeroPageDetection', 1356 '*direct-io': 'bool' } } 1357 1358## 1359# @query-migrate-parameters: 1360# 1361# Return information about the current migration parameters 1362# 1363# Since: 2.4 1364# 1365# .. qmp-example:: 1366# 1367# -> { "execute": "query-migrate-parameters" } 1368# <- { "return": { 1369# "multifd-channels": 2, 1370# "cpu-throttle-increment": 10, 1371# "cpu-throttle-initial": 20, 1372# "max-bandwidth": 33554432, 1373# "downtime-limit": 300 1374# } 1375# } 1376## 1377{ 'command': 'query-migrate-parameters', 1378 'returns': 'MigrationParameters' } 1379 1380## 1381# @migrate-start-postcopy: 1382# 1383# Followup to a migration command to switch the migration to postcopy 1384# mode. The postcopy-ram capability must be set on both source and 1385# destination before the original migration command. 1386# 1387# Since: 2.5 1388# 1389# .. qmp-example:: 1390# 1391# -> { "execute": "migrate-start-postcopy" } 1392# <- { "return": {} } 1393## 1394{ 'command': 'migrate-start-postcopy' } 1395 1396## 1397# @MIGRATION: 1398# 1399# Emitted when a migration event happens 1400# 1401# @status: `MigrationStatus` describing the current migration status. 1402# 1403# Since: 2.4 1404# 1405# .. qmp-example:: 1406# 1407# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1408# "event": "MIGRATION", 1409# "data": {"status": "completed"} } 1410## 1411{ 'event': 'MIGRATION', 1412 'data': {'status': 'MigrationStatus'}} 1413 1414## 1415# @MIGRATION_PASS: 1416# 1417# Emitted from the source side of a migration at the start of each 1418# pass (when it syncs the dirty bitmap) 1419# 1420# @pass: An incrementing count (starting at 1 on the first pass) 1421# 1422# Since: 2.6 1423# 1424# .. qmp-example:: 1425# 1426# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1427# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1428## 1429{ 'event': 'MIGRATION_PASS', 1430 'data': { 'pass': 'int' } } 1431 1432## 1433# @COLOMessage: 1434# 1435# The message transmission between Primary side and Secondary side. 1436# 1437# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1438# 1439# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1440# checkpointing 1441# 1442# @checkpoint-reply: SVM gets PVM's checkpoint request 1443# 1444# @vmstate-send: VM's state will be sent by PVM. 1445# 1446# @vmstate-size: The total size of VMstate. 1447# 1448# @vmstate-received: VM's state has been received by SVM. 1449# 1450# @vmstate-loaded: VM's state has been loaded by SVM. 1451# 1452# Since: 2.8 1453## 1454{ 'enum': 'COLOMessage', 1455 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1456 'vmstate-send', 'vmstate-size', 'vmstate-received', 1457 'vmstate-loaded' ] } 1458 1459## 1460# @COLOMode: 1461# 1462# The COLO current mode. 1463# 1464# @none: COLO is disabled. 1465# 1466# @primary: COLO node in primary side. 1467# 1468# @secondary: COLO node in slave side. 1469# 1470# Since: 2.8 1471## 1472{ 'enum': 'COLOMode', 1473 'data': [ 'none', 'primary', 'secondary'] } 1474 1475## 1476# @FailoverStatus: 1477# 1478# An enumeration of COLO failover status 1479# 1480# @none: no failover has ever happened 1481# 1482# @require: got failover requirement but not handled 1483# 1484# @active: in the process of doing failover 1485# 1486# @completed: finish the process of failover 1487# 1488# @relaunch: restart the failover process, from 'none' -> 'completed' 1489# (Since 2.9) 1490# 1491# Since: 2.8 1492## 1493{ 'enum': 'FailoverStatus', 1494 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1495 1496## 1497# @COLO_EXIT: 1498# 1499# Emitted when VM finishes COLO mode due to some errors happening or 1500# at the request of users. 1501# 1502# @mode: report COLO mode when COLO exited. 1503# 1504# @reason: describes the reason for the COLO exit. 1505# 1506# Since: 3.1 1507# 1508# .. qmp-example:: 1509# 1510# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1511# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1512## 1513{ 'event': 'COLO_EXIT', 1514 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1515 1516## 1517# @COLOExitReason: 1518# 1519# The reason for a COLO exit. 1520# 1521# @none: failover has never happened. This state does not occur in 1522# the `COLO_EXIT` event, and is only visible in the result of 1523# `query-colo-status`. 1524# 1525# @request: COLO exit is due to an external request. 1526# 1527# @error: COLO exit is due to an internal error. 1528# 1529# @processing: COLO is currently handling a failover (since 4.0). 1530# 1531# Since: 3.1 1532## 1533{ 'enum': 'COLOExitReason', 1534 'data': [ 'none', 'request', 'error' , 'processing' ] } 1535 1536## 1537# @x-colo-lost-heartbeat: 1538# 1539# Tell QEMU that heartbeat is lost, request it to do takeover 1540# procedures. If this command is sent to the PVM, the Primary side 1541# will exit COLO mode. If sent to the Secondary, the Secondary side 1542# will run failover work, then takes over server operation to become 1543# the service VM. 1544# 1545# Features: 1546# 1547# @unstable: This command is experimental. 1548# 1549# Since: 2.8 1550# 1551# .. qmp-example:: 1552# 1553# -> { "execute": "x-colo-lost-heartbeat" } 1554# <- { "return": {} } 1555## 1556{ 'command': 'x-colo-lost-heartbeat', 1557 'features': [ 'unstable' ], 1558 'if': 'CONFIG_REPLICATION' } 1559 1560## 1561# @migrate_cancel: 1562# 1563# Cancel the currently executing migration process. Allows a new 1564# migration to be started right after. When postcopy-ram is in use, 1565# cancelling is not allowed after the postcopy phase has started. 1566# 1567# .. note:: This command succeeds even if there is no migration 1568# process running. 1569# 1570# Since: 0.14 1571# 1572# .. qmp-example:: 1573# 1574# -> { "execute": "migrate_cancel" } 1575# <- { "return": {} } 1576## 1577{ 'command': 'migrate_cancel' } 1578 1579## 1580# @migrate-continue: 1581# 1582# Continue migration when it's in a paused state. 1583# 1584# @state: The state the migration is currently expected to be in 1585# 1586# Since: 2.11 1587# 1588# .. qmp-example:: 1589# 1590# -> { "execute": "migrate-continue" , "arguments": 1591# { "state": "pre-switchover" } } 1592# <- { "return": {} } 1593## 1594{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1595 1596## 1597# @MigrationAddressType: 1598# 1599# The migration stream transport mechanisms. 1600# 1601# @socket: Migrate via socket. 1602# 1603# @exec: Direct the migration stream to another process. 1604# 1605# @rdma: Migrate via RDMA. 1606# 1607# @file: Direct the migration stream to a file. 1608# 1609# Since: 8.2 1610## 1611{ 'enum': 'MigrationAddressType', 1612 'data': [ 'socket', 'exec', 'rdma', 'file' ] } 1613 1614## 1615# @FileMigrationArgs: 1616# 1617# @filename: The file to receive the migration stream 1618# 1619# @offset: The file offset where the migration stream will start 1620# 1621# Since: 8.2 1622## 1623{ 'struct': 'FileMigrationArgs', 1624 'data': { 'filename': 'str', 1625 'offset': 'uint64' } } 1626 1627## 1628# @MigrationExecCommand: 1629# 1630# @args: command (list head) and arguments to execute. 1631# 1632# Since: 8.2 1633## 1634{ 'struct': 'MigrationExecCommand', 1635 'data': {'args': [ 'str' ] } } 1636 1637## 1638# @MigrationAddress: 1639# 1640# Migration endpoint configuration. 1641# 1642# @transport: The migration stream transport mechanism 1643# 1644# Since: 8.2 1645## 1646{ 'union': 'MigrationAddress', 1647 'base': { 'transport' : 'MigrationAddressType'}, 1648 'discriminator': 'transport', 1649 'data': { 1650 'socket': 'SocketAddress', 1651 'exec': 'MigrationExecCommand', 1652 'rdma': 'InetSocketAddress', 1653 'file': 'FileMigrationArgs' } } 1654 1655## 1656# @MigrationChannelType: 1657# 1658# The migration channel-type request options. 1659# 1660# @main: Main outbound migration channel. 1661# @cpr: Checkpoint and restart state channel. 1662# 1663# Since: 8.1 1664## 1665{ 'enum': 'MigrationChannelType', 1666 'data': [ 'main', 'cpr' ] } 1667 1668## 1669# @MigrationChannel: 1670# 1671# Migration stream channel parameters. 1672# 1673# @channel-type: Channel type for transferring packet information. 1674# 1675# @addr: Migration endpoint configuration on destination interface. 1676# 1677# Since: 8.1 1678## 1679{ 'struct': 'MigrationChannel', 1680 'data': { 1681 'channel-type': 'MigrationChannelType', 1682 'addr': 'MigrationAddress' } } 1683 1684## 1685# @migrate: 1686# 1687# Migrates the current running guest to another Virtual Machine. 1688# 1689# @uri: the Uniform Resource Identifier of the destination VM 1690# 1691# @channels: list of migration stream channels with each stream in the 1692# list connected to a destination interface endpoint. 1693# 1694# @detach: this argument exists only for compatibility reasons and is 1695# ignored by QEMU 1696# 1697# @resume: resume one paused migration, default "off". (since 3.0) 1698# 1699# Features: 1700# 1701# @deprecated: Argument @detach is deprecated. 1702# 1703# Since: 0.14 1704# 1705# .. admonition:: Notes 1706# 1707# 1. The 'query-migrate' command should be used to check 1708# migration's progress and final result (this information is 1709# provided by the 'status' member). 1710# 1711# 2. The uri argument should have the Uniform Resource Identifier 1712# of default destination VM. This connection will be bound to 1713# default network. 1714# 1715# 3. For now, number of migration streams is restricted to one, 1716# i.e. number of items in 'channels' list is just 1. 1717# 1718# 4. The 'uri' and 'channels' arguments are mutually exclusive; 1719# exactly one of the two should be present. 1720# 1721# .. qmp-example:: 1722# 1723# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1724# <- { "return": {} } 1725# 1726# -> { "execute": "migrate", 1727# "arguments": { 1728# "channels": [ { "channel-type": "main", 1729# "addr": { "transport": "socket", 1730# "type": "inet", 1731# "host": "10.12.34.9", 1732# "port": "1050" } } ] } } 1733# <- { "return": {} } 1734# 1735# -> { "execute": "migrate", 1736# "arguments": { 1737# "channels": [ { "channel-type": "main", 1738# "addr": { "transport": "exec", 1739# "args": [ "/bin/nc", "-p", "6000", 1740# "/some/sock" ] } } ] } } 1741# <- { "return": {} } 1742# 1743# -> { "execute": "migrate", 1744# "arguments": { 1745# "channels": [ { "channel-type": "main", 1746# "addr": { "transport": "rdma", 1747# "host": "10.12.34.9", 1748# "port": "1050" } } ] } } 1749# <- { "return": {} } 1750# 1751# -> { "execute": "migrate", 1752# "arguments": { 1753# "channels": [ { "channel-type": "main", 1754# "addr": { "transport": "file", 1755# "filename": "/tmp/migfile", 1756# "offset": "0x1000" } } ] } } 1757# <- { "return": {} } 1758## 1759{ 'command': 'migrate', 1760 'data': {'*uri': 'str', 1761 '*channels': [ 'MigrationChannel' ], 1762 '*detach': { 'type': 'bool', 'features': [ 'deprecated' ] }, 1763 '*resume': 'bool' } } 1764 1765## 1766# @migrate-incoming: 1767# 1768# Start an incoming migration. QEMU must have been started with 1769# -incoming defer. 1770# 1771# @uri: The Uniform Resource Identifier identifying the source or 1772# address to listen on 1773# 1774# @channels: list of migration stream channels with each stream in the 1775# list connected to a destination interface endpoint. 1776# 1777# @exit-on-error: Exit on incoming migration failure. Default true. 1778# When set to false, the failure triggers a :qapi:event:`MIGRATION` 1779# event, and error details could be retrieved with `query-migrate`. 1780# (since 9.1) 1781# 1782# Since: 2.3 1783# 1784# .. admonition:: Notes 1785# 1786# 1. It's a bad idea to use a string for the uri, but it needs to 1787# stay compatible with -incoming and the format of the uri is 1788# already exposed above libvirt. 1789# 1790# 2. QEMU must be started with -incoming defer to allow 1791# `migrate-incoming` to be used. 1792# 1793# 3. The uri format is the same as for -incoming 1794# 1795# 4. For now, number of migration streams is restricted to one, 1796# i.e. number of items in 'channels' list is just 1. 1797# 1798# 5. The 'uri' and 'channels' arguments are mutually exclusive; 1799# exactly one of the two should be present. 1800# 1801# .. qmp-example:: 1802# 1803# -> { "execute": "migrate-incoming", 1804# "arguments": { "uri": "tcp:0:4446" } } 1805# <- { "return": {} } 1806# 1807# -> { "execute": "migrate-incoming", 1808# "arguments": { 1809# "channels": [ { "channel-type": "main", 1810# "addr": { "transport": "socket", 1811# "type": "inet", 1812# "host": "10.12.34.9", 1813# "port": "1050" } } ] } } 1814# <- { "return": {} } 1815# 1816# -> { "execute": "migrate-incoming", 1817# "arguments": { 1818# "channels": [ { "channel-type": "main", 1819# "addr": { "transport": "exec", 1820# "args": [ "/bin/nc", "-p", "6000", 1821# "/some/sock" ] } } ] } } 1822# <- { "return": {} } 1823# 1824# -> { "execute": "migrate-incoming", 1825# "arguments": { 1826# "channels": [ { "channel-type": "main", 1827# "addr": { "transport": "rdma", 1828# "host": "10.12.34.9", 1829# "port": "1050" } } ] } } 1830# <- { "return": {} } 1831## 1832{ 'command': 'migrate-incoming', 1833 'data': {'*uri': 'str', 1834 '*channels': [ 'MigrationChannel' ], 1835 '*exit-on-error': 'bool' } } 1836 1837## 1838# @xen-save-devices-state: 1839# 1840# Save the state of all devices to file. The RAM and the block 1841# devices of the VM are not saved by this command. 1842# 1843# @filename: the file to save the state of the devices to as binary 1844# data. See `xen-save-devices-state`.txt for a description of the 1845# binary format. 1846# 1847# @live: Optional argument to ask QEMU to treat this command as part 1848# of a live migration. Default to true. (since 2.11) 1849# 1850# Since: 1.1 1851# 1852# .. qmp-example:: 1853# 1854# -> { "execute": "xen-save-devices-state", 1855# "arguments": { "filename": "/tmp/save" } } 1856# <- { "return": {} } 1857## 1858{ 'command': 'xen-save-devices-state', 1859 'data': {'filename': 'str', '*live':'bool' } } 1860 1861## 1862# @xen-set-global-dirty-log: 1863# 1864# Enable or disable the global dirty log mode. 1865# 1866# @enable: true to enable, false to disable. 1867# 1868# Since: 1.3 1869# 1870# .. qmp-example:: 1871# 1872# -> { "execute": "xen-set-global-dirty-log", 1873# "arguments": { "enable": true } } 1874# <- { "return": {} } 1875## 1876{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1877 1878## 1879# @xen-load-devices-state: 1880# 1881# Load the state of all devices from file. The RAM and the block 1882# devices of the VM are not loaded by this command. 1883# 1884# @filename: the file to load the state of the devices from as binary 1885# data. See `xen-save-devices-state`.txt for a description of the 1886# binary format. 1887# 1888# Since: 2.7 1889# 1890# .. qmp-example:: 1891# 1892# -> { "execute": "xen-load-devices-state", 1893# "arguments": { "filename": "/tmp/resume" } } 1894# <- { "return": {} } 1895## 1896{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1897 1898## 1899# @xen-set-replication: 1900# 1901# Enable or disable replication. 1902# 1903# @enable: true to enable, false to disable. 1904# 1905# @primary: true for primary or false for secondary. 1906# 1907# @failover: true to do failover, false to stop. Cannot be specified 1908# if 'enable' is true. Default value is false. 1909# 1910# .. qmp-example:: 1911# 1912# -> { "execute": "xen-set-replication", 1913# "arguments": {"enable": true, "primary": false} } 1914# <- { "return": {} } 1915# 1916# Since: 2.9 1917## 1918{ 'command': 'xen-set-replication', 1919 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1920 'if': 'CONFIG_REPLICATION' } 1921 1922## 1923# @ReplicationStatus: 1924# 1925# The result format for `query-xen-replication-status`. 1926# 1927# @error: true if an error happened, false if replication is normal. 1928# 1929# @desc: the human readable error description string, when @error is 1930# 'true'. 1931# 1932# Since: 2.9 1933## 1934{ 'struct': 'ReplicationStatus', 1935 'data': { 'error': 'bool', '*desc': 'str' }, 1936 'if': 'CONFIG_REPLICATION' } 1937 1938## 1939# @query-xen-replication-status: 1940# 1941# Query replication status while the vm is running. 1942# 1943# TODO: This line is a hack to separate the example from the body 1944# 1945# .. qmp-example:: 1946# 1947# -> { "execute": "query-xen-replication-status" } 1948# <- { "return": { "error": false } } 1949# 1950# Since: 2.9 1951## 1952{ 'command': 'query-xen-replication-status', 1953 'returns': 'ReplicationStatus', 1954 'if': 'CONFIG_REPLICATION' } 1955 1956## 1957# @xen-colo-do-checkpoint: 1958# 1959# Xen uses this command to notify replication to trigger a checkpoint. 1960# 1961# .. qmp-example:: 1962# 1963# -> { "execute": "xen-colo-do-checkpoint" } 1964# <- { "return": {} } 1965# 1966# Since: 2.9 1967## 1968{ 'command': 'xen-colo-do-checkpoint', 1969 'if': 'CONFIG_REPLICATION' } 1970 1971## 1972# @COLOStatus: 1973# 1974# The result format for `query-colo-status`. 1975# 1976# @mode: COLO running mode. If COLO is running, this field will 1977# return 'primary' or 'secondary'. 1978# 1979# @last-mode: COLO last running mode. If COLO is running, this field 1980# will return same like mode field, after failover we can use this 1981# field to get last colo mode. (since 4.0) 1982# 1983# @reason: describes the reason for the COLO exit. 1984# 1985# Since: 3.1 1986## 1987{ 'struct': 'COLOStatus', 1988 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1989 'reason': 'COLOExitReason' }, 1990 'if': 'CONFIG_REPLICATION' } 1991 1992## 1993# @query-colo-status: 1994# 1995# Query COLO status while the vm is running. 1996# 1997# TODO: This line is a hack to separate the example from the body 1998# 1999# .. qmp-example:: 2000# 2001# -> { "execute": "query-colo-status" } 2002# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 2003# 2004# Since: 3.1 2005## 2006{ 'command': 'query-colo-status', 2007 'returns': 'COLOStatus', 2008 'if': 'CONFIG_REPLICATION' } 2009 2010## 2011# @migrate-recover: 2012# 2013# Provide a recovery migration stream URI. 2014# 2015# @uri: the URI to be used for the recovery of migration stream. 2016# 2017# .. qmp-example:: 2018# 2019# -> { "execute": "migrate-recover", 2020# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 2021# <- { "return": {} } 2022# 2023# Since: 3.0 2024## 2025{ 'command': 'migrate-recover', 2026 'data': { 'uri': 'str' }, 2027 'allow-oob': true } 2028 2029## 2030# @migrate-pause: 2031# 2032# Pause a migration. Currently it only supports postcopy. 2033# 2034# .. qmp-example:: 2035# 2036# -> { "execute": "migrate-pause" } 2037# <- { "return": {} } 2038# 2039# Since: 3.0 2040## 2041{ 'command': 'migrate-pause', 'allow-oob': true } 2042 2043## 2044# @UNPLUG_PRIMARY: 2045# 2046# Emitted from source side of a migration when migration state is 2047# WAIT_UNPLUG. Device was unplugged by guest operating system. 2048# Device resources in QEMU are kept on standby to be able to re-plug 2049# it in case of migration failure. 2050# 2051# @device-id: QEMU device id of the unplugged device 2052# 2053# Since: 4.2 2054# 2055# .. qmp-example:: 2056# 2057# <- { "event": "UNPLUG_PRIMARY", 2058# "data": { "device-id": "hostdev0" }, 2059# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 2060## 2061{ 'event': 'UNPLUG_PRIMARY', 2062 'data': { 'device-id': 'str' } } 2063 2064## 2065# @DirtyRateVcpu: 2066# 2067# Dirty rate of vcpu. 2068# 2069# @id: vcpu index. 2070# 2071# @dirty-rate: dirty rate. 2072# 2073# Since: 6.2 2074## 2075{ 'struct': 'DirtyRateVcpu', 2076 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 2077 2078## 2079# @DirtyRateStatus: 2080# 2081# Dirty page rate measurement status. 2082# 2083# @unstarted: measuring thread has not been started yet 2084# 2085# @measuring: measuring thread is running 2086# 2087# @measured: dirty page rate is measured and the results are available 2088# 2089# Since: 5.2 2090## 2091{ 'enum': 'DirtyRateStatus', 2092 'data': [ 'unstarted', 'measuring', 'measured'] } 2093 2094## 2095# @DirtyRateMeasureMode: 2096# 2097# Method used to measure dirty page rate. Differences between 2098# available methods are explained in `calc-dirty-rate`. 2099# 2100# @page-sampling: use page sampling 2101# 2102# @dirty-ring: use dirty ring 2103# 2104# @dirty-bitmap: use dirty bitmap 2105# 2106# Since: 6.2 2107## 2108{ 'enum': 'DirtyRateMeasureMode', 2109 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 2110 2111## 2112# @TimeUnit: 2113# 2114# Specifies unit in which time-related value is specified. 2115# 2116# @second: value is in seconds 2117# 2118# @millisecond: value is in milliseconds 2119# 2120# Since: 8.2 2121## 2122{ 'enum': 'TimeUnit', 2123 'data': ['second', 'millisecond'] } 2124 2125## 2126# @DirtyRateInfo: 2127# 2128# Information about measured dirty page rate. 2129# 2130# @dirty-rate: an estimate of the dirty page rate of the VM in units 2131# of MiB/s. Value is present only when @status is 'measured'. 2132# 2133# @status: current status of dirty page rate measurements 2134# 2135# @start-time: start time in units of second for calculation 2136# 2137# @calc-time: time period for which dirty page rate was measured, 2138# expressed and rounded down to @calc-time-unit. 2139# 2140# @calc-time-unit: time unit of @calc-time (Since 8.2) 2141# 2142# @sample-pages: number of sampled pages per GiB of guest memory. 2143# Valid only in page-sampling mode (Since 6.1) 2144# 2145# @mode: mode that was used to measure dirty page rate (Since 6.2) 2146# 2147# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 2148# specified (Since 6.2) 2149# 2150# Since: 5.2 2151## 2152{ 'struct': 'DirtyRateInfo', 2153 'data': {'*dirty-rate': 'int64', 2154 'status': 'DirtyRateStatus', 2155 'start-time': 'int64', 2156 'calc-time': 'int64', 2157 'calc-time-unit': 'TimeUnit', 2158 'sample-pages': 'uint64', 2159 'mode': 'DirtyRateMeasureMode', 2160 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 2161 2162## 2163# @calc-dirty-rate: 2164# 2165# Start measuring dirty page rate of the VM. Results can be retrieved 2166# with `query-dirty-rate` after measurements are completed. 2167# 2168# Dirty page rate is the number of pages changed in a given time 2169# period expressed in MiB/s. The following methods of calculation are 2170# available: 2171# 2172# 1. In page sampling mode, a random subset of pages are selected and 2173# hashed twice: once at the beginning of measurement time period, 2174# and once again at the end. If two hashes for some page are 2175# different, the page is counted as changed. Since this method 2176# relies on sampling and hashing, calculated dirty page rate is 2177# only an estimate of its true value. Increasing @sample-pages 2178# improves estimation quality at the cost of higher computational 2179# overhead. 2180# 2181# 2. Dirty bitmap mode captures writes to memory (for example by 2182# temporarily revoking write access to all pages) and counting page 2183# faults. Information about modified pages is collected into a 2184# bitmap, where each bit corresponds to one guest page. This mode 2185# requires that KVM accelerator property "dirty-ring-size" is *not* 2186# set. 2187# 2188# 3. Dirty ring mode is similar to dirty bitmap mode, but the 2189# information about modified pages is collected into ring buffer. 2190# This mode tracks page modification per each vCPU separately. It 2191# requires that KVM accelerator property "dirty-ring-size" is set. 2192# 2193# @calc-time: time period for which dirty page rate is calculated. By 2194# default it is specified in seconds, but the unit can be set 2195# explicitly with @calc-time-unit. Note that larger @calc-time 2196# values will typically result in smaller dirty page rates because 2197# page dirtying is a one-time event. Once some page is counted as 2198# dirty during @calc-time period, further writes to this page will 2199# not increase dirty page rate anymore. 2200# 2201# @calc-time-unit: time unit in which @calc-time is specified. By 2202# default it is seconds. (Since 8.2) 2203# 2204# @sample-pages: number of sampled pages per each GiB of guest memory. 2205# Default value is 512. For 4KiB guest pages this corresponds to 2206# sampling ratio of 0.2%. This argument is used only in page 2207# sampling mode. (Since 6.1) 2208# 2209# @mode: mechanism for tracking dirty pages. Default value is 2210# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2211# (Since 6.1) 2212# 2213# Since: 5.2 2214# 2215# .. qmp-example:: 2216# 2217# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2218# "sample-pages": 512} } 2219# <- { "return": {} } 2220# 2221# .. qmp-example:: 2222# :annotated: 2223# 2224# Measure dirty rate using dirty bitmap for 500 milliseconds:: 2225# 2226# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2227# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2228# 2229# <- { "return": {} } 2230## 2231{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2232 '*calc-time-unit': 'TimeUnit', 2233 '*sample-pages': 'int', 2234 '*mode': 'DirtyRateMeasureMode'} } 2235 2236## 2237# @query-dirty-rate: 2238# 2239# Query results of the most recent invocation of `calc-dirty-rate`. 2240# 2241# @calc-time-unit: time unit in which to report calculation time. 2242# By default it is reported in seconds. (Since 8.2) 2243# 2244# Since: 5.2 2245# 2246# .. qmp-example:: 2247# :title: Measurement is in progress 2248# 2249# <- {"status": "measuring", "sample-pages": 512, 2250# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2251# "calc-time-unit": "second"} 2252# 2253# .. qmp-example:: 2254# :title: Measurement has been completed 2255# 2256# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2257# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2258# "calc-time-unit": "second"} 2259## 2260{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2261 'returns': 'DirtyRateInfo' } 2262 2263## 2264# @DirtyLimitInfo: 2265# 2266# Dirty page rate limit information of a virtual CPU. 2267# 2268# @cpu-index: index of a virtual CPU. 2269# 2270# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2271# CPU, 0 means unlimited. 2272# 2273# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2274# 2275# Since: 7.1 2276## 2277{ 'struct': 'DirtyLimitInfo', 2278 'data': { 'cpu-index': 'int', 2279 'limit-rate': 'uint64', 2280 'current-rate': 'uint64' } } 2281 2282## 2283# @set-vcpu-dirty-limit: 2284# 2285# Set the upper limit of dirty page rate for virtual CPUs. 2286# 2287# Requires KVM with accelerator property "dirty-ring-size" set. A 2288# virtual CPU's dirty page rate is a measure of its memory load. To 2289# observe dirty page rates, use `calc-dirty-rate`. 2290# 2291# @cpu-index: index of a virtual CPU, default is all. 2292# 2293# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2294# 2295# Since: 7.1 2296# 2297# .. qmp-example:: 2298# 2299# -> {"execute": "set-vcpu-dirty-limit"} 2300# "arguments": { "dirty-rate": 200, 2301# "cpu-index": 1 } } 2302# <- { "return": {} } 2303## 2304{ 'command': 'set-vcpu-dirty-limit', 2305 'data': { '*cpu-index': 'int', 2306 'dirty-rate': 'uint64' } } 2307 2308## 2309# @cancel-vcpu-dirty-limit: 2310# 2311# Cancel the upper limit of dirty page rate for virtual CPUs. 2312# 2313# Cancel the dirty page limit for the vCPU which has been set with 2314# `set-vcpu-dirty-limit` command. Note that this command requires 2315# support from dirty ring, same as the `set-vcpu-dirty-limit`. 2316# 2317# @cpu-index: index of a virtual CPU, default is all. 2318# 2319# Since: 7.1 2320# 2321# .. qmp-example:: 2322# 2323# -> {"execute": "cancel-vcpu-dirty-limit"}, 2324# "arguments": { "cpu-index": 1 } } 2325# <- { "return": {} } 2326## 2327{ 'command': 'cancel-vcpu-dirty-limit', 2328 'data': { '*cpu-index': 'int'} } 2329 2330## 2331# @query-vcpu-dirty-limit: 2332# 2333# Return information about virtual CPU dirty page rate limits, if 2334# any. 2335# 2336# Since: 7.1 2337# 2338# .. qmp-example:: 2339# 2340# -> {"execute": "query-vcpu-dirty-limit"} 2341# <- {"return": [ 2342# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2343# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2344## 2345{ 'command': 'query-vcpu-dirty-limit', 2346 'returns': [ 'DirtyLimitInfo' ] } 2347 2348## 2349# @MigrationThreadInfo: 2350# 2351# Information about migrationthreads 2352# 2353# @name: the name of migration thread 2354# 2355# @thread-id: ID of the underlying host thread 2356# 2357# Since: 7.2 2358## 2359{ 'struct': 'MigrationThreadInfo', 2360 'data': {'name': 'str', 2361 'thread-id': 'int'} } 2362 2363## 2364# @query-migrationthreads: 2365# 2366# Return information of migration threads 2367# 2368# Features: 2369# 2370# @deprecated: This command is deprecated with no replacement yet. 2371# 2372# Since: 7.2 2373## 2374{ 'command': 'query-migrationthreads', 2375 'returns': ['MigrationThreadInfo'], 2376 'features': ['deprecated'] } 2377 2378## 2379# @snapshot-save: 2380# 2381# Save a VM snapshot 2382# 2383# @job-id: identifier for the newly created job 2384# 2385# @tag: name of the snapshot to create 2386# 2387# @vmstate: block device node name to save vmstate to 2388# 2389# @devices: list of block device node names to save a snapshot to 2390# 2391# Applications should not assume that the snapshot save is complete 2392# when this command returns. The job commands / events must be used 2393# to determine completion and to fetch details of any errors that 2394# arise. 2395# 2396# Note that execution of the guest CPUs may be stopped during the time 2397# it takes to save the snapshot. A future version of QEMU may ensure 2398# CPUs are executing continuously. 2399# 2400# It is strongly recommended that @devices contain all writable block 2401# device nodes if a consistent snapshot is required. 2402# 2403# If @tag already exists, an error will be reported 2404# 2405# .. qmp-example:: 2406# 2407# -> { "execute": "snapshot-save", 2408# "arguments": { 2409# "job-id": "snapsave0", 2410# "tag": "my-snap", 2411# "vmstate": "disk0", 2412# "devices": ["disk0", "disk1"] 2413# } 2414# } 2415# <- { "return": { } } 2416# <- {"event": "JOB_STATUS_CHANGE", 2417# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2418# "data": {"status": "created", "id": "snapsave0"}} 2419# <- {"event": "JOB_STATUS_CHANGE", 2420# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2421# "data": {"status": "running", "id": "snapsave0"}} 2422# <- {"event": "STOP", 2423# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2424# <- {"event": "RESUME", 2425# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2426# <- {"event": "JOB_STATUS_CHANGE", 2427# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2428# "data": {"status": "waiting", "id": "snapsave0"}} 2429# <- {"event": "JOB_STATUS_CHANGE", 2430# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2431# "data": {"status": "pending", "id": "snapsave0"}} 2432# <- {"event": "JOB_STATUS_CHANGE", 2433# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2434# "data": {"status": "concluded", "id": "snapsave0"}} 2435# -> {"execute": "query-jobs"} 2436# <- {"return": [{"current-progress": 1, 2437# "status": "concluded", 2438# "total-progress": 1, 2439# "type": "snapshot-save", 2440# "id": "snapsave0"}]} 2441# 2442# Since: 6.0 2443## 2444{ 'command': 'snapshot-save', 2445 'data': { 'job-id': 'str', 2446 'tag': 'str', 2447 'vmstate': 'str', 2448 'devices': ['str'] } } 2449 2450## 2451# @snapshot-load: 2452# 2453# Load a VM snapshot 2454# 2455# @job-id: identifier for the newly created job 2456# 2457# @tag: name of the snapshot to load. 2458# 2459# @vmstate: block device node name to load vmstate from 2460# 2461# @devices: list of block device node names to load a snapshot from 2462# 2463# Applications should not assume that the snapshot load is complete 2464# when this command returns. The job commands / events must be used 2465# to determine completion and to fetch details of any errors that 2466# arise. 2467# 2468# Note that execution of the guest CPUs will be stopped during the 2469# time it takes to load the snapshot. 2470# 2471# It is strongly recommended that @devices contain all writable block 2472# device nodes that can have changed since the original `snapshot-save` 2473# command execution. 2474# 2475# .. qmp-example:: 2476# 2477# -> { "execute": "snapshot-load", 2478# "arguments": { 2479# "job-id": "snapload0", 2480# "tag": "my-snap", 2481# "vmstate": "disk0", 2482# "devices": ["disk0", "disk1"] 2483# } 2484# } 2485# <- { "return": { } } 2486# <- {"event": "JOB_STATUS_CHANGE", 2487# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2488# "data": {"status": "created", "id": "snapload0"}} 2489# <- {"event": "JOB_STATUS_CHANGE", 2490# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2491# "data": {"status": "running", "id": "snapload0"}} 2492# <- {"event": "STOP", 2493# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2494# <- {"event": "RESUME", 2495# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2496# <- {"event": "JOB_STATUS_CHANGE", 2497# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2498# "data": {"status": "waiting", "id": "snapload0"}} 2499# <- {"event": "JOB_STATUS_CHANGE", 2500# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2501# "data": {"status": "pending", "id": "snapload0"}} 2502# <- {"event": "JOB_STATUS_CHANGE", 2503# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2504# "data": {"status": "concluded", "id": "snapload0"}} 2505# -> {"execute": "query-jobs"} 2506# <- {"return": [{"current-progress": 1, 2507# "status": "concluded", 2508# "total-progress": 1, 2509# "type": "snapshot-load", 2510# "id": "snapload0"}]} 2511# 2512# Since: 6.0 2513## 2514{ 'command': 'snapshot-load', 2515 'data': { 'job-id': 'str', 2516 'tag': 'str', 2517 'vmstate': 'str', 2518 'devices': ['str'] } } 2519 2520## 2521# @snapshot-delete: 2522# 2523# Delete a VM snapshot 2524# 2525# @job-id: identifier for the newly created job 2526# 2527# @tag: name of the snapshot to delete. 2528# 2529# @devices: list of block device node names to delete a snapshot from 2530# 2531# Applications should not assume that the snapshot delete is complete 2532# when this command returns. The job commands / events must be used 2533# to determine completion and to fetch details of any errors that 2534# arise. 2535# 2536# .. qmp-example:: 2537# 2538# -> { "execute": "snapshot-delete", 2539# "arguments": { 2540# "job-id": "snapdelete0", 2541# "tag": "my-snap", 2542# "devices": ["disk0", "disk1"] 2543# } 2544# } 2545# <- { "return": { } } 2546# <- {"event": "JOB_STATUS_CHANGE", 2547# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2548# "data": {"status": "created", "id": "snapdelete0"}} 2549# <- {"event": "JOB_STATUS_CHANGE", 2550# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2551# "data": {"status": "running", "id": "snapdelete0"}} 2552# <- {"event": "JOB_STATUS_CHANGE", 2553# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2554# "data": {"status": "waiting", "id": "snapdelete0"}} 2555# <- {"event": "JOB_STATUS_CHANGE", 2556# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2557# "data": {"status": "pending", "id": "snapdelete0"}} 2558# <- {"event": "JOB_STATUS_CHANGE", 2559# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2560# "data": {"status": "concluded", "id": "snapdelete0"}} 2561# -> {"execute": "query-jobs"} 2562# <- {"return": [{"current-progress": 1, 2563# "status": "concluded", 2564# "total-progress": 1, 2565# "type": "snapshot-delete", 2566# "id": "snapdelete0"}]} 2567# 2568# Since: 6.0 2569## 2570{ 'command': 'snapshot-delete', 2571 'data': { 'job-id': 'str', 2572 'tag': 'str', 2573 'devices': ['str'] } } 2574