xref: /openbmc/qemu/qapi/machine.json (revision ed75658a)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4# This work is licensed under the terms of the GNU GPL, version 2 or later.
5# See the COPYING file in the top-level directory.
6
7##
8# = Machines
9##
10
11{ 'include': 'common.json' }
12{ 'include': 'machine-common.json' }
13
14##
15# @SysEmuTarget:
16#
17# The comprehensive enumeration of QEMU system emulation ("softmmu")
18# targets.  Run "./configure --help" in the project root directory,
19# and look for the \*-softmmu targets near the "--target-list" option.
20# The individual target constants are not documented here, for the
21# time being.
22#
23# @rx: since 5.0
24#
25# @avr: since 5.1
26#
27# Notes: The resulting QMP strings can be appended to the
28#     "qemu-system-" prefix to produce the corresponding QEMU
29#     executable name.  This is true even for "qemu-system-x86_64".
30#
31# Since: 3.0
32##
33{ 'enum' : 'SysEmuTarget',
34  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
35             'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
36             'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
37             'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
38             'sh4eb', 'sparc', 'sparc64', 'tricore',
39             'x86_64', 'xtensa', 'xtensaeb' ] }
40
41##
42# @CpuS390State:
43#
44# An enumeration of cpu states that can be assumed by a virtual S390
45# CPU
46#
47# Since: 2.12
48##
49{ 'enum': 'CpuS390State',
50  'prefix': 'S390_CPU_STATE',
51  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
52
53##
54# @CpuInfoS390:
55#
56# Additional information about a virtual S390 CPU
57#
58# @cpu-state: the virtual CPU's state
59#
60# @dedicated: the virtual CPU's dedication (since 8.2)
61#
62# @entitlement: the virtual CPU's entitlement (since 8.2)
63#
64# Since: 2.12
65##
66{ 'struct': 'CpuInfoS390',
67  'data': { 'cpu-state': 'CpuS390State',
68            '*dedicated': 'bool',
69            '*entitlement': 'CpuS390Entitlement' } }
70
71##
72# @CpuInfoFast:
73#
74# Information about a virtual CPU
75#
76# @cpu-index: index of the virtual CPU
77#
78# @qom-path: path to the CPU object in the QOM tree
79#
80# @thread-id: ID of the underlying host thread
81#
82# @props: properties associated with a virtual CPU, e.g. the socket id
83#
84# @target: the QEMU system emulation target, which determines which
85#     additional fields will be listed (since 3.0)
86#
87# Since: 2.12
88##
89{ 'union'         : 'CpuInfoFast',
90  'base'          : { 'cpu-index'    : 'int',
91                      'qom-path'     : 'str',
92                      'thread-id'    : 'int',
93                      '*props'       : 'CpuInstanceProperties',
94                      'target'       : 'SysEmuTarget' },
95  'discriminator' : 'target',
96  'data'          : { 's390x'        : 'CpuInfoS390' } }
97
98##
99# @query-cpus-fast:
100#
101# Returns information about all virtual CPUs.
102#
103# Returns: list of @CpuInfoFast
104#
105# Since: 2.12
106#
107# Example:
108#
109#     -> { "execute": "query-cpus-fast" }
110#     <- { "return": [
111#             {
112#                 "thread-id": 25627,
113#                 "props": {
114#                     "core-id": 0,
115#                     "thread-id": 0,
116#                     "socket-id": 0
117#                 },
118#                 "qom-path": "/machine/unattached/device[0]",
119#                 "target":"x86_64",
120#                 "cpu-index": 0
121#             },
122#             {
123#                 "thread-id": 25628,
124#                 "props": {
125#                     "core-id": 0,
126#                     "thread-id": 0,
127#                     "socket-id": 1
128#                 },
129#                 "qom-path": "/machine/unattached/device[2]",
130#                 "target":"x86_64",
131#                 "cpu-index": 1
132#             }
133#         ]
134#     }
135##
136{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
137
138##
139# @MachineInfo:
140#
141# Information describing a machine.
142#
143# @name: the name of the machine
144#
145# @alias: an alias for the machine name
146#
147# @is-default: whether the machine is default
148#
149# @cpu-max: maximum number of CPUs supported by the machine type
150#     (since 1.5)
151#
152# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
153#
154# @numa-mem-supported: true if '-numa node,mem' option is supported by
155#     the machine type and false otherwise (since 4.1)
156#
157# @deprecated: if true, the machine type is deprecated and may be
158#     removed in future versions of QEMU according to the QEMU
159#     deprecation policy (since 4.1)
160#
161# @default-cpu-type: default CPU model typename if none is requested
162#     via the -cpu argument.  (since 4.2)
163#
164# @default-ram-id: the default ID of initial RAM memory backend (since
165#     5.2)
166#
167# @acpi: machine type supports ACPI (since 8.0)
168#
169# Since: 1.2
170##
171{ 'struct': 'MachineInfo',
172  'data': { 'name': 'str', '*alias': 'str',
173            '*is-default': 'bool', 'cpu-max': 'int',
174            'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
175            'deprecated': 'bool', '*default-cpu-type': 'str',
176            '*default-ram-id': 'str', 'acpi': 'bool' } }
177
178##
179# @query-machines:
180#
181# Return a list of supported machines
182#
183# Returns: a list of MachineInfo
184#
185# Since: 1.2
186##
187{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
188
189##
190# @CurrentMachineParams:
191#
192# Information describing the running machine parameters.
193#
194# @wakeup-suspend-support: true if the machine supports wake up from
195#     suspend
196#
197# Since: 4.0
198##
199{ 'struct': 'CurrentMachineParams',
200  'data': { 'wakeup-suspend-support': 'bool'} }
201
202##
203# @query-current-machine:
204#
205# Return information on the current virtual machine.
206#
207# Returns: CurrentMachineParams
208#
209# Since: 4.0
210##
211{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
212
213##
214# @TargetInfo:
215#
216# Information describing the QEMU target.
217#
218# @arch: the target architecture
219#
220# Since: 1.2
221##
222{ 'struct': 'TargetInfo',
223  'data': { 'arch': 'SysEmuTarget' } }
224
225##
226# @query-target:
227#
228# Return information about the target for this QEMU
229#
230# Returns: TargetInfo
231#
232# Since: 1.2
233##
234{ 'command': 'query-target', 'returns': 'TargetInfo' }
235
236##
237# @UuidInfo:
238#
239# Guest UUID information (Universally Unique Identifier).
240#
241# @UUID: the UUID of the guest
242#
243# Since: 0.14
244#
245# Notes: If no UUID was specified for the guest, a null UUID is
246#     returned.
247##
248{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
249
250##
251# @query-uuid:
252#
253# Query the guest UUID information.
254#
255# Returns: The @UuidInfo for the guest
256#
257# Since: 0.14
258#
259# Example:
260#
261#     -> { "execute": "query-uuid" }
262#     <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
263##
264{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
265
266##
267# @GuidInfo:
268#
269# GUID information.
270#
271# @guid: the globally unique identifier
272#
273# Since: 2.9
274##
275{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
276
277##
278# @query-vm-generation-id:
279#
280# Show Virtual Machine Generation ID
281#
282# Since: 2.9
283##
284{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
285
286##
287# @system_reset:
288#
289# Performs a hard reset of a guest.
290#
291# Since: 0.14
292#
293# Example:
294#
295#     -> { "execute": "system_reset" }
296#     <- { "return": {} }
297##
298{ 'command': 'system_reset' }
299
300##
301# @system_powerdown:
302#
303# Requests that a guest perform a powerdown operation.
304#
305# Since: 0.14
306#
307# Notes: A guest may or may not respond to this command.  This command
308#     returning does not indicate that a guest has accepted the
309#     request or that it has shut down.  Many guests will respond to
310#     this command by prompting the user in some way.
311#
312# Example:
313#
314#     -> { "execute": "system_powerdown" }
315#     <- { "return": {} }
316##
317{ 'command': 'system_powerdown' }
318
319##
320# @system_wakeup:
321#
322# Wake up guest from suspend.  If the guest has wake-up from suspend
323# support enabled (wakeup-suspend-support flag from
324# query-current-machine), wake-up guest from suspend if the guest is
325# in SUSPENDED state.  Return an error otherwise.
326#
327# Since: 1.1
328#
329# Note: prior to 4.0, this command does nothing in case the guest
330#     isn't suspended.
331#
332# Example:
333#
334#     -> { "execute": "system_wakeup" }
335#     <- { "return": {} }
336##
337{ 'command': 'system_wakeup' }
338
339##
340# @LostTickPolicy:
341#
342# Policy for handling lost ticks in timer devices.  Ticks end up
343# getting lost when, for example, the guest is paused.
344#
345# @discard: throw away the missed ticks and continue with future
346#     injection normally.  The guest OS will see the timer jump ahead
347#     by a potentially quite significant amount all at once, as if the
348#     intervening chunk of time had simply not existed; needless to
349#     say, such a sudden jump can easily confuse a guest OS which is
350#     not specifically prepared to deal with it.  Assuming the guest
351#     OS can deal correctly with the time jump, the time in the guest
352#     and in the host should now match.
353#
354# @delay: continue to deliver ticks at the normal rate.  The guest OS
355#     will not notice anything is amiss, as from its point of view
356#     time will have continued to flow normally.  The time in the
357#     guest should now be behind the time in the host by exactly the
358#     amount of time during which ticks have been missed.
359#
360# @slew: deliver ticks at a higher rate to catch up with the missed
361#     ticks.  The guest OS will not notice anything is amiss, as from
362#     its point of view time will have continued to flow normally.
363#     Once the timer has managed to catch up with all the missing
364#     ticks, the time in the guest and in the host should match.
365#
366# Since: 2.0
367##
368{ 'enum': 'LostTickPolicy',
369  'data': ['discard', 'delay', 'slew' ] }
370
371##
372# @inject-nmi:
373#
374# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
375# all CPUs (ppc64). The command fails when the guest doesn't support
376# injecting.
377#
378# Since: 0.14
379#
380# Note: prior to 2.1, this command was only supported for x86 and s390
381#     VMs
382#
383# Example:
384#
385#     -> { "execute": "inject-nmi" }
386#     <- { "return": {} }
387##
388{ 'command': 'inject-nmi' }
389
390##
391# @KvmInfo:
392#
393# Information about support for KVM acceleration
394#
395# @enabled: true if KVM acceleration is active
396#
397# @present: true if KVM acceleration is built into this executable
398#
399# Since: 0.14
400##
401{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
402
403##
404# @query-kvm:
405#
406# Returns information about KVM acceleration
407#
408# Returns: @KvmInfo
409#
410# Since: 0.14
411#
412# Example:
413#
414#     -> { "execute": "query-kvm" }
415#     <- { "return": { "enabled": true, "present": true } }
416##
417{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
418
419##
420# @NumaOptionsType:
421#
422# @node: NUMA nodes configuration
423#
424# @dist: NUMA distance configuration (since 2.10)
425#
426# @cpu: property based CPU(s) to node mapping (Since: 2.10)
427#
428# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
429#
430# @hmat-cache: memory side cache information (Since: 5.0)
431#
432# Since: 2.1
433##
434{ 'enum': 'NumaOptionsType',
435  'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
436
437##
438# @NumaOptions:
439#
440# A discriminated record of NUMA options.  (for OptsVisitor)
441#
442# @type: NUMA option type
443#
444# Since: 2.1
445##
446{ 'union': 'NumaOptions',
447  'base': { 'type': 'NumaOptionsType' },
448  'discriminator': 'type',
449  'data': {
450    'node': 'NumaNodeOptions',
451    'dist': 'NumaDistOptions',
452    'cpu': 'NumaCpuOptions',
453    'hmat-lb': 'NumaHmatLBOptions',
454    'hmat-cache': 'NumaHmatCacheOptions' }}
455
456##
457# @NumaNodeOptions:
458#
459# Create a guest NUMA node.  (for OptsVisitor)
460#
461# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
462#
463# @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
464#     omitted)
465#
466# @mem: memory size of this node; mutually exclusive with @memdev.
467#     Equally divide total memory among nodes if both @mem and @memdev
468#     are omitted.
469#
470# @memdev: memory backend object.  If specified for one node, it must
471#     be specified for all nodes.
472#
473# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
474#     to the nodeid which has the memory controller responsible for
475#     this NUMA node.  This field provides additional information as
476#     to the initiator node that is closest (as in directly attached)
477#     to this node, and therefore has the best performance (since 5.0)
478#
479# Since: 2.1
480##
481{ 'struct': 'NumaNodeOptions',
482  'data': {
483   '*nodeid': 'uint16',
484   '*cpus':   ['uint16'],
485   '*mem':    'size',
486   '*memdev': 'str',
487   '*initiator': 'uint16' }}
488
489##
490# @NumaDistOptions:
491#
492# Set the distance between 2 NUMA nodes.
493#
494# @src: source NUMA node.
495#
496# @dst: destination NUMA node.
497#
498# @val: NUMA distance from source node to destination node.  When a
499#     node is unreachable from another node, set the distance between
500#     them to 255.
501#
502# Since: 2.10
503##
504{ 'struct': 'NumaDistOptions',
505  'data': {
506   'src': 'uint16',
507   'dst': 'uint16',
508   'val': 'uint8' }}
509
510##
511# @CXLFixedMemoryWindowOptions:
512#
513# Create a CXL Fixed Memory Window
514#
515# @size: Size of the Fixed Memory Window in bytes.  Must be a multiple
516#     of 256MiB.
517#
518# @interleave-granularity: Number of contiguous bytes for which
519#     accesses will go to a given interleave target.  Accepted values
520#     [256, 512, 1k, 2k, 4k, 8k, 16k]
521#
522# @targets: Target root bridge IDs from -device ...,id=<ID> for each
523#     root bridge.
524#
525# Since: 7.1
526##
527{ 'struct': 'CXLFixedMemoryWindowOptions',
528  'data': {
529      'size': 'size',
530      '*interleave-granularity': 'size',
531      'targets': ['str'] }}
532
533##
534# @CXLFMWProperties:
535#
536# List of CXL Fixed Memory Windows.
537#
538# @cxl-fmw: List of CXLFixedMemoryWindowOptions
539#
540# Since: 7.1
541##
542{ 'struct' : 'CXLFMWProperties',
543  'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
544}
545
546##
547# @X86CPURegister32:
548#
549# A X86 32-bit register
550#
551# Since: 1.5
552##
553{ 'enum': 'X86CPURegister32',
554  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
555
556##
557# @X86CPUFeatureWordInfo:
558#
559# Information about a X86 CPU feature word
560#
561# @cpuid-input-eax: Input EAX value for CPUID instruction for that
562#     feature word
563#
564# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
565#     feature word
566#
567# @cpuid-register: Output register containing the feature bits
568#
569# @features: value of output register, containing the feature bits
570#
571# Since: 1.5
572##
573{ 'struct': 'X86CPUFeatureWordInfo',
574  'data': { 'cpuid-input-eax': 'int',
575            '*cpuid-input-ecx': 'int',
576            'cpuid-register': 'X86CPURegister32',
577            'features': 'int' } }
578
579##
580# @DummyForceArrays:
581#
582# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
583# internally
584#
585# Since: 2.5
586##
587{ 'struct': 'DummyForceArrays',
588  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
589
590##
591# @NumaCpuOptions:
592#
593# Option "-numa cpu" overrides default cpu to node mapping.  It
594# accepts the same set of cpu properties as returned by
595# query-hotpluggable-cpus[].props, where node-id could be used to
596# override default node mapping.
597#
598# Since: 2.10
599##
600{ 'struct': 'NumaCpuOptions',
601   'base': 'CpuInstanceProperties',
602   'data' : {} }
603
604##
605# @HmatLBMemoryHierarchy:
606#
607# The memory hierarchy in the System Locality Latency and Bandwidth
608# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
609#
610# For more information about @HmatLBMemoryHierarchy, see chapter
611# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
612#
613# @memory: the structure represents the memory performance
614#
615# @first-level: first level of memory side cache
616#
617# @second-level: second level of memory side cache
618#
619# @third-level: third level of memory side cache
620#
621# Since: 5.0
622##
623{ 'enum': 'HmatLBMemoryHierarchy',
624  'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
625
626##
627# @HmatLBDataType:
628#
629# Data type in the System Locality Latency and Bandwidth Information
630# Structure of HMAT (Heterogeneous Memory Attribute Table)
631#
632# For more information about @HmatLBDataType, see chapter 5.2.27.4:
633# Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
634#
635# @access-latency: access latency (nanoseconds)
636#
637# @read-latency: read latency (nanoseconds)
638#
639# @write-latency: write latency (nanoseconds)
640#
641# @access-bandwidth: access bandwidth (Bytes per second)
642#
643# @read-bandwidth: read bandwidth (Bytes per second)
644#
645# @write-bandwidth: write bandwidth (Bytes per second)
646#
647# Since: 5.0
648##
649{ 'enum': 'HmatLBDataType',
650  'data': [ 'access-latency', 'read-latency', 'write-latency',
651            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
652
653##
654# @NumaHmatLBOptions:
655#
656# Set the system locality latency and bandwidth information between
657# Initiator and Target proximity Domains.
658#
659# For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
660# Table 5-146 of ACPI 6.3 spec.
661#
662# @initiator: the Initiator Proximity Domain.
663#
664# @target: the Target Proximity Domain.
665#
666# @hierarchy: the Memory Hierarchy.  Indicates the performance of
667#     memory or side cache.
668#
669# @data-type: presents the type of data, access/read/write latency or
670#     hit latency.
671#
672# @latency: the value of latency from @initiator to @target proximity
673#     domain, the latency unit is "ns(nanosecond)".
674#
675# @bandwidth: the value of bandwidth between @initiator and @target
676#     proximity domain, the bandwidth unit is "Bytes per second".
677#
678# Since: 5.0
679##
680{ 'struct': 'NumaHmatLBOptions',
681    'data': {
682    'initiator': 'uint16',
683    'target': 'uint16',
684    'hierarchy': 'HmatLBMemoryHierarchy',
685    'data-type': 'HmatLBDataType',
686    '*latency': 'uint64',
687    '*bandwidth': 'size' }}
688
689##
690# @HmatCacheAssociativity:
691#
692# Cache associativity in the Memory Side Cache Information Structure
693# of HMAT
694#
695# For more information of @HmatCacheAssociativity, see chapter
696# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
697#
698# @none: None (no memory side cache in this proximity domain, or cache
699#     associativity unknown)
700#
701# @direct: Direct Mapped
702#
703# @complex: Complex Cache Indexing (implementation specific)
704#
705# Since: 5.0
706##
707{ 'enum': 'HmatCacheAssociativity',
708  'data': [ 'none', 'direct', 'complex' ] }
709
710##
711# @HmatCacheWritePolicy:
712#
713# Cache write policy in the Memory Side Cache Information Structure of
714# HMAT
715#
716# For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
717# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
718#
719# @none: None (no memory side cache in this proximity domain, or cache
720#     write policy unknown)
721#
722# @write-back: Write Back (WB)
723#
724# @write-through: Write Through (WT)
725#
726# Since: 5.0
727##
728{ 'enum': 'HmatCacheWritePolicy',
729  'data': [ 'none', 'write-back', 'write-through' ] }
730
731##
732# @NumaHmatCacheOptions:
733#
734# Set the memory side cache information for a given memory domain.
735#
736# For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
737# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
738#
739# @node-id: the memory proximity domain to which the memory belongs.
740#
741# @size: the size of memory side cache in bytes.
742#
743# @level: the cache level described in this structure.
744#
745# @associativity: the cache associativity,
746#     none/direct-mapped/complex(complex cache indexing).
747#
748# @policy: the write policy, none/write-back/write-through.
749#
750# @line: the cache Line size in bytes.
751#
752# Since: 5.0
753##
754{ 'struct': 'NumaHmatCacheOptions',
755  'data': {
756   'node-id': 'uint32',
757   'size': 'size',
758   'level': 'uint8',
759   'associativity': 'HmatCacheAssociativity',
760   'policy': 'HmatCacheWritePolicy',
761   'line': 'uint16' }}
762
763##
764# @memsave:
765#
766# Save a portion of guest memory to a file.
767#
768# @val: the virtual address of the guest to start from
769#
770# @size: the size of memory region to save
771#
772# @filename: the file to save the memory to as binary data
773#
774# @cpu-index: the index of the virtual CPU to use for translating the
775#     virtual address (defaults to CPU 0)
776#
777# Since: 0.14
778#
779# Notes: Errors were not reliably returned until 1.1
780#
781# Example:
782#
783#     -> { "execute": "memsave",
784#          "arguments": { "val": 10,
785#                         "size": 100,
786#                         "filename": "/tmp/virtual-mem-dump" } }
787#     <- { "return": {} }
788##
789{ 'command': 'memsave',
790  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
791
792##
793# @pmemsave:
794#
795# Save a portion of guest physical memory to a file.
796#
797# @val: the physical address of the guest to start from
798#
799# @size: the size of memory region to save
800#
801# @filename: the file to save the memory to as binary data
802#
803# Since: 0.14
804#
805# Notes: Errors were not reliably returned until 1.1
806#
807# Example:
808#
809#     -> { "execute": "pmemsave",
810#          "arguments": { "val": 10,
811#                         "size": 100,
812#                         "filename": "/tmp/physical-mem-dump" } }
813#     <- { "return": {} }
814##
815{ 'command': 'pmemsave',
816  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
817
818##
819# @Memdev:
820#
821# Information about memory backend
822#
823# @id: backend's ID if backend has 'id' property (since 2.9)
824#
825# @size: memory backend size
826#
827# @merge: whether memory merge support is enabled
828#
829# @dump: whether memory backend's memory is included in a core dump
830#
831# @prealloc: whether memory was preallocated
832#
833# @share: whether memory is private to QEMU or shared (since 6.1)
834#
835# @reserve: whether swap space (or huge pages) was reserved if
836#     applicable.  This corresponds to the user configuration and not
837#     the actual behavior implemented in the OS to perform the
838#     reservation.  For example, Linux will never reserve swap space
839#     for shared file mappings.  (since 6.1)
840#
841# @host-nodes: host nodes for its memory policy
842#
843# @policy: memory policy of memory backend
844#
845# Since: 2.1
846##
847{ 'struct': 'Memdev',
848  'data': {
849    '*id':        'str',
850    'size':       'size',
851    'merge':      'bool',
852    'dump':       'bool',
853    'prealloc':   'bool',
854    'share':      'bool',
855    '*reserve':    'bool',
856    'host-nodes': ['uint16'],
857    'policy':     'HostMemPolicy' }}
858
859##
860# @query-memdev:
861#
862# Returns information for all memory backends.
863#
864# Returns: a list of @Memdev.
865#
866# Since: 2.1
867#
868# Example:
869#
870#     -> { "execute": "query-memdev" }
871#     <- { "return": [
872#            {
873#              "id": "mem1",
874#              "size": 536870912,
875#              "merge": false,
876#              "dump": true,
877#              "prealloc": false,
878#              "share": false,
879#              "host-nodes": [0, 1],
880#              "policy": "bind"
881#            },
882#            {
883#              "size": 536870912,
884#              "merge": false,
885#              "dump": true,
886#              "prealloc": true,
887#              "share": false,
888#              "host-nodes": [2, 3],
889#              "policy": "preferred"
890#            }
891#          ]
892#        }
893##
894{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
895
896##
897# @CpuInstanceProperties:
898#
899# List of properties to be used for hotplugging a CPU instance, it
900# should be passed by management with device_add command when a CPU is
901# being hotplugged.
902#
903# Which members are optional and which mandatory depends on the
904# architecture and board.
905#
906# For s390x see :ref:`cpu-topology-s390x`.
907#
908# The ids other than the node-id specify the position of the CPU
909# within the CPU topology (as defined by the machine property "smp",
910# thus see also type @SMPConfiguration)
911#
912# @node-id: NUMA node ID the CPU belongs to
913#
914# @drawer-id: drawer number within CPU topology the CPU belongs to
915#     (since 8.2)
916#
917# @book-id: book number within parent container the CPU belongs to
918#     (since 8.2)
919#
920# @socket-id: socket number within parent container the CPU belongs to
921#
922# @die-id: die number within the parent container the CPU belongs to
923#    (since 4.1)
924#
925# @cluster-id: cluster number within the parent container the CPU
926#     belongs to (since 7.1)
927#
928# @core-id: core number within the parent container the CPU
929#     belongs to
930#
931# @thread-id: thread number within the core the CPU  belongs to
932#
933# Note: management should be prepared to pass through additional
934#     properties with device_add.
935#
936# Since: 2.7
937##
938{ 'struct': 'CpuInstanceProperties',
939  # Keep these in sync with the properties device_add accepts
940  'data': { '*node-id': 'int',
941            '*drawer-id': 'int',
942            '*book-id': 'int',
943            '*socket-id': 'int',
944            '*die-id': 'int',
945            '*cluster-id': 'int',
946            '*core-id': 'int',
947            '*thread-id': 'int'
948  }
949}
950
951##
952# @HotpluggableCPU:
953#
954# @type: CPU object type for usage with device_add command
955#
956# @props: list of properties to be used for hotplugging CPU
957#
958# @vcpus-count: number of logical VCPU threads @HotpluggableCPU
959#     provides
960#
961# @qom-path: link to existing CPU object if CPU is present or omitted
962#     if CPU is not present.
963#
964# Since: 2.7
965##
966{ 'struct': 'HotpluggableCPU',
967  'data': { 'type': 'str',
968            'vcpus-count': 'int',
969            'props': 'CpuInstanceProperties',
970            '*qom-path': 'str'
971          }
972}
973
974##
975# @query-hotpluggable-cpus:
976#
977# TODO: Better documentation; currently there is none.
978#
979# Returns: a list of HotpluggableCPU objects.
980#
981# Since: 2.7
982#
983# Examples:
984#
985#     For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu
986#     POWER8:
987#
988#     -> { "execute": "query-hotpluggable-cpus" }
989#     <- {"return": [
990#          { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
991#            "vcpus-count": 1 },
992#          { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
993#            "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
994#        ]}'
995#
996#     For pc machine type started with -smp 1,maxcpus=2:
997#
998#     -> { "execute": "query-hotpluggable-cpus" }
999#     <- {"return": [
1000#          {
1001#             "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1002#             "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1003#          },
1004#          {
1005#             "qom-path": "/machine/unattached/device[0]",
1006#             "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1007#             "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1008#          }
1009#        ]}
1010#
1011#     For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu
1012#     qemu (Since: 2.11):
1013#
1014#     -> { "execute": "query-hotpluggable-cpus" }
1015#     <- {"return": [
1016#          {
1017#             "type": "qemu-s390x-cpu", "vcpus-count": 1,
1018#             "props": { "core-id": 1 }
1019#          },
1020#          {
1021#             "qom-path": "/machine/unattached/device[0]",
1022#             "type": "qemu-s390x-cpu", "vcpus-count": 1,
1023#             "props": { "core-id": 0 }
1024#          }
1025#        ]}
1026##
1027{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1028             'allow-preconfig': true }
1029
1030##
1031# @set-numa-node:
1032#
1033# Runtime equivalent of '-numa' CLI option, available at preconfigure
1034# stage to configure numa mapping before initializing machine.
1035#
1036# Since: 3.0
1037##
1038{ 'command': 'set-numa-node', 'boxed': true,
1039  'data': 'NumaOptions',
1040  'allow-preconfig': true
1041}
1042
1043##
1044# @balloon:
1045#
1046# Request the balloon driver to change its balloon size.
1047#
1048# @value: the target logical size of the VM in bytes.  We can deduce
1049#     the size of the balloon using this formula:
1050#
1051#        logical_vm_size = vm_ram_size - balloon_size
1052#
1053#     From it we have: balloon_size = vm_ram_size - @value
1054#
1055# Errors:
1056#     - If the balloon driver is enabled but not functional because
1057#       the KVM kernel module cannot support it, KVMMissingCap
1058#     - If no balloon device is present, DeviceNotActive
1059#
1060# Notes: This command just issues a request to the guest.  When it
1061#     returns, the balloon size may not have changed.  A guest can
1062#     change the balloon size independent of this command.
1063#
1064# Since: 0.14
1065#
1066# Example:
1067#
1068#     -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1069#     <- { "return": {} }
1070#
1071#     With a 2.5GiB guest this command inflated the ballon to 3GiB.
1072##
1073{ 'command': 'balloon', 'data': {'value': 'int'} }
1074
1075##
1076# @BalloonInfo:
1077#
1078# Information about the guest balloon device.
1079#
1080# @actual: the logical size of the VM in bytes Formula used:
1081#     logical_vm_size = vm_ram_size - balloon_size
1082#
1083# Since: 0.14
1084##
1085{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1086
1087##
1088# @query-balloon:
1089#
1090# Return information about the balloon device.
1091#
1092# Returns:
1093#     @BalloonInfo
1094#
1095# Errors:
1096#     - If the balloon driver is enabled but not functional because
1097#       the KVM kernel module cannot support it, KVMMissingCap
1098#     - If no balloon device is present, DeviceNotActive
1099#
1100# Since: 0.14
1101#
1102# Example:
1103#
1104#     -> { "execute": "query-balloon" }
1105#     <- { "return": {
1106#              "actual": 1073741824
1107#           }
1108#        }
1109##
1110{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1111
1112##
1113# @BALLOON_CHANGE:
1114#
1115# Emitted when the guest changes the actual BALLOON level.  This value
1116# is equivalent to the @actual field return by the 'query-balloon'
1117# command
1118#
1119# @actual: the logical size of the VM in bytes Formula used:
1120#     logical_vm_size = vm_ram_size - balloon_size
1121#
1122# Note: this event is rate-limited.
1123#
1124# Since: 1.2
1125#
1126# Example:
1127#
1128#     <- { "event": "BALLOON_CHANGE",
1129#          "data": { "actual": 944766976 },
1130#          "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1131##
1132{ 'event': 'BALLOON_CHANGE',
1133  'data': { 'actual': 'int' } }
1134
1135##
1136# @HvBalloonInfo:
1137#
1138# hv-balloon guest-provided memory status information.
1139#
1140# @committed: the amount of memory in use inside the guest plus the
1141#     amount of the memory unusable inside the guest (ballooned out,
1142#     offline, etc.)
1143#
1144# @available: the amount of the memory inside the guest available for
1145#     new allocations ("free")
1146#
1147# Since: 8.2
1148##
1149{ 'struct': 'HvBalloonInfo',
1150  'data': { 'committed': 'size', 'available': 'size' } }
1151
1152##
1153# @query-hv-balloon-status-report:
1154#
1155# Returns the hv-balloon driver data contained in the last received "STATUS"
1156# message from the guest.
1157#
1158# Returns:
1159#     @HvBalloonInfo
1160#
1161# Errors:
1162#     - If no hv-balloon device is present, guest memory status
1163#       reporting is not enabled or no guest memory status report
1164#       received yet, GenericError
1165#
1166# Since: 8.2
1167#
1168# Example:
1169#
1170#     -> { "execute": "query-hv-balloon-status-report" }
1171#     <- { "return": {
1172#              "committed": 816640000,
1173#              "available": 3333054464
1174#           }
1175#        }
1176##
1177{ 'command': 'query-hv-balloon-status-report', 'returns': 'HvBalloonInfo' }
1178
1179##
1180# @HV_BALLOON_STATUS_REPORT:
1181#
1182# Emitted when the hv-balloon driver receives a "STATUS" message from
1183# the guest.
1184#
1185# Note: this event is rate-limited.
1186#
1187# Since: 8.2
1188#
1189# Example:
1190#
1191#     <- { "event": "HV_BALLOON_STATUS_REPORT",
1192#          "data": { "committed": 816640000, "available": 3333054464 },
1193#          "timestamp": { "seconds": 1600295492, "microseconds": 661044 } }
1194#
1195##
1196{ 'event': 'HV_BALLOON_STATUS_REPORT',
1197  'data': 'HvBalloonInfo' }
1198
1199##
1200# @MemoryInfo:
1201#
1202# Actual memory information in bytes.
1203#
1204# @base-memory: size of "base" memory specified with command line
1205#     option -m.
1206#
1207# @plugged-memory: size of memory that can be hot-unplugged.  This
1208#     field is omitted if target doesn't support memory hotplug (i.e.
1209#     CONFIG_MEM_DEVICE not defined at build time).
1210#
1211# Since: 2.11
1212##
1213{ 'struct': 'MemoryInfo',
1214  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1215
1216##
1217# @query-memory-size-summary:
1218#
1219# Return the amount of initially allocated and present hotpluggable
1220# (if enabled) memory in bytes.
1221#
1222# Example:
1223#
1224#     -> { "execute": "query-memory-size-summary" }
1225#     <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1226#
1227# Since: 2.11
1228##
1229{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1230
1231##
1232# @PCDIMMDeviceInfo:
1233#
1234# PCDIMMDevice state information
1235#
1236# @id: device's ID
1237#
1238# @addr: physical address, where device is mapped
1239#
1240# @size: size of memory that the device provides
1241#
1242# @slot: slot number at which device is plugged in
1243#
1244# @node: NUMA node number where device is plugged in
1245#
1246# @memdev: memory backend linked with device
1247#
1248# @hotplugged: true if device was hotplugged
1249#
1250# @hotpluggable: true if device if could be added/removed while
1251#     machine is running
1252#
1253# Since: 2.1
1254##
1255{ 'struct': 'PCDIMMDeviceInfo',
1256  'data': { '*id': 'str',
1257            'addr': 'int',
1258            'size': 'int',
1259            'slot': 'int',
1260            'node': 'int',
1261            'memdev': 'str',
1262            'hotplugged': 'bool',
1263            'hotpluggable': 'bool'
1264          }
1265}
1266
1267##
1268# @VirtioPMEMDeviceInfo:
1269#
1270# VirtioPMEM state information
1271#
1272# @id: device's ID
1273#
1274# @memaddr: physical address in memory, where device is mapped
1275#
1276# @size: size of memory that the device provides
1277#
1278# @memdev: memory backend linked with device
1279#
1280# Since: 4.1
1281##
1282{ 'struct': 'VirtioPMEMDeviceInfo',
1283  'data': { '*id': 'str',
1284            'memaddr': 'size',
1285            'size': 'size',
1286            'memdev': 'str'
1287          }
1288}
1289
1290##
1291# @VirtioMEMDeviceInfo:
1292#
1293# VirtioMEMDevice state information
1294#
1295# @id: device's ID
1296#
1297# @memaddr: physical address in memory, where device is mapped
1298#
1299# @requested-size: the user requested size of the device
1300#
1301# @size: the (current) size of memory that the device provides
1302#
1303# @max-size: the maximum size of memory that the device can provide
1304#
1305# @block-size: the block size of memory that the device provides
1306#
1307# @node: NUMA node number where device is assigned to
1308#
1309# @memdev: memory backend linked with the region
1310#
1311# Since: 5.1
1312##
1313{ 'struct': 'VirtioMEMDeviceInfo',
1314  'data': { '*id': 'str',
1315            'memaddr': 'size',
1316            'requested-size': 'size',
1317            'size': 'size',
1318            'max-size': 'size',
1319            'block-size': 'size',
1320            'node': 'int',
1321            'memdev': 'str'
1322          }
1323}
1324
1325##
1326# @SgxEPCDeviceInfo:
1327#
1328# Sgx EPC state information
1329#
1330# @id: device's ID
1331#
1332# @memaddr: physical address in memory, where device is mapped
1333#
1334# @size: size of memory that the device provides
1335#
1336# @memdev: memory backend linked with device
1337#
1338# @node: the numa node (Since: 7.0)
1339#
1340# Since: 6.2
1341##
1342{ 'struct': 'SgxEPCDeviceInfo',
1343  'data': { '*id': 'str',
1344            'memaddr': 'size',
1345            'size': 'size',
1346            'node': 'int',
1347            'memdev': 'str'
1348          }
1349}
1350
1351##
1352# @HvBalloonDeviceInfo:
1353#
1354# hv-balloon provided memory state information
1355#
1356# @id: device's ID
1357#
1358# @memaddr: physical address in memory, where device is mapped
1359#
1360# @max-size: the maximum size of memory that the device can provide
1361#
1362# @memdev: memory backend linked with device
1363#
1364# Since: 8.2
1365##
1366{ 'struct': 'HvBalloonDeviceInfo',
1367  'data': { '*id': 'str',
1368            '*memaddr': 'size',
1369            'max-size': 'size',
1370            '*memdev': 'str'
1371          }
1372}
1373
1374##
1375# @MemoryDeviceInfoKind:
1376#
1377# @nvdimm: since 2.12
1378#
1379# @virtio-pmem: since 4.1
1380#
1381# @virtio-mem: since 5.1
1382#
1383# @sgx-epc: since 6.2.
1384#
1385# @hv-balloon: since 8.2.
1386#
1387# Since: 2.1
1388##
1389{ 'enum': 'MemoryDeviceInfoKind',
1390  'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc',
1391            'hv-balloon' ] }
1392
1393##
1394# @PCDIMMDeviceInfoWrapper:
1395#
1396# @data: PCDIMMDevice state information
1397#
1398# Since: 2.1
1399##
1400{ 'struct': 'PCDIMMDeviceInfoWrapper',
1401  'data': { 'data': 'PCDIMMDeviceInfo' } }
1402
1403##
1404# @VirtioPMEMDeviceInfoWrapper:
1405#
1406# @data: VirtioPMEM state information
1407#
1408# Since: 2.1
1409##
1410{ 'struct': 'VirtioPMEMDeviceInfoWrapper',
1411  'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1412
1413##
1414# @VirtioMEMDeviceInfoWrapper:
1415#
1416# @data: VirtioMEMDevice state information
1417#
1418# Since: 2.1
1419##
1420{ 'struct': 'VirtioMEMDeviceInfoWrapper',
1421  'data': { 'data': 'VirtioMEMDeviceInfo' } }
1422
1423##
1424# @SgxEPCDeviceInfoWrapper:
1425#
1426# @data: Sgx EPC state information
1427#
1428# Since: 6.2
1429##
1430{ 'struct': 'SgxEPCDeviceInfoWrapper',
1431  'data': { 'data': 'SgxEPCDeviceInfo' } }
1432
1433##
1434# @HvBalloonDeviceInfoWrapper:
1435#
1436# @data: hv-balloon provided memory state information
1437#
1438# Since: 8.2
1439##
1440{ 'struct': 'HvBalloonDeviceInfoWrapper',
1441  'data': { 'data': 'HvBalloonDeviceInfo' } }
1442
1443##
1444# @MemoryDeviceInfo:
1445#
1446# Union containing information about a memory device
1447#
1448# @type: memory device type
1449#
1450# Since: 2.1
1451##
1452{ 'union': 'MemoryDeviceInfo',
1453  'base': { 'type': 'MemoryDeviceInfoKind' },
1454  'discriminator': 'type',
1455  'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1456            'nvdimm': 'PCDIMMDeviceInfoWrapper',
1457            'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1458            'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1459            'sgx-epc': 'SgxEPCDeviceInfoWrapper',
1460            'hv-balloon': 'HvBalloonDeviceInfoWrapper'
1461          }
1462}
1463
1464##
1465# @SgxEPC:
1466#
1467# Sgx EPC cmdline information
1468#
1469# @memdev: memory backend linked with device
1470#
1471# @node: the numa node (Since: 7.0)
1472#
1473# Since: 6.2
1474##
1475{ 'struct': 'SgxEPC',
1476  'data': { 'memdev': 'str',
1477            'node': 'int'
1478          }
1479}
1480
1481##
1482# @SgxEPCProperties:
1483#
1484# SGX properties of machine types.
1485#
1486# @sgx-epc: list of ids of memory-backend-epc objects.
1487#
1488# Since: 6.2
1489##
1490{ 'struct': 'SgxEPCProperties',
1491  'data': { 'sgx-epc': ['SgxEPC'] }
1492}
1493
1494##
1495# @query-memory-devices:
1496#
1497# Lists available memory devices and their state
1498#
1499# Since: 2.1
1500#
1501# Example:
1502#
1503#     -> { "execute": "query-memory-devices" }
1504#     <- { "return": [ { "data":
1505#                           { "addr": 5368709120,
1506#                             "hotpluggable": true,
1507#                             "hotplugged": true,
1508#                             "id": "d1",
1509#                             "memdev": "/objects/memX",
1510#                             "node": 0,
1511#                             "size": 1073741824,
1512#                             "slot": 0},
1513#                        "type": "dimm"
1514#                      } ] }
1515##
1516{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1517
1518##
1519# @MEMORY_DEVICE_SIZE_CHANGE:
1520#
1521# Emitted when the size of a memory device changes.  Only emitted for
1522# memory devices that can actually change the size (e.g., virtio-mem
1523# due to guest action).
1524#
1525# @id: device's ID
1526#
1527# @size: the new size of memory that the device provides
1528#
1529# @qom-path: path to the device object in the QOM tree (since 6.2)
1530#
1531# Note: this event is rate-limited.
1532#
1533# Since: 5.1
1534#
1535# Example:
1536#
1537#     <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1538#          "data": { "id": "vm0", "size": 1073741824,
1539#                    "qom-path": "/machine/unattached/device[2]" },
1540#          "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1541##
1542{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1543  'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1544
1545##
1546# @MEM_UNPLUG_ERROR:
1547#
1548# Emitted when memory hot unplug error occurs.
1549#
1550# @device: device name
1551#
1552# @msg: Informative message
1553#
1554# Features:
1555#
1556# @deprecated: This event is deprecated.  Use
1557#     @DEVICE_UNPLUG_GUEST_ERROR instead.
1558#
1559# Since: 2.4
1560#
1561# Example:
1562#
1563#     <- { "event": "MEM_UNPLUG_ERROR",
1564#          "data": { "device": "dimm1",
1565#                    "msg": "acpi: device unplug for unsupported device"
1566#          },
1567#          "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1568##
1569{ 'event': 'MEM_UNPLUG_ERROR',
1570  'data': { 'device': 'str', 'msg': 'str' },
1571  'features': ['deprecated'] }
1572
1573##
1574# @BootConfiguration:
1575#
1576# Schema for virtual machine boot configuration.
1577#
1578# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1579#
1580# @once: Boot order to apply on first boot
1581#
1582# @menu: Whether to show a boot menu
1583#
1584# @splash: The name of the file to be passed to the firmware as logo
1585#     picture, if @menu is true.
1586#
1587# @splash-time: How long to show the logo picture, in milliseconds
1588#
1589# @reboot-timeout: Timeout before guest reboots after boot fails
1590#
1591# @strict: Whether to attempt booting from devices not included in the
1592#     boot order
1593#
1594# Since: 7.1
1595##
1596{ 'struct': 'BootConfiguration', 'data': {
1597     '*order': 'str',
1598     '*once': 'str',
1599     '*menu': 'bool',
1600     '*splash': 'str',
1601     '*splash-time': 'int',
1602     '*reboot-timeout': 'int',
1603     '*strict': 'bool' } }
1604
1605##
1606# @SMPConfiguration:
1607#
1608# Schema for CPU topology configuration.  A missing value lets QEMU
1609# figure out a suitable value based on the ones that are provided.
1610#
1611# The members other than @cpus and @maxcpus define a topology of
1612# containers.
1613#
1614# The ordering from highest/coarsest to lowest/finest is:
1615# @drawers, @books, @sockets, @dies, @clusters, @cores, @threads.
1616#
1617# Different architectures support different subsets of topology
1618# containers.
1619#
1620# For example, s390x does not have clusters and dies, and the socket
1621# is the parent container of cores.
1622#
1623# @cpus: number of virtual CPUs in the virtual machine
1624#
1625# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1626#     machine
1627#
1628# @drawers: number of drawers in the CPU topology (since 8.2)
1629#
1630# @books: number of books in the CPU topology (since 8.2)
1631#
1632# @sockets: number of sockets per parent container
1633#
1634# @dies: number of dies per parent container
1635#
1636# @clusters: number of clusters per parent container (since 7.0)
1637#
1638# @cores: number of cores per parent container
1639#
1640# @threads: number of threads per core
1641#
1642# Since: 6.1
1643##
1644{ 'struct': 'SMPConfiguration', 'data': {
1645     '*cpus': 'int',
1646     '*drawers': 'int',
1647     '*books': 'int',
1648     '*sockets': 'int',
1649     '*dies': 'int',
1650     '*clusters': 'int',
1651     '*cores': 'int',
1652     '*threads': 'int',
1653     '*maxcpus': 'int' } }
1654
1655##
1656# @x-query-irq:
1657#
1658# Query interrupt statistics
1659#
1660# Features:
1661#
1662# @unstable: This command is meant for debugging.
1663#
1664# Returns: interrupt statistics
1665#
1666# Since: 6.2
1667##
1668{ 'command': 'x-query-irq',
1669  'returns': 'HumanReadableText',
1670  'features': [ 'unstable' ] }
1671
1672##
1673# @x-query-jit:
1674#
1675# Query TCG compiler statistics
1676#
1677# Features:
1678#
1679# @unstable: This command is meant for debugging.
1680#
1681# Returns: TCG compiler statistics
1682#
1683# Since: 6.2
1684##
1685{ 'command': 'x-query-jit',
1686  'returns': 'HumanReadableText',
1687  'if': 'CONFIG_TCG',
1688  'features': [ 'unstable' ] }
1689
1690##
1691# @x-query-numa:
1692#
1693# Query NUMA topology information
1694#
1695# Features:
1696#
1697# @unstable: This command is meant for debugging.
1698#
1699# Returns: topology information
1700#
1701# Since: 6.2
1702##
1703{ 'command': 'x-query-numa',
1704  'returns': 'HumanReadableText',
1705  'features': [ 'unstable' ] }
1706
1707##
1708# @x-query-opcount:
1709#
1710# Query TCG opcode counters
1711#
1712# Features:
1713#
1714# @unstable: This command is meant for debugging.
1715#
1716# Returns: TCG opcode counters
1717#
1718# Since: 6.2
1719##
1720{ 'command': 'x-query-opcount',
1721  'returns': 'HumanReadableText',
1722  'if': 'CONFIG_TCG',
1723  'features': [ 'unstable' ] }
1724
1725##
1726# @x-query-ramblock:
1727#
1728# Query system ramblock information
1729#
1730# Features:
1731#
1732# @unstable: This command is meant for debugging.
1733#
1734# Returns: system ramblock information
1735#
1736# Since: 6.2
1737##
1738{ 'command': 'x-query-ramblock',
1739  'returns': 'HumanReadableText',
1740  'features': [ 'unstable' ] }
1741
1742##
1743# @x-query-rdma:
1744#
1745# Query RDMA state
1746#
1747# Features:
1748#
1749# @unstable: This command is meant for debugging.
1750#
1751# Returns: RDMA state
1752#
1753# Since: 6.2
1754##
1755{ 'command': 'x-query-rdma',
1756  'returns': 'HumanReadableText',
1757  'features': [ 'unstable' ] }
1758
1759##
1760# @x-query-roms:
1761#
1762# Query information on the registered ROMS
1763#
1764# Features:
1765#
1766# @unstable: This command is meant for debugging.
1767#
1768# Returns: registered ROMs
1769#
1770# Since: 6.2
1771##
1772{ 'command': 'x-query-roms',
1773  'returns': 'HumanReadableText',
1774  'features': [ 'unstable' ] }
1775
1776##
1777# @x-query-usb:
1778#
1779# Query information on the USB devices
1780#
1781# Features:
1782#
1783# @unstable: This command is meant for debugging.
1784#
1785# Returns: USB device information
1786#
1787# Since: 6.2
1788##
1789{ 'command': 'x-query-usb',
1790  'returns': 'HumanReadableText',
1791  'features': [ 'unstable' ] }
1792
1793##
1794# @SmbiosEntryPointType:
1795#
1796# @32: SMBIOS version 2.1 (32-bit) Entry Point
1797#
1798# @64: SMBIOS version 3.0 (64-bit) Entry Point
1799#
1800# Since: 7.0
1801##
1802{ 'enum': 'SmbiosEntryPointType',
1803  'data': [ '32', '64' ] }
1804
1805##
1806# @MemorySizeConfiguration:
1807#
1808# Schema for memory size configuration.
1809#
1810# @size: memory size in bytes
1811#
1812# @max-size: maximum hotpluggable memory size in bytes
1813#
1814# @slots: number of available memory slots for hotplug
1815#
1816# Since: 7.1
1817##
1818{ 'struct': 'MemorySizeConfiguration', 'data': {
1819     '*size': 'size',
1820     '*max-size': 'size',
1821     '*slots': 'uint64' } }
1822
1823##
1824# @dumpdtb:
1825#
1826# Save the FDT in dtb format.
1827#
1828# @filename: name of the dtb file to be created
1829#
1830# Since: 7.2
1831#
1832# Example:
1833#
1834#     -> { "execute": "dumpdtb" }
1835#          "arguments": { "filename": "fdt.dtb" } }
1836#     <- { "return": {} }
1837##
1838{ 'command': 'dumpdtb',
1839  'data': { 'filename': 'str' },
1840  'if': 'CONFIG_FDT' }
1841