1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4# This work is licensed under the terms of the GNU GPL, version 2 or later. 5# See the COPYING file in the top-level directory. 6 7## 8# = Machines 9## 10 11{ 'include': 'common.json' } 12 13## 14# @SysEmuTarget: 15# 16# The comprehensive enumeration of QEMU system emulation ("softmmu") 17# targets. Run "./configure --help" in the project root directory, and 18# look for the \*-softmmu targets near the "--target-list" option. The 19# individual target constants are not documented here, for the time 20# being. 21# 22# @rx: since 5.0 23# @avr: since 5.1 24# 25# Notes: The resulting QMP strings can be appended to the "qemu-system-" 26# prefix to produce the corresponding QEMU executable name. This 27# is true even for "qemu-system-x86_64". 28# 29# Since: 3.0 30## 31{ 'enum' : 'SysEmuTarget', 32 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 33 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64', 34 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc', 35 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4', 36 'sh4eb', 'sparc', 'sparc64', 'tricore', 37 'x86_64', 'xtensa', 'xtensaeb' ] } 38 39## 40# @CpuS390State: 41# 42# An enumeration of cpu states that can be assumed by a virtual 43# S390 CPU 44# 45# Since: 2.12 46## 47{ 'enum': 'CpuS390State', 48 'prefix': 'S390_CPU_STATE', 49 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 50 51## 52# @CpuInfoS390: 53# 54# Additional information about a virtual S390 CPU 55# 56# @cpu-state: the virtual CPU's state 57# 58# Since: 2.12 59## 60{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } } 61 62## 63# @CpuInfoFast: 64# 65# Information about a virtual CPU 66# 67# @cpu-index: index of the virtual CPU 68# 69# @qom-path: path to the CPU object in the QOM tree 70# 71# @thread-id: ID of the underlying host thread 72# 73# @props: properties describing to which node/socket/core/thread 74# virtual CPU belongs to, provided if supported by board 75# 76# @target: the QEMU system emulation target, which determines which 77# additional fields will be listed (since 3.0) 78# 79# Since: 2.12 80# 81## 82{ 'union' : 'CpuInfoFast', 83 'base' : { 'cpu-index' : 'int', 84 'qom-path' : 'str', 85 'thread-id' : 'int', 86 '*props' : 'CpuInstanceProperties', 87 'target' : 'SysEmuTarget' }, 88 'discriminator' : 'target', 89 'data' : { 's390x' : 'CpuInfoS390' } } 90 91## 92# @query-cpus-fast: 93# 94# Returns information about all virtual CPUs. 95# 96# Returns: list of @CpuInfoFast 97# 98# Since: 2.12 99# 100# Example: 101# 102# -> { "execute": "query-cpus-fast" } 103# <- { "return": [ 104# { 105# "thread-id": 25627, 106# "props": { 107# "core-id": 0, 108# "thread-id": 0, 109# "socket-id": 0 110# }, 111# "qom-path": "/machine/unattached/device[0]", 112# "arch":"x86", 113# "target":"x86_64", 114# "cpu-index": 0 115# }, 116# { 117# "thread-id": 25628, 118# "props": { 119# "core-id": 0, 120# "thread-id": 0, 121# "socket-id": 1 122# }, 123# "qom-path": "/machine/unattached/device[2]", 124# "arch":"x86", 125# "target":"x86_64", 126# "cpu-index": 1 127# } 128# ] 129# } 130## 131{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 132 133## 134# @MachineInfo: 135# 136# Information describing a machine. 137# 138# @name: the name of the machine 139# 140# @alias: an alias for the machine name 141# 142# @is-default: whether the machine is default 143# 144# @cpu-max: maximum number of CPUs supported by the machine type 145# (since 1.5) 146# 147# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7) 148# 149# @numa-mem-supported: true if '-numa node,mem' option is supported by 150# the machine type and false otherwise (since 4.1) 151# 152# @deprecated: if true, the machine type is deprecated and may be removed 153# in future versions of QEMU according to the QEMU deprecation 154# policy (since 4.1) 155# 156# @default-cpu-type: default CPU model typename if none is requested via 157# the -cpu argument. (since 4.2) 158# 159# @default-ram-id: the default ID of initial RAM memory backend (since 5.2) 160# 161# Since: 1.2 162## 163{ 'struct': 'MachineInfo', 164 'data': { 'name': 'str', '*alias': 'str', 165 '*is-default': 'bool', 'cpu-max': 'int', 166 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool', 167 'deprecated': 'bool', '*default-cpu-type': 'str', 168 '*default-ram-id': 'str' } } 169 170## 171# @query-machines: 172# 173# Return a list of supported machines 174# 175# Returns: a list of MachineInfo 176# 177# Since: 1.2 178## 179{ 'command': 'query-machines', 'returns': ['MachineInfo'] } 180 181## 182# @CurrentMachineParams: 183# 184# Information describing the running machine parameters. 185# 186# @wakeup-suspend-support: true if the machine supports wake up from 187# suspend 188# 189# Since: 4.0 190## 191{ 'struct': 'CurrentMachineParams', 192 'data': { 'wakeup-suspend-support': 'bool'} } 193 194## 195# @query-current-machine: 196# 197# Return information on the current virtual machine. 198# 199# Returns: CurrentMachineParams 200# 201# Since: 4.0 202## 203{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' } 204 205## 206# @TargetInfo: 207# 208# Information describing the QEMU target. 209# 210# @arch: the target architecture 211# 212# Since: 1.2 213## 214{ 'struct': 'TargetInfo', 215 'data': { 'arch': 'SysEmuTarget' } } 216 217## 218# @query-target: 219# 220# Return information about the target for this QEMU 221# 222# Returns: TargetInfo 223# 224# Since: 1.2 225## 226{ 'command': 'query-target', 'returns': 'TargetInfo' } 227 228## 229# @UuidInfo: 230# 231# Guest UUID information (Universally Unique Identifier). 232# 233# @UUID: the UUID of the guest 234# 235# Since: 0.14 236# 237# Notes: If no UUID was specified for the guest, a null UUID is returned. 238## 239{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 240 241## 242# @query-uuid: 243# 244# Query the guest UUID information. 245# 246# Returns: The @UuidInfo for the guest 247# 248# Since: 0.14 249# 250# Example: 251# 252# -> { "execute": "query-uuid" } 253# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 254# 255## 256{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } 257 258## 259# @GuidInfo: 260# 261# GUID information. 262# 263# @guid: the globally unique identifier 264# 265# Since: 2.9 266## 267{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 268 269## 270# @query-vm-generation-id: 271# 272# Show Virtual Machine Generation ID 273# 274# Since: 2.9 275## 276{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 277 278## 279# @system_reset: 280# 281# Performs a hard reset of a guest. 282# 283# Since: 0.14 284# 285# Example: 286# 287# -> { "execute": "system_reset" } 288# <- { "return": {} } 289# 290## 291{ 'command': 'system_reset' } 292 293## 294# @system_powerdown: 295# 296# Requests that a guest perform a powerdown operation. 297# 298# Since: 0.14 299# 300# Notes: A guest may or may not respond to this command. This command 301# returning does not indicate that a guest has accepted the request or 302# that it has shut down. Many guests will respond to this command by 303# prompting the user in some way. 304# Example: 305# 306# -> { "execute": "system_powerdown" } 307# <- { "return": {} } 308# 309## 310{ 'command': 'system_powerdown' } 311 312## 313# @system_wakeup: 314# 315# Wake up guest from suspend. If the guest has wake-up from suspend 316# support enabled (wakeup-suspend-support flag from 317# query-current-machine), wake-up guest from suspend if the guest is 318# in SUSPENDED state. Return an error otherwise. 319# 320# Since: 1.1 321# 322# Returns: nothing. 323# 324# Note: prior to 4.0, this command does nothing in case the guest 325# isn't suspended. 326# 327# Example: 328# 329# -> { "execute": "system_wakeup" } 330# <- { "return": {} } 331# 332## 333{ 'command': 'system_wakeup' } 334 335## 336# @LostTickPolicy: 337# 338# Policy for handling lost ticks in timer devices. Ticks end up getting 339# lost when, for example, the guest is paused. 340# 341# @discard: throw away the missed ticks and continue with future injection 342# normally. The guest OS will see the timer jump ahead by a 343# potentially quite significant amount all at once, as if the 344# intervening chunk of time had simply not existed; needless to 345# say, such a sudden jump can easily confuse a guest OS which is 346# not specifically prepared to deal with it. Assuming the guest 347# OS can deal correctly with the time jump, the time in the guest 348# and in the host should now match. 349# 350# @delay: continue to deliver ticks at the normal rate. The guest OS will 351# not notice anything is amiss, as from its point of view time will 352# have continued to flow normally. The time in the guest should now 353# be behind the time in the host by exactly the amount of time during 354# which ticks have been missed. 355# 356# @slew: deliver ticks at a higher rate to catch up with the missed ticks. 357# The guest OS will not notice anything is amiss, as from its point 358# of view time will have continued to flow normally. Once the timer 359# has managed to catch up with all the missing ticks, the time in 360# the guest and in the host should match. 361# 362# Since: 2.0 363## 364{ 'enum': 'LostTickPolicy', 365 'data': ['discard', 'delay', 'slew' ] } 366 367## 368# @inject-nmi: 369# 370# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64). 371# The command fails when the guest doesn't support injecting. 372# 373# Returns: If successful, nothing 374# 375# Since: 0.14 376# 377# Note: prior to 2.1, this command was only supported for x86 and s390 VMs 378# 379# Example: 380# 381# -> { "execute": "inject-nmi" } 382# <- { "return": {} } 383# 384## 385{ 'command': 'inject-nmi' } 386 387## 388# @KvmInfo: 389# 390# Information about support for KVM acceleration 391# 392# @enabled: true if KVM acceleration is active 393# 394# @present: true if KVM acceleration is built into this executable 395# 396# Since: 0.14 397## 398{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 399 400## 401# @query-kvm: 402# 403# Returns information about KVM acceleration 404# 405# Returns: @KvmInfo 406# 407# Since: 0.14 408# 409# Example: 410# 411# -> { "execute": "query-kvm" } 412# <- { "return": { "enabled": true, "present": true } } 413# 414## 415{ 'command': 'query-kvm', 'returns': 'KvmInfo' } 416 417## 418# @NumaOptionsType: 419# 420# @node: NUMA nodes configuration 421# 422# @dist: NUMA distance configuration (since 2.10) 423# 424# @cpu: property based CPU(s) to node mapping (Since: 2.10) 425# 426# @hmat-lb: memory latency and bandwidth information (Since: 5.0) 427# 428# @hmat-cache: memory side cache information (Since: 5.0) 429# 430# Since: 2.1 431## 432{ 'enum': 'NumaOptionsType', 433 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] } 434 435## 436# @NumaOptions: 437# 438# A discriminated record of NUMA options. (for OptsVisitor) 439# 440# Since: 2.1 441## 442{ 'union': 'NumaOptions', 443 'base': { 'type': 'NumaOptionsType' }, 444 'discriminator': 'type', 445 'data': { 446 'node': 'NumaNodeOptions', 447 'dist': 'NumaDistOptions', 448 'cpu': 'NumaCpuOptions', 449 'hmat-lb': 'NumaHmatLBOptions', 450 'hmat-cache': 'NumaHmatCacheOptions' }} 451 452## 453# @NumaNodeOptions: 454# 455# Create a guest NUMA node. (for OptsVisitor) 456# 457# @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 458# 459# @cpus: VCPUs belonging to this node (assign VCPUS round-robin 460# if omitted) 461# 462# @mem: memory size of this node; mutually exclusive with @memdev. 463# Equally divide total memory among nodes if both @mem and @memdev are 464# omitted. 465# 466# @memdev: memory backend object. If specified for one node, 467# it must be specified for all nodes. 468# 469# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, 470# points to the nodeid which has the memory controller 471# responsible for this NUMA node. This field provides 472# additional information as to the initiator node that 473# is closest (as in directly attached) to this node, and 474# therefore has the best performance (since 5.0) 475# 476# Since: 2.1 477## 478{ 'struct': 'NumaNodeOptions', 479 'data': { 480 '*nodeid': 'uint16', 481 '*cpus': ['uint16'], 482 '*mem': 'size', 483 '*memdev': 'str', 484 '*initiator': 'uint16' }} 485 486## 487# @NumaDistOptions: 488# 489# Set the distance between 2 NUMA nodes. 490# 491# @src: source NUMA node. 492# 493# @dst: destination NUMA node. 494# 495# @val: NUMA distance from source node to destination node. 496# When a node is unreachable from another node, set the distance 497# between them to 255. 498# 499# Since: 2.10 500## 501{ 'struct': 'NumaDistOptions', 502 'data': { 503 'src': 'uint16', 504 'dst': 'uint16', 505 'val': 'uint8' }} 506 507## 508# @X86CPURegister32: 509# 510# A X86 32-bit register 511# 512# Since: 1.5 513## 514{ 'enum': 'X86CPURegister32', 515 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 516 517## 518# @X86CPUFeatureWordInfo: 519# 520# Information about a X86 CPU feature word 521# 522# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word 523# 524# @cpuid-input-ecx: Input ECX value for CPUID instruction for that 525# feature word 526# 527# @cpuid-register: Output register containing the feature bits 528# 529# @features: value of output register, containing the feature bits 530# 531# Since: 1.5 532## 533{ 'struct': 'X86CPUFeatureWordInfo', 534 'data': { 'cpuid-input-eax': 'int', 535 '*cpuid-input-ecx': 'int', 536 'cpuid-register': 'X86CPURegister32', 537 'features': 'int' } } 538 539## 540# @DummyForceArrays: 541# 542# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally 543# 544# Since: 2.5 545## 546{ 'struct': 'DummyForceArrays', 547 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 548 549## 550# @NumaCpuOptions: 551# 552# Option "-numa cpu" overrides default cpu to node mapping. 553# It accepts the same set of cpu properties as returned by 554# query-hotpluggable-cpus[].props, where node-id could be used to 555# override default node mapping. 556# 557# Since: 2.10 558## 559{ 'struct': 'NumaCpuOptions', 560 'base': 'CpuInstanceProperties', 561 'data' : {} } 562 563## 564# @HmatLBMemoryHierarchy: 565# 566# The memory hierarchy in the System Locality Latency and Bandwidth 567# Information Structure of HMAT (Heterogeneous Memory Attribute Table) 568# 569# For more information about @HmatLBMemoryHierarchy, see chapter 570# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. 571# 572# @memory: the structure represents the memory performance 573# 574# @first-level: first level of memory side cache 575# 576# @second-level: second level of memory side cache 577# 578# @third-level: third level of memory side cache 579# 580# Since: 5.0 581## 582{ 'enum': 'HmatLBMemoryHierarchy', 583 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } 584 585## 586# @HmatLBDataType: 587# 588# Data type in the System Locality Latency and Bandwidth 589# Information Structure of HMAT (Heterogeneous Memory Attribute Table) 590# 591# For more information about @HmatLBDataType, see chapter 592# 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec. 593# 594# @access-latency: access latency (nanoseconds) 595# 596# @read-latency: read latency (nanoseconds) 597# 598# @write-latency: write latency (nanoseconds) 599# 600# @access-bandwidth: access bandwidth (Bytes per second) 601# 602# @read-bandwidth: read bandwidth (Bytes per second) 603# 604# @write-bandwidth: write bandwidth (Bytes per second) 605# 606# Since: 5.0 607## 608{ 'enum': 'HmatLBDataType', 609 'data': [ 'access-latency', 'read-latency', 'write-latency', 610 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } 611 612## 613# @NumaHmatLBOptions: 614# 615# Set the system locality latency and bandwidth information 616# between Initiator and Target proximity Domains. 617# 618# For more information about @NumaHmatLBOptions, see chapter 619# 5.2.27.4: Table 5-146 of ACPI 6.3 spec. 620# 621# @initiator: the Initiator Proximity Domain. 622# 623# @target: the Target Proximity Domain. 624# 625# @hierarchy: the Memory Hierarchy. Indicates the performance 626# of memory or side cache. 627# 628# @data-type: presents the type of data, access/read/write 629# latency or hit latency. 630# 631# @latency: the value of latency from @initiator to @target 632# proximity domain, the latency unit is "ns(nanosecond)". 633# 634# @bandwidth: the value of bandwidth between @initiator and @target 635# proximity domain, the bandwidth unit is 636# "Bytes per second". 637# 638# Since: 5.0 639## 640{ 'struct': 'NumaHmatLBOptions', 641 'data': { 642 'initiator': 'uint16', 643 'target': 'uint16', 644 'hierarchy': 'HmatLBMemoryHierarchy', 645 'data-type': 'HmatLBDataType', 646 '*latency': 'uint64', 647 '*bandwidth': 'size' }} 648 649## 650# @HmatCacheAssociativity: 651# 652# Cache associativity in the Memory Side Cache Information Structure 653# of HMAT 654# 655# For more information of @HmatCacheAssociativity, see chapter 656# 5.2.27.5: Table 5-147 of ACPI 6.3 spec. 657# 658# @none: None (no memory side cache in this proximity domain, 659# or cache associativity unknown) 660# 661# @direct: Direct Mapped 662# 663# @complex: Complex Cache Indexing (implementation specific) 664# 665# Since: 5.0 666## 667{ 'enum': 'HmatCacheAssociativity', 668 'data': [ 'none', 'direct', 'complex' ] } 669 670## 671# @HmatCacheWritePolicy: 672# 673# Cache write policy in the Memory Side Cache Information Structure 674# of HMAT 675# 676# For more information of @HmatCacheWritePolicy, see chapter 677# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 678# 679# @none: None (no memory side cache in this proximity domain, 680# or cache write policy unknown) 681# 682# @write-back: Write Back (WB) 683# 684# @write-through: Write Through (WT) 685# 686# Since: 5.0 687## 688{ 'enum': 'HmatCacheWritePolicy', 689 'data': [ 'none', 'write-back', 'write-through' ] } 690 691## 692# @NumaHmatCacheOptions: 693# 694# Set the memory side cache information for a given memory domain. 695# 696# For more information of @NumaHmatCacheOptions, see chapter 697# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 698# 699# @node-id: the memory proximity domain to which the memory belongs. 700# 701# @size: the size of memory side cache in bytes. 702# 703# @level: the cache level described in this structure. 704# 705# @associativity: the cache associativity, 706# none/direct-mapped/complex(complex cache indexing). 707# 708# @policy: the write policy, none/write-back/write-through. 709# 710# @line: the cache Line size in bytes. 711# 712# Since: 5.0 713## 714{ 'struct': 'NumaHmatCacheOptions', 715 'data': { 716 'node-id': 'uint32', 717 'size': 'size', 718 'level': 'uint8', 719 'associativity': 'HmatCacheAssociativity', 720 'policy': 'HmatCacheWritePolicy', 721 'line': 'uint16' }} 722 723## 724# @memsave: 725# 726# Save a portion of guest memory to a file. 727# 728# @val: the virtual address of the guest to start from 729# 730# @size: the size of memory region to save 731# 732# @filename: the file to save the memory to as binary data 733# 734# @cpu-index: the index of the virtual CPU to use for translating the 735# virtual address (defaults to CPU 0) 736# 737# Returns: Nothing on success 738# 739# Since: 0.14 740# 741# Notes: Errors were not reliably returned until 1.1 742# 743# Example: 744# 745# -> { "execute": "memsave", 746# "arguments": { "val": 10, 747# "size": 100, 748# "filename": "/tmp/virtual-mem-dump" } } 749# <- { "return": {} } 750# 751## 752{ 'command': 'memsave', 753 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 754 755## 756# @pmemsave: 757# 758# Save a portion of guest physical memory to a file. 759# 760# @val: the physical address of the guest to start from 761# 762# @size: the size of memory region to save 763# 764# @filename: the file to save the memory to as binary data 765# 766# Returns: Nothing on success 767# 768# Since: 0.14 769# 770# Notes: Errors were not reliably returned until 1.1 771# 772# Example: 773# 774# -> { "execute": "pmemsave", 775# "arguments": { "val": 10, 776# "size": 100, 777# "filename": "/tmp/physical-mem-dump" } } 778# <- { "return": {} } 779# 780## 781{ 'command': 'pmemsave', 782 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 783 784## 785# @Memdev: 786# 787# Information about memory backend 788# 789# @id: backend's ID if backend has 'id' property (since 2.9) 790# 791# @size: memory backend size 792# 793# @merge: whether memory merge support is enabled 794# 795# @dump: whether memory backend's memory is included in a core dump 796# 797# @prealloc: whether memory was preallocated 798# 799# @share: whether memory is private to QEMU or shared (since 6.1) 800# 801# @reserve: whether swap space (or huge pages) was reserved if applicable. 802# This corresponds to the user configuration and not the actual 803# behavior implemented in the OS to perform the reservation. 804# For example, Linux will never reserve swap space for shared 805# file mappings. (since 6.1) 806# 807# @host-nodes: host nodes for its memory policy 808# 809# @policy: memory policy of memory backend 810# 811# Since: 2.1 812## 813{ 'struct': 'Memdev', 814 'data': { 815 '*id': 'str', 816 'size': 'size', 817 'merge': 'bool', 818 'dump': 'bool', 819 'prealloc': 'bool', 820 'share': 'bool', 821 '*reserve': 'bool', 822 'host-nodes': ['uint16'], 823 'policy': 'HostMemPolicy' }} 824 825## 826# @query-memdev: 827# 828# Returns information for all memory backends. 829# 830# Returns: a list of @Memdev. 831# 832# Since: 2.1 833# 834# Example: 835# 836# -> { "execute": "query-memdev" } 837# <- { "return": [ 838# { 839# "id": "mem1", 840# "size": 536870912, 841# "merge": false, 842# "dump": true, 843# "prealloc": false, 844# "host-nodes": [0, 1], 845# "policy": "bind" 846# }, 847# { 848# "size": 536870912, 849# "merge": false, 850# "dump": true, 851# "prealloc": true, 852# "host-nodes": [2, 3], 853# "policy": "preferred" 854# } 855# ] 856# } 857# 858## 859{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } 860 861## 862# @CpuInstanceProperties: 863# 864# List of properties to be used for hotplugging a CPU instance, 865# it should be passed by management with device_add command when 866# a CPU is being hotplugged. 867# 868# @node-id: NUMA node ID the CPU belongs to 869# @socket-id: socket number within node/board the CPU belongs to 870# @die-id: die number within node/board the CPU belongs to (Since 4.1) 871# @core-id: core number within die the CPU belongs to 872# @thread-id: thread number within core the CPU belongs to 873# 874# Note: currently there are 5 properties that could be present 875# but management should be prepared to pass through other 876# properties with device_add command to allow for future 877# interface extension. This also requires the filed names to be kept in 878# sync with the properties passed to -device/device_add. 879# 880# Since: 2.7 881## 882{ 'struct': 'CpuInstanceProperties', 883 'data': { '*node-id': 'int', 884 '*socket-id': 'int', 885 '*die-id': 'int', 886 '*core-id': 'int', 887 '*thread-id': 'int' 888 } 889} 890 891## 892# @HotpluggableCPU: 893# 894# @type: CPU object type for usage with device_add command 895# @props: list of properties to be used for hotplugging CPU 896# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides 897# @qom-path: link to existing CPU object if CPU is present or 898# omitted if CPU is not present. 899# 900# Since: 2.7 901## 902{ 'struct': 'HotpluggableCPU', 903 'data': { 'type': 'str', 904 'vcpus-count': 'int', 905 'props': 'CpuInstanceProperties', 906 '*qom-path': 'str' 907 } 908} 909 910## 911# @query-hotpluggable-cpus: 912# 913# TODO: Better documentation; currently there is none. 914# 915# Returns: a list of HotpluggableCPU objects. 916# 917# Since: 2.7 918# 919# Example: 920# 921# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8: 922# 923# -> { "execute": "query-hotpluggable-cpus" } 924# <- {"return": [ 925# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core", 926# "vcpus-count": 1 }, 927# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core", 928# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 929# ]}' 930# 931# For pc machine type started with -smp 1,maxcpus=2: 932# 933# -> { "execute": "query-hotpluggable-cpus" } 934# <- {"return": [ 935# { 936# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 937# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 938# }, 939# { 940# "qom-path": "/machine/unattached/device[0]", 941# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 942# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 943# } 944# ]} 945# 946# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu 947# (Since: 2.11): 948# 949# -> { "execute": "query-hotpluggable-cpus" } 950# <- {"return": [ 951# { 952# "type": "qemu-s390x-cpu", "vcpus-count": 1, 953# "props": { "core-id": 1 } 954# }, 955# { 956# "qom-path": "/machine/unattached/device[0]", 957# "type": "qemu-s390x-cpu", "vcpus-count": 1, 958# "props": { "core-id": 0 } 959# } 960# ]} 961# 962## 963{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 964 'allow-preconfig': true } 965 966## 967# @set-numa-node: 968# 969# Runtime equivalent of '-numa' CLI option, available at 970# preconfigure stage to configure numa mapping before initializing 971# machine. 972# 973# Since 3.0 974## 975{ 'command': 'set-numa-node', 'boxed': true, 976 'data': 'NumaOptions', 977 'allow-preconfig': true 978} 979 980## 981# @balloon: 982# 983# Request the balloon driver to change its balloon size. 984# 985# @value: the target logical size of the VM in bytes. 986# We can deduce the size of the balloon using this formula: 987# 988# logical_vm_size = vm_ram_size - balloon_size 989# 990# From it we have: balloon_size = vm_ram_size - @value 991# 992# Returns: - Nothing on success 993# - If the balloon driver is enabled but not functional because the KVM 994# kernel module cannot support it, KvmMissingCap 995# - If no balloon device is present, DeviceNotActive 996# 997# Notes: This command just issues a request to the guest. When it returns, 998# the balloon size may not have changed. A guest can change the balloon 999# size independent of this command. 1000# 1001# Since: 0.14 1002# 1003# Example: 1004# 1005# -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1006# <- { "return": {} } 1007# 1008# With a 2.5GiB guest this command inflated the ballon to 3GiB. 1009# 1010## 1011{ 'command': 'balloon', 'data': {'value': 'int'} } 1012 1013## 1014# @BalloonInfo: 1015# 1016# Information about the guest balloon device. 1017# 1018# @actual: the logical size of the VM in bytes 1019# Formula used: logical_vm_size = vm_ram_size - balloon_size 1020# 1021# Since: 0.14 1022# 1023## 1024{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 1025 1026## 1027# @query-balloon: 1028# 1029# Return information about the balloon device. 1030# 1031# Returns: - @BalloonInfo on success 1032# - If the balloon driver is enabled but not functional because the KVM 1033# kernel module cannot support it, KvmMissingCap 1034# - If no balloon device is present, DeviceNotActive 1035# 1036# Since: 0.14 1037# 1038# Example: 1039# 1040# -> { "execute": "query-balloon" } 1041# <- { "return": { 1042# "actual": 1073741824, 1043# } 1044# } 1045# 1046## 1047{ 'command': 'query-balloon', 'returns': 'BalloonInfo' } 1048 1049## 1050# @BALLOON_CHANGE: 1051# 1052# Emitted when the guest changes the actual BALLOON level. This value is 1053# equivalent to the @actual field return by the 'query-balloon' command 1054# 1055# @actual: the logical size of the VM in bytes 1056# Formula used: logical_vm_size = vm_ram_size - balloon_size 1057# 1058# Note: this event is rate-limited. 1059# 1060# Since: 1.2 1061# 1062# Example: 1063# 1064# <- { "event": "BALLOON_CHANGE", 1065# "data": { "actual": 944766976 }, 1066# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 1067# 1068## 1069{ 'event': 'BALLOON_CHANGE', 1070 'data': { 'actual': 'int' } } 1071 1072## 1073# @MemoryInfo: 1074# 1075# Actual memory information in bytes. 1076# 1077# @base-memory: size of "base" memory specified with command line 1078# option -m. 1079# 1080# @plugged-memory: size of memory that can be hot-unplugged. This field 1081# is omitted if target doesn't support memory hotplug 1082# (i.e. CONFIG_MEM_DEVICE not defined at build time). 1083# 1084# Since: 2.11 1085## 1086{ 'struct': 'MemoryInfo', 1087 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 1088 1089## 1090# @query-memory-size-summary: 1091# 1092# Return the amount of initially allocated and present hotpluggable (if 1093# enabled) memory in bytes. 1094# 1095# Example: 1096# 1097# -> { "execute": "query-memory-size-summary" } 1098# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 1099# 1100# Since: 2.11 1101## 1102{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 1103 1104## 1105# @PCDIMMDeviceInfo: 1106# 1107# PCDIMMDevice state information 1108# 1109# @id: device's ID 1110# 1111# @addr: physical address, where device is mapped 1112# 1113# @size: size of memory that the device provides 1114# 1115# @slot: slot number at which device is plugged in 1116# 1117# @node: NUMA node number where device is plugged in 1118# 1119# @memdev: memory backend linked with device 1120# 1121# @hotplugged: true if device was hotplugged 1122# 1123# @hotpluggable: true if device if could be added/removed while machine is running 1124# 1125# Since: 2.1 1126## 1127{ 'struct': 'PCDIMMDeviceInfo', 1128 'data': { '*id': 'str', 1129 'addr': 'int', 1130 'size': 'int', 1131 'slot': 'int', 1132 'node': 'int', 1133 'memdev': 'str', 1134 'hotplugged': 'bool', 1135 'hotpluggable': 'bool' 1136 } 1137} 1138 1139## 1140# @VirtioPMEMDeviceInfo: 1141# 1142# VirtioPMEM state information 1143# 1144# @id: device's ID 1145# 1146# @memaddr: physical address in memory, where device is mapped 1147# 1148# @size: size of memory that the device provides 1149# 1150# @memdev: memory backend linked with device 1151# 1152# Since: 4.1 1153## 1154{ 'struct': 'VirtioPMEMDeviceInfo', 1155 'data': { '*id': 'str', 1156 'memaddr': 'size', 1157 'size': 'size', 1158 'memdev': 'str' 1159 } 1160} 1161 1162## 1163# @VirtioMEMDeviceInfo: 1164# 1165# VirtioMEMDevice state information 1166# 1167# @id: device's ID 1168# 1169# @memaddr: physical address in memory, where device is mapped 1170# 1171# @requested-size: the user requested size of the device 1172# 1173# @size: the (current) size of memory that the device provides 1174# 1175# @max-size: the maximum size of memory that the device can provide 1176# 1177# @block-size: the block size of memory that the device provides 1178# 1179# @node: NUMA node number where device is assigned to 1180# 1181# @memdev: memory backend linked with the region 1182# 1183# Since: 5.1 1184## 1185{ 'struct': 'VirtioMEMDeviceInfo', 1186 'data': { '*id': 'str', 1187 'memaddr': 'size', 1188 'requested-size': 'size', 1189 'size': 'size', 1190 'max-size': 'size', 1191 'block-size': 'size', 1192 'node': 'int', 1193 'memdev': 'str' 1194 } 1195} 1196 1197## 1198# @MemoryDeviceInfo: 1199# 1200# Union containing information about a memory device 1201# 1202# nvdimm is included since 2.12. virtio-pmem is included since 4.1. 1203# virtio-mem is included since 5.1. 1204# 1205# Since: 2.1 1206## 1207{ 'union': 'MemoryDeviceInfo', 1208 'data': { 'dimm': 'PCDIMMDeviceInfo', 1209 'nvdimm': 'PCDIMMDeviceInfo', 1210 'virtio-pmem': 'VirtioPMEMDeviceInfo', 1211 'virtio-mem': 'VirtioMEMDeviceInfo' 1212 } 1213} 1214 1215## 1216# @query-memory-devices: 1217# 1218# Lists available memory devices and their state 1219# 1220# Since: 2.1 1221# 1222# Example: 1223# 1224# -> { "execute": "query-memory-devices" } 1225# <- { "return": [ { "data": 1226# { "addr": 5368709120, 1227# "hotpluggable": true, 1228# "hotplugged": true, 1229# "id": "d1", 1230# "memdev": "/objects/memX", 1231# "node": 0, 1232# "size": 1073741824, 1233# "slot": 0}, 1234# "type": "dimm" 1235# } ] } 1236# 1237## 1238{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 1239 1240## 1241# @MEMORY_DEVICE_SIZE_CHANGE: 1242# 1243# Emitted when the size of a memory device changes. Only emitted for memory 1244# devices that can actually change the size (e.g., virtio-mem due to guest 1245# action). 1246# 1247# @id: device's ID 1248# @size: the new size of memory that the device provides 1249# 1250# Note: this event is rate-limited. 1251# 1252# Since: 5.1 1253# 1254# Example: 1255# 1256# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE", 1257# "data": { "id": "vm0", "size": 1073741824}, 1258# "timestamp": { "seconds": 1588168529, "microseconds": 201316 } } 1259# 1260## 1261{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE', 1262 'data': { '*id': 'str', 'size': 'size' } } 1263 1264 1265## 1266# @MEM_UNPLUG_ERROR: 1267# 1268# Emitted when memory hot unplug error occurs. 1269# 1270# @device: device name 1271# 1272# @msg: Informative message 1273# 1274# Since: 2.4 1275# 1276# Example: 1277# 1278# <- { "event": "MEM_UNPLUG_ERROR" 1279# "data": { "device": "dimm1", 1280# "msg": "acpi: device unplug for unsupported device" 1281# }, 1282# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1283# 1284## 1285{ 'event': 'MEM_UNPLUG_ERROR', 1286 'data': { 'device': 'str', 'msg': 'str' } } 1287 1288## 1289# @SMPConfiguration: 1290# 1291# Schema for CPU topology configuration. "0" or a missing value lets 1292# QEMU figure out a suitable value based on the ones that are provided. 1293# 1294# @cpus: number of virtual CPUs in the virtual machine 1295# 1296# @sockets: number of sockets in the CPU topology 1297# 1298# @dies: number of dies per socket in the CPU topology 1299# 1300# @cores: number of cores per thread in the CPU topology 1301# 1302# @threads: number of threads per core in the CPU topology 1303# 1304# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine 1305# 1306# Since: 6.1 1307## 1308{ 'struct': 'SMPConfiguration', 'data': { 1309 '*cpus': 'int', 1310 '*sockets': 'int', 1311 '*dies': 'int', 1312 '*cores': 'int', 1313 '*threads': 'int', 1314 '*maxcpus': 'int' } } 1315