1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4# This work is licensed under the terms of the GNU GPL, version 2 or later. 5# See the COPYING file in the top-level directory. 6 7## 8# = Machines 9## 10 11{ 'include': 'common.json' } 12 13## 14# @SysEmuTarget: 15# 16# The comprehensive enumeration of QEMU system emulation ("softmmu") 17# targets. Run "./configure --help" in the project root directory, 18# and look for the \*-softmmu targets near the "--target-list" option. 19# The individual target constants are not documented here, for the 20# time being. 21# 22# @rx: since 5.0 23# 24# @avr: since 5.1 25# 26# Notes: The resulting QMP strings can be appended to the 27# "qemu-system-" prefix to produce the corresponding QEMU 28# executable name. This is true even for "qemu-system-x86_64". 29# 30# Since: 3.0 31## 32{ 'enum' : 'SysEmuTarget', 33 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 34 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64', 35 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc', 36 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4', 37 'sh4eb', 'sparc', 'sparc64', 'tricore', 38 'x86_64', 'xtensa', 'xtensaeb' ] } 39 40## 41# @CpuS390State: 42# 43# An enumeration of cpu states that can be assumed by a virtual S390 44# CPU 45# 46# Since: 2.12 47## 48{ 'enum': 'CpuS390State', 49 'prefix': 'S390_CPU_STATE', 50 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 51 52## 53# @CpuInfoS390: 54# 55# Additional information about a virtual S390 CPU 56# 57# @cpu-state: the virtual CPU's state 58# 59# Since: 2.12 60## 61{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } } 62 63## 64# @CpuInfoFast: 65# 66# Information about a virtual CPU 67# 68# @cpu-index: index of the virtual CPU 69# 70# @qom-path: path to the CPU object in the QOM tree 71# 72# @thread-id: ID of the underlying host thread 73# 74# @props: properties describing to which node/socket/core/thread 75# virtual CPU belongs to, provided if supported by board 76# 77# @target: the QEMU system emulation target, which determines which 78# additional fields will be listed (since 3.0) 79# 80# Since: 2.12 81## 82{ 'union' : 'CpuInfoFast', 83 'base' : { 'cpu-index' : 'int', 84 'qom-path' : 'str', 85 'thread-id' : 'int', 86 '*props' : 'CpuInstanceProperties', 87 'target' : 'SysEmuTarget' }, 88 'discriminator' : 'target', 89 'data' : { 's390x' : 'CpuInfoS390' } } 90 91## 92# @query-cpus-fast: 93# 94# Returns information about all virtual CPUs. 95# 96# Returns: list of @CpuInfoFast 97# 98# Since: 2.12 99# 100# Example: 101# 102# -> { "execute": "query-cpus-fast" } 103# <- { "return": [ 104# { 105# "thread-id": 25627, 106# "props": { 107# "core-id": 0, 108# "thread-id": 0, 109# "socket-id": 0 110# }, 111# "qom-path": "/machine/unattached/device[0]", 112# "target":"x86_64", 113# "cpu-index": 0 114# }, 115# { 116# "thread-id": 25628, 117# "props": { 118# "core-id": 0, 119# "thread-id": 0, 120# "socket-id": 1 121# }, 122# "qom-path": "/machine/unattached/device[2]", 123# "target":"x86_64", 124# "cpu-index": 1 125# } 126# ] 127# } 128## 129{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 130 131## 132# @MachineInfo: 133# 134# Information describing a machine. 135# 136# @name: the name of the machine 137# 138# @alias: an alias for the machine name 139# 140# @is-default: whether the machine is default 141# 142# @cpu-max: maximum number of CPUs supported by the machine type 143# (since 1.5) 144# 145# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7) 146# 147# @numa-mem-supported: true if '-numa node,mem' option is supported by 148# the machine type and false otherwise (since 4.1) 149# 150# @deprecated: if true, the machine type is deprecated and may be 151# removed in future versions of QEMU according to the QEMU 152# deprecation policy (since 4.1) 153# 154# @default-cpu-type: default CPU model typename if none is requested 155# via the -cpu argument. (since 4.2) 156# 157# @default-ram-id: the default ID of initial RAM memory backend (since 158# 5.2) 159# 160# @acpi: machine type supports ACPI (since 8.0) 161# 162# Since: 1.2 163## 164{ 'struct': 'MachineInfo', 165 'data': { 'name': 'str', '*alias': 'str', 166 '*is-default': 'bool', 'cpu-max': 'int', 167 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool', 168 'deprecated': 'bool', '*default-cpu-type': 'str', 169 '*default-ram-id': 'str', 'acpi': 'bool' } } 170 171## 172# @query-machines: 173# 174# Return a list of supported machines 175# 176# Returns: a list of MachineInfo 177# 178# Since: 1.2 179## 180{ 'command': 'query-machines', 'returns': ['MachineInfo'] } 181 182## 183# @CurrentMachineParams: 184# 185# Information describing the running machine parameters. 186# 187# @wakeup-suspend-support: true if the machine supports wake up from 188# suspend 189# 190# Since: 4.0 191## 192{ 'struct': 'CurrentMachineParams', 193 'data': { 'wakeup-suspend-support': 'bool'} } 194 195## 196# @query-current-machine: 197# 198# Return information on the current virtual machine. 199# 200# Returns: CurrentMachineParams 201# 202# Since: 4.0 203## 204{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' } 205 206## 207# @TargetInfo: 208# 209# Information describing the QEMU target. 210# 211# @arch: the target architecture 212# 213# Since: 1.2 214## 215{ 'struct': 'TargetInfo', 216 'data': { 'arch': 'SysEmuTarget' } } 217 218## 219# @query-target: 220# 221# Return information about the target for this QEMU 222# 223# Returns: TargetInfo 224# 225# Since: 1.2 226## 227{ 'command': 'query-target', 'returns': 'TargetInfo' } 228 229## 230# @UuidInfo: 231# 232# Guest UUID information (Universally Unique Identifier). 233# 234# @UUID: the UUID of the guest 235# 236# Since: 0.14 237# 238# Notes: If no UUID was specified for the guest, a null UUID is 239# returned. 240## 241{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 242 243## 244# @query-uuid: 245# 246# Query the guest UUID information. 247# 248# Returns: The @UuidInfo for the guest 249# 250# Since: 0.14 251# 252# Example: 253# 254# -> { "execute": "query-uuid" } 255# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 256## 257{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } 258 259## 260# @GuidInfo: 261# 262# GUID information. 263# 264# @guid: the globally unique identifier 265# 266# Since: 2.9 267## 268{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 269 270## 271# @query-vm-generation-id: 272# 273# Show Virtual Machine Generation ID 274# 275# Since: 2.9 276## 277{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 278 279## 280# @system_reset: 281# 282# Performs a hard reset of a guest. 283# 284# Since: 0.14 285# 286# Example: 287# 288# -> { "execute": "system_reset" } 289# <- { "return": {} } 290## 291{ 'command': 'system_reset' } 292 293## 294# @system_powerdown: 295# 296# Requests that a guest perform a powerdown operation. 297# 298# Since: 0.14 299# 300# Notes: A guest may or may not respond to this command. This command 301# returning does not indicate that a guest has accepted the 302# request or that it has shut down. Many guests will respond to 303# this command by prompting the user in some way. 304# 305# Example: 306# 307# -> { "execute": "system_powerdown" } 308# <- { "return": {} } 309## 310{ 'command': 'system_powerdown' } 311 312## 313# @system_wakeup: 314# 315# Wake up guest from suspend. If the guest has wake-up from suspend 316# support enabled (wakeup-suspend-support flag from 317# query-current-machine), wake-up guest from suspend if the guest is 318# in SUSPENDED state. Return an error otherwise. 319# 320# Since: 1.1 321# 322# Returns: nothing. 323# 324# Note: prior to 4.0, this command does nothing in case the guest 325# isn't suspended. 326# 327# Example: 328# 329# -> { "execute": "system_wakeup" } 330# <- { "return": {} } 331## 332{ 'command': 'system_wakeup' } 333 334## 335# @LostTickPolicy: 336# 337# Policy for handling lost ticks in timer devices. Ticks end up 338# getting lost when, for example, the guest is paused. 339# 340# @discard: throw away the missed ticks and continue with future 341# injection normally. The guest OS will see the timer jump ahead 342# by a potentially quite significant amount all at once, as if the 343# intervening chunk of time had simply not existed; needless to 344# say, such a sudden jump can easily confuse a guest OS which is 345# not specifically prepared to deal with it. Assuming the guest 346# OS can deal correctly with the time jump, the time in the guest 347# and in the host should now match. 348# 349# @delay: continue to deliver ticks at the normal rate. The guest OS 350# will not notice anything is amiss, as from its point of view 351# time will have continued to flow normally. The time in the 352# guest should now be behind the time in the host by exactly the 353# amount of time during which ticks have been missed. 354# 355# @slew: deliver ticks at a higher rate to catch up with the missed 356# ticks. The guest OS will not notice anything is amiss, as from 357# its point of view time will have continued to flow normally. 358# Once the timer has managed to catch up with all the missing 359# ticks, the time in the guest and in the host should match. 360# 361# Since: 2.0 362## 363{ 'enum': 'LostTickPolicy', 364 'data': ['discard', 'delay', 'slew' ] } 365 366## 367# @inject-nmi: 368# 369# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or 370# all CPUs (ppc64). The command fails when the guest doesn't support 371# injecting. 372# 373# Returns: If successful, nothing 374# 375# Since: 0.14 376# 377# Note: prior to 2.1, this command was only supported for x86 and s390 378# VMs 379# 380# Example: 381# 382# -> { "execute": "inject-nmi" } 383# <- { "return": {} } 384## 385{ 'command': 'inject-nmi' } 386 387## 388# @KvmInfo: 389# 390# Information about support for KVM acceleration 391# 392# @enabled: true if KVM acceleration is active 393# 394# @present: true if KVM acceleration is built into this executable 395# 396# Since: 0.14 397## 398{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 399 400## 401# @query-kvm: 402# 403# Returns information about KVM acceleration 404# 405# Returns: @KvmInfo 406# 407# Since: 0.14 408# 409# Example: 410# 411# -> { "execute": "query-kvm" } 412# <- { "return": { "enabled": true, "present": true } } 413## 414{ 'command': 'query-kvm', 'returns': 'KvmInfo' } 415 416## 417# @NumaOptionsType: 418# 419# @node: NUMA nodes configuration 420# 421# @dist: NUMA distance configuration (since 2.10) 422# 423# @cpu: property based CPU(s) to node mapping (Since: 2.10) 424# 425# @hmat-lb: memory latency and bandwidth information (Since: 5.0) 426# 427# @hmat-cache: memory side cache information (Since: 5.0) 428# 429# Since: 2.1 430## 431{ 'enum': 'NumaOptionsType', 432 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] } 433 434## 435# @NumaOptions: 436# 437# A discriminated record of NUMA options. (for OptsVisitor) 438# 439# Since: 2.1 440## 441{ 'union': 'NumaOptions', 442 'base': { 'type': 'NumaOptionsType' }, 443 'discriminator': 'type', 444 'data': { 445 'node': 'NumaNodeOptions', 446 'dist': 'NumaDistOptions', 447 'cpu': 'NumaCpuOptions', 448 'hmat-lb': 'NumaHmatLBOptions', 449 'hmat-cache': 'NumaHmatCacheOptions' }} 450 451## 452# @NumaNodeOptions: 453# 454# Create a guest NUMA node. (for OptsVisitor) 455# 456# @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 457# 458# @cpus: VCPUs belonging to this node (assign VCPUS round-robin if 459# omitted) 460# 461# @mem: memory size of this node; mutually exclusive with @memdev. 462# Equally divide total memory among nodes if both @mem and @memdev 463# are omitted. 464# 465# @memdev: memory backend object. If specified for one node, it must 466# be specified for all nodes. 467# 468# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points 469# to the nodeid which has the memory controller responsible for 470# this NUMA node. This field provides additional information as 471# to the initiator node that is closest (as in directly attached) 472# to this node, and therefore has the best performance (since 5.0) 473# 474# Since: 2.1 475## 476{ 'struct': 'NumaNodeOptions', 477 'data': { 478 '*nodeid': 'uint16', 479 '*cpus': ['uint16'], 480 '*mem': 'size', 481 '*memdev': 'str', 482 '*initiator': 'uint16' }} 483 484## 485# @NumaDistOptions: 486# 487# Set the distance between 2 NUMA nodes. 488# 489# @src: source NUMA node. 490# 491# @dst: destination NUMA node. 492# 493# @val: NUMA distance from source node to destination node. When a 494# node is unreachable from another node, set the distance between 495# them to 255. 496# 497# Since: 2.10 498## 499{ 'struct': 'NumaDistOptions', 500 'data': { 501 'src': 'uint16', 502 'dst': 'uint16', 503 'val': 'uint8' }} 504 505## 506# @CXLFixedMemoryWindowOptions: 507# 508# Create a CXL Fixed Memory Window 509# 510# @size: Size of the Fixed Memory Window in bytes. Must be a multiple 511# of 256MiB. 512# 513# @interleave-granularity: Number of contiguous bytes for which 514# accesses will go to a given interleave target. Accepted values 515# [256, 512, 1k, 2k, 4k, 8k, 16k] 516# 517# @targets: Target root bridge IDs from -device ...,id=<ID> for each 518# root bridge. 519# 520# Since: 7.1 521## 522{ 'struct': 'CXLFixedMemoryWindowOptions', 523 'data': { 524 'size': 'size', 525 '*interleave-granularity': 'size', 526 'targets': ['str'] }} 527 528## 529# @CXLFMWProperties: 530# 531# List of CXL Fixed Memory Windows. 532# 533# @cxl-fmw: List of CXLFixedMemoryWindowOptions 534# 535# Since: 7.1 536## 537{ 'struct' : 'CXLFMWProperties', 538 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] } 539} 540 541## 542# @X86CPURegister32: 543# 544# A X86 32-bit register 545# 546# Since: 1.5 547## 548{ 'enum': 'X86CPURegister32', 549 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 550 551## 552# @X86CPUFeatureWordInfo: 553# 554# Information about a X86 CPU feature word 555# 556# @cpuid-input-eax: Input EAX value for CPUID instruction for that 557# feature word 558# 559# @cpuid-input-ecx: Input ECX value for CPUID instruction for that 560# feature word 561# 562# @cpuid-register: Output register containing the feature bits 563# 564# @features: value of output register, containing the feature bits 565# 566# Since: 1.5 567## 568{ 'struct': 'X86CPUFeatureWordInfo', 569 'data': { 'cpuid-input-eax': 'int', 570 '*cpuid-input-ecx': 'int', 571 'cpuid-register': 'X86CPURegister32', 572 'features': 'int' } } 573 574## 575# @DummyForceArrays: 576# 577# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList 578# internally 579# 580# Since: 2.5 581## 582{ 'struct': 'DummyForceArrays', 583 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 584 585## 586# @NumaCpuOptions: 587# 588# Option "-numa cpu" overrides default cpu to node mapping. It 589# accepts the same set of cpu properties as returned by 590# query-hotpluggable-cpus[].props, where node-id could be used to 591# override default node mapping. 592# 593# Since: 2.10 594## 595{ 'struct': 'NumaCpuOptions', 596 'base': 'CpuInstanceProperties', 597 'data' : {} } 598 599## 600# @HmatLBMemoryHierarchy: 601# 602# The memory hierarchy in the System Locality Latency and Bandwidth 603# Information Structure of HMAT (Heterogeneous Memory Attribute Table) 604# 605# For more information about @HmatLBMemoryHierarchy, see chapter 606# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. 607# 608# @memory: the structure represents the memory performance 609# 610# @first-level: first level of memory side cache 611# 612# @second-level: second level of memory side cache 613# 614# @third-level: third level of memory side cache 615# 616# Since: 5.0 617## 618{ 'enum': 'HmatLBMemoryHierarchy', 619 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } 620 621## 622# @HmatLBDataType: 623# 624# Data type in the System Locality Latency and Bandwidth Information 625# Structure of HMAT (Heterogeneous Memory Attribute Table) 626# 627# For more information about @HmatLBDataType, see chapter 5.2.27.4: 628# Table 5-146: Field "Data Type" of ACPI 6.3 spec. 629# 630# @access-latency: access latency (nanoseconds) 631# 632# @read-latency: read latency (nanoseconds) 633# 634# @write-latency: write latency (nanoseconds) 635# 636# @access-bandwidth: access bandwidth (Bytes per second) 637# 638# @read-bandwidth: read bandwidth (Bytes per second) 639# 640# @write-bandwidth: write bandwidth (Bytes per second) 641# 642# Since: 5.0 643## 644{ 'enum': 'HmatLBDataType', 645 'data': [ 'access-latency', 'read-latency', 'write-latency', 646 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } 647 648## 649# @NumaHmatLBOptions: 650# 651# Set the system locality latency and bandwidth information between 652# Initiator and Target proximity Domains. 653# 654# For more information about @NumaHmatLBOptions, see chapter 5.2.27.4: 655# Table 5-146 of ACPI 6.3 spec. 656# 657# @initiator: the Initiator Proximity Domain. 658# 659# @target: the Target Proximity Domain. 660# 661# @hierarchy: the Memory Hierarchy. Indicates the performance of 662# memory or side cache. 663# 664# @data-type: presents the type of data, access/read/write latency or 665# hit latency. 666# 667# @latency: the value of latency from @initiator to @target proximity 668# domain, the latency unit is "ns(nanosecond)". 669# 670# @bandwidth: the value of bandwidth between @initiator and @target 671# proximity domain, the bandwidth unit is "Bytes per second". 672# 673# Since: 5.0 674## 675{ 'struct': 'NumaHmatLBOptions', 676 'data': { 677 'initiator': 'uint16', 678 'target': 'uint16', 679 'hierarchy': 'HmatLBMemoryHierarchy', 680 'data-type': 'HmatLBDataType', 681 '*latency': 'uint64', 682 '*bandwidth': 'size' }} 683 684## 685# @HmatCacheAssociativity: 686# 687# Cache associativity in the Memory Side Cache Information Structure 688# of HMAT 689# 690# For more information of @HmatCacheAssociativity, see chapter 691# 5.2.27.5: Table 5-147 of ACPI 6.3 spec. 692# 693# @none: None (no memory side cache in this proximity domain, or cache 694# associativity unknown) 695# 696# @direct: Direct Mapped 697# 698# @complex: Complex Cache Indexing (implementation specific) 699# 700# Since: 5.0 701## 702{ 'enum': 'HmatCacheAssociativity', 703 'data': [ 'none', 'direct', 'complex' ] } 704 705## 706# @HmatCacheWritePolicy: 707# 708# Cache write policy in the Memory Side Cache Information Structure of 709# HMAT 710# 711# For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5: 712# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 713# 714# @none: None (no memory side cache in this proximity domain, or cache 715# write policy unknown) 716# 717# @write-back: Write Back (WB) 718# 719# @write-through: Write Through (WT) 720# 721# Since: 5.0 722## 723{ 'enum': 'HmatCacheWritePolicy', 724 'data': [ 'none', 'write-back', 'write-through' ] } 725 726## 727# @NumaHmatCacheOptions: 728# 729# Set the memory side cache information for a given memory domain. 730# 731# For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5: 732# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 733# 734# @node-id: the memory proximity domain to which the memory belongs. 735# 736# @size: the size of memory side cache in bytes. 737# 738# @level: the cache level described in this structure. 739# 740# @associativity: the cache associativity, 741# none/direct-mapped/complex(complex cache indexing). 742# 743# @policy: the write policy, none/write-back/write-through. 744# 745# @line: the cache Line size in bytes. 746# 747# Since: 5.0 748## 749{ 'struct': 'NumaHmatCacheOptions', 750 'data': { 751 'node-id': 'uint32', 752 'size': 'size', 753 'level': 'uint8', 754 'associativity': 'HmatCacheAssociativity', 755 'policy': 'HmatCacheWritePolicy', 756 'line': 'uint16' }} 757 758## 759# @memsave: 760# 761# Save a portion of guest memory to a file. 762# 763# @val: the virtual address of the guest to start from 764# 765# @size: the size of memory region to save 766# 767# @filename: the file to save the memory to as binary data 768# 769# @cpu-index: the index of the virtual CPU to use for translating the 770# virtual address (defaults to CPU 0) 771# 772# Returns: Nothing on success 773# 774# Since: 0.14 775# 776# Notes: Errors were not reliably returned until 1.1 777# 778# Example: 779# 780# -> { "execute": "memsave", 781# "arguments": { "val": 10, 782# "size": 100, 783# "filename": "/tmp/virtual-mem-dump" } } 784# <- { "return": {} } 785## 786{ 'command': 'memsave', 787 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 788 789## 790# @pmemsave: 791# 792# Save a portion of guest physical memory to a file. 793# 794# @val: the physical address of the guest to start from 795# 796# @size: the size of memory region to save 797# 798# @filename: the file to save the memory to as binary data 799# 800# Returns: Nothing on success 801# 802# Since: 0.14 803# 804# Notes: Errors were not reliably returned until 1.1 805# 806# Example: 807# 808# -> { "execute": "pmemsave", 809# "arguments": { "val": 10, 810# "size": 100, 811# "filename": "/tmp/physical-mem-dump" } } 812# <- { "return": {} } 813## 814{ 'command': 'pmemsave', 815 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 816 817## 818# @Memdev: 819# 820# Information about memory backend 821# 822# @id: backend's ID if backend has 'id' property (since 2.9) 823# 824# @size: memory backend size 825# 826# @merge: whether memory merge support is enabled 827# 828# @dump: whether memory backend's memory is included in a core dump 829# 830# @prealloc: whether memory was preallocated 831# 832# @share: whether memory is private to QEMU or shared (since 6.1) 833# 834# @reserve: whether swap space (or huge pages) was reserved if 835# applicable. This corresponds to the user configuration and not 836# the actual behavior implemented in the OS to perform the 837# reservation. For example, Linux will never reserve swap space 838# for shared file mappings. (since 6.1) 839# 840# @host-nodes: host nodes for its memory policy 841# 842# @policy: memory policy of memory backend 843# 844# Since: 2.1 845## 846{ 'struct': 'Memdev', 847 'data': { 848 '*id': 'str', 849 'size': 'size', 850 'merge': 'bool', 851 'dump': 'bool', 852 'prealloc': 'bool', 853 'share': 'bool', 854 '*reserve': 'bool', 855 'host-nodes': ['uint16'], 856 'policy': 'HostMemPolicy' }} 857 858## 859# @query-memdev: 860# 861# Returns information for all memory backends. 862# 863# Returns: a list of @Memdev. 864# 865# Since: 2.1 866# 867# Example: 868# 869# -> { "execute": "query-memdev" } 870# <- { "return": [ 871# { 872# "id": "mem1", 873# "size": 536870912, 874# "merge": false, 875# "dump": true, 876# "prealloc": false, 877# "share": false, 878# "host-nodes": [0, 1], 879# "policy": "bind" 880# }, 881# { 882# "size": 536870912, 883# "merge": false, 884# "dump": true, 885# "prealloc": true, 886# "share": false, 887# "host-nodes": [2, 3], 888# "policy": "preferred" 889# } 890# ] 891# } 892## 893{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } 894 895## 896# @CpuInstanceProperties: 897# 898# List of properties to be used for hotplugging a CPU instance, it 899# should be passed by management with device_add command when a CPU is 900# being hotplugged. 901# 902# @node-id: NUMA node ID the CPU belongs to 903# 904# @socket-id: socket number within node/board the CPU belongs to 905# 906# @die-id: die number within socket the CPU belongs to (since 4.1) 907# 908# @cluster-id: cluster number within die the CPU belongs to (since 909# 7.1) 910# 911# @core-id: core number within cluster the CPU belongs to 912# 913# @thread-id: thread number within core the CPU belongs to 914# 915# Note: currently there are 6 properties that could be present but 916# management should be prepared to pass through other properties 917# with device_add command to allow for future interface extension. 918# This also requires the filed names to be kept in sync with the 919# properties passed to -device/device_add. 920# 921# Since: 2.7 922## 923{ 'struct': 'CpuInstanceProperties', 924 'data': { '*node-id': 'int', 925 '*socket-id': 'int', 926 '*die-id': 'int', 927 '*cluster-id': 'int', 928 '*core-id': 'int', 929 '*thread-id': 'int' 930 } 931} 932 933## 934# @HotpluggableCPU: 935# 936# @type: CPU object type for usage with device_add command 937# 938# @props: list of properties to be used for hotplugging CPU 939# 940# @vcpus-count: number of logical VCPU threads @HotpluggableCPU 941# provides 942# 943# @qom-path: link to existing CPU object if CPU is present or omitted 944# if CPU is not present. 945# 946# Since: 2.7 947## 948{ 'struct': 'HotpluggableCPU', 949 'data': { 'type': 'str', 950 'vcpus-count': 'int', 951 'props': 'CpuInstanceProperties', 952 '*qom-path': 'str' 953 } 954} 955 956## 957# @query-hotpluggable-cpus: 958# 959# TODO: Better documentation; currently there is none. 960# 961# Returns: a list of HotpluggableCPU objects. 962# 963# Since: 2.7 964# 965# Examples: 966# 967# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu 968# POWER8: 969# 970# -> { "execute": "query-hotpluggable-cpus" } 971# <- {"return": [ 972# { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core", 973# "vcpus-count": 1 }, 974# { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core", 975# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 976# ]}' 977# 978# For pc machine type started with -smp 1,maxcpus=2: 979# 980# -> { "execute": "query-hotpluggable-cpus" } 981# <- {"return": [ 982# { 983# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 984# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 985# }, 986# { 987# "qom-path": "/machine/unattached/device[0]", 988# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 989# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 990# } 991# ]} 992# 993# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu 994# qemu (Since: 2.11): 995# 996# -> { "execute": "query-hotpluggable-cpus" } 997# <- {"return": [ 998# { 999# "type": "qemu-s390x-cpu", "vcpus-count": 1, 1000# "props": { "core-id": 1 } 1001# }, 1002# { 1003# "qom-path": "/machine/unattached/device[0]", 1004# "type": "qemu-s390x-cpu", "vcpus-count": 1, 1005# "props": { "core-id": 0 } 1006# } 1007# ]} 1008## 1009{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 1010 'allow-preconfig': true } 1011 1012## 1013# @set-numa-node: 1014# 1015# Runtime equivalent of '-numa' CLI option, available at preconfigure 1016# stage to configure numa mapping before initializing machine. 1017# 1018# Since: 3.0 1019## 1020{ 'command': 'set-numa-node', 'boxed': true, 1021 'data': 'NumaOptions', 1022 'allow-preconfig': true 1023} 1024 1025## 1026# @balloon: 1027# 1028# Request the balloon driver to change its balloon size. 1029# 1030# @value: the target logical size of the VM in bytes. We can deduce 1031# the size of the balloon using this formula: 1032# 1033# logical_vm_size = vm_ram_size - balloon_size 1034# 1035# From it we have: balloon_size = vm_ram_size - @value 1036# 1037# Returns: 1038# - Nothing on success 1039# - If the balloon driver is enabled but not functional because the 1040# KVM kernel module cannot support it, KVMMissingCap 1041# - If no balloon device is present, DeviceNotActive 1042# 1043# Notes: This command just issues a request to the guest. When it 1044# returns, the balloon size may not have changed. A guest can 1045# change the balloon size independent of this command. 1046# 1047# Since: 0.14 1048# 1049# Example: 1050# 1051# -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1052# <- { "return": {} } 1053# 1054# With a 2.5GiB guest this command inflated the ballon to 3GiB. 1055## 1056{ 'command': 'balloon', 'data': {'value': 'int'} } 1057 1058## 1059# @BalloonInfo: 1060# 1061# Information about the guest balloon device. 1062# 1063# @actual: the logical size of the VM in bytes Formula used: 1064# logical_vm_size = vm_ram_size - balloon_size 1065# 1066# Since: 0.14 1067## 1068{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 1069 1070## 1071# @query-balloon: 1072# 1073# Return information about the balloon device. 1074# 1075# Returns: 1076# - @BalloonInfo on success 1077# - If the balloon driver is enabled but not functional because the 1078# KVM kernel module cannot support it, KVMMissingCap 1079# - If no balloon device is present, DeviceNotActive 1080# 1081# Since: 0.14 1082# 1083# Example: 1084# 1085# -> { "execute": "query-balloon" } 1086# <- { "return": { 1087# "actual": 1073741824 1088# } 1089# } 1090## 1091{ 'command': 'query-balloon', 'returns': 'BalloonInfo' } 1092 1093## 1094# @BALLOON_CHANGE: 1095# 1096# Emitted when the guest changes the actual BALLOON level. This value 1097# is equivalent to the @actual field return by the 'query-balloon' 1098# command 1099# 1100# @actual: the logical size of the VM in bytes Formula used: 1101# logical_vm_size = vm_ram_size - balloon_size 1102# 1103# Note: this event is rate-limited. 1104# 1105# Since: 1.2 1106# 1107# Example: 1108# 1109# <- { "event": "BALLOON_CHANGE", 1110# "data": { "actual": 944766976 }, 1111# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 1112## 1113{ 'event': 'BALLOON_CHANGE', 1114 'data': { 'actual': 'int' } } 1115 1116## 1117# @MemoryInfo: 1118# 1119# Actual memory information in bytes. 1120# 1121# @base-memory: size of "base" memory specified with command line 1122# option -m. 1123# 1124# @plugged-memory: size of memory that can be hot-unplugged. This 1125# field is omitted if target doesn't support memory hotplug (i.e. 1126# CONFIG_MEM_DEVICE not defined at build time). 1127# 1128# Since: 2.11 1129## 1130{ 'struct': 'MemoryInfo', 1131 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 1132 1133## 1134# @query-memory-size-summary: 1135# 1136# Return the amount of initially allocated and present hotpluggable 1137# (if enabled) memory in bytes. 1138# 1139# Example: 1140# 1141# -> { "execute": "query-memory-size-summary" } 1142# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 1143# 1144# Since: 2.11 1145## 1146{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 1147 1148## 1149# @PCDIMMDeviceInfo: 1150# 1151# PCDIMMDevice state information 1152# 1153# @id: device's ID 1154# 1155# @addr: physical address, where device is mapped 1156# 1157# @size: size of memory that the device provides 1158# 1159# @slot: slot number at which device is plugged in 1160# 1161# @node: NUMA node number where device is plugged in 1162# 1163# @memdev: memory backend linked with device 1164# 1165# @hotplugged: true if device was hotplugged 1166# 1167# @hotpluggable: true if device if could be added/removed while 1168# machine is running 1169# 1170# Since: 2.1 1171## 1172{ 'struct': 'PCDIMMDeviceInfo', 1173 'data': { '*id': 'str', 1174 'addr': 'int', 1175 'size': 'int', 1176 'slot': 'int', 1177 'node': 'int', 1178 'memdev': 'str', 1179 'hotplugged': 'bool', 1180 'hotpluggable': 'bool' 1181 } 1182} 1183 1184## 1185# @VirtioPMEMDeviceInfo: 1186# 1187# VirtioPMEM state information 1188# 1189# @id: device's ID 1190# 1191# @memaddr: physical address in memory, where device is mapped 1192# 1193# @size: size of memory that the device provides 1194# 1195# @memdev: memory backend linked with device 1196# 1197# Since: 4.1 1198## 1199{ 'struct': 'VirtioPMEMDeviceInfo', 1200 'data': { '*id': 'str', 1201 'memaddr': 'size', 1202 'size': 'size', 1203 'memdev': 'str' 1204 } 1205} 1206 1207## 1208# @VirtioMEMDeviceInfo: 1209# 1210# VirtioMEMDevice state information 1211# 1212# @id: device's ID 1213# 1214# @memaddr: physical address in memory, where device is mapped 1215# 1216# @requested-size: the user requested size of the device 1217# 1218# @size: the (current) size of memory that the device provides 1219# 1220# @max-size: the maximum size of memory that the device can provide 1221# 1222# @block-size: the block size of memory that the device provides 1223# 1224# @node: NUMA node number where device is assigned to 1225# 1226# @memdev: memory backend linked with the region 1227# 1228# Since: 5.1 1229## 1230{ 'struct': 'VirtioMEMDeviceInfo', 1231 'data': { '*id': 'str', 1232 'memaddr': 'size', 1233 'requested-size': 'size', 1234 'size': 'size', 1235 'max-size': 'size', 1236 'block-size': 'size', 1237 'node': 'int', 1238 'memdev': 'str' 1239 } 1240} 1241 1242## 1243# @SgxEPCDeviceInfo: 1244# 1245# Sgx EPC state information 1246# 1247# @id: device's ID 1248# 1249# @memaddr: physical address in memory, where device is mapped 1250# 1251# @size: size of memory that the device provides 1252# 1253# @memdev: memory backend linked with device 1254# 1255# @node: the numa node (Since: 7.0) 1256# 1257# Since: 6.2 1258## 1259{ 'struct': 'SgxEPCDeviceInfo', 1260 'data': { '*id': 'str', 1261 'memaddr': 'size', 1262 'size': 'size', 1263 'node': 'int', 1264 'memdev': 'str' 1265 } 1266} 1267 1268## 1269# @MemoryDeviceInfoKind: 1270# 1271# @nvdimm: since 2.12 1272# 1273# @virtio-pmem: since 4.1 1274# 1275# @virtio-mem: since 5.1 1276# 1277# @sgx-epc: since 6.2. 1278# 1279# Since: 2.1 1280## 1281{ 'enum': 'MemoryDeviceInfoKind', 1282 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] } 1283 1284## 1285# @PCDIMMDeviceInfoWrapper: 1286# 1287# Since: 2.1 1288## 1289{ 'struct': 'PCDIMMDeviceInfoWrapper', 1290 'data': { 'data': 'PCDIMMDeviceInfo' } } 1291 1292## 1293# @VirtioPMEMDeviceInfoWrapper: 1294# 1295# Since: 2.1 1296## 1297{ 'struct': 'VirtioPMEMDeviceInfoWrapper', 1298 'data': { 'data': 'VirtioPMEMDeviceInfo' } } 1299 1300## 1301# @VirtioMEMDeviceInfoWrapper: 1302# 1303# Since: 2.1 1304## 1305{ 'struct': 'VirtioMEMDeviceInfoWrapper', 1306 'data': { 'data': 'VirtioMEMDeviceInfo' } } 1307 1308## 1309# @SgxEPCDeviceInfoWrapper: 1310# 1311# Since: 6.2 1312## 1313{ 'struct': 'SgxEPCDeviceInfoWrapper', 1314 'data': { 'data': 'SgxEPCDeviceInfo' } } 1315 1316## 1317# @MemoryDeviceInfo: 1318# 1319# Union containing information about a memory device 1320# 1321# Since: 2.1 1322## 1323{ 'union': 'MemoryDeviceInfo', 1324 'base': { 'type': 'MemoryDeviceInfoKind' }, 1325 'discriminator': 'type', 1326 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper', 1327 'nvdimm': 'PCDIMMDeviceInfoWrapper', 1328 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper', 1329 'virtio-mem': 'VirtioMEMDeviceInfoWrapper', 1330 'sgx-epc': 'SgxEPCDeviceInfoWrapper' 1331 } 1332} 1333 1334## 1335# @SgxEPC: 1336# 1337# Sgx EPC cmdline information 1338# 1339# @memdev: memory backend linked with device 1340# 1341# @node: the numa node (Since: 7.0) 1342# 1343# Since: 6.2 1344## 1345{ 'struct': 'SgxEPC', 1346 'data': { 'memdev': 'str', 1347 'node': 'int' 1348 } 1349} 1350 1351## 1352# @SgxEPCProperties: 1353# 1354# SGX properties of machine types. 1355# 1356# @sgx-epc: list of ids of memory-backend-epc objects. 1357# 1358# Since: 6.2 1359## 1360{ 'struct': 'SgxEPCProperties', 1361 'data': { 'sgx-epc': ['SgxEPC'] } 1362} 1363 1364## 1365# @query-memory-devices: 1366# 1367# Lists available memory devices and their state 1368# 1369# Since: 2.1 1370# 1371# Example: 1372# 1373# -> { "execute": "query-memory-devices" } 1374# <- { "return": [ { "data": 1375# { "addr": 5368709120, 1376# "hotpluggable": true, 1377# "hotplugged": true, 1378# "id": "d1", 1379# "memdev": "/objects/memX", 1380# "node": 0, 1381# "size": 1073741824, 1382# "slot": 0}, 1383# "type": "dimm" 1384# } ] } 1385## 1386{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 1387 1388## 1389# @MEMORY_DEVICE_SIZE_CHANGE: 1390# 1391# Emitted when the size of a memory device changes. Only emitted for 1392# memory devices that can actually change the size (e.g., virtio-mem 1393# due to guest action). 1394# 1395# @id: device's ID 1396# 1397# @size: the new size of memory that the device provides 1398# 1399# @qom-path: path to the device object in the QOM tree (since 6.2) 1400# 1401# Note: this event is rate-limited. 1402# 1403# Since: 5.1 1404# 1405# Example: 1406# 1407# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE", 1408# "data": { "id": "vm0", "size": 1073741824, 1409# "qom-path": "/machine/unattached/device[2]" }, 1410# "timestamp": { "seconds": 1588168529, "microseconds": 201316 } } 1411## 1412{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE', 1413 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} } 1414 1415## 1416# @MEM_UNPLUG_ERROR: 1417# 1418# Emitted when memory hot unplug error occurs. 1419# 1420# @device: device name 1421# 1422# @msg: Informative message 1423# 1424# Features: 1425# 1426# @deprecated: This event is deprecated. Use 1427# @DEVICE_UNPLUG_GUEST_ERROR instead. 1428# 1429# Since: 2.4 1430# 1431# Example: 1432# 1433# <- { "event": "MEM_UNPLUG_ERROR", 1434# "data": { "device": "dimm1", 1435# "msg": "acpi: device unplug for unsupported device" 1436# }, 1437# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1438## 1439{ 'event': 'MEM_UNPLUG_ERROR', 1440 'data': { 'device': 'str', 'msg': 'str' }, 1441 'features': ['deprecated'] } 1442 1443## 1444# @BootConfiguration: 1445# 1446# Schema for virtual machine boot configuration. 1447# 1448# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network) 1449# 1450# @once: Boot order to apply on first boot 1451# 1452# @menu: Whether to show a boot menu 1453# 1454# @splash: The name of the file to be passed to the firmware as logo 1455# picture, if @menu is true. 1456# 1457# @splash-time: How long to show the logo picture, in milliseconds 1458# 1459# @reboot-timeout: Timeout before guest reboots after boot fails 1460# 1461# @strict: Whether to attempt booting from devices not included in the 1462# boot order 1463# 1464# Since: 7.1 1465## 1466{ 'struct': 'BootConfiguration', 'data': { 1467 '*order': 'str', 1468 '*once': 'str', 1469 '*menu': 'bool', 1470 '*splash': 'str', 1471 '*splash-time': 'int', 1472 '*reboot-timeout': 'int', 1473 '*strict': 'bool' } } 1474 1475## 1476# @SMPConfiguration: 1477# 1478# Schema for CPU topology configuration. A missing value lets QEMU 1479# figure out a suitable value based on the ones that are provided. 1480# 1481# @cpus: number of virtual CPUs in the virtual machine 1482# 1483# @sockets: number of sockets in the CPU topology 1484# 1485# @dies: number of dies per socket in the CPU topology 1486# 1487# @clusters: number of clusters per die in the CPU topology (since 1488# 7.0) 1489# 1490# @cores: number of cores per cluster in the CPU topology 1491# 1492# @threads: number of threads per core in the CPU topology 1493# 1494# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual 1495# machine 1496# 1497# Since: 6.1 1498## 1499{ 'struct': 'SMPConfiguration', 'data': { 1500 '*cpus': 'int', 1501 '*sockets': 'int', 1502 '*dies': 'int', 1503 '*clusters': 'int', 1504 '*cores': 'int', 1505 '*threads': 'int', 1506 '*maxcpus': 'int' } } 1507 1508## 1509# @x-query-irq: 1510# 1511# Query interrupt statistics 1512# 1513# Features: 1514# 1515# @unstable: This command is meant for debugging. 1516# 1517# Returns: interrupt statistics 1518# 1519# Since: 6.2 1520## 1521{ 'command': 'x-query-irq', 1522 'returns': 'HumanReadableText', 1523 'features': [ 'unstable' ] } 1524 1525## 1526# @x-query-jit: 1527# 1528# Query TCG compiler statistics 1529# 1530# Features: 1531# 1532# @unstable: This command is meant for debugging. 1533# 1534# Returns: TCG compiler statistics 1535# 1536# Since: 6.2 1537## 1538{ 'command': 'x-query-jit', 1539 'returns': 'HumanReadableText', 1540 'if': 'CONFIG_TCG', 1541 'features': [ 'unstable' ] } 1542 1543## 1544# @x-query-numa: 1545# 1546# Query NUMA topology information 1547# 1548# Features: 1549# 1550# @unstable: This command is meant for debugging. 1551# 1552# Returns: topology information 1553# 1554# Since: 6.2 1555## 1556{ 'command': 'x-query-numa', 1557 'returns': 'HumanReadableText', 1558 'features': [ 'unstable' ] } 1559 1560## 1561# @x-query-opcount: 1562# 1563# Query TCG opcode counters 1564# 1565# Features: 1566# 1567# @unstable: This command is meant for debugging. 1568# 1569# Returns: TCG opcode counters 1570# 1571# Since: 6.2 1572## 1573{ 'command': 'x-query-opcount', 1574 'returns': 'HumanReadableText', 1575 'if': 'CONFIG_TCG', 1576 'features': [ 'unstable' ] } 1577 1578## 1579# @x-query-ramblock: 1580# 1581# Query system ramblock information 1582# 1583# Features: 1584# 1585# @unstable: This command is meant for debugging. 1586# 1587# Returns: system ramblock information 1588# 1589# Since: 6.2 1590## 1591{ 'command': 'x-query-ramblock', 1592 'returns': 'HumanReadableText', 1593 'features': [ 'unstable' ] } 1594 1595## 1596# @x-query-rdma: 1597# 1598# Query RDMA state 1599# 1600# Features: 1601# 1602# @unstable: This command is meant for debugging. 1603# 1604# Returns: RDMA state 1605# 1606# Since: 6.2 1607## 1608{ 'command': 'x-query-rdma', 1609 'returns': 'HumanReadableText', 1610 'features': [ 'unstable' ] } 1611 1612## 1613# @x-query-roms: 1614# 1615# Query information on the registered ROMS 1616# 1617# Features: 1618# 1619# @unstable: This command is meant for debugging. 1620# 1621# Returns: registered ROMs 1622# 1623# Since: 6.2 1624## 1625{ 'command': 'x-query-roms', 1626 'returns': 'HumanReadableText', 1627 'features': [ 'unstable' ] } 1628 1629## 1630# @x-query-usb: 1631# 1632# Query information on the USB devices 1633# 1634# Features: 1635# 1636# @unstable: This command is meant for debugging. 1637# 1638# Returns: USB device information 1639# 1640# Since: 6.2 1641## 1642{ 'command': 'x-query-usb', 1643 'returns': 'HumanReadableText', 1644 'features': [ 'unstable' ] } 1645 1646## 1647# @SmbiosEntryPointType: 1648# 1649# @32: SMBIOS version 2.1 (32-bit) Entry Point 1650# 1651# @64: SMBIOS version 3.0 (64-bit) Entry Point 1652# 1653# Since: 7.0 1654## 1655{ 'enum': 'SmbiosEntryPointType', 1656 'data': [ '32', '64' ] } 1657 1658## 1659# @MemorySizeConfiguration: 1660# 1661# Schema for memory size configuration. 1662# 1663# @size: memory size in bytes 1664# 1665# @max-size: maximum hotpluggable memory size in bytes 1666# 1667# @slots: number of available memory slots for hotplug 1668# 1669# Since: 7.1 1670## 1671{ 'struct': 'MemorySizeConfiguration', 'data': { 1672 '*size': 'size', 1673 '*max-size': 'size', 1674 '*slots': 'uint64' } } 1675 1676## 1677# @dumpdtb: 1678# 1679# Save the FDT in dtb format. 1680# 1681# @filename: name of the dtb file to be created 1682# 1683# Since: 7.2 1684# 1685# Example: 1686# 1687# -> { "execute": "dumpdtb" } 1688# "arguments": { "filename": "fdt.dtb" } } 1689# <- { "return": {} } 1690## 1691{ 'command': 'dumpdtb', 1692 'data': { 'filename': 'str' }, 1693 'if': 'CONFIG_FDT' } 1694