1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4# This work is licensed under the terms of the GNU GPL, version 2 or later. 5# See the COPYING file in the top-level directory. 6 7## 8# = Machines 9## 10 11{ 'include': 'common.json' } 12{ 'include': 'machine-common.json' } 13 14## 15# @SysEmuTarget: 16# 17# The comprehensive enumeration of QEMU system emulation ("softmmu") 18# targets. Run "./configure --help" in the project root directory, 19# and look for the \*-softmmu targets near the "--target-list" option. 20# The individual target constants are not documented here, for the 21# time being. 22# 23# @rx: since 5.0 24# 25# @avr: since 5.1 26# 27# Notes: The resulting QMP strings can be appended to the 28# "qemu-system-" prefix to produce the corresponding QEMU 29# executable name. This is true even for "qemu-system-x86_64". 30# 31# Since: 3.0 32## 33{ 'enum' : 'SysEmuTarget', 34 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 35 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64', 36 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc', 37 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4', 38 'sh4eb', 'sparc', 'sparc64', 'tricore', 39 'x86_64', 'xtensa', 'xtensaeb' ] } 40 41## 42# @CpuS390State: 43# 44# An enumeration of cpu states that can be assumed by a virtual S390 45# CPU 46# 47# Since: 2.12 48## 49{ 'enum': 'CpuS390State', 50 'prefix': 'S390_CPU_STATE', 51 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 52 53## 54# @CpuInfoS390: 55# 56# Additional information about a virtual S390 CPU 57# 58# @cpu-state: the virtual CPU's state 59# 60# @dedicated: the virtual CPU's dedication (since 8.2) 61# 62# @entitlement: the virtual CPU's entitlement (since 8.2) 63# 64# Since: 2.12 65## 66{ 'struct': 'CpuInfoS390', 67 'data': { 'cpu-state': 'CpuS390State', 68 '*dedicated': 'bool', 69 '*entitlement': 'CpuS390Entitlement' } } 70 71## 72# @CpuInfoFast: 73# 74# Information about a virtual CPU 75# 76# @cpu-index: index of the virtual CPU 77# 78# @qom-path: path to the CPU object in the QOM tree 79# 80# @thread-id: ID of the underlying host thread 81# 82# @props: properties associated with a virtual CPU, e.g. the socket id 83# 84# @target: the QEMU system emulation target, which determines which 85# additional fields will be listed (since 3.0) 86# 87# Since: 2.12 88## 89{ 'union' : 'CpuInfoFast', 90 'base' : { 'cpu-index' : 'int', 91 'qom-path' : 'str', 92 'thread-id' : 'int', 93 '*props' : 'CpuInstanceProperties', 94 'target' : 'SysEmuTarget' }, 95 'discriminator' : 'target', 96 'data' : { 's390x' : 'CpuInfoS390' } } 97 98## 99# @query-cpus-fast: 100# 101# Returns information about all virtual CPUs. 102# 103# Returns: list of @CpuInfoFast 104# 105# Since: 2.12 106# 107# Example: 108# 109# -> { "execute": "query-cpus-fast" } 110# <- { "return": [ 111# { 112# "thread-id": 25627, 113# "props": { 114# "core-id": 0, 115# "thread-id": 0, 116# "socket-id": 0 117# }, 118# "qom-path": "/machine/unattached/device[0]", 119# "target":"x86_64", 120# "cpu-index": 0 121# }, 122# { 123# "thread-id": 25628, 124# "props": { 125# "core-id": 0, 126# "thread-id": 0, 127# "socket-id": 1 128# }, 129# "qom-path": "/machine/unattached/device[2]", 130# "target":"x86_64", 131# "cpu-index": 1 132# } 133# ] 134# } 135## 136{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 137 138## 139# @MachineInfo: 140# 141# Information describing a machine. 142# 143# @name: the name of the machine 144# 145# @alias: an alias for the machine name 146# 147# @is-default: whether the machine is default 148# 149# @cpu-max: maximum number of CPUs supported by the machine type 150# (since 1.5) 151# 152# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7) 153# 154# @numa-mem-supported: true if '-numa node,mem' option is supported by 155# the machine type and false otherwise (since 4.1) 156# 157# @deprecated: if true, the machine type is deprecated and may be 158# removed in future versions of QEMU according to the QEMU 159# deprecation policy (since 4.1) 160# 161# @default-cpu-type: default CPU model typename if none is requested 162# via the -cpu argument. (since 4.2) 163# 164# @default-ram-id: the default ID of initial RAM memory backend (since 165# 5.2) 166# 167# @acpi: machine type supports ACPI (since 8.0) 168# 169# Since: 1.2 170## 171{ 'struct': 'MachineInfo', 172 'data': { 'name': 'str', '*alias': 'str', 173 '*is-default': 'bool', 'cpu-max': 'int', 174 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool', 175 'deprecated': 'bool', '*default-cpu-type': 'str', 176 '*default-ram-id': 'str', 'acpi': 'bool' } } 177 178## 179# @query-machines: 180# 181# Return a list of supported machines 182# 183# Returns: a list of MachineInfo 184# 185# Since: 1.2 186## 187{ 'command': 'query-machines', 'returns': ['MachineInfo'] } 188 189## 190# @CurrentMachineParams: 191# 192# Information describing the running machine parameters. 193# 194# @wakeup-suspend-support: true if the machine supports wake up from 195# suspend 196# 197# Since: 4.0 198## 199{ 'struct': 'CurrentMachineParams', 200 'data': { 'wakeup-suspend-support': 'bool'} } 201 202## 203# @query-current-machine: 204# 205# Return information on the current virtual machine. 206# 207# Returns: CurrentMachineParams 208# 209# Since: 4.0 210## 211{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' } 212 213## 214# @TargetInfo: 215# 216# Information describing the QEMU target. 217# 218# @arch: the target architecture 219# 220# Since: 1.2 221## 222{ 'struct': 'TargetInfo', 223 'data': { 'arch': 'SysEmuTarget' } } 224 225## 226# @query-target: 227# 228# Return information about the target for this QEMU 229# 230# Returns: TargetInfo 231# 232# Since: 1.2 233## 234{ 'command': 'query-target', 'returns': 'TargetInfo' } 235 236## 237# @UuidInfo: 238# 239# Guest UUID information (Universally Unique Identifier). 240# 241# @UUID: the UUID of the guest 242# 243# Since: 0.14 244# 245# Notes: If no UUID was specified for the guest, a null UUID is 246# returned. 247## 248{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 249 250## 251# @query-uuid: 252# 253# Query the guest UUID information. 254# 255# Returns: The @UuidInfo for the guest 256# 257# Since: 0.14 258# 259# Example: 260# 261# -> { "execute": "query-uuid" } 262# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 263## 264{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } 265 266## 267# @GuidInfo: 268# 269# GUID information. 270# 271# @guid: the globally unique identifier 272# 273# Since: 2.9 274## 275{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 276 277## 278# @query-vm-generation-id: 279# 280# Show Virtual Machine Generation ID 281# 282# Since: 2.9 283## 284{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 285 286## 287# @system_reset: 288# 289# Performs a hard reset of a guest. 290# 291# Since: 0.14 292# 293# Example: 294# 295# -> { "execute": "system_reset" } 296# <- { "return": {} } 297## 298{ 'command': 'system_reset' } 299 300## 301# @system_powerdown: 302# 303# Requests that a guest perform a powerdown operation. 304# 305# Since: 0.14 306# 307# Notes: A guest may or may not respond to this command. This command 308# returning does not indicate that a guest has accepted the 309# request or that it has shut down. Many guests will respond to 310# this command by prompting the user in some way. 311# 312# Example: 313# 314# -> { "execute": "system_powerdown" } 315# <- { "return": {} } 316## 317{ 'command': 'system_powerdown' } 318 319## 320# @system_wakeup: 321# 322# Wake up guest from suspend. If the guest has wake-up from suspend 323# support enabled (wakeup-suspend-support flag from 324# query-current-machine), wake-up guest from suspend if the guest is 325# in SUSPENDED state. Return an error otherwise. 326# 327# Since: 1.1 328# 329# Note: prior to 4.0, this command does nothing in case the guest 330# isn't suspended. 331# 332# Example: 333# 334# -> { "execute": "system_wakeup" } 335# <- { "return": {} } 336## 337{ 'command': 'system_wakeup' } 338 339## 340# @LostTickPolicy: 341# 342# Policy for handling lost ticks in timer devices. Ticks end up 343# getting lost when, for example, the guest is paused. 344# 345# @discard: throw away the missed ticks and continue with future 346# injection normally. The guest OS will see the timer jump ahead 347# by a potentially quite significant amount all at once, as if the 348# intervening chunk of time had simply not existed; needless to 349# say, such a sudden jump can easily confuse a guest OS which is 350# not specifically prepared to deal with it. Assuming the guest 351# OS can deal correctly with the time jump, the time in the guest 352# and in the host should now match. 353# 354# @delay: continue to deliver ticks at the normal rate. The guest OS 355# will not notice anything is amiss, as from its point of view 356# time will have continued to flow normally. The time in the 357# guest should now be behind the time in the host by exactly the 358# amount of time during which ticks have been missed. 359# 360# @slew: deliver ticks at a higher rate to catch up with the missed 361# ticks. The guest OS will not notice anything is amiss, as from 362# its point of view time will have continued to flow normally. 363# Once the timer has managed to catch up with all the missing 364# ticks, the time in the guest and in the host should match. 365# 366# Since: 2.0 367## 368{ 'enum': 'LostTickPolicy', 369 'data': ['discard', 'delay', 'slew' ] } 370 371## 372# @inject-nmi: 373# 374# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or 375# all CPUs (ppc64). The command fails when the guest doesn't support 376# injecting. 377# 378# Since: 0.14 379# 380# Note: prior to 2.1, this command was only supported for x86 and s390 381# VMs 382# 383# Example: 384# 385# -> { "execute": "inject-nmi" } 386# <- { "return": {} } 387## 388{ 'command': 'inject-nmi' } 389 390## 391# @KvmInfo: 392# 393# Information about support for KVM acceleration 394# 395# @enabled: true if KVM acceleration is active 396# 397# @present: true if KVM acceleration is built into this executable 398# 399# Since: 0.14 400## 401{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 402 403## 404# @query-kvm: 405# 406# Returns information about KVM acceleration 407# 408# Returns: @KvmInfo 409# 410# Since: 0.14 411# 412# Example: 413# 414# -> { "execute": "query-kvm" } 415# <- { "return": { "enabled": true, "present": true } } 416## 417{ 'command': 'query-kvm', 'returns': 'KvmInfo' } 418 419## 420# @NumaOptionsType: 421# 422# @node: NUMA nodes configuration 423# 424# @dist: NUMA distance configuration (since 2.10) 425# 426# @cpu: property based CPU(s) to node mapping (Since: 2.10) 427# 428# @hmat-lb: memory latency and bandwidth information (Since: 5.0) 429# 430# @hmat-cache: memory side cache information (Since: 5.0) 431# 432# Since: 2.1 433## 434{ 'enum': 'NumaOptionsType', 435 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] } 436 437## 438# @NumaOptions: 439# 440# A discriminated record of NUMA options. (for OptsVisitor) 441# 442# @type: NUMA option type 443# 444# Since: 2.1 445## 446{ 'union': 'NumaOptions', 447 'base': { 'type': 'NumaOptionsType' }, 448 'discriminator': 'type', 449 'data': { 450 'node': 'NumaNodeOptions', 451 'dist': 'NumaDistOptions', 452 'cpu': 'NumaCpuOptions', 453 'hmat-lb': 'NumaHmatLBOptions', 454 'hmat-cache': 'NumaHmatCacheOptions' }} 455 456## 457# @NumaNodeOptions: 458# 459# Create a guest NUMA node. (for OptsVisitor) 460# 461# @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 462# 463# @cpus: VCPUs belonging to this node (assign VCPUS round-robin if 464# omitted) 465# 466# @mem: memory size of this node; mutually exclusive with @memdev. 467# Equally divide total memory among nodes if both @mem and @memdev 468# are omitted. 469# 470# @memdev: memory backend object. If specified for one node, it must 471# be specified for all nodes. 472# 473# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points 474# to the nodeid which has the memory controller responsible for 475# this NUMA node. This field provides additional information as 476# to the initiator node that is closest (as in directly attached) 477# to this node, and therefore has the best performance (since 5.0) 478# 479# Since: 2.1 480## 481{ 'struct': 'NumaNodeOptions', 482 'data': { 483 '*nodeid': 'uint16', 484 '*cpus': ['uint16'], 485 '*mem': 'size', 486 '*memdev': 'str', 487 '*initiator': 'uint16' }} 488 489## 490# @NumaDistOptions: 491# 492# Set the distance between 2 NUMA nodes. 493# 494# @src: source NUMA node. 495# 496# @dst: destination NUMA node. 497# 498# @val: NUMA distance from source node to destination node. When a 499# node is unreachable from another node, set the distance between 500# them to 255. 501# 502# Since: 2.10 503## 504{ 'struct': 'NumaDistOptions', 505 'data': { 506 'src': 'uint16', 507 'dst': 'uint16', 508 'val': 'uint8' }} 509 510## 511# @CXLFixedMemoryWindowOptions: 512# 513# Create a CXL Fixed Memory Window 514# 515# @size: Size of the Fixed Memory Window in bytes. Must be a multiple 516# of 256MiB. 517# 518# @interleave-granularity: Number of contiguous bytes for which 519# accesses will go to a given interleave target. Accepted values 520# [256, 512, 1k, 2k, 4k, 8k, 16k] 521# 522# @targets: Target root bridge IDs from -device ...,id=<ID> for each 523# root bridge. 524# 525# Since: 7.1 526## 527{ 'struct': 'CXLFixedMemoryWindowOptions', 528 'data': { 529 'size': 'size', 530 '*interleave-granularity': 'size', 531 'targets': ['str'] }} 532 533## 534# @CXLFMWProperties: 535# 536# List of CXL Fixed Memory Windows. 537# 538# @cxl-fmw: List of CXLFixedMemoryWindowOptions 539# 540# Since: 7.1 541## 542{ 'struct' : 'CXLFMWProperties', 543 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] } 544} 545 546## 547# @X86CPURegister32: 548# 549# A X86 32-bit register 550# 551# Since: 1.5 552## 553{ 'enum': 'X86CPURegister32', 554 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 555 556## 557# @X86CPUFeatureWordInfo: 558# 559# Information about a X86 CPU feature word 560# 561# @cpuid-input-eax: Input EAX value for CPUID instruction for that 562# feature word 563# 564# @cpuid-input-ecx: Input ECX value for CPUID instruction for that 565# feature word 566# 567# @cpuid-register: Output register containing the feature bits 568# 569# @features: value of output register, containing the feature bits 570# 571# Since: 1.5 572## 573{ 'struct': 'X86CPUFeatureWordInfo', 574 'data': { 'cpuid-input-eax': 'int', 575 '*cpuid-input-ecx': 'int', 576 'cpuid-register': 'X86CPURegister32', 577 'features': 'int' } } 578 579## 580# @DummyForceArrays: 581# 582# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList 583# internally 584# 585# Since: 2.5 586## 587{ 'struct': 'DummyForceArrays', 588 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 589 590## 591# @NumaCpuOptions: 592# 593# Option "-numa cpu" overrides default cpu to node mapping. It 594# accepts the same set of cpu properties as returned by 595# query-hotpluggable-cpus[].props, where node-id could be used to 596# override default node mapping. 597# 598# Since: 2.10 599## 600{ 'struct': 'NumaCpuOptions', 601 'base': 'CpuInstanceProperties', 602 'data' : {} } 603 604## 605# @HmatLBMemoryHierarchy: 606# 607# The memory hierarchy in the System Locality Latency and Bandwidth 608# Information Structure of HMAT (Heterogeneous Memory Attribute Table) 609# 610# For more information about @HmatLBMemoryHierarchy, see chapter 611# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. 612# 613# @memory: the structure represents the memory performance 614# 615# @first-level: first level of memory side cache 616# 617# @second-level: second level of memory side cache 618# 619# @third-level: third level of memory side cache 620# 621# Since: 5.0 622## 623{ 'enum': 'HmatLBMemoryHierarchy', 624 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } 625 626## 627# @HmatLBDataType: 628# 629# Data type in the System Locality Latency and Bandwidth Information 630# Structure of HMAT (Heterogeneous Memory Attribute Table) 631# 632# For more information about @HmatLBDataType, see chapter 5.2.27.4: 633# Table 5-146: Field "Data Type" of ACPI 6.3 spec. 634# 635# @access-latency: access latency (nanoseconds) 636# 637# @read-latency: read latency (nanoseconds) 638# 639# @write-latency: write latency (nanoseconds) 640# 641# @access-bandwidth: access bandwidth (Bytes per second) 642# 643# @read-bandwidth: read bandwidth (Bytes per second) 644# 645# @write-bandwidth: write bandwidth (Bytes per second) 646# 647# Since: 5.0 648## 649{ 'enum': 'HmatLBDataType', 650 'data': [ 'access-latency', 'read-latency', 'write-latency', 651 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } 652 653## 654# @NumaHmatLBOptions: 655# 656# Set the system locality latency and bandwidth information between 657# Initiator and Target proximity Domains. 658# 659# For more information about @NumaHmatLBOptions, see chapter 5.2.27.4: 660# Table 5-146 of ACPI 6.3 spec. 661# 662# @initiator: the Initiator Proximity Domain. 663# 664# @target: the Target Proximity Domain. 665# 666# @hierarchy: the Memory Hierarchy. Indicates the performance of 667# memory or side cache. 668# 669# @data-type: presents the type of data, access/read/write latency or 670# hit latency. 671# 672# @latency: the value of latency from @initiator to @target proximity 673# domain, the latency unit is "ns(nanosecond)". 674# 675# @bandwidth: the value of bandwidth between @initiator and @target 676# proximity domain, the bandwidth unit is "Bytes per second". 677# 678# Since: 5.0 679## 680{ 'struct': 'NumaHmatLBOptions', 681 'data': { 682 'initiator': 'uint16', 683 'target': 'uint16', 684 'hierarchy': 'HmatLBMemoryHierarchy', 685 'data-type': 'HmatLBDataType', 686 '*latency': 'uint64', 687 '*bandwidth': 'size' }} 688 689## 690# @HmatCacheAssociativity: 691# 692# Cache associativity in the Memory Side Cache Information Structure 693# of HMAT 694# 695# For more information of @HmatCacheAssociativity, see chapter 696# 5.2.27.5: Table 5-147 of ACPI 6.3 spec. 697# 698# @none: None (no memory side cache in this proximity domain, or cache 699# associativity unknown) 700# 701# @direct: Direct Mapped 702# 703# @complex: Complex Cache Indexing (implementation specific) 704# 705# Since: 5.0 706## 707{ 'enum': 'HmatCacheAssociativity', 708 'data': [ 'none', 'direct', 'complex' ] } 709 710## 711# @HmatCacheWritePolicy: 712# 713# Cache write policy in the Memory Side Cache Information Structure of 714# HMAT 715# 716# For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5: 717# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 718# 719# @none: None (no memory side cache in this proximity domain, or cache 720# write policy unknown) 721# 722# @write-back: Write Back (WB) 723# 724# @write-through: Write Through (WT) 725# 726# Since: 5.0 727## 728{ 'enum': 'HmatCacheWritePolicy', 729 'data': [ 'none', 'write-back', 'write-through' ] } 730 731## 732# @NumaHmatCacheOptions: 733# 734# Set the memory side cache information for a given memory domain. 735# 736# For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5: 737# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 738# 739# @node-id: the memory proximity domain to which the memory belongs. 740# 741# @size: the size of memory side cache in bytes. 742# 743# @level: the cache level described in this structure. 744# 745# @associativity: the cache associativity, 746# none/direct-mapped/complex(complex cache indexing). 747# 748# @policy: the write policy, none/write-back/write-through. 749# 750# @line: the cache Line size in bytes. 751# 752# Since: 5.0 753## 754{ 'struct': 'NumaHmatCacheOptions', 755 'data': { 756 'node-id': 'uint32', 757 'size': 'size', 758 'level': 'uint8', 759 'associativity': 'HmatCacheAssociativity', 760 'policy': 'HmatCacheWritePolicy', 761 'line': 'uint16' }} 762 763## 764# @memsave: 765# 766# Save a portion of guest memory to a file. 767# 768# @val: the virtual address of the guest to start from 769# 770# @size: the size of memory region to save 771# 772# @filename: the file to save the memory to as binary data 773# 774# @cpu-index: the index of the virtual CPU to use for translating the 775# virtual address (defaults to CPU 0) 776# 777# Since: 0.14 778# 779# Notes: Errors were not reliably returned until 1.1 780# 781# Example: 782# 783# -> { "execute": "memsave", 784# "arguments": { "val": 10, 785# "size": 100, 786# "filename": "/tmp/virtual-mem-dump" } } 787# <- { "return": {} } 788## 789{ 'command': 'memsave', 790 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 791 792## 793# @pmemsave: 794# 795# Save a portion of guest physical memory to a file. 796# 797# @val: the physical address of the guest to start from 798# 799# @size: the size of memory region to save 800# 801# @filename: the file to save the memory to as binary data 802# 803# Since: 0.14 804# 805# Notes: Errors were not reliably returned until 1.1 806# 807# Example: 808# 809# -> { "execute": "pmemsave", 810# "arguments": { "val": 10, 811# "size": 100, 812# "filename": "/tmp/physical-mem-dump" } } 813# <- { "return": {} } 814## 815{ 'command': 'pmemsave', 816 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 817 818## 819# @Memdev: 820# 821# Information about memory backend 822# 823# @id: backend's ID if backend has 'id' property (since 2.9) 824# 825# @size: memory backend size 826# 827# @merge: whether memory merge support is enabled 828# 829# @dump: whether memory backend's memory is included in a core dump 830# 831# @prealloc: whether memory was preallocated 832# 833# @share: whether memory is private to QEMU or shared (since 6.1) 834# 835# @reserve: whether swap space (or huge pages) was reserved if 836# applicable. This corresponds to the user configuration and not 837# the actual behavior implemented in the OS to perform the 838# reservation. For example, Linux will never reserve swap space 839# for shared file mappings. (since 6.1) 840# 841# @host-nodes: host nodes for its memory policy 842# 843# @policy: memory policy of memory backend 844# 845# Since: 2.1 846## 847{ 'struct': 'Memdev', 848 'data': { 849 '*id': 'str', 850 'size': 'size', 851 'merge': 'bool', 852 'dump': 'bool', 853 'prealloc': 'bool', 854 'share': 'bool', 855 '*reserve': 'bool', 856 'host-nodes': ['uint16'], 857 'policy': 'HostMemPolicy' }} 858 859## 860# @query-memdev: 861# 862# Returns information for all memory backends. 863# 864# Returns: a list of @Memdev. 865# 866# Since: 2.1 867# 868# Example: 869# 870# -> { "execute": "query-memdev" } 871# <- { "return": [ 872# { 873# "id": "mem1", 874# "size": 536870912, 875# "merge": false, 876# "dump": true, 877# "prealloc": false, 878# "share": false, 879# "host-nodes": [0, 1], 880# "policy": "bind" 881# }, 882# { 883# "size": 536870912, 884# "merge": false, 885# "dump": true, 886# "prealloc": true, 887# "share": false, 888# "host-nodes": [2, 3], 889# "policy": "preferred" 890# } 891# ] 892# } 893## 894{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } 895 896## 897# @CpuInstanceProperties: 898# 899# List of properties to be used for hotplugging a CPU instance, it 900# should be passed by management with device_add command when a CPU is 901# being hotplugged. 902# 903# Which members are optional and which mandatory depends on the 904# architecture and board. 905# 906# For s390x see :ref:`cpu-topology-s390x`. 907# 908# The ids other than the node-id specify the position of the CPU 909# within the CPU topology (as defined by the machine property "smp", 910# thus see also type @SMPConfiguration) 911# 912# @node-id: NUMA node ID the CPU belongs to 913# 914# @drawer-id: drawer number within CPU topology the CPU belongs to 915# (since 8.2) 916# 917# @book-id: book number within parent container the CPU belongs to 918# (since 8.2) 919# 920# @socket-id: socket number within parent container the CPU belongs to 921# 922# @die-id: die number within the parent container the CPU belongs to 923# (since 4.1) 924# 925# @cluster-id: cluster number within the parent container the CPU 926# belongs to (since 7.1) 927# 928# @core-id: core number within the parent container the CPU belongs to 929# 930# @thread-id: thread number within the core the CPU belongs to 931# 932# Note: management should be prepared to pass through additional 933# properties with device_add. 934# 935# Since: 2.7 936## 937{ 'struct': 'CpuInstanceProperties', 938 # Keep these in sync with the properties device_add accepts 939 'data': { '*node-id': 'int', 940 '*drawer-id': 'int', 941 '*book-id': 'int', 942 '*socket-id': 'int', 943 '*die-id': 'int', 944 '*cluster-id': 'int', 945 '*core-id': 'int', 946 '*thread-id': 'int' 947 } 948} 949 950## 951# @HotpluggableCPU: 952# 953# @type: CPU object type for usage with device_add command 954# 955# @props: list of properties to be used for hotplugging CPU 956# 957# @vcpus-count: number of logical VCPU threads @HotpluggableCPU 958# provides 959# 960# @qom-path: link to existing CPU object if CPU is present or omitted 961# if CPU is not present. 962# 963# Since: 2.7 964## 965{ 'struct': 'HotpluggableCPU', 966 'data': { 'type': 'str', 967 'vcpus-count': 'int', 968 'props': 'CpuInstanceProperties', 969 '*qom-path': 'str' 970 } 971} 972 973## 974# @query-hotpluggable-cpus: 975# 976# TODO: Better documentation; currently there is none. 977# 978# Returns: a list of HotpluggableCPU objects. 979# 980# Since: 2.7 981# 982# Examples: 983# 984# For pseries machine type started with -smp 2,cores=2,maxcpus=4 985# -cpu POWER8: 986# 987# -> { "execute": "query-hotpluggable-cpus" } 988# <- {"return": [ 989# { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core", 990# "vcpus-count": 1 }, 991# { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core", 992# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 993# ]}' 994# 995# For pc machine type started with -smp 1,maxcpus=2: 996# 997# -> { "execute": "query-hotpluggable-cpus" } 998# <- {"return": [ 999# { 1000# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 1001# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 1002# }, 1003# { 1004# "qom-path": "/machine/unattached/device[0]", 1005# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 1006# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 1007# } 1008# ]} 1009# 1010# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 1011# -cpu qemu (Since: 2.11): 1012# 1013# -> { "execute": "query-hotpluggable-cpus" } 1014# <- {"return": [ 1015# { 1016# "type": "qemu-s390x-cpu", "vcpus-count": 1, 1017# "props": { "core-id": 1 } 1018# }, 1019# { 1020# "qom-path": "/machine/unattached/device[0]", 1021# "type": "qemu-s390x-cpu", "vcpus-count": 1, 1022# "props": { "core-id": 0 } 1023# } 1024# ]} 1025## 1026{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 1027 'allow-preconfig': true } 1028 1029## 1030# @set-numa-node: 1031# 1032# Runtime equivalent of '-numa' CLI option, available at preconfigure 1033# stage to configure numa mapping before initializing machine. 1034# 1035# Since: 3.0 1036## 1037{ 'command': 'set-numa-node', 'boxed': true, 1038 'data': 'NumaOptions', 1039 'allow-preconfig': true 1040} 1041 1042## 1043# @balloon: 1044# 1045# Request the balloon driver to change its balloon size. 1046# 1047# @value: the target logical size of the VM in bytes. We can deduce 1048# the size of the balloon using this formula: 1049# 1050# logical_vm_size = vm_ram_size - balloon_size 1051# 1052# From it we have: balloon_size = vm_ram_size - @value 1053# 1054# Errors: 1055# - If the balloon driver is enabled but not functional because 1056# the KVM kernel module cannot support it, KVMMissingCap 1057# - If no balloon device is present, DeviceNotActive 1058# 1059# Notes: This command just issues a request to the guest. When it 1060# returns, the balloon size may not have changed. A guest can 1061# change the balloon size independent of this command. 1062# 1063# Since: 0.14 1064# 1065# Example: 1066# 1067# -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1068# <- { "return": {} } 1069# 1070# With a 2.5GiB guest this command inflated the ballon to 3GiB. 1071## 1072{ 'command': 'balloon', 'data': {'value': 'int'} } 1073 1074## 1075# @BalloonInfo: 1076# 1077# Information about the guest balloon device. 1078# 1079# @actual: the logical size of the VM in bytes Formula used: 1080# logical_vm_size = vm_ram_size - balloon_size 1081# 1082# Since: 0.14 1083## 1084{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 1085 1086## 1087# @query-balloon: 1088# 1089# Return information about the balloon device. 1090# 1091# Returns: 1092# @BalloonInfo 1093# 1094# Errors: 1095# - If the balloon driver is enabled but not functional because 1096# the KVM kernel module cannot support it, KVMMissingCap 1097# - If no balloon device is present, DeviceNotActive 1098# 1099# Since: 0.14 1100# 1101# Example: 1102# 1103# -> { "execute": "query-balloon" } 1104# <- { "return": { 1105# "actual": 1073741824 1106# } 1107# } 1108## 1109{ 'command': 'query-balloon', 'returns': 'BalloonInfo' } 1110 1111## 1112# @BALLOON_CHANGE: 1113# 1114# Emitted when the guest changes the actual BALLOON level. This value 1115# is equivalent to the @actual field return by the 'query-balloon' 1116# command 1117# 1118# @actual: the logical size of the VM in bytes Formula used: 1119# logical_vm_size = vm_ram_size - balloon_size 1120# 1121# Note: this event is rate-limited. 1122# 1123# Since: 1.2 1124# 1125# Example: 1126# 1127# <- { "event": "BALLOON_CHANGE", 1128# "data": { "actual": 944766976 }, 1129# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 1130## 1131{ 'event': 'BALLOON_CHANGE', 1132 'data': { 'actual': 'int' } } 1133 1134## 1135# @HvBalloonInfo: 1136# 1137# hv-balloon guest-provided memory status information. 1138# 1139# @committed: the amount of memory in use inside the guest plus the 1140# amount of the memory unusable inside the guest (ballooned out, 1141# offline, etc.) 1142# 1143# @available: the amount of the memory inside the guest available for 1144# new allocations ("free") 1145# 1146# Since: 8.2 1147## 1148{ 'struct': 'HvBalloonInfo', 1149 'data': { 'committed': 'size', 'available': 'size' } } 1150 1151## 1152# @query-hv-balloon-status-report: 1153# 1154# Returns the hv-balloon driver data contained in the last received 1155# "STATUS" message from the guest. 1156# 1157# Returns: 1158# @HvBalloonInfo 1159# 1160# Errors: 1161# - If no hv-balloon device is present, guest memory status 1162# reporting is not enabled or no guest memory status report 1163# received yet, GenericError 1164# 1165# Since: 8.2 1166# 1167# Example: 1168# 1169# -> { "execute": "query-hv-balloon-status-report" } 1170# <- { "return": { 1171# "committed": 816640000, 1172# "available": 3333054464 1173# } 1174# } 1175## 1176{ 'command': 'query-hv-balloon-status-report', 'returns': 'HvBalloonInfo' } 1177 1178## 1179# @HV_BALLOON_STATUS_REPORT: 1180# 1181# Emitted when the hv-balloon driver receives a "STATUS" message from 1182# the guest. 1183# 1184# Note: this event is rate-limited. 1185# 1186# Since: 8.2 1187# 1188# Example: 1189# 1190# <- { "event": "HV_BALLOON_STATUS_REPORT", 1191# "data": { "committed": 816640000, "available": 3333054464 }, 1192# "timestamp": { "seconds": 1600295492, "microseconds": 661044 } } 1193## 1194{ 'event': 'HV_BALLOON_STATUS_REPORT', 1195 'data': 'HvBalloonInfo' } 1196 1197## 1198# @MemoryInfo: 1199# 1200# Actual memory information in bytes. 1201# 1202# @base-memory: size of "base" memory specified with command line 1203# option -m. 1204# 1205# @plugged-memory: size of memory that can be hot-unplugged. This 1206# field is omitted if target doesn't support memory hotplug (i.e. 1207# CONFIG_MEM_DEVICE not defined at build time). 1208# 1209# Since: 2.11 1210## 1211{ 'struct': 'MemoryInfo', 1212 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 1213 1214## 1215# @query-memory-size-summary: 1216# 1217# Return the amount of initially allocated and present hotpluggable 1218# (if enabled) memory in bytes. 1219# 1220# Example: 1221# 1222# -> { "execute": "query-memory-size-summary" } 1223# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 1224# 1225# Since: 2.11 1226## 1227{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 1228 1229## 1230# @PCDIMMDeviceInfo: 1231# 1232# PCDIMMDevice state information 1233# 1234# @id: device's ID 1235# 1236# @addr: physical address, where device is mapped 1237# 1238# @size: size of memory that the device provides 1239# 1240# @slot: slot number at which device is plugged in 1241# 1242# @node: NUMA node number where device is plugged in 1243# 1244# @memdev: memory backend linked with device 1245# 1246# @hotplugged: true if device was hotplugged 1247# 1248# @hotpluggable: true if device if could be added/removed while 1249# machine is running 1250# 1251# Since: 2.1 1252## 1253{ 'struct': 'PCDIMMDeviceInfo', 1254 'data': { '*id': 'str', 1255 'addr': 'int', 1256 'size': 'int', 1257 'slot': 'int', 1258 'node': 'int', 1259 'memdev': 'str', 1260 'hotplugged': 'bool', 1261 'hotpluggable': 'bool' 1262 } 1263} 1264 1265## 1266# @VirtioPMEMDeviceInfo: 1267# 1268# VirtioPMEM state information 1269# 1270# @id: device's ID 1271# 1272# @memaddr: physical address in memory, where device is mapped 1273# 1274# @size: size of memory that the device provides 1275# 1276# @memdev: memory backend linked with device 1277# 1278# Since: 4.1 1279## 1280{ 'struct': 'VirtioPMEMDeviceInfo', 1281 'data': { '*id': 'str', 1282 'memaddr': 'size', 1283 'size': 'size', 1284 'memdev': 'str' 1285 } 1286} 1287 1288## 1289# @VirtioMEMDeviceInfo: 1290# 1291# VirtioMEMDevice state information 1292# 1293# @id: device's ID 1294# 1295# @memaddr: physical address in memory, where device is mapped 1296# 1297# @requested-size: the user requested size of the device 1298# 1299# @size: the (current) size of memory that the device provides 1300# 1301# @max-size: the maximum size of memory that the device can provide 1302# 1303# @block-size: the block size of memory that the device provides 1304# 1305# @node: NUMA node number where device is assigned to 1306# 1307# @memdev: memory backend linked with the region 1308# 1309# Since: 5.1 1310## 1311{ 'struct': 'VirtioMEMDeviceInfo', 1312 'data': { '*id': 'str', 1313 'memaddr': 'size', 1314 'requested-size': 'size', 1315 'size': 'size', 1316 'max-size': 'size', 1317 'block-size': 'size', 1318 'node': 'int', 1319 'memdev': 'str' 1320 } 1321} 1322 1323## 1324# @SgxEPCDeviceInfo: 1325# 1326# Sgx EPC state information 1327# 1328# @id: device's ID 1329# 1330# @memaddr: physical address in memory, where device is mapped 1331# 1332# @size: size of memory that the device provides 1333# 1334# @memdev: memory backend linked with device 1335# 1336# @node: the numa node (Since: 7.0) 1337# 1338# Since: 6.2 1339## 1340{ 'struct': 'SgxEPCDeviceInfo', 1341 'data': { '*id': 'str', 1342 'memaddr': 'size', 1343 'size': 'size', 1344 'node': 'int', 1345 'memdev': 'str' 1346 } 1347} 1348 1349## 1350# @HvBalloonDeviceInfo: 1351# 1352# hv-balloon provided memory state information 1353# 1354# @id: device's ID 1355# 1356# @memaddr: physical address in memory, where device is mapped 1357# 1358# @max-size: the maximum size of memory that the device can provide 1359# 1360# @memdev: memory backend linked with device 1361# 1362# Since: 8.2 1363## 1364{ 'struct': 'HvBalloonDeviceInfo', 1365 'data': { '*id': 'str', 1366 '*memaddr': 'size', 1367 'max-size': 'size', 1368 '*memdev': 'str' 1369 } 1370} 1371 1372## 1373# @MemoryDeviceInfoKind: 1374# 1375# @nvdimm: since 2.12 1376# 1377# @virtio-pmem: since 4.1 1378# 1379# @virtio-mem: since 5.1 1380# 1381# @sgx-epc: since 6.2. 1382# 1383# @hv-balloon: since 8.2. 1384# 1385# Since: 2.1 1386## 1387{ 'enum': 'MemoryDeviceInfoKind', 1388 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc', 1389 'hv-balloon' ] } 1390 1391## 1392# @PCDIMMDeviceInfoWrapper: 1393# 1394# @data: PCDIMMDevice state information 1395# 1396# Since: 2.1 1397## 1398{ 'struct': 'PCDIMMDeviceInfoWrapper', 1399 'data': { 'data': 'PCDIMMDeviceInfo' } } 1400 1401## 1402# @VirtioPMEMDeviceInfoWrapper: 1403# 1404# @data: VirtioPMEM state information 1405# 1406# Since: 2.1 1407## 1408{ 'struct': 'VirtioPMEMDeviceInfoWrapper', 1409 'data': { 'data': 'VirtioPMEMDeviceInfo' } } 1410 1411## 1412# @VirtioMEMDeviceInfoWrapper: 1413# 1414# @data: VirtioMEMDevice state information 1415# 1416# Since: 2.1 1417## 1418{ 'struct': 'VirtioMEMDeviceInfoWrapper', 1419 'data': { 'data': 'VirtioMEMDeviceInfo' } } 1420 1421## 1422# @SgxEPCDeviceInfoWrapper: 1423# 1424# @data: Sgx EPC state information 1425# 1426# Since: 6.2 1427## 1428{ 'struct': 'SgxEPCDeviceInfoWrapper', 1429 'data': { 'data': 'SgxEPCDeviceInfo' } } 1430 1431## 1432# @HvBalloonDeviceInfoWrapper: 1433# 1434# @data: hv-balloon provided memory state information 1435# 1436# Since: 8.2 1437## 1438{ 'struct': 'HvBalloonDeviceInfoWrapper', 1439 'data': { 'data': 'HvBalloonDeviceInfo' } } 1440 1441## 1442# @MemoryDeviceInfo: 1443# 1444# Union containing information about a memory device 1445# 1446# @type: memory device type 1447# 1448# Since: 2.1 1449## 1450{ 'union': 'MemoryDeviceInfo', 1451 'base': { 'type': 'MemoryDeviceInfoKind' }, 1452 'discriminator': 'type', 1453 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper', 1454 'nvdimm': 'PCDIMMDeviceInfoWrapper', 1455 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper', 1456 'virtio-mem': 'VirtioMEMDeviceInfoWrapper', 1457 'sgx-epc': 'SgxEPCDeviceInfoWrapper', 1458 'hv-balloon': 'HvBalloonDeviceInfoWrapper' 1459 } 1460} 1461 1462## 1463# @SgxEPC: 1464# 1465# Sgx EPC cmdline information 1466# 1467# @memdev: memory backend linked with device 1468# 1469# @node: the numa node (Since: 7.0) 1470# 1471# Since: 6.2 1472## 1473{ 'struct': 'SgxEPC', 1474 'data': { 'memdev': 'str', 1475 'node': 'int' 1476 } 1477} 1478 1479## 1480# @SgxEPCProperties: 1481# 1482# SGX properties of machine types. 1483# 1484# @sgx-epc: list of ids of memory-backend-epc objects. 1485# 1486# Since: 6.2 1487## 1488{ 'struct': 'SgxEPCProperties', 1489 'data': { 'sgx-epc': ['SgxEPC'] } 1490} 1491 1492## 1493# @query-memory-devices: 1494# 1495# Lists available memory devices and their state 1496# 1497# Since: 2.1 1498# 1499# Example: 1500# 1501# -> { "execute": "query-memory-devices" } 1502# <- { "return": [ { "data": 1503# { "addr": 5368709120, 1504# "hotpluggable": true, 1505# "hotplugged": true, 1506# "id": "d1", 1507# "memdev": "/objects/memX", 1508# "node": 0, 1509# "size": 1073741824, 1510# "slot": 0}, 1511# "type": "dimm" 1512# } ] } 1513## 1514{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 1515 1516## 1517# @MEMORY_DEVICE_SIZE_CHANGE: 1518# 1519# Emitted when the size of a memory device changes. Only emitted for 1520# memory devices that can actually change the size (e.g., virtio-mem 1521# due to guest action). 1522# 1523# @id: device's ID 1524# 1525# @size: the new size of memory that the device provides 1526# 1527# @qom-path: path to the device object in the QOM tree (since 6.2) 1528# 1529# Note: this event is rate-limited. 1530# 1531# Since: 5.1 1532# 1533# Example: 1534# 1535# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE", 1536# "data": { "id": "vm0", "size": 1073741824, 1537# "qom-path": "/machine/unattached/device[2]" }, 1538# "timestamp": { "seconds": 1588168529, "microseconds": 201316 } } 1539## 1540{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE', 1541 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} } 1542 1543## 1544# @MEM_UNPLUG_ERROR: 1545# 1546# Emitted when memory hot unplug error occurs. 1547# 1548# @device: device name 1549# 1550# @msg: Informative message 1551# 1552# Features: 1553# 1554# @deprecated: This event is deprecated. Use 1555# @DEVICE_UNPLUG_GUEST_ERROR instead. 1556# 1557# Since: 2.4 1558# 1559# Example: 1560# 1561# <- { "event": "MEM_UNPLUG_ERROR", 1562# "data": { "device": "dimm1", 1563# "msg": "acpi: device unplug for unsupported device" 1564# }, 1565# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1566## 1567{ 'event': 'MEM_UNPLUG_ERROR', 1568 'data': { 'device': 'str', 'msg': 'str' }, 1569 'features': ['deprecated'] } 1570 1571## 1572# @BootConfiguration: 1573# 1574# Schema for virtual machine boot configuration. 1575# 1576# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network) 1577# 1578# @once: Boot order to apply on first boot 1579# 1580# @menu: Whether to show a boot menu 1581# 1582# @splash: The name of the file to be passed to the firmware as logo 1583# picture, if @menu is true. 1584# 1585# @splash-time: How long to show the logo picture, in milliseconds 1586# 1587# @reboot-timeout: Timeout before guest reboots after boot fails 1588# 1589# @strict: Whether to attempt booting from devices not included in the 1590# boot order 1591# 1592# Since: 7.1 1593## 1594{ 'struct': 'BootConfiguration', 'data': { 1595 '*order': 'str', 1596 '*once': 'str', 1597 '*menu': 'bool', 1598 '*splash': 'str', 1599 '*splash-time': 'int', 1600 '*reboot-timeout': 'int', 1601 '*strict': 'bool' } } 1602 1603## 1604# @SMPConfiguration: 1605# 1606# Schema for CPU topology configuration. A missing value lets QEMU 1607# figure out a suitable value based on the ones that are provided. 1608# 1609# The members other than @cpus and @maxcpus define a topology of 1610# containers. 1611# 1612# The ordering from highest/coarsest to lowest/finest is: 1613# @drawers, @books, @sockets, @dies, @clusters, @cores, @threads. 1614# 1615# Different architectures support different subsets of topology 1616# containers. 1617# 1618# For example, s390x does not have clusters and dies, and the socket 1619# is the parent container of cores. 1620# 1621# @cpus: number of virtual CPUs in the virtual machine 1622# 1623# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual 1624# machine 1625# 1626# @drawers: number of drawers in the CPU topology (since 8.2) 1627# 1628# @books: number of books in the CPU topology (since 8.2) 1629# 1630# @sockets: number of sockets per parent container 1631# 1632# @dies: number of dies per parent container 1633# 1634# @clusters: number of clusters per parent container (since 7.0) 1635# 1636# @cores: number of cores per parent container 1637# 1638# @threads: number of threads per core 1639# 1640# Since: 6.1 1641## 1642{ 'struct': 'SMPConfiguration', 'data': { 1643 '*cpus': 'int', 1644 '*drawers': 'int', 1645 '*books': 'int', 1646 '*sockets': 'int', 1647 '*dies': 'int', 1648 '*clusters': 'int', 1649 '*cores': 'int', 1650 '*threads': 'int', 1651 '*maxcpus': 'int' } } 1652 1653## 1654# @x-query-irq: 1655# 1656# Query interrupt statistics 1657# 1658# Features: 1659# 1660# @unstable: This command is meant for debugging. 1661# 1662# Returns: interrupt statistics 1663# 1664# Since: 6.2 1665## 1666{ 'command': 'x-query-irq', 1667 'returns': 'HumanReadableText', 1668 'features': [ 'unstable' ] } 1669 1670## 1671# @x-query-jit: 1672# 1673# Query TCG compiler statistics 1674# 1675# Features: 1676# 1677# @unstable: This command is meant for debugging. 1678# 1679# Returns: TCG compiler statistics 1680# 1681# Since: 6.2 1682## 1683{ 'command': 'x-query-jit', 1684 'returns': 'HumanReadableText', 1685 'if': 'CONFIG_TCG', 1686 'features': [ 'unstable' ] } 1687 1688## 1689# @x-query-numa: 1690# 1691# Query NUMA topology information 1692# 1693# Features: 1694# 1695# @unstable: This command is meant for debugging. 1696# 1697# Returns: topology information 1698# 1699# Since: 6.2 1700## 1701{ 'command': 'x-query-numa', 1702 'returns': 'HumanReadableText', 1703 'features': [ 'unstable' ] } 1704 1705## 1706# @x-query-opcount: 1707# 1708# Query TCG opcode counters 1709# 1710# Features: 1711# 1712# @unstable: This command is meant for debugging. 1713# 1714# Returns: TCG opcode counters 1715# 1716# Since: 6.2 1717## 1718{ 'command': 'x-query-opcount', 1719 'returns': 'HumanReadableText', 1720 'if': 'CONFIG_TCG', 1721 'features': [ 'unstable' ] } 1722 1723## 1724# @x-query-ramblock: 1725# 1726# Query system ramblock information 1727# 1728# Features: 1729# 1730# @unstable: This command is meant for debugging. 1731# 1732# Returns: system ramblock information 1733# 1734# Since: 6.2 1735## 1736{ 'command': 'x-query-ramblock', 1737 'returns': 'HumanReadableText', 1738 'features': [ 'unstable' ] } 1739 1740## 1741# @x-query-rdma: 1742# 1743# Query RDMA state 1744# 1745# Features: 1746# 1747# @unstable: This command is meant for debugging. 1748# 1749# Returns: RDMA state 1750# 1751# Since: 6.2 1752## 1753{ 'command': 'x-query-rdma', 1754 'returns': 'HumanReadableText', 1755 'features': [ 'unstable' ] } 1756 1757## 1758# @x-query-roms: 1759# 1760# Query information on the registered ROMS 1761# 1762# Features: 1763# 1764# @unstable: This command is meant for debugging. 1765# 1766# Returns: registered ROMs 1767# 1768# Since: 6.2 1769## 1770{ 'command': 'x-query-roms', 1771 'returns': 'HumanReadableText', 1772 'features': [ 'unstable' ] } 1773 1774## 1775# @x-query-usb: 1776# 1777# Query information on the USB devices 1778# 1779# Features: 1780# 1781# @unstable: This command is meant for debugging. 1782# 1783# Returns: USB device information 1784# 1785# Since: 6.2 1786## 1787{ 'command': 'x-query-usb', 1788 'returns': 'HumanReadableText', 1789 'features': [ 'unstable' ] } 1790 1791## 1792# @SmbiosEntryPointType: 1793# 1794# @32: SMBIOS version 2.1 (32-bit) Entry Point 1795# 1796# @64: SMBIOS version 3.0 (64-bit) Entry Point 1797# 1798# @auto: Either 2.x or 3.x SMBIOS version, 2.x if configuration can be 1799# described by it and 3.x otherwise (since: 9.0) 1800# 1801# Since: 7.0 1802## 1803{ 'enum': 'SmbiosEntryPointType', 1804 'data': [ '32', '64', 'auto' ] } 1805 1806## 1807# @MemorySizeConfiguration: 1808# 1809# Schema for memory size configuration. 1810# 1811# @size: memory size in bytes 1812# 1813# @max-size: maximum hotpluggable memory size in bytes 1814# 1815# @slots: number of available memory slots for hotplug 1816# 1817# Since: 7.1 1818## 1819{ 'struct': 'MemorySizeConfiguration', 'data': { 1820 '*size': 'size', 1821 '*max-size': 'size', 1822 '*slots': 'uint64' } } 1823 1824## 1825# @dumpdtb: 1826# 1827# Save the FDT in dtb format. 1828# 1829# @filename: name of the dtb file to be created 1830# 1831# Since: 7.2 1832# 1833# Example: 1834# 1835# -> { "execute": "dumpdtb" } 1836# "arguments": { "filename": "fdt.dtb" } } 1837# <- { "return": {} } 1838## 1839{ 'command': 'dumpdtb', 1840 'data': { 'filename': 'str' }, 1841 'if': 'CONFIG_FDT' } 1842