xref: /openbmc/qemu/qapi/machine.json (revision aaeafa50)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4# This work is licensed under the terms of the GNU GPL, version 2 or later.
5# See the COPYING file in the top-level directory.
6
7##
8# = Machines
9##
10
11{ 'include': 'common.json' }
12{ 'include': 'machine-common.json' }
13
14##
15# @SysEmuTarget:
16#
17# The comprehensive enumeration of QEMU system emulation ("softmmu")
18# targets.  Run "./configure --help" in the project root directory,
19# and look for the \*-softmmu targets near the "--target-list" option.
20# The individual target constants are not documented here, for the
21# time being.
22#
23# @rx: since 5.0
24#
25# @avr: since 5.1
26#
27# Notes: The resulting QMP strings can be appended to the
28#     "qemu-system-" prefix to produce the corresponding QEMU
29#     executable name.  This is true even for "qemu-system-x86_64".
30#
31# Since: 3.0
32##
33{ 'enum' : 'SysEmuTarget',
34  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
35             'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
36             'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
37             'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
38             'sh4eb', 'sparc', 'sparc64', 'tricore',
39             'x86_64', 'xtensa', 'xtensaeb' ] }
40
41##
42# @CpuS390State:
43#
44# An enumeration of cpu states that can be assumed by a virtual S390
45# CPU
46#
47# Since: 2.12
48##
49{ 'enum': 'CpuS390State',
50  'prefix': 'S390_CPU_STATE',
51  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
52
53##
54# @CpuInfoS390:
55#
56# Additional information about a virtual S390 CPU
57#
58# @cpu-state: the virtual CPU's state
59#
60# @dedicated: the virtual CPU's dedication (since 8.2)
61#
62# @entitlement: the virtual CPU's entitlement (since 8.2)
63#
64# Since: 2.12
65##
66{ 'struct': 'CpuInfoS390',
67  'data': { 'cpu-state': 'CpuS390State',
68            '*dedicated': 'bool',
69            '*entitlement': 'CpuS390Entitlement' } }
70
71##
72# @CpuInfoFast:
73#
74# Information about a virtual CPU
75#
76# @cpu-index: index of the virtual CPU
77#
78# @qom-path: path to the CPU object in the QOM tree
79#
80# @thread-id: ID of the underlying host thread
81#
82# @props: properties associated with a virtual CPU, e.g. the socket id
83#
84# @target: the QEMU system emulation target, which determines which
85#     additional fields will be listed (since 3.0)
86#
87# Since: 2.12
88##
89{ 'union'         : 'CpuInfoFast',
90  'base'          : { 'cpu-index'    : 'int',
91                      'qom-path'     : 'str',
92                      'thread-id'    : 'int',
93                      '*props'       : 'CpuInstanceProperties',
94                      'target'       : 'SysEmuTarget' },
95  'discriminator' : 'target',
96  'data'          : { 's390x'        : 'CpuInfoS390' } }
97
98##
99# @query-cpus-fast:
100#
101# Returns information about all virtual CPUs.
102#
103# Returns: list of @CpuInfoFast
104#
105# Since: 2.12
106#
107# Example:
108#
109#     -> { "execute": "query-cpus-fast" }
110#     <- { "return": [
111#             {
112#                 "thread-id": 25627,
113#                 "props": {
114#                     "core-id": 0,
115#                     "thread-id": 0,
116#                     "socket-id": 0
117#                 },
118#                 "qom-path": "/machine/unattached/device[0]",
119#                 "target":"x86_64",
120#                 "cpu-index": 0
121#             },
122#             {
123#                 "thread-id": 25628,
124#                 "props": {
125#                     "core-id": 0,
126#                     "thread-id": 0,
127#                     "socket-id": 1
128#                 },
129#                 "qom-path": "/machine/unattached/device[2]",
130#                 "target":"x86_64",
131#                 "cpu-index": 1
132#             }
133#         ]
134#     }
135##
136{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
137
138##
139# @MachineInfo:
140#
141# Information describing a machine.
142#
143# @name: the name of the machine
144#
145# @alias: an alias for the machine name
146#
147# @is-default: whether the machine is default
148#
149# @cpu-max: maximum number of CPUs supported by the machine type
150#     (since 1.5)
151#
152# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
153#
154# @numa-mem-supported: true if '-numa node,mem' option is supported by
155#     the machine type and false otherwise (since 4.1)
156#
157# @deprecated: if true, the machine type is deprecated and may be
158#     removed in future versions of QEMU according to the QEMU
159#     deprecation policy (since 4.1)
160#
161# @default-cpu-type: default CPU model typename if none is requested
162#     via the -cpu argument.  (since 4.2)
163#
164# @default-ram-id: the default ID of initial RAM memory backend (since
165#     5.2)
166#
167# @acpi: machine type supports ACPI (since 8.0)
168#
169# Since: 1.2
170##
171{ 'struct': 'MachineInfo',
172  'data': { 'name': 'str', '*alias': 'str',
173            '*is-default': 'bool', 'cpu-max': 'int',
174            'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
175            'deprecated': 'bool', '*default-cpu-type': 'str',
176            '*default-ram-id': 'str', 'acpi': 'bool' } }
177
178##
179# @query-machines:
180#
181# Return a list of supported machines
182#
183# Returns: a list of MachineInfo
184#
185# Since: 1.2
186##
187{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
188
189##
190# @CurrentMachineParams:
191#
192# Information describing the running machine parameters.
193#
194# @wakeup-suspend-support: true if the machine supports wake up from
195#     suspend
196#
197# Since: 4.0
198##
199{ 'struct': 'CurrentMachineParams',
200  'data': { 'wakeup-suspend-support': 'bool'} }
201
202##
203# @query-current-machine:
204#
205# Return information on the current virtual machine.
206#
207# Returns: CurrentMachineParams
208#
209# Since: 4.0
210##
211{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
212
213##
214# @TargetInfo:
215#
216# Information describing the QEMU target.
217#
218# @arch: the target architecture
219#
220# Since: 1.2
221##
222{ 'struct': 'TargetInfo',
223  'data': { 'arch': 'SysEmuTarget' } }
224
225##
226# @query-target:
227#
228# Return information about the target for this QEMU
229#
230# Returns: TargetInfo
231#
232# Since: 1.2
233##
234{ 'command': 'query-target', 'returns': 'TargetInfo' }
235
236##
237# @UuidInfo:
238#
239# Guest UUID information (Universally Unique Identifier).
240#
241# @UUID: the UUID of the guest
242#
243# Since: 0.14
244#
245# Notes: If no UUID was specified for the guest, a null UUID is
246#     returned.
247##
248{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
249
250##
251# @query-uuid:
252#
253# Query the guest UUID information.
254#
255# Returns: The @UuidInfo for the guest
256#
257# Since: 0.14
258#
259# Example:
260#
261#     -> { "execute": "query-uuid" }
262#     <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
263##
264{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
265
266##
267# @GuidInfo:
268#
269# GUID information.
270#
271# @guid: the globally unique identifier
272#
273# Since: 2.9
274##
275{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
276
277##
278# @query-vm-generation-id:
279#
280# Show Virtual Machine Generation ID
281#
282# Since: 2.9
283##
284{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
285
286##
287# @system_reset:
288#
289# Performs a hard reset of a guest.
290#
291# Since: 0.14
292#
293# Example:
294#
295#     -> { "execute": "system_reset" }
296#     <- { "return": {} }
297##
298{ 'command': 'system_reset' }
299
300##
301# @system_powerdown:
302#
303# Requests that a guest perform a powerdown operation.
304#
305# Since: 0.14
306#
307# Notes: A guest may or may not respond to this command.  This command
308#     returning does not indicate that a guest has accepted the
309#     request or that it has shut down.  Many guests will respond to
310#     this command by prompting the user in some way.
311#
312# Example:
313#
314#     -> { "execute": "system_powerdown" }
315#     <- { "return": {} }
316##
317{ 'command': 'system_powerdown' }
318
319##
320# @system_wakeup:
321#
322# Wake up guest from suspend.  If the guest has wake-up from suspend
323# support enabled (wakeup-suspend-support flag from
324# query-current-machine), wake-up guest from suspend if the guest is
325# in SUSPENDED state.  Return an error otherwise.
326#
327# Since: 1.1
328#
329# Note: prior to 4.0, this command does nothing in case the guest
330#     isn't suspended.
331#
332# Example:
333#
334#     -> { "execute": "system_wakeup" }
335#     <- { "return": {} }
336##
337{ 'command': 'system_wakeup' }
338
339##
340# @LostTickPolicy:
341#
342# Policy for handling lost ticks in timer devices.  Ticks end up
343# getting lost when, for example, the guest is paused.
344#
345# @discard: throw away the missed ticks and continue with future
346#     injection normally.  The guest OS will see the timer jump ahead
347#     by a potentially quite significant amount all at once, as if the
348#     intervening chunk of time had simply not existed; needless to
349#     say, such a sudden jump can easily confuse a guest OS which is
350#     not specifically prepared to deal with it.  Assuming the guest
351#     OS can deal correctly with the time jump, the time in the guest
352#     and in the host should now match.
353#
354# @delay: continue to deliver ticks at the normal rate.  The guest OS
355#     will not notice anything is amiss, as from its point of view
356#     time will have continued to flow normally.  The time in the
357#     guest should now be behind the time in the host by exactly the
358#     amount of time during which ticks have been missed.
359#
360# @slew: deliver ticks at a higher rate to catch up with the missed
361#     ticks.  The guest OS will not notice anything is amiss, as from
362#     its point of view time will have continued to flow normally.
363#     Once the timer has managed to catch up with all the missing
364#     ticks, the time in the guest and in the host should match.
365#
366# Since: 2.0
367##
368{ 'enum': 'LostTickPolicy',
369  'data': ['discard', 'delay', 'slew' ] }
370
371##
372# @inject-nmi:
373#
374# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
375# all CPUs (ppc64). The command fails when the guest doesn't support
376# injecting.
377#
378# Since: 0.14
379#
380# Note: prior to 2.1, this command was only supported for x86 and s390
381#     VMs
382#
383# Example:
384#
385#     -> { "execute": "inject-nmi" }
386#     <- { "return": {} }
387##
388{ 'command': 'inject-nmi' }
389
390##
391# @KvmInfo:
392#
393# Information about support for KVM acceleration
394#
395# @enabled: true if KVM acceleration is active
396#
397# @present: true if KVM acceleration is built into this executable
398#
399# Since: 0.14
400##
401{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
402
403##
404# @query-kvm:
405#
406# Returns information about KVM acceleration
407#
408# Returns: @KvmInfo
409#
410# Since: 0.14
411#
412# Example:
413#
414#     -> { "execute": "query-kvm" }
415#     <- { "return": { "enabled": true, "present": true } }
416##
417{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
418
419##
420# @NumaOptionsType:
421#
422# @node: NUMA nodes configuration
423#
424# @dist: NUMA distance configuration (since 2.10)
425#
426# @cpu: property based CPU(s) to node mapping (Since: 2.10)
427#
428# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
429#
430# @hmat-cache: memory side cache information (Since: 5.0)
431#
432# Since: 2.1
433##
434{ 'enum': 'NumaOptionsType',
435  'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
436
437##
438# @NumaOptions:
439#
440# A discriminated record of NUMA options.  (for OptsVisitor)
441#
442# @type: NUMA option type
443#
444# Since: 2.1
445##
446{ 'union': 'NumaOptions',
447  'base': { 'type': 'NumaOptionsType' },
448  'discriminator': 'type',
449  'data': {
450    'node': 'NumaNodeOptions',
451    'dist': 'NumaDistOptions',
452    'cpu': 'NumaCpuOptions',
453    'hmat-lb': 'NumaHmatLBOptions',
454    'hmat-cache': 'NumaHmatCacheOptions' }}
455
456##
457# @NumaNodeOptions:
458#
459# Create a guest NUMA node.  (for OptsVisitor)
460#
461# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
462#
463# @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
464#     omitted)
465#
466# @mem: memory size of this node; mutually exclusive with @memdev.
467#     Equally divide total memory among nodes if both @mem and @memdev
468#     are omitted.
469#
470# @memdev: memory backend object.  If specified for one node, it must
471#     be specified for all nodes.
472#
473# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
474#     to the nodeid which has the memory controller responsible for
475#     this NUMA node.  This field provides additional information as
476#     to the initiator node that is closest (as in directly attached)
477#     to this node, and therefore has the best performance (since 5.0)
478#
479# Since: 2.1
480##
481{ 'struct': 'NumaNodeOptions',
482  'data': {
483   '*nodeid': 'uint16',
484   '*cpus':   ['uint16'],
485   '*mem':    'size',
486   '*memdev': 'str',
487   '*initiator': 'uint16' }}
488
489##
490# @NumaDistOptions:
491#
492# Set the distance between 2 NUMA nodes.
493#
494# @src: source NUMA node.
495#
496# @dst: destination NUMA node.
497#
498# @val: NUMA distance from source node to destination node.  When a
499#     node is unreachable from another node, set the distance between
500#     them to 255.
501#
502# Since: 2.10
503##
504{ 'struct': 'NumaDistOptions',
505  'data': {
506   'src': 'uint16',
507   'dst': 'uint16',
508   'val': 'uint8' }}
509
510##
511# @CXLFixedMemoryWindowOptions:
512#
513# Create a CXL Fixed Memory Window
514#
515# @size: Size of the Fixed Memory Window in bytes.  Must be a multiple
516#     of 256MiB.
517#
518# @interleave-granularity: Number of contiguous bytes for which
519#     accesses will go to a given interleave target.  Accepted values
520#     [256, 512, 1k, 2k, 4k, 8k, 16k]
521#
522# @targets: Target root bridge IDs from -device ...,id=<ID> for each
523#     root bridge.
524#
525# Since: 7.1
526##
527{ 'struct': 'CXLFixedMemoryWindowOptions',
528  'data': {
529      'size': 'size',
530      '*interleave-granularity': 'size',
531      'targets': ['str'] }}
532
533##
534# @CXLFMWProperties:
535#
536# List of CXL Fixed Memory Windows.
537#
538# @cxl-fmw: List of CXLFixedMemoryWindowOptions
539#
540# Since: 7.1
541##
542{ 'struct' : 'CXLFMWProperties',
543  'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
544}
545
546##
547# @X86CPURegister32:
548#
549# A X86 32-bit register
550#
551# Since: 1.5
552##
553{ 'enum': 'X86CPURegister32',
554  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
555
556##
557# @X86CPUFeatureWordInfo:
558#
559# Information about a X86 CPU feature word
560#
561# @cpuid-input-eax: Input EAX value for CPUID instruction for that
562#     feature word
563#
564# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
565#     feature word
566#
567# @cpuid-register: Output register containing the feature bits
568#
569# @features: value of output register, containing the feature bits
570#
571# Since: 1.5
572##
573{ 'struct': 'X86CPUFeatureWordInfo',
574  'data': { 'cpuid-input-eax': 'int',
575            '*cpuid-input-ecx': 'int',
576            'cpuid-register': 'X86CPURegister32',
577            'features': 'int' } }
578
579##
580# @DummyForceArrays:
581#
582# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
583# internally
584#
585# Since: 2.5
586##
587{ 'struct': 'DummyForceArrays',
588  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
589
590##
591# @NumaCpuOptions:
592#
593# Option "-numa cpu" overrides default cpu to node mapping.  It
594# accepts the same set of cpu properties as returned by
595# query-hotpluggable-cpus[].props, where node-id could be used to
596# override default node mapping.
597#
598# Since: 2.10
599##
600{ 'struct': 'NumaCpuOptions',
601   'base': 'CpuInstanceProperties',
602   'data' : {} }
603
604##
605# @HmatLBMemoryHierarchy:
606#
607# The memory hierarchy in the System Locality Latency and Bandwidth
608# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
609#
610# For more information about @HmatLBMemoryHierarchy, see chapter
611# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
612#
613# @memory: the structure represents the memory performance
614#
615# @first-level: first level of memory side cache
616#
617# @second-level: second level of memory side cache
618#
619# @third-level: third level of memory side cache
620#
621# Since: 5.0
622##
623{ 'enum': 'HmatLBMemoryHierarchy',
624  'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
625
626##
627# @HmatLBDataType:
628#
629# Data type in the System Locality Latency and Bandwidth Information
630# Structure of HMAT (Heterogeneous Memory Attribute Table)
631#
632# For more information about @HmatLBDataType, see chapter 5.2.27.4:
633# Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
634#
635# @access-latency: access latency (nanoseconds)
636#
637# @read-latency: read latency (nanoseconds)
638#
639# @write-latency: write latency (nanoseconds)
640#
641# @access-bandwidth: access bandwidth (Bytes per second)
642#
643# @read-bandwidth: read bandwidth (Bytes per second)
644#
645# @write-bandwidth: write bandwidth (Bytes per second)
646#
647# Since: 5.0
648##
649{ 'enum': 'HmatLBDataType',
650  'data': [ 'access-latency', 'read-latency', 'write-latency',
651            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
652
653##
654# @NumaHmatLBOptions:
655#
656# Set the system locality latency and bandwidth information between
657# Initiator and Target proximity Domains.
658#
659# For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
660# Table 5-146 of ACPI 6.3 spec.
661#
662# @initiator: the Initiator Proximity Domain.
663#
664# @target: the Target Proximity Domain.
665#
666# @hierarchy: the Memory Hierarchy.  Indicates the performance of
667#     memory or side cache.
668#
669# @data-type: presents the type of data, access/read/write latency or
670#     hit latency.
671#
672# @latency: the value of latency from @initiator to @target proximity
673#     domain, the latency unit is "ns(nanosecond)".
674#
675# @bandwidth: the value of bandwidth between @initiator and @target
676#     proximity domain, the bandwidth unit is "Bytes per second".
677#
678# Since: 5.0
679##
680{ 'struct': 'NumaHmatLBOptions',
681    'data': {
682    'initiator': 'uint16',
683    'target': 'uint16',
684    'hierarchy': 'HmatLBMemoryHierarchy',
685    'data-type': 'HmatLBDataType',
686    '*latency': 'uint64',
687    '*bandwidth': 'size' }}
688
689##
690# @HmatCacheAssociativity:
691#
692# Cache associativity in the Memory Side Cache Information Structure
693# of HMAT
694#
695# For more information of @HmatCacheAssociativity, see chapter
696# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
697#
698# @none: None (no memory side cache in this proximity domain, or cache
699#     associativity unknown)
700#
701# @direct: Direct Mapped
702#
703# @complex: Complex Cache Indexing (implementation specific)
704#
705# Since: 5.0
706##
707{ 'enum': 'HmatCacheAssociativity',
708  'data': [ 'none', 'direct', 'complex' ] }
709
710##
711# @HmatCacheWritePolicy:
712#
713# Cache write policy in the Memory Side Cache Information Structure of
714# HMAT
715#
716# For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
717# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
718#
719# @none: None (no memory side cache in this proximity domain, or cache
720#     write policy unknown)
721#
722# @write-back: Write Back (WB)
723#
724# @write-through: Write Through (WT)
725#
726# Since: 5.0
727##
728{ 'enum': 'HmatCacheWritePolicy',
729  'data': [ 'none', 'write-back', 'write-through' ] }
730
731##
732# @NumaHmatCacheOptions:
733#
734# Set the memory side cache information for a given memory domain.
735#
736# For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
737# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
738#
739# @node-id: the memory proximity domain to which the memory belongs.
740#
741# @size: the size of memory side cache in bytes.
742#
743# @level: the cache level described in this structure.
744#
745# @associativity: the cache associativity,
746#     none/direct-mapped/complex(complex cache indexing).
747#
748# @policy: the write policy, none/write-back/write-through.
749#
750# @line: the cache Line size in bytes.
751#
752# Since: 5.0
753##
754{ 'struct': 'NumaHmatCacheOptions',
755  'data': {
756   'node-id': 'uint32',
757   'size': 'size',
758   'level': 'uint8',
759   'associativity': 'HmatCacheAssociativity',
760   'policy': 'HmatCacheWritePolicy',
761   'line': 'uint16' }}
762
763##
764# @memsave:
765#
766# Save a portion of guest memory to a file.
767#
768# @val: the virtual address of the guest to start from
769#
770# @size: the size of memory region to save
771#
772# @filename: the file to save the memory to as binary data
773#
774# @cpu-index: the index of the virtual CPU to use for translating the
775#     virtual address (defaults to CPU 0)
776#
777# Since: 0.14
778#
779# Notes: Errors were not reliably returned until 1.1
780#
781# Example:
782#
783#     -> { "execute": "memsave",
784#          "arguments": { "val": 10,
785#                         "size": 100,
786#                         "filename": "/tmp/virtual-mem-dump" } }
787#     <- { "return": {} }
788##
789{ 'command': 'memsave',
790  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
791
792##
793# @pmemsave:
794#
795# Save a portion of guest physical memory to a file.
796#
797# @val: the physical address of the guest to start from
798#
799# @size: the size of memory region to save
800#
801# @filename: the file to save the memory to as binary data
802#
803# Since: 0.14
804#
805# Notes: Errors were not reliably returned until 1.1
806#
807# Example:
808#
809#     -> { "execute": "pmemsave",
810#          "arguments": { "val": 10,
811#                         "size": 100,
812#                         "filename": "/tmp/physical-mem-dump" } }
813#     <- { "return": {} }
814##
815{ 'command': 'pmemsave',
816  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
817
818##
819# @Memdev:
820#
821# Information about memory backend
822#
823# @id: backend's ID if backend has 'id' property (since 2.9)
824#
825# @size: memory backend size
826#
827# @merge: whether memory merge support is enabled
828#
829# @dump: whether memory backend's memory is included in a core dump
830#
831# @prealloc: whether memory was preallocated
832#
833# @share: whether memory is private to QEMU or shared (since 6.1)
834#
835# @reserve: whether swap space (or huge pages) was reserved if
836#     applicable.  This corresponds to the user configuration and not
837#     the actual behavior implemented in the OS to perform the
838#     reservation.  For example, Linux will never reserve swap space
839#     for shared file mappings.  (since 6.1)
840#
841# @host-nodes: host nodes for its memory policy
842#
843# @policy: memory policy of memory backend
844#
845# Since: 2.1
846##
847{ 'struct': 'Memdev',
848  'data': {
849    '*id':        'str',
850    'size':       'size',
851    'merge':      'bool',
852    'dump':       'bool',
853    'prealloc':   'bool',
854    'share':      'bool',
855    '*reserve':    'bool',
856    'host-nodes': ['uint16'],
857    'policy':     'HostMemPolicy' }}
858
859##
860# @query-memdev:
861#
862# Returns information for all memory backends.
863#
864# Returns: a list of @Memdev.
865#
866# Since: 2.1
867#
868# Example:
869#
870#     -> { "execute": "query-memdev" }
871#     <- { "return": [
872#            {
873#              "id": "mem1",
874#              "size": 536870912,
875#              "merge": false,
876#              "dump": true,
877#              "prealloc": false,
878#              "share": false,
879#              "host-nodes": [0, 1],
880#              "policy": "bind"
881#            },
882#            {
883#              "size": 536870912,
884#              "merge": false,
885#              "dump": true,
886#              "prealloc": true,
887#              "share": false,
888#              "host-nodes": [2, 3],
889#              "policy": "preferred"
890#            }
891#          ]
892#        }
893##
894{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
895
896##
897# @CpuInstanceProperties:
898#
899# List of properties to be used for hotplugging a CPU instance, it
900# should be passed by management with device_add command when a CPU is
901# being hotplugged.
902#
903# Which members are optional and which mandatory depends on the
904# architecture and board.
905#
906# For s390x see :ref:`cpu-topology-s390x`.
907#
908# The ids other than the node-id specify the position of the CPU
909# within the CPU topology (as defined by the machine property "smp",
910# thus see also type @SMPConfiguration)
911#
912# @node-id: NUMA node ID the CPU belongs to
913#
914# @drawer-id: drawer number within CPU topology the CPU belongs to
915#     (since 8.2)
916#
917# @book-id: book number within parent container the CPU belongs to
918#     (since 8.2)
919#
920# @socket-id: socket number within parent container the CPU belongs to
921#
922# @die-id: die number within the parent container the CPU belongs to
923#     (since 4.1)
924#
925# @cluster-id: cluster number within the parent container the CPU
926#     belongs to (since 7.1)
927#
928# @core-id: core number within the parent container the CPU belongs to
929#
930# @thread-id: thread number within the core the CPU  belongs to
931#
932# Note: management should be prepared to pass through additional
933#     properties with device_add.
934#
935# Since: 2.7
936##
937{ 'struct': 'CpuInstanceProperties',
938  # Keep these in sync with the properties device_add accepts
939  'data': { '*node-id': 'int',
940            '*drawer-id': 'int',
941            '*book-id': 'int',
942            '*socket-id': 'int',
943            '*die-id': 'int',
944            '*cluster-id': 'int',
945            '*core-id': 'int',
946            '*thread-id': 'int'
947  }
948}
949
950##
951# @HotpluggableCPU:
952#
953# @type: CPU object type for usage with device_add command
954#
955# @props: list of properties to be used for hotplugging CPU
956#
957# @vcpus-count: number of logical VCPU threads @HotpluggableCPU
958#     provides
959#
960# @qom-path: link to existing CPU object if CPU is present or omitted
961#     if CPU is not present.
962#
963# Since: 2.7
964##
965{ 'struct': 'HotpluggableCPU',
966  'data': { 'type': 'str',
967            'vcpus-count': 'int',
968            'props': 'CpuInstanceProperties',
969            '*qom-path': 'str'
970          }
971}
972
973##
974# @query-hotpluggable-cpus:
975#
976# TODO: Better documentation; currently there is none.
977#
978# Returns: a list of HotpluggableCPU objects.
979#
980# Since: 2.7
981#
982# Examples:
983#
984#     For pseries machine type started with -smp 2,cores=2,maxcpus=4
985#     -cpu POWER8:
986#
987#     -> { "execute": "query-hotpluggable-cpus" }
988#     <- {"return": [
989#          { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
990#            "vcpus-count": 1 },
991#          { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
992#            "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
993#        ]}'
994#
995#     For pc machine type started with -smp 1,maxcpus=2:
996#
997#     -> { "execute": "query-hotpluggable-cpus" }
998#     <- {"return": [
999#          {
1000#             "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1001#             "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1002#          },
1003#          {
1004#             "qom-path": "/machine/unattached/device[0]",
1005#             "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1006#             "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1007#          }
1008#        ]}
1009#
1010#     For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2
1011#     -cpu qemu (Since: 2.11):
1012#
1013#     -> { "execute": "query-hotpluggable-cpus" }
1014#     <- {"return": [
1015#          {
1016#             "type": "qemu-s390x-cpu", "vcpus-count": 1,
1017#             "props": { "core-id": 1 }
1018#          },
1019#          {
1020#             "qom-path": "/machine/unattached/device[0]",
1021#             "type": "qemu-s390x-cpu", "vcpus-count": 1,
1022#             "props": { "core-id": 0 }
1023#          }
1024#        ]}
1025##
1026{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1027             'allow-preconfig': true }
1028
1029##
1030# @set-numa-node:
1031#
1032# Runtime equivalent of '-numa' CLI option, available at preconfigure
1033# stage to configure numa mapping before initializing machine.
1034#
1035# Since: 3.0
1036##
1037{ 'command': 'set-numa-node', 'boxed': true,
1038  'data': 'NumaOptions',
1039  'allow-preconfig': true
1040}
1041
1042##
1043# @balloon:
1044#
1045# Request the balloon driver to change its balloon size.
1046#
1047# @value: the target logical size of the VM in bytes.  We can deduce
1048#     the size of the balloon using this formula:
1049#
1050#        logical_vm_size = vm_ram_size - balloon_size
1051#
1052#     From it we have: balloon_size = vm_ram_size - @value
1053#
1054# Errors:
1055#     - If the balloon driver is enabled but not functional because
1056#       the KVM kernel module cannot support it, KVMMissingCap
1057#     - If no balloon device is present, DeviceNotActive
1058#
1059# Notes: This command just issues a request to the guest.  When it
1060#     returns, the balloon size may not have changed.  A guest can
1061#     change the balloon size independent of this command.
1062#
1063# Since: 0.14
1064#
1065# Example:
1066#
1067#     -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1068#     <- { "return": {} }
1069#
1070#     With a 2.5GiB guest this command inflated the ballon to 3GiB.
1071##
1072{ 'command': 'balloon', 'data': {'value': 'int'} }
1073
1074##
1075# @BalloonInfo:
1076#
1077# Information about the guest balloon device.
1078#
1079# @actual: the logical size of the VM in bytes Formula used:
1080#     logical_vm_size = vm_ram_size - balloon_size
1081#
1082# Since: 0.14
1083##
1084{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1085
1086##
1087# @query-balloon:
1088#
1089# Return information about the balloon device.
1090#
1091# Returns:
1092#     @BalloonInfo
1093#
1094# Errors:
1095#     - If the balloon driver is enabled but not functional because
1096#       the KVM kernel module cannot support it, KVMMissingCap
1097#     - If no balloon device is present, DeviceNotActive
1098#
1099# Since: 0.14
1100#
1101# Example:
1102#
1103#     -> { "execute": "query-balloon" }
1104#     <- { "return": {
1105#              "actual": 1073741824
1106#           }
1107#        }
1108##
1109{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1110
1111##
1112# @BALLOON_CHANGE:
1113#
1114# Emitted when the guest changes the actual BALLOON level.  This value
1115# is equivalent to the @actual field return by the 'query-balloon'
1116# command
1117#
1118# @actual: the logical size of the VM in bytes Formula used:
1119#     logical_vm_size = vm_ram_size - balloon_size
1120#
1121# Note: this event is rate-limited.
1122#
1123# Since: 1.2
1124#
1125# Example:
1126#
1127#     <- { "event": "BALLOON_CHANGE",
1128#          "data": { "actual": 944766976 },
1129#          "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1130##
1131{ 'event': 'BALLOON_CHANGE',
1132  'data': { 'actual': 'int' } }
1133
1134##
1135# @HvBalloonInfo:
1136#
1137# hv-balloon guest-provided memory status information.
1138#
1139# @committed: the amount of memory in use inside the guest plus the
1140#     amount of the memory unusable inside the guest (ballooned out,
1141#     offline, etc.)
1142#
1143# @available: the amount of the memory inside the guest available for
1144#     new allocations ("free")
1145#
1146# Since: 8.2
1147##
1148{ 'struct': 'HvBalloonInfo',
1149  'data': { 'committed': 'size', 'available': 'size' } }
1150
1151##
1152# @query-hv-balloon-status-report:
1153#
1154# Returns the hv-balloon driver data contained in the last received
1155# "STATUS" message from the guest.
1156#
1157# Returns:
1158#     @HvBalloonInfo
1159#
1160# Errors:
1161#     - If no hv-balloon device is present, guest memory status
1162#       reporting is not enabled or no guest memory status report
1163#       received yet, GenericError
1164#
1165# Since: 8.2
1166#
1167# Example:
1168#
1169#     -> { "execute": "query-hv-balloon-status-report" }
1170#     <- { "return": {
1171#              "committed": 816640000,
1172#              "available": 3333054464
1173#           }
1174#        }
1175##
1176{ 'command': 'query-hv-balloon-status-report', 'returns': 'HvBalloonInfo' }
1177
1178##
1179# @HV_BALLOON_STATUS_REPORT:
1180#
1181# Emitted when the hv-balloon driver receives a "STATUS" message from
1182# the guest.
1183#
1184# Note: this event is rate-limited.
1185#
1186# Since: 8.2
1187#
1188# Example:
1189#
1190#     <- { "event": "HV_BALLOON_STATUS_REPORT",
1191#          "data": { "committed": 816640000, "available": 3333054464 },
1192#          "timestamp": { "seconds": 1600295492, "microseconds": 661044 } }
1193##
1194{ 'event': 'HV_BALLOON_STATUS_REPORT',
1195  'data': 'HvBalloonInfo' }
1196
1197##
1198# @MemoryInfo:
1199#
1200# Actual memory information in bytes.
1201#
1202# @base-memory: size of "base" memory specified with command line
1203#     option -m.
1204#
1205# @plugged-memory: size of memory that can be hot-unplugged.  This
1206#     field is omitted if target doesn't support memory hotplug (i.e.
1207#     CONFIG_MEM_DEVICE not defined at build time).
1208#
1209# Since: 2.11
1210##
1211{ 'struct': 'MemoryInfo',
1212  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1213
1214##
1215# @query-memory-size-summary:
1216#
1217# Return the amount of initially allocated and present hotpluggable
1218# (if enabled) memory in bytes.
1219#
1220# Example:
1221#
1222#     -> { "execute": "query-memory-size-summary" }
1223#     <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1224#
1225# Since: 2.11
1226##
1227{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1228
1229##
1230# @PCDIMMDeviceInfo:
1231#
1232# PCDIMMDevice state information
1233#
1234# @id: device's ID
1235#
1236# @addr: physical address, where device is mapped
1237#
1238# @size: size of memory that the device provides
1239#
1240# @slot: slot number at which device is plugged in
1241#
1242# @node: NUMA node number where device is plugged in
1243#
1244# @memdev: memory backend linked with device
1245#
1246# @hotplugged: true if device was hotplugged
1247#
1248# @hotpluggable: true if device if could be added/removed while
1249#     machine is running
1250#
1251# Since: 2.1
1252##
1253{ 'struct': 'PCDIMMDeviceInfo',
1254  'data': { '*id': 'str',
1255            'addr': 'int',
1256            'size': 'int',
1257            'slot': 'int',
1258            'node': 'int',
1259            'memdev': 'str',
1260            'hotplugged': 'bool',
1261            'hotpluggable': 'bool'
1262          }
1263}
1264
1265##
1266# @VirtioPMEMDeviceInfo:
1267#
1268# VirtioPMEM state information
1269#
1270# @id: device's ID
1271#
1272# @memaddr: physical address in memory, where device is mapped
1273#
1274# @size: size of memory that the device provides
1275#
1276# @memdev: memory backend linked with device
1277#
1278# Since: 4.1
1279##
1280{ 'struct': 'VirtioPMEMDeviceInfo',
1281  'data': { '*id': 'str',
1282            'memaddr': 'size',
1283            'size': 'size',
1284            'memdev': 'str'
1285          }
1286}
1287
1288##
1289# @VirtioMEMDeviceInfo:
1290#
1291# VirtioMEMDevice state information
1292#
1293# @id: device's ID
1294#
1295# @memaddr: physical address in memory, where device is mapped
1296#
1297# @requested-size: the user requested size of the device
1298#
1299# @size: the (current) size of memory that the device provides
1300#
1301# @max-size: the maximum size of memory that the device can provide
1302#
1303# @block-size: the block size of memory that the device provides
1304#
1305# @node: NUMA node number where device is assigned to
1306#
1307# @memdev: memory backend linked with the region
1308#
1309# Since: 5.1
1310##
1311{ 'struct': 'VirtioMEMDeviceInfo',
1312  'data': { '*id': 'str',
1313            'memaddr': 'size',
1314            'requested-size': 'size',
1315            'size': 'size',
1316            'max-size': 'size',
1317            'block-size': 'size',
1318            'node': 'int',
1319            'memdev': 'str'
1320          }
1321}
1322
1323##
1324# @SgxEPCDeviceInfo:
1325#
1326# Sgx EPC state information
1327#
1328# @id: device's ID
1329#
1330# @memaddr: physical address in memory, where device is mapped
1331#
1332# @size: size of memory that the device provides
1333#
1334# @memdev: memory backend linked with device
1335#
1336# @node: the numa node (Since: 7.0)
1337#
1338# Since: 6.2
1339##
1340{ 'struct': 'SgxEPCDeviceInfo',
1341  'data': { '*id': 'str',
1342            'memaddr': 'size',
1343            'size': 'size',
1344            'node': 'int',
1345            'memdev': 'str'
1346          }
1347}
1348
1349##
1350# @HvBalloonDeviceInfo:
1351#
1352# hv-balloon provided memory state information
1353#
1354# @id: device's ID
1355#
1356# @memaddr: physical address in memory, where device is mapped
1357#
1358# @max-size: the maximum size of memory that the device can provide
1359#
1360# @memdev: memory backend linked with device
1361#
1362# Since: 8.2
1363##
1364{ 'struct': 'HvBalloonDeviceInfo',
1365  'data': { '*id': 'str',
1366            '*memaddr': 'size',
1367            'max-size': 'size',
1368            '*memdev': 'str'
1369          }
1370}
1371
1372##
1373# @MemoryDeviceInfoKind:
1374#
1375# @nvdimm: since 2.12
1376#
1377# @virtio-pmem: since 4.1
1378#
1379# @virtio-mem: since 5.1
1380#
1381# @sgx-epc: since 6.2.
1382#
1383# @hv-balloon: since 8.2.
1384#
1385# Since: 2.1
1386##
1387{ 'enum': 'MemoryDeviceInfoKind',
1388  'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc',
1389            'hv-balloon' ] }
1390
1391##
1392# @PCDIMMDeviceInfoWrapper:
1393#
1394# @data: PCDIMMDevice state information
1395#
1396# Since: 2.1
1397##
1398{ 'struct': 'PCDIMMDeviceInfoWrapper',
1399  'data': { 'data': 'PCDIMMDeviceInfo' } }
1400
1401##
1402# @VirtioPMEMDeviceInfoWrapper:
1403#
1404# @data: VirtioPMEM state information
1405#
1406# Since: 2.1
1407##
1408{ 'struct': 'VirtioPMEMDeviceInfoWrapper',
1409  'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1410
1411##
1412# @VirtioMEMDeviceInfoWrapper:
1413#
1414# @data: VirtioMEMDevice state information
1415#
1416# Since: 2.1
1417##
1418{ 'struct': 'VirtioMEMDeviceInfoWrapper',
1419  'data': { 'data': 'VirtioMEMDeviceInfo' } }
1420
1421##
1422# @SgxEPCDeviceInfoWrapper:
1423#
1424# @data: Sgx EPC state information
1425#
1426# Since: 6.2
1427##
1428{ 'struct': 'SgxEPCDeviceInfoWrapper',
1429  'data': { 'data': 'SgxEPCDeviceInfo' } }
1430
1431##
1432# @HvBalloonDeviceInfoWrapper:
1433#
1434# @data: hv-balloon provided memory state information
1435#
1436# Since: 8.2
1437##
1438{ 'struct': 'HvBalloonDeviceInfoWrapper',
1439  'data': { 'data': 'HvBalloonDeviceInfo' } }
1440
1441##
1442# @MemoryDeviceInfo:
1443#
1444# Union containing information about a memory device
1445#
1446# @type: memory device type
1447#
1448# Since: 2.1
1449##
1450{ 'union': 'MemoryDeviceInfo',
1451  'base': { 'type': 'MemoryDeviceInfoKind' },
1452  'discriminator': 'type',
1453  'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1454            'nvdimm': 'PCDIMMDeviceInfoWrapper',
1455            'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1456            'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1457            'sgx-epc': 'SgxEPCDeviceInfoWrapper',
1458            'hv-balloon': 'HvBalloonDeviceInfoWrapper'
1459          }
1460}
1461
1462##
1463# @SgxEPC:
1464#
1465# Sgx EPC cmdline information
1466#
1467# @memdev: memory backend linked with device
1468#
1469# @node: the numa node (Since: 7.0)
1470#
1471# Since: 6.2
1472##
1473{ 'struct': 'SgxEPC',
1474  'data': { 'memdev': 'str',
1475            'node': 'int'
1476          }
1477}
1478
1479##
1480# @SgxEPCProperties:
1481#
1482# SGX properties of machine types.
1483#
1484# @sgx-epc: list of ids of memory-backend-epc objects.
1485#
1486# Since: 6.2
1487##
1488{ 'struct': 'SgxEPCProperties',
1489  'data': { 'sgx-epc': ['SgxEPC'] }
1490}
1491
1492##
1493# @query-memory-devices:
1494#
1495# Lists available memory devices and their state
1496#
1497# Since: 2.1
1498#
1499# Example:
1500#
1501#     -> { "execute": "query-memory-devices" }
1502#     <- { "return": [ { "data":
1503#                           { "addr": 5368709120,
1504#                             "hotpluggable": true,
1505#                             "hotplugged": true,
1506#                             "id": "d1",
1507#                             "memdev": "/objects/memX",
1508#                             "node": 0,
1509#                             "size": 1073741824,
1510#                             "slot": 0},
1511#                        "type": "dimm"
1512#                      } ] }
1513##
1514{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1515
1516##
1517# @MEMORY_DEVICE_SIZE_CHANGE:
1518#
1519# Emitted when the size of a memory device changes.  Only emitted for
1520# memory devices that can actually change the size (e.g., virtio-mem
1521# due to guest action).
1522#
1523# @id: device's ID
1524#
1525# @size: the new size of memory that the device provides
1526#
1527# @qom-path: path to the device object in the QOM tree (since 6.2)
1528#
1529# Note: this event is rate-limited.
1530#
1531# Since: 5.1
1532#
1533# Example:
1534#
1535#     <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1536#          "data": { "id": "vm0", "size": 1073741824,
1537#                    "qom-path": "/machine/unattached/device[2]" },
1538#          "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1539##
1540{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1541  'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1542
1543##
1544# @MEM_UNPLUG_ERROR:
1545#
1546# Emitted when memory hot unplug error occurs.
1547#
1548# @device: device name
1549#
1550# @msg: Informative message
1551#
1552# Features:
1553#
1554# @deprecated: This event is deprecated.  Use
1555#     @DEVICE_UNPLUG_GUEST_ERROR instead.
1556#
1557# Since: 2.4
1558#
1559# Example:
1560#
1561#     <- { "event": "MEM_UNPLUG_ERROR",
1562#          "data": { "device": "dimm1",
1563#                    "msg": "acpi: device unplug for unsupported device"
1564#          },
1565#          "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1566##
1567{ 'event': 'MEM_UNPLUG_ERROR',
1568  'data': { 'device': 'str', 'msg': 'str' },
1569  'features': ['deprecated'] }
1570
1571##
1572# @BootConfiguration:
1573#
1574# Schema for virtual machine boot configuration.
1575#
1576# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1577#
1578# @once: Boot order to apply on first boot
1579#
1580# @menu: Whether to show a boot menu
1581#
1582# @splash: The name of the file to be passed to the firmware as logo
1583#     picture, if @menu is true.
1584#
1585# @splash-time: How long to show the logo picture, in milliseconds
1586#
1587# @reboot-timeout: Timeout before guest reboots after boot fails
1588#
1589# @strict: Whether to attempt booting from devices not included in the
1590#     boot order
1591#
1592# Since: 7.1
1593##
1594{ 'struct': 'BootConfiguration', 'data': {
1595     '*order': 'str',
1596     '*once': 'str',
1597     '*menu': 'bool',
1598     '*splash': 'str',
1599     '*splash-time': 'int',
1600     '*reboot-timeout': 'int',
1601     '*strict': 'bool' } }
1602
1603##
1604# @SMPConfiguration:
1605#
1606# Schema for CPU topology configuration.  A missing value lets QEMU
1607# figure out a suitable value based on the ones that are provided.
1608#
1609# The members other than @cpus and @maxcpus define a topology of
1610# containers.
1611#
1612# The ordering from highest/coarsest to lowest/finest is:
1613# @drawers, @books, @sockets, @dies, @clusters, @cores, @threads.
1614#
1615# Different architectures support different subsets of topology
1616# containers.
1617#
1618# For example, s390x does not have clusters and dies, and the socket
1619# is the parent container of cores.
1620#
1621# @cpus: number of virtual CPUs in the virtual machine
1622#
1623# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1624#     machine
1625#
1626# @drawers: number of drawers in the CPU topology (since 8.2)
1627#
1628# @books: number of books in the CPU topology (since 8.2)
1629#
1630# @sockets: number of sockets per parent container
1631#
1632# @dies: number of dies per parent container
1633#
1634# @clusters: number of clusters per parent container (since 7.0)
1635#
1636# @cores: number of cores per parent container
1637#
1638# @threads: number of threads per core
1639#
1640# Since: 6.1
1641##
1642{ 'struct': 'SMPConfiguration', 'data': {
1643     '*cpus': 'int',
1644     '*drawers': 'int',
1645     '*books': 'int',
1646     '*sockets': 'int',
1647     '*dies': 'int',
1648     '*clusters': 'int',
1649     '*cores': 'int',
1650     '*threads': 'int',
1651     '*maxcpus': 'int' } }
1652
1653##
1654# @x-query-irq:
1655#
1656# Query interrupt statistics
1657#
1658# Features:
1659#
1660# @unstable: This command is meant for debugging.
1661#
1662# Returns: interrupt statistics
1663#
1664# Since: 6.2
1665##
1666{ 'command': 'x-query-irq',
1667  'returns': 'HumanReadableText',
1668  'features': [ 'unstable' ] }
1669
1670##
1671# @x-query-jit:
1672#
1673# Query TCG compiler statistics
1674#
1675# Features:
1676#
1677# @unstable: This command is meant for debugging.
1678#
1679# Returns: TCG compiler statistics
1680#
1681# Since: 6.2
1682##
1683{ 'command': 'x-query-jit',
1684  'returns': 'HumanReadableText',
1685  'if': 'CONFIG_TCG',
1686  'features': [ 'unstable' ] }
1687
1688##
1689# @x-query-numa:
1690#
1691# Query NUMA topology information
1692#
1693# Features:
1694#
1695# @unstable: This command is meant for debugging.
1696#
1697# Returns: topology information
1698#
1699# Since: 6.2
1700##
1701{ 'command': 'x-query-numa',
1702  'returns': 'HumanReadableText',
1703  'features': [ 'unstable' ] }
1704
1705##
1706# @x-query-opcount:
1707#
1708# Query TCG opcode counters
1709#
1710# Features:
1711#
1712# @unstable: This command is meant for debugging.
1713#
1714# Returns: TCG opcode counters
1715#
1716# Since: 6.2
1717##
1718{ 'command': 'x-query-opcount',
1719  'returns': 'HumanReadableText',
1720  'if': 'CONFIG_TCG',
1721  'features': [ 'unstable' ] }
1722
1723##
1724# @x-query-ramblock:
1725#
1726# Query system ramblock information
1727#
1728# Features:
1729#
1730# @unstable: This command is meant for debugging.
1731#
1732# Returns: system ramblock information
1733#
1734# Since: 6.2
1735##
1736{ 'command': 'x-query-ramblock',
1737  'returns': 'HumanReadableText',
1738  'features': [ 'unstable' ] }
1739
1740##
1741# @x-query-rdma:
1742#
1743# Query RDMA state
1744#
1745# Features:
1746#
1747# @unstable: This command is meant for debugging.
1748#
1749# Returns: RDMA state
1750#
1751# Since: 6.2
1752##
1753{ 'command': 'x-query-rdma',
1754  'returns': 'HumanReadableText',
1755  'features': [ 'unstable' ] }
1756
1757##
1758# @x-query-roms:
1759#
1760# Query information on the registered ROMS
1761#
1762# Features:
1763#
1764# @unstable: This command is meant for debugging.
1765#
1766# Returns: registered ROMs
1767#
1768# Since: 6.2
1769##
1770{ 'command': 'x-query-roms',
1771  'returns': 'HumanReadableText',
1772  'features': [ 'unstable' ] }
1773
1774##
1775# @x-query-usb:
1776#
1777# Query information on the USB devices
1778#
1779# Features:
1780#
1781# @unstable: This command is meant for debugging.
1782#
1783# Returns: USB device information
1784#
1785# Since: 6.2
1786##
1787{ 'command': 'x-query-usb',
1788  'returns': 'HumanReadableText',
1789  'features': [ 'unstable' ] }
1790
1791##
1792# @SmbiosEntryPointType:
1793#
1794# @32: SMBIOS version 2.1 (32-bit) Entry Point
1795#
1796# @64: SMBIOS version 3.0 (64-bit) Entry Point
1797#
1798# @auto: Either 2.x or 3.x SMBIOS version, 2.x if configuration can be
1799#     described by it and 3.x otherwise (since: 9.0)
1800#
1801# Since: 7.0
1802##
1803{ 'enum': 'SmbiosEntryPointType',
1804  'data': [ '32', '64', 'auto' ] }
1805
1806##
1807# @MemorySizeConfiguration:
1808#
1809# Schema for memory size configuration.
1810#
1811# @size: memory size in bytes
1812#
1813# @max-size: maximum hotpluggable memory size in bytes
1814#
1815# @slots: number of available memory slots for hotplug
1816#
1817# Since: 7.1
1818##
1819{ 'struct': 'MemorySizeConfiguration', 'data': {
1820     '*size': 'size',
1821     '*max-size': 'size',
1822     '*slots': 'uint64' } }
1823
1824##
1825# @dumpdtb:
1826#
1827# Save the FDT in dtb format.
1828#
1829# @filename: name of the dtb file to be created
1830#
1831# Since: 7.2
1832#
1833# Example:
1834#
1835#     -> { "execute": "dumpdtb" }
1836#          "arguments": { "filename": "fdt.dtb" } }
1837#     <- { "return": {} }
1838##
1839{ 'command': 'dumpdtb',
1840  'data': { 'filename': 'str' },
1841  'if': 'CONFIG_FDT' }
1842