xref: /openbmc/qemu/qapi/machine.json (revision 90bb6d67)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4# This work is licensed under the terms of the GNU GPL, version 2 or later.
5# See the COPYING file in the top-level directory.
6
7##
8# = Machines
9##
10
11{ 'include': 'common.json' }
12{ 'include': 'machine-common.json' }
13
14##
15# @SysEmuTarget:
16#
17# The comprehensive enumeration of QEMU system emulation ("softmmu")
18# targets.  Run "./configure --help" in the project root directory,
19# and look for the \*-softmmu targets near the "--target-list" option.
20# The individual target constants are not documented here, for the
21# time being.
22#
23# @rx: since 5.0
24#
25# @avr: since 5.1
26#
27# Notes: The resulting QMP strings can be appended to the
28#     "qemu-system-" prefix to produce the corresponding QEMU
29#     executable name.  This is true even for "qemu-system-x86_64".
30#
31# Since: 3.0
32##
33{ 'enum' : 'SysEmuTarget',
34  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
35             'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
36             'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
37             'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
38             'sh4eb', 'sparc', 'sparc64', 'tricore',
39             'x86_64', 'xtensa', 'xtensaeb' ] }
40
41##
42# @CpuS390State:
43#
44# An enumeration of cpu states that can be assumed by a virtual S390
45# CPU
46#
47# Since: 2.12
48##
49{ 'enum': 'CpuS390State',
50  'prefix': 'S390_CPU_STATE',
51  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
52
53##
54# @CpuInfoS390:
55#
56# Additional information about a virtual S390 CPU
57#
58# @cpu-state: the virtual CPU's state
59#
60# @dedicated: the virtual CPU's dedication (since 8.2)
61#
62# @entitlement: the virtual CPU's entitlement (since 8.2)
63#
64# Since: 2.12
65##
66{ 'struct': 'CpuInfoS390',
67  'data': { 'cpu-state': 'CpuS390State',
68            '*dedicated': 'bool',
69            '*entitlement': 'CpuS390Entitlement' } }
70
71##
72# @CpuInfoFast:
73#
74# Information about a virtual CPU
75#
76# @cpu-index: index of the virtual CPU
77#
78# @qom-path: path to the CPU object in the QOM tree
79#
80# @thread-id: ID of the underlying host thread
81#
82# @props: properties associated with a virtual CPU, e.g. the socket id
83#
84# @target: the QEMU system emulation target, which determines which
85#     additional fields will be listed (since 3.0)
86#
87# Since: 2.12
88##
89{ 'union'         : 'CpuInfoFast',
90  'base'          : { 'cpu-index'    : 'int',
91                      'qom-path'     : 'str',
92                      'thread-id'    : 'int',
93                      '*props'       : 'CpuInstanceProperties',
94                      'target'       : 'SysEmuTarget' },
95  'discriminator' : 'target',
96  'data'          : { 's390x'        : 'CpuInfoS390' } }
97
98##
99# @query-cpus-fast:
100#
101# Returns information about all virtual CPUs.
102#
103# Returns: list of @CpuInfoFast
104#
105# Since: 2.12
106#
107# Example:
108#
109# -> { "execute": "query-cpus-fast" }
110# <- { "return": [
111#         {
112#             "thread-id": 25627,
113#             "props": {
114#                 "core-id": 0,
115#                 "thread-id": 0,
116#                 "socket-id": 0
117#             },
118#             "qom-path": "/machine/unattached/device[0]",
119#             "target":"x86_64",
120#             "cpu-index": 0
121#         },
122#         {
123#             "thread-id": 25628,
124#             "props": {
125#                 "core-id": 0,
126#                 "thread-id": 0,
127#                 "socket-id": 1
128#             },
129#             "qom-path": "/machine/unattached/device[2]",
130#             "target":"x86_64",
131#             "cpu-index": 1
132#         }
133#     ]
134# }
135##
136{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
137
138##
139# @MachineInfo:
140#
141# Information describing a machine.
142#
143# @name: the name of the machine
144#
145# @alias: an alias for the machine name
146#
147# @is-default: whether the machine is default
148#
149# @cpu-max: maximum number of CPUs supported by the machine type
150#     (since 1.5)
151#
152# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
153#
154# @numa-mem-supported: true if '-numa node,mem' option is supported by
155#     the machine type and false otherwise (since 4.1)
156#
157# @deprecated: if true, the machine type is deprecated and may be
158#     removed in future versions of QEMU according to the QEMU
159#     deprecation policy (since 4.1)
160#
161# @default-cpu-type: default CPU model typename if none is requested
162#     via the -cpu argument.  (since 4.2)
163#
164# @default-ram-id: the default ID of initial RAM memory backend (since
165#     5.2)
166#
167# @acpi: machine type supports ACPI (since 8.0)
168#
169# Since: 1.2
170##
171{ 'struct': 'MachineInfo',
172  'data': { 'name': 'str', '*alias': 'str',
173            '*is-default': 'bool', 'cpu-max': 'int',
174            'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
175            'deprecated': 'bool', '*default-cpu-type': 'str',
176            '*default-ram-id': 'str', 'acpi': 'bool' } }
177
178##
179# @query-machines:
180#
181# Return a list of supported machines
182#
183# Returns: a list of MachineInfo
184#
185# Since: 1.2
186##
187{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
188
189##
190# @CurrentMachineParams:
191#
192# Information describing the running machine parameters.
193#
194# @wakeup-suspend-support: true if the machine supports wake up from
195#     suspend
196#
197# Since: 4.0
198##
199{ 'struct': 'CurrentMachineParams',
200  'data': { 'wakeup-suspend-support': 'bool'} }
201
202##
203# @query-current-machine:
204#
205# Return information on the current virtual machine.
206#
207# Returns: CurrentMachineParams
208#
209# Since: 4.0
210##
211{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
212
213##
214# @TargetInfo:
215#
216# Information describing the QEMU target.
217#
218# @arch: the target architecture
219#
220# Since: 1.2
221##
222{ 'struct': 'TargetInfo',
223  'data': { 'arch': 'SysEmuTarget' } }
224
225##
226# @query-target:
227#
228# Return information about the target for this QEMU
229#
230# Returns: TargetInfo
231#
232# Since: 1.2
233##
234{ 'command': 'query-target', 'returns': 'TargetInfo' }
235
236##
237# @UuidInfo:
238#
239# Guest UUID information (Universally Unique Identifier).
240#
241# @UUID: the UUID of the guest
242#
243# Since: 0.14
244#
245# Notes: If no UUID was specified for the guest, a null UUID is
246#     returned.
247##
248{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
249
250##
251# @query-uuid:
252#
253# Query the guest UUID information.
254#
255# Returns: The @UuidInfo for the guest
256#
257# Since: 0.14
258#
259# Example:
260#
261# -> { "execute": "query-uuid" }
262# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
263##
264{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
265
266##
267# @GuidInfo:
268#
269# GUID information.
270#
271# @guid: the globally unique identifier
272#
273# Since: 2.9
274##
275{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
276
277##
278# @query-vm-generation-id:
279#
280# Show Virtual Machine Generation ID
281#
282# Since: 2.9
283##
284{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
285
286##
287# @system_reset:
288#
289# Performs a hard reset of a guest.
290#
291# Since: 0.14
292#
293# Example:
294#
295# -> { "execute": "system_reset" }
296# <- { "return": {} }
297##
298{ 'command': 'system_reset' }
299
300##
301# @system_powerdown:
302#
303# Requests that a guest perform a powerdown operation.
304#
305# Since: 0.14
306#
307# Notes: A guest may or may not respond to this command.  This command
308#     returning does not indicate that a guest has accepted the
309#     request or that it has shut down.  Many guests will respond to
310#     this command by prompting the user in some way.
311#
312# Example:
313#
314# -> { "execute": "system_powerdown" }
315# <- { "return": {} }
316##
317{ 'command': 'system_powerdown' }
318
319##
320# @system_wakeup:
321#
322# Wake up guest from suspend.  If the guest has wake-up from suspend
323# support enabled (wakeup-suspend-support flag from
324# query-current-machine), wake-up guest from suspend if the guest is
325# in SUSPENDED state.  Return an error otherwise.
326#
327# Since: 1.1
328#
329# Returns: nothing.
330#
331# Note: prior to 4.0, this command does nothing in case the guest
332#     isn't suspended.
333#
334# Example:
335#
336# -> { "execute": "system_wakeup" }
337# <- { "return": {} }
338##
339{ 'command': 'system_wakeup' }
340
341##
342# @LostTickPolicy:
343#
344# Policy for handling lost ticks in timer devices.  Ticks end up
345# getting lost when, for example, the guest is paused.
346#
347# @discard: throw away the missed ticks and continue with future
348#     injection normally.  The guest OS will see the timer jump ahead
349#     by a potentially quite significant amount all at once, as if the
350#     intervening chunk of time had simply not existed; needless to
351#     say, such a sudden jump can easily confuse a guest OS which is
352#     not specifically prepared to deal with it.  Assuming the guest
353#     OS can deal correctly with the time jump, the time in the guest
354#     and in the host should now match.
355#
356# @delay: continue to deliver ticks at the normal rate.  The guest OS
357#     will not notice anything is amiss, as from its point of view
358#     time will have continued to flow normally.  The time in the
359#     guest should now be behind the time in the host by exactly the
360#     amount of time during which ticks have been missed.
361#
362# @slew: deliver ticks at a higher rate to catch up with the missed
363#     ticks.  The guest OS will not notice anything is amiss, as from
364#     its point of view time will have continued to flow normally.
365#     Once the timer has managed to catch up with all the missing
366#     ticks, the time in the guest and in the host should match.
367#
368# Since: 2.0
369##
370{ 'enum': 'LostTickPolicy',
371  'data': ['discard', 'delay', 'slew' ] }
372
373##
374# @inject-nmi:
375#
376# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
377# all CPUs (ppc64). The command fails when the guest doesn't support
378# injecting.
379#
380# Returns: If successful, nothing
381#
382# Since: 0.14
383#
384# Note: prior to 2.1, this command was only supported for x86 and s390
385#     VMs
386#
387# Example:
388#
389# -> { "execute": "inject-nmi" }
390# <- { "return": {} }
391##
392{ 'command': 'inject-nmi' }
393
394##
395# @KvmInfo:
396#
397# Information about support for KVM acceleration
398#
399# @enabled: true if KVM acceleration is active
400#
401# @present: true if KVM acceleration is built into this executable
402#
403# Since: 0.14
404##
405{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
406
407##
408# @query-kvm:
409#
410# Returns information about KVM acceleration
411#
412# Returns: @KvmInfo
413#
414# Since: 0.14
415#
416# Example:
417#
418# -> { "execute": "query-kvm" }
419# <- { "return": { "enabled": true, "present": true } }
420##
421{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
422
423##
424# @NumaOptionsType:
425#
426# @node: NUMA nodes configuration
427#
428# @dist: NUMA distance configuration (since 2.10)
429#
430# @cpu: property based CPU(s) to node mapping (Since: 2.10)
431#
432# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
433#
434# @hmat-cache: memory side cache information (Since: 5.0)
435#
436# Since: 2.1
437##
438{ 'enum': 'NumaOptionsType',
439  'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
440
441##
442# @NumaOptions:
443#
444# A discriminated record of NUMA options.  (for OptsVisitor)
445#
446# Since: 2.1
447##
448{ 'union': 'NumaOptions',
449  'base': { 'type': 'NumaOptionsType' },
450  'discriminator': 'type',
451  'data': {
452    'node': 'NumaNodeOptions',
453    'dist': 'NumaDistOptions',
454    'cpu': 'NumaCpuOptions',
455    'hmat-lb': 'NumaHmatLBOptions',
456    'hmat-cache': 'NumaHmatCacheOptions' }}
457
458##
459# @NumaNodeOptions:
460#
461# Create a guest NUMA node.  (for OptsVisitor)
462#
463# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
464#
465# @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
466#     omitted)
467#
468# @mem: memory size of this node; mutually exclusive with @memdev.
469#     Equally divide total memory among nodes if both @mem and @memdev
470#     are omitted.
471#
472# @memdev: memory backend object.  If specified for one node, it must
473#     be specified for all nodes.
474#
475# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
476#     to the nodeid which has the memory controller responsible for
477#     this NUMA node.  This field provides additional information as
478#     to the initiator node that is closest (as in directly attached)
479#     to this node, and therefore has the best performance (since 5.0)
480#
481# Since: 2.1
482##
483{ 'struct': 'NumaNodeOptions',
484  'data': {
485   '*nodeid': 'uint16',
486   '*cpus':   ['uint16'],
487   '*mem':    'size',
488   '*memdev': 'str',
489   '*initiator': 'uint16' }}
490
491##
492# @NumaDistOptions:
493#
494# Set the distance between 2 NUMA nodes.
495#
496# @src: source NUMA node.
497#
498# @dst: destination NUMA node.
499#
500# @val: NUMA distance from source node to destination node.  When a
501#     node is unreachable from another node, set the distance between
502#     them to 255.
503#
504# Since: 2.10
505##
506{ 'struct': 'NumaDistOptions',
507  'data': {
508   'src': 'uint16',
509   'dst': 'uint16',
510   'val': 'uint8' }}
511
512##
513# @CXLFixedMemoryWindowOptions:
514#
515# Create a CXL Fixed Memory Window
516#
517# @size: Size of the Fixed Memory Window in bytes.  Must be a multiple
518#     of 256MiB.
519#
520# @interleave-granularity: Number of contiguous bytes for which
521#     accesses will go to a given interleave target.  Accepted values
522#     [256, 512, 1k, 2k, 4k, 8k, 16k]
523#
524# @targets: Target root bridge IDs from -device ...,id=<ID> for each
525#     root bridge.
526#
527# Since: 7.1
528##
529{ 'struct': 'CXLFixedMemoryWindowOptions',
530  'data': {
531      'size': 'size',
532      '*interleave-granularity': 'size',
533      'targets': ['str'] }}
534
535##
536# @CXLFMWProperties:
537#
538# List of CXL Fixed Memory Windows.
539#
540# @cxl-fmw: List of CXLFixedMemoryWindowOptions
541#
542# Since: 7.1
543##
544{ 'struct' : 'CXLFMWProperties',
545  'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
546}
547
548##
549# @X86CPURegister32:
550#
551# A X86 32-bit register
552#
553# Since: 1.5
554##
555{ 'enum': 'X86CPURegister32',
556  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
557
558##
559# @X86CPUFeatureWordInfo:
560#
561# Information about a X86 CPU feature word
562#
563# @cpuid-input-eax: Input EAX value for CPUID instruction for that
564#     feature word
565#
566# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
567#     feature word
568#
569# @cpuid-register: Output register containing the feature bits
570#
571# @features: value of output register, containing the feature bits
572#
573# Since: 1.5
574##
575{ 'struct': 'X86CPUFeatureWordInfo',
576  'data': { 'cpuid-input-eax': 'int',
577            '*cpuid-input-ecx': 'int',
578            'cpuid-register': 'X86CPURegister32',
579            'features': 'int' } }
580
581##
582# @DummyForceArrays:
583#
584# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
585# internally
586#
587# Since: 2.5
588##
589{ 'struct': 'DummyForceArrays',
590  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
591
592##
593# @NumaCpuOptions:
594#
595# Option "-numa cpu" overrides default cpu to node mapping.  It
596# accepts the same set of cpu properties as returned by
597# query-hotpluggable-cpus[].props, where node-id could be used to
598# override default node mapping.
599#
600# Since: 2.10
601##
602{ 'struct': 'NumaCpuOptions',
603   'base': 'CpuInstanceProperties',
604   'data' : {} }
605
606##
607# @HmatLBMemoryHierarchy:
608#
609# The memory hierarchy in the System Locality Latency and Bandwidth
610# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
611#
612# For more information about @HmatLBMemoryHierarchy, see chapter
613# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
614#
615# @memory: the structure represents the memory performance
616#
617# @first-level: first level of memory side cache
618#
619# @second-level: second level of memory side cache
620#
621# @third-level: third level of memory side cache
622#
623# Since: 5.0
624##
625{ 'enum': 'HmatLBMemoryHierarchy',
626  'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
627
628##
629# @HmatLBDataType:
630#
631# Data type in the System Locality Latency and Bandwidth Information
632# Structure of HMAT (Heterogeneous Memory Attribute Table)
633#
634# For more information about @HmatLBDataType, see chapter 5.2.27.4:
635# Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
636#
637# @access-latency: access latency (nanoseconds)
638#
639# @read-latency: read latency (nanoseconds)
640#
641# @write-latency: write latency (nanoseconds)
642#
643# @access-bandwidth: access bandwidth (Bytes per second)
644#
645# @read-bandwidth: read bandwidth (Bytes per second)
646#
647# @write-bandwidth: write bandwidth (Bytes per second)
648#
649# Since: 5.0
650##
651{ 'enum': 'HmatLBDataType',
652  'data': [ 'access-latency', 'read-latency', 'write-latency',
653            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
654
655##
656# @NumaHmatLBOptions:
657#
658# Set the system locality latency and bandwidth information between
659# Initiator and Target proximity Domains.
660#
661# For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
662# Table 5-146 of ACPI 6.3 spec.
663#
664# @initiator: the Initiator Proximity Domain.
665#
666# @target: the Target Proximity Domain.
667#
668# @hierarchy: the Memory Hierarchy.  Indicates the performance of
669#     memory or side cache.
670#
671# @data-type: presents the type of data, access/read/write latency or
672#     hit latency.
673#
674# @latency: the value of latency from @initiator to @target proximity
675#     domain, the latency unit is "ns(nanosecond)".
676#
677# @bandwidth: the value of bandwidth between @initiator and @target
678#     proximity domain, the bandwidth unit is "Bytes per second".
679#
680# Since: 5.0
681##
682{ 'struct': 'NumaHmatLBOptions',
683    'data': {
684    'initiator': 'uint16',
685    'target': 'uint16',
686    'hierarchy': 'HmatLBMemoryHierarchy',
687    'data-type': 'HmatLBDataType',
688    '*latency': 'uint64',
689    '*bandwidth': 'size' }}
690
691##
692# @HmatCacheAssociativity:
693#
694# Cache associativity in the Memory Side Cache Information Structure
695# of HMAT
696#
697# For more information of @HmatCacheAssociativity, see chapter
698# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
699#
700# @none: None (no memory side cache in this proximity domain, or cache
701#     associativity unknown)
702#
703# @direct: Direct Mapped
704#
705# @complex: Complex Cache Indexing (implementation specific)
706#
707# Since: 5.0
708##
709{ 'enum': 'HmatCacheAssociativity',
710  'data': [ 'none', 'direct', 'complex' ] }
711
712##
713# @HmatCacheWritePolicy:
714#
715# Cache write policy in the Memory Side Cache Information Structure of
716# HMAT
717#
718# For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
719# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
720#
721# @none: None (no memory side cache in this proximity domain, or cache
722#     write policy unknown)
723#
724# @write-back: Write Back (WB)
725#
726# @write-through: Write Through (WT)
727#
728# Since: 5.0
729##
730{ 'enum': 'HmatCacheWritePolicy',
731  'data': [ 'none', 'write-back', 'write-through' ] }
732
733##
734# @NumaHmatCacheOptions:
735#
736# Set the memory side cache information for a given memory domain.
737#
738# For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
739# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
740#
741# @node-id: the memory proximity domain to which the memory belongs.
742#
743# @size: the size of memory side cache in bytes.
744#
745# @level: the cache level described in this structure.
746#
747# @associativity: the cache associativity,
748#     none/direct-mapped/complex(complex cache indexing).
749#
750# @policy: the write policy, none/write-back/write-through.
751#
752# @line: the cache Line size in bytes.
753#
754# Since: 5.0
755##
756{ 'struct': 'NumaHmatCacheOptions',
757  'data': {
758   'node-id': 'uint32',
759   'size': 'size',
760   'level': 'uint8',
761   'associativity': 'HmatCacheAssociativity',
762   'policy': 'HmatCacheWritePolicy',
763   'line': 'uint16' }}
764
765##
766# @memsave:
767#
768# Save a portion of guest memory to a file.
769#
770# @val: the virtual address of the guest to start from
771#
772# @size: the size of memory region to save
773#
774# @filename: the file to save the memory to as binary data
775#
776# @cpu-index: the index of the virtual CPU to use for translating the
777#     virtual address (defaults to CPU 0)
778#
779# Returns: Nothing on success
780#
781# Since: 0.14
782#
783# Notes: Errors were not reliably returned until 1.1
784#
785# Example:
786#
787# -> { "execute": "memsave",
788#      "arguments": { "val": 10,
789#                     "size": 100,
790#                     "filename": "/tmp/virtual-mem-dump" } }
791# <- { "return": {} }
792##
793{ 'command': 'memsave',
794  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
795
796##
797# @pmemsave:
798#
799# Save a portion of guest physical memory to a file.
800#
801# @val: the physical address of the guest to start from
802#
803# @size: the size of memory region to save
804#
805# @filename: the file to save the memory to as binary data
806#
807# Returns: Nothing on success
808#
809# Since: 0.14
810#
811# Notes: Errors were not reliably returned until 1.1
812#
813# Example:
814#
815# -> { "execute": "pmemsave",
816#      "arguments": { "val": 10,
817#                     "size": 100,
818#                     "filename": "/tmp/physical-mem-dump" } }
819# <- { "return": {} }
820##
821{ 'command': 'pmemsave',
822  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
823
824##
825# @Memdev:
826#
827# Information about memory backend
828#
829# @id: backend's ID if backend has 'id' property (since 2.9)
830#
831# @size: memory backend size
832#
833# @merge: whether memory merge support is enabled
834#
835# @dump: whether memory backend's memory is included in a core dump
836#
837# @prealloc: whether memory was preallocated
838#
839# @share: whether memory is private to QEMU or shared (since 6.1)
840#
841# @reserve: whether swap space (or huge pages) was reserved if
842#     applicable.  This corresponds to the user configuration and not
843#     the actual behavior implemented in the OS to perform the
844#     reservation.  For example, Linux will never reserve swap space
845#     for shared file mappings.  (since 6.1)
846#
847# @host-nodes: host nodes for its memory policy
848#
849# @policy: memory policy of memory backend
850#
851# Since: 2.1
852##
853{ 'struct': 'Memdev',
854  'data': {
855    '*id':        'str',
856    'size':       'size',
857    'merge':      'bool',
858    'dump':       'bool',
859    'prealloc':   'bool',
860    'share':      'bool',
861    '*reserve':    'bool',
862    'host-nodes': ['uint16'],
863    'policy':     'HostMemPolicy' }}
864
865##
866# @query-memdev:
867#
868# Returns information for all memory backends.
869#
870# Returns: a list of @Memdev.
871#
872# Since: 2.1
873#
874# Example:
875#
876# -> { "execute": "query-memdev" }
877# <- { "return": [
878#        {
879#          "id": "mem1",
880#          "size": 536870912,
881#          "merge": false,
882#          "dump": true,
883#          "prealloc": false,
884#          "share": false,
885#          "host-nodes": [0, 1],
886#          "policy": "bind"
887#        },
888#        {
889#          "size": 536870912,
890#          "merge": false,
891#          "dump": true,
892#          "prealloc": true,
893#          "share": false,
894#          "host-nodes": [2, 3],
895#          "policy": "preferred"
896#        }
897#      ]
898#    }
899##
900{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
901
902##
903# @CpuInstanceProperties:
904#
905# List of properties to be used for hotplugging a CPU instance, it
906# should be passed by management with device_add command when a CPU is
907# being hotplugged.
908#
909# Which members are optional and which mandatory depends on the
910# architecture and board.
911#
912# For s390x see :ref:`cpu-topology-s390x`.
913#
914# The ids other than the node-id specify the position of the CPU
915# within the CPU topology (as defined by the machine property "smp",
916# thus see also type @SMPConfiguration)
917#
918# @node-id: NUMA node ID the CPU belongs to
919#
920# @drawer-id: drawer number within CPU topology the CPU belongs to
921#     (since 8.2)
922#
923# @book-id: book number within parent container the CPU belongs to
924#     (since 8.2)
925#
926# @socket-id: socket number within parent container the CPU belongs to
927#
928# @die-id: die number within the parent container the CPU belongs to
929#    (since 4.1)
930#
931# @cluster-id: cluster number within the parent container the CPU
932#     belongs to (since 7.1)
933#
934# @core-id: core number within the parent container the CPU
935#     belongs to
936#
937# @thread-id: thread number within the core the CPU  belongs to
938#
939# Note: management should be prepared to pass through additional
940#     properties with device_add.
941#
942# Since: 2.7
943##
944{ 'struct': 'CpuInstanceProperties',
945  # Keep these in sync with the properties device_add accepts
946  'data': { '*node-id': 'int',
947            '*drawer-id': 'int',
948            '*book-id': 'int',
949            '*socket-id': 'int',
950            '*die-id': 'int',
951            '*cluster-id': 'int',
952            '*core-id': 'int',
953            '*thread-id': 'int'
954  }
955}
956
957##
958# @HotpluggableCPU:
959#
960# @type: CPU object type for usage with device_add command
961#
962# @props: list of properties to be used for hotplugging CPU
963#
964# @vcpus-count: number of logical VCPU threads @HotpluggableCPU
965#     provides
966#
967# @qom-path: link to existing CPU object if CPU is present or omitted
968#     if CPU is not present.
969#
970# Since: 2.7
971##
972{ 'struct': 'HotpluggableCPU',
973  'data': { 'type': 'str',
974            'vcpus-count': 'int',
975            'props': 'CpuInstanceProperties',
976            '*qom-path': 'str'
977          }
978}
979
980##
981# @query-hotpluggable-cpus:
982#
983# TODO: Better documentation; currently there is none.
984#
985# Returns: a list of HotpluggableCPU objects.
986#
987# Since: 2.7
988#
989# Examples:
990#
991# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu
992# POWER8:
993#
994# -> { "execute": "query-hotpluggable-cpus" }
995# <- {"return": [
996#      { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
997#        "vcpus-count": 1 },
998#      { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
999#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
1000#    ]}'
1001#
1002# For pc machine type started with -smp 1,maxcpus=2:
1003#
1004# -> { "execute": "query-hotpluggable-cpus" }
1005# <- {"return": [
1006#      {
1007#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1008#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1009#      },
1010#      {
1011#         "qom-path": "/machine/unattached/device[0]",
1012#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1013#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1014#      }
1015#    ]}
1016#
1017# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu
1018# qemu (Since: 2.11):
1019#
1020# -> { "execute": "query-hotpluggable-cpus" }
1021# <- {"return": [
1022#      {
1023#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
1024#         "props": { "core-id": 1 }
1025#      },
1026#      {
1027#         "qom-path": "/machine/unattached/device[0]",
1028#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
1029#         "props": { "core-id": 0 }
1030#      }
1031#    ]}
1032##
1033{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1034             'allow-preconfig': true }
1035
1036##
1037# @set-numa-node:
1038#
1039# Runtime equivalent of '-numa' CLI option, available at preconfigure
1040# stage to configure numa mapping before initializing machine.
1041#
1042# Since: 3.0
1043##
1044{ 'command': 'set-numa-node', 'boxed': true,
1045  'data': 'NumaOptions',
1046  'allow-preconfig': true
1047}
1048
1049##
1050# @balloon:
1051#
1052# Request the balloon driver to change its balloon size.
1053#
1054# @value: the target logical size of the VM in bytes.  We can deduce
1055#     the size of the balloon using this formula:
1056#
1057#        logical_vm_size = vm_ram_size - balloon_size
1058#
1059#     From it we have: balloon_size = vm_ram_size - @value
1060#
1061# Returns:
1062# - Nothing on success
1063# - If the balloon driver is enabled but not functional because the
1064#   KVM kernel module cannot support it, KVMMissingCap
1065# - If no balloon device is present, DeviceNotActive
1066#
1067# Notes: This command just issues a request to the guest.  When it
1068#     returns, the balloon size may not have changed.  A guest can
1069#     change the balloon size independent of this command.
1070#
1071# Since: 0.14
1072#
1073# Example:
1074#
1075# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1076# <- { "return": {} }
1077#
1078# With a 2.5GiB guest this command inflated the ballon to 3GiB.
1079##
1080{ 'command': 'balloon', 'data': {'value': 'int'} }
1081
1082##
1083# @BalloonInfo:
1084#
1085# Information about the guest balloon device.
1086#
1087# @actual: the logical size of the VM in bytes Formula used:
1088#     logical_vm_size = vm_ram_size - balloon_size
1089#
1090# Since: 0.14
1091##
1092{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1093
1094##
1095# @query-balloon:
1096#
1097# Return information about the balloon device.
1098#
1099# Returns:
1100# - @BalloonInfo on success
1101# - If the balloon driver is enabled but not functional because the
1102#   KVM kernel module cannot support it, KVMMissingCap
1103# - If no balloon device is present, DeviceNotActive
1104#
1105# Since: 0.14
1106#
1107# Example:
1108#
1109# -> { "execute": "query-balloon" }
1110# <- { "return": {
1111#          "actual": 1073741824
1112#       }
1113#    }
1114##
1115{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1116
1117##
1118# @BALLOON_CHANGE:
1119#
1120# Emitted when the guest changes the actual BALLOON level.  This value
1121# is equivalent to the @actual field return by the 'query-balloon'
1122# command
1123#
1124# @actual: the logical size of the VM in bytes Formula used:
1125#     logical_vm_size = vm_ram_size - balloon_size
1126#
1127# Note: this event is rate-limited.
1128#
1129# Since: 1.2
1130#
1131# Example:
1132#
1133# <- { "event": "BALLOON_CHANGE",
1134#      "data": { "actual": 944766976 },
1135#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1136##
1137{ 'event': 'BALLOON_CHANGE',
1138  'data': { 'actual': 'int' } }
1139
1140##
1141# @HvBalloonInfo:
1142#
1143# hv-balloon guest-provided memory status information.
1144#
1145# @committed: the amount of memory in use inside the guest plus the
1146#     amount of the memory unusable inside the guest (ballooned out,
1147#     offline, etc.)
1148#
1149# @available: the amount of the memory inside the guest available for
1150#     new allocations ("free")
1151#
1152# Since: 8.2
1153##
1154{ 'struct': 'HvBalloonInfo',
1155  'data': { 'committed': 'size', 'available': 'size' } }
1156
1157##
1158# @query-hv-balloon-status-report:
1159#
1160# Returns the hv-balloon driver data contained in the last received "STATUS"
1161# message from the guest.
1162#
1163# Returns:
1164# - @HvBalloonInfo on success
1165# - If no hv-balloon device is present, guest memory status reporting
1166#   is not enabled or no guest memory status report received yet,
1167#   GenericError
1168#
1169# Since: 8.2
1170#
1171# Example:
1172#
1173# -> { "execute": "query-hv-balloon-status-report" }
1174# <- { "return": {
1175#          "committed": 816640000,
1176#          "available": 3333054464
1177#       }
1178#    }
1179##
1180{ 'command': 'query-hv-balloon-status-report', 'returns': 'HvBalloonInfo' }
1181
1182##
1183# @HV_BALLOON_STATUS_REPORT:
1184#
1185# Emitted when the hv-balloon driver receives a "STATUS" message from
1186# the guest.
1187#
1188# Note: this event is rate-limited.
1189#
1190# Since: 8.2
1191#
1192# Example:
1193#
1194# <- { "event": "HV_BALLOON_STATUS_REPORT",
1195#      "data": { "committed": 816640000, "available": 3333054464 },
1196#      "timestamp": { "seconds": 1600295492, "microseconds": 661044 } }
1197#
1198##
1199{ 'event': 'HV_BALLOON_STATUS_REPORT',
1200  'data': 'HvBalloonInfo' }
1201
1202##
1203# @MemoryInfo:
1204#
1205# Actual memory information in bytes.
1206#
1207# @base-memory: size of "base" memory specified with command line
1208#     option -m.
1209#
1210# @plugged-memory: size of memory that can be hot-unplugged.  This
1211#     field is omitted if target doesn't support memory hotplug (i.e.
1212#     CONFIG_MEM_DEVICE not defined at build time).
1213#
1214# Since: 2.11
1215##
1216{ 'struct': 'MemoryInfo',
1217  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1218
1219##
1220# @query-memory-size-summary:
1221#
1222# Return the amount of initially allocated and present hotpluggable
1223# (if enabled) memory in bytes.
1224#
1225# Example:
1226#
1227# -> { "execute": "query-memory-size-summary" }
1228# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1229#
1230# Since: 2.11
1231##
1232{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1233
1234##
1235# @PCDIMMDeviceInfo:
1236#
1237# PCDIMMDevice state information
1238#
1239# @id: device's ID
1240#
1241# @addr: physical address, where device is mapped
1242#
1243# @size: size of memory that the device provides
1244#
1245# @slot: slot number at which device is plugged in
1246#
1247# @node: NUMA node number where device is plugged in
1248#
1249# @memdev: memory backend linked with device
1250#
1251# @hotplugged: true if device was hotplugged
1252#
1253# @hotpluggable: true if device if could be added/removed while
1254#     machine is running
1255#
1256# Since: 2.1
1257##
1258{ 'struct': 'PCDIMMDeviceInfo',
1259  'data': { '*id': 'str',
1260            'addr': 'int',
1261            'size': 'int',
1262            'slot': 'int',
1263            'node': 'int',
1264            'memdev': 'str',
1265            'hotplugged': 'bool',
1266            'hotpluggable': 'bool'
1267          }
1268}
1269
1270##
1271# @VirtioPMEMDeviceInfo:
1272#
1273# VirtioPMEM state information
1274#
1275# @id: device's ID
1276#
1277# @memaddr: physical address in memory, where device is mapped
1278#
1279# @size: size of memory that the device provides
1280#
1281# @memdev: memory backend linked with device
1282#
1283# Since: 4.1
1284##
1285{ 'struct': 'VirtioPMEMDeviceInfo',
1286  'data': { '*id': 'str',
1287            'memaddr': 'size',
1288            'size': 'size',
1289            'memdev': 'str'
1290          }
1291}
1292
1293##
1294# @VirtioMEMDeviceInfo:
1295#
1296# VirtioMEMDevice state information
1297#
1298# @id: device's ID
1299#
1300# @memaddr: physical address in memory, where device is mapped
1301#
1302# @requested-size: the user requested size of the device
1303#
1304# @size: the (current) size of memory that the device provides
1305#
1306# @max-size: the maximum size of memory that the device can provide
1307#
1308# @block-size: the block size of memory that the device provides
1309#
1310# @node: NUMA node number where device is assigned to
1311#
1312# @memdev: memory backend linked with the region
1313#
1314# Since: 5.1
1315##
1316{ 'struct': 'VirtioMEMDeviceInfo',
1317  'data': { '*id': 'str',
1318            'memaddr': 'size',
1319            'requested-size': 'size',
1320            'size': 'size',
1321            'max-size': 'size',
1322            'block-size': 'size',
1323            'node': 'int',
1324            'memdev': 'str'
1325          }
1326}
1327
1328##
1329# @SgxEPCDeviceInfo:
1330#
1331# Sgx EPC state information
1332#
1333# @id: device's ID
1334#
1335# @memaddr: physical address in memory, where device is mapped
1336#
1337# @size: size of memory that the device provides
1338#
1339# @memdev: memory backend linked with device
1340#
1341# @node: the numa node (Since: 7.0)
1342#
1343# Since: 6.2
1344##
1345{ 'struct': 'SgxEPCDeviceInfo',
1346  'data': { '*id': 'str',
1347            'memaddr': 'size',
1348            'size': 'size',
1349            'node': 'int',
1350            'memdev': 'str'
1351          }
1352}
1353
1354##
1355# @HvBalloonDeviceInfo:
1356#
1357# hv-balloon provided memory state information
1358#
1359# @id: device's ID
1360#
1361# @memaddr: physical address in memory, where device is mapped
1362#
1363# @max-size: the maximum size of memory that the device can provide
1364#
1365# @memdev: memory backend linked with device
1366#
1367# Since: 8.2
1368##
1369{ 'struct': 'HvBalloonDeviceInfo',
1370  'data': { '*id': 'str',
1371            '*memaddr': 'size',
1372            'max-size': 'size',
1373            '*memdev': 'str'
1374          }
1375}
1376
1377##
1378# @MemoryDeviceInfoKind:
1379#
1380# @nvdimm: since 2.12
1381#
1382# @virtio-pmem: since 4.1
1383#
1384# @virtio-mem: since 5.1
1385#
1386# @sgx-epc: since 6.2.
1387#
1388# @hv-balloon: since 8.2.
1389#
1390# Since: 2.1
1391##
1392{ 'enum': 'MemoryDeviceInfoKind',
1393  'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc',
1394            'hv-balloon' ] }
1395
1396##
1397# @PCDIMMDeviceInfoWrapper:
1398#
1399# Since: 2.1
1400##
1401{ 'struct': 'PCDIMMDeviceInfoWrapper',
1402  'data': { 'data': 'PCDIMMDeviceInfo' } }
1403
1404##
1405# @VirtioPMEMDeviceInfoWrapper:
1406#
1407# Since: 2.1
1408##
1409{ 'struct': 'VirtioPMEMDeviceInfoWrapper',
1410  'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1411
1412##
1413# @VirtioMEMDeviceInfoWrapper:
1414#
1415# Since: 2.1
1416##
1417{ 'struct': 'VirtioMEMDeviceInfoWrapper',
1418  'data': { 'data': 'VirtioMEMDeviceInfo' } }
1419
1420##
1421# @SgxEPCDeviceInfoWrapper:
1422#
1423# Since: 6.2
1424##
1425{ 'struct': 'SgxEPCDeviceInfoWrapper',
1426  'data': { 'data': 'SgxEPCDeviceInfo' } }
1427
1428##
1429# @HvBalloonDeviceInfoWrapper:
1430#
1431# Since: 8.2
1432##
1433{ 'struct': 'HvBalloonDeviceInfoWrapper',
1434  'data': { 'data': 'HvBalloonDeviceInfo' } }
1435
1436##
1437# @MemoryDeviceInfo:
1438#
1439# Union containing information about a memory device
1440#
1441# Since: 2.1
1442##
1443{ 'union': 'MemoryDeviceInfo',
1444  'base': { 'type': 'MemoryDeviceInfoKind' },
1445  'discriminator': 'type',
1446  'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1447            'nvdimm': 'PCDIMMDeviceInfoWrapper',
1448            'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1449            'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1450            'sgx-epc': 'SgxEPCDeviceInfoWrapper',
1451            'hv-balloon': 'HvBalloonDeviceInfoWrapper'
1452          }
1453}
1454
1455##
1456# @SgxEPC:
1457#
1458# Sgx EPC cmdline information
1459#
1460# @memdev: memory backend linked with device
1461#
1462# @node: the numa node (Since: 7.0)
1463#
1464# Since: 6.2
1465##
1466{ 'struct': 'SgxEPC',
1467  'data': { 'memdev': 'str',
1468            'node': 'int'
1469          }
1470}
1471
1472##
1473# @SgxEPCProperties:
1474#
1475# SGX properties of machine types.
1476#
1477# @sgx-epc: list of ids of memory-backend-epc objects.
1478#
1479# Since: 6.2
1480##
1481{ 'struct': 'SgxEPCProperties',
1482  'data': { 'sgx-epc': ['SgxEPC'] }
1483}
1484
1485##
1486# @query-memory-devices:
1487#
1488# Lists available memory devices and their state
1489#
1490# Since: 2.1
1491#
1492# Example:
1493#
1494# -> { "execute": "query-memory-devices" }
1495# <- { "return": [ { "data":
1496#                       { "addr": 5368709120,
1497#                         "hotpluggable": true,
1498#                         "hotplugged": true,
1499#                         "id": "d1",
1500#                         "memdev": "/objects/memX",
1501#                         "node": 0,
1502#                         "size": 1073741824,
1503#                         "slot": 0},
1504#                    "type": "dimm"
1505#                  } ] }
1506##
1507{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1508
1509##
1510# @MEMORY_DEVICE_SIZE_CHANGE:
1511#
1512# Emitted when the size of a memory device changes.  Only emitted for
1513# memory devices that can actually change the size (e.g., virtio-mem
1514# due to guest action).
1515#
1516# @id: device's ID
1517#
1518# @size: the new size of memory that the device provides
1519#
1520# @qom-path: path to the device object in the QOM tree (since 6.2)
1521#
1522# Note: this event is rate-limited.
1523#
1524# Since: 5.1
1525#
1526# Example:
1527#
1528# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1529#      "data": { "id": "vm0", "size": 1073741824,
1530#                "qom-path": "/machine/unattached/device[2]" },
1531#      "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1532##
1533{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1534  'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1535
1536##
1537# @MEM_UNPLUG_ERROR:
1538#
1539# Emitted when memory hot unplug error occurs.
1540#
1541# @device: device name
1542#
1543# @msg: Informative message
1544#
1545# Features:
1546#
1547# @deprecated: This event is deprecated.  Use
1548#     @DEVICE_UNPLUG_GUEST_ERROR instead.
1549#
1550# Since: 2.4
1551#
1552# Example:
1553#
1554# <- { "event": "MEM_UNPLUG_ERROR",
1555#      "data": { "device": "dimm1",
1556#                "msg": "acpi: device unplug for unsupported device"
1557#      },
1558#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1559##
1560{ 'event': 'MEM_UNPLUG_ERROR',
1561  'data': { 'device': 'str', 'msg': 'str' },
1562  'features': ['deprecated'] }
1563
1564##
1565# @BootConfiguration:
1566#
1567# Schema for virtual machine boot configuration.
1568#
1569# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1570#
1571# @once: Boot order to apply on first boot
1572#
1573# @menu: Whether to show a boot menu
1574#
1575# @splash: The name of the file to be passed to the firmware as logo
1576#     picture, if @menu is true.
1577#
1578# @splash-time: How long to show the logo picture, in milliseconds
1579#
1580# @reboot-timeout: Timeout before guest reboots after boot fails
1581#
1582# @strict: Whether to attempt booting from devices not included in the
1583#     boot order
1584#
1585# Since: 7.1
1586##
1587{ 'struct': 'BootConfiguration', 'data': {
1588     '*order': 'str',
1589     '*once': 'str',
1590     '*menu': 'bool',
1591     '*splash': 'str',
1592     '*splash-time': 'int',
1593     '*reboot-timeout': 'int',
1594     '*strict': 'bool' } }
1595
1596##
1597# @SMPConfiguration:
1598#
1599# Schema for CPU topology configuration.  A missing value lets QEMU
1600# figure out a suitable value based on the ones that are provided.
1601#
1602# The members other than @cpus and @maxcpus define a topology of
1603# containers.
1604#
1605# The ordering from highest/coarsest to lowest/finest is:
1606# @drawers, @books, @sockets, @dies, @clusters, @cores, @threads.
1607#
1608# Different architectures support different subsets of topology
1609# containers.
1610#
1611# For example, s390x does not have clusters and dies, and the socket
1612# is the parent container of cores.
1613#
1614# @cpus: number of virtual CPUs in the virtual machine
1615#
1616# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1617#     machine
1618#
1619# @drawers: number of drawers in the CPU topology (since 8.2)
1620#
1621# @books: number of books in the CPU topology (since 8.2)
1622#
1623# @sockets: number of sockets per parent container
1624#
1625# @dies: number of dies per parent container
1626#
1627# @clusters: number of clusters per parent container (since 7.0)
1628#
1629# @cores: number of cores per parent container
1630#
1631# @threads: number of threads per core
1632#
1633# Since: 6.1
1634##
1635{ 'struct': 'SMPConfiguration', 'data': {
1636     '*cpus': 'int',
1637     '*drawers': 'int',
1638     '*books': 'int',
1639     '*sockets': 'int',
1640     '*dies': 'int',
1641     '*clusters': 'int',
1642     '*cores': 'int',
1643     '*threads': 'int',
1644     '*maxcpus': 'int' } }
1645
1646##
1647# @x-query-irq:
1648#
1649# Query interrupt statistics
1650#
1651# Features:
1652#
1653# @unstable: This command is meant for debugging.
1654#
1655# Returns: interrupt statistics
1656#
1657# Since: 6.2
1658##
1659{ 'command': 'x-query-irq',
1660  'returns': 'HumanReadableText',
1661  'features': [ 'unstable' ] }
1662
1663##
1664# @x-query-jit:
1665#
1666# Query TCG compiler statistics
1667#
1668# Features:
1669#
1670# @unstable: This command is meant for debugging.
1671#
1672# Returns: TCG compiler statistics
1673#
1674# Since: 6.2
1675##
1676{ 'command': 'x-query-jit',
1677  'returns': 'HumanReadableText',
1678  'if': 'CONFIG_TCG',
1679  'features': [ 'unstable' ] }
1680
1681##
1682# @x-query-numa:
1683#
1684# Query NUMA topology information
1685#
1686# Features:
1687#
1688# @unstable: This command is meant for debugging.
1689#
1690# Returns: topology information
1691#
1692# Since: 6.2
1693##
1694{ 'command': 'x-query-numa',
1695  'returns': 'HumanReadableText',
1696  'features': [ 'unstable' ] }
1697
1698##
1699# @x-query-opcount:
1700#
1701# Query TCG opcode counters
1702#
1703# Features:
1704#
1705# @unstable: This command is meant for debugging.
1706#
1707# Returns: TCG opcode counters
1708#
1709# Since: 6.2
1710##
1711{ 'command': 'x-query-opcount',
1712  'returns': 'HumanReadableText',
1713  'if': 'CONFIG_TCG',
1714  'features': [ 'unstable' ] }
1715
1716##
1717# @x-query-ramblock:
1718#
1719# Query system ramblock information
1720#
1721# Features:
1722#
1723# @unstable: This command is meant for debugging.
1724#
1725# Returns: system ramblock information
1726#
1727# Since: 6.2
1728##
1729{ 'command': 'x-query-ramblock',
1730  'returns': 'HumanReadableText',
1731  'features': [ 'unstable' ] }
1732
1733##
1734# @x-query-rdma:
1735#
1736# Query RDMA state
1737#
1738# Features:
1739#
1740# @unstable: This command is meant for debugging.
1741#
1742# Returns: RDMA state
1743#
1744# Since: 6.2
1745##
1746{ 'command': 'x-query-rdma',
1747  'returns': 'HumanReadableText',
1748  'features': [ 'unstable' ] }
1749
1750##
1751# @x-query-roms:
1752#
1753# Query information on the registered ROMS
1754#
1755# Features:
1756#
1757# @unstable: This command is meant for debugging.
1758#
1759# Returns: registered ROMs
1760#
1761# Since: 6.2
1762##
1763{ 'command': 'x-query-roms',
1764  'returns': 'HumanReadableText',
1765  'features': [ 'unstable' ] }
1766
1767##
1768# @x-query-usb:
1769#
1770# Query information on the USB devices
1771#
1772# Features:
1773#
1774# @unstable: This command is meant for debugging.
1775#
1776# Returns: USB device information
1777#
1778# Since: 6.2
1779##
1780{ 'command': 'x-query-usb',
1781  'returns': 'HumanReadableText',
1782  'features': [ 'unstable' ] }
1783
1784##
1785# @SmbiosEntryPointType:
1786#
1787# @32: SMBIOS version 2.1 (32-bit) Entry Point
1788#
1789# @64: SMBIOS version 3.0 (64-bit) Entry Point
1790#
1791# Since: 7.0
1792##
1793{ 'enum': 'SmbiosEntryPointType',
1794  'data': [ '32', '64' ] }
1795
1796##
1797# @MemorySizeConfiguration:
1798#
1799# Schema for memory size configuration.
1800#
1801# @size: memory size in bytes
1802#
1803# @max-size: maximum hotpluggable memory size in bytes
1804#
1805# @slots: number of available memory slots for hotplug
1806#
1807# Since: 7.1
1808##
1809{ 'struct': 'MemorySizeConfiguration', 'data': {
1810     '*size': 'size',
1811     '*max-size': 'size',
1812     '*slots': 'uint64' } }
1813
1814##
1815# @dumpdtb:
1816#
1817# Save the FDT in dtb format.
1818#
1819# @filename: name of the dtb file to be created
1820#
1821# Since: 7.2
1822#
1823# Example:
1824#
1825# -> { "execute": "dumpdtb" }
1826#      "arguments": { "filename": "fdt.dtb" } }
1827# <- { "return": {} }
1828##
1829{ 'command': 'dumpdtb',
1830  'data': { 'filename': 'str' },
1831  'if': 'CONFIG_FDT' }
1832