1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4# This work is licensed under the terms of the GNU GPL, version 2 or later. 5# See the COPYING file in the top-level directory. 6 7## 8# = Machines 9## 10 11## 12# @SysEmuTarget: 13# 14# The comprehensive enumeration of QEMU system emulation ("softmmu") 15# targets. Run "./configure --help" in the project root directory, and 16# look for the \*-softmmu targets near the "--target-list" option. The 17# individual target constants are not documented here, for the time 18# being. 19# 20# @rx: since 5.0 21# @avr: since 5.1 22# 23# Notes: The resulting QMP strings can be appended to the "qemu-system-" 24# prefix to produce the corresponding QEMU executable name. This 25# is true even for "qemu-system-x86_64". 26# 27# Since: 3.0 28## 29{ 'enum' : 'SysEmuTarget', 30 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 'lm32', 31 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64', 32 'mips64el', 'mipsel', 'moxie', 'nios2', 'or1k', 'ppc', 33 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4', 34 'sh4eb', 'sparc', 'sparc64', 'tricore', 'unicore32', 35 'x86_64', 'xtensa', 'xtensaeb' ] } 36 37## 38# @CpuS390State: 39# 40# An enumeration of cpu states that can be assumed by a virtual 41# S390 CPU 42# 43# Since: 2.12 44## 45{ 'enum': 'CpuS390State', 46 'prefix': 'S390_CPU_STATE', 47 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 48 49## 50# @CpuInfoS390: 51# 52# Additional information about a virtual S390 CPU 53# 54# @cpu-state: the virtual CPU's state 55# 56# Since: 2.12 57## 58{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } } 59 60## 61# @CpuInfoFast: 62# 63# Information about a virtual CPU 64# 65# @cpu-index: index of the virtual CPU 66# 67# @qom-path: path to the CPU object in the QOM tree 68# 69# @thread-id: ID of the underlying host thread 70# 71# @props: properties describing to which node/socket/core/thread 72# virtual CPU belongs to, provided if supported by board 73# 74# @target: the QEMU system emulation target, which determines which 75# additional fields will be listed (since 3.0) 76# 77# Since: 2.12 78# 79## 80{ 'union' : 'CpuInfoFast', 81 'base' : { 'cpu-index' : 'int', 82 'qom-path' : 'str', 83 'thread-id' : 'int', 84 '*props' : 'CpuInstanceProperties', 85 'target' : 'SysEmuTarget' }, 86 'discriminator' : 'target', 87 'data' : { 's390x' : 'CpuInfoS390' } } 88 89## 90# @query-cpus-fast: 91# 92# Returns information about all virtual CPUs. 93# 94# Returns: list of @CpuInfoFast 95# 96# Since: 2.12 97# 98# Example: 99# 100# -> { "execute": "query-cpus-fast" } 101# <- { "return": [ 102# { 103# "thread-id": 25627, 104# "props": { 105# "core-id": 0, 106# "thread-id": 0, 107# "socket-id": 0 108# }, 109# "qom-path": "/machine/unattached/device[0]", 110# "arch":"x86", 111# "target":"x86_64", 112# "cpu-index": 0 113# }, 114# { 115# "thread-id": 25628, 116# "props": { 117# "core-id": 0, 118# "thread-id": 0, 119# "socket-id": 1 120# }, 121# "qom-path": "/machine/unattached/device[2]", 122# "arch":"x86", 123# "target":"x86_64", 124# "cpu-index": 1 125# } 126# ] 127# } 128## 129{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 130 131## 132# @MachineInfo: 133# 134# Information describing a machine. 135# 136# @name: the name of the machine 137# 138# @alias: an alias for the machine name 139# 140# @is-default: whether the machine is default 141# 142# @cpu-max: maximum number of CPUs supported by the machine type 143# (since 1.5) 144# 145# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7) 146# 147# @numa-mem-supported: true if '-numa node,mem' option is supported by 148# the machine type and false otherwise (since 4.1) 149# 150# @deprecated: if true, the machine type is deprecated and may be removed 151# in future versions of QEMU according to the QEMU deprecation 152# policy (since 4.1) 153# 154# @default-cpu-type: default CPU model typename if none is requested via 155# the -cpu argument. (since 4.2) 156# 157# @default-ram-id: the default ID of initial RAM memory backend (since 5.2) 158# 159# Since: 1.2 160## 161{ 'struct': 'MachineInfo', 162 'data': { 'name': 'str', '*alias': 'str', 163 '*is-default': 'bool', 'cpu-max': 'int', 164 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool', 165 'deprecated': 'bool', '*default-cpu-type': 'str', 166 '*default-ram-id': 'str' } } 167 168## 169# @query-machines: 170# 171# Return a list of supported machines 172# 173# Returns: a list of MachineInfo 174# 175# Since: 1.2 176## 177{ 'command': 'query-machines', 'returns': ['MachineInfo'] } 178 179## 180# @CurrentMachineParams: 181# 182# Information describing the running machine parameters. 183# 184# @wakeup-suspend-support: true if the machine supports wake up from 185# suspend 186# 187# Since: 4.0 188## 189{ 'struct': 'CurrentMachineParams', 190 'data': { 'wakeup-suspend-support': 'bool'} } 191 192## 193# @query-current-machine: 194# 195# Return information on the current virtual machine. 196# 197# Returns: CurrentMachineParams 198# 199# Since: 4.0 200## 201{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' } 202 203## 204# @TargetInfo: 205# 206# Information describing the QEMU target. 207# 208# @arch: the target architecture 209# 210# Since: 1.2 211## 212{ 'struct': 'TargetInfo', 213 'data': { 'arch': 'SysEmuTarget' } } 214 215## 216# @query-target: 217# 218# Return information about the target for this QEMU 219# 220# Returns: TargetInfo 221# 222# Since: 1.2 223## 224{ 'command': 'query-target', 'returns': 'TargetInfo' } 225 226## 227# @UuidInfo: 228# 229# Guest UUID information (Universally Unique Identifier). 230# 231# @UUID: the UUID of the guest 232# 233# Since: 0.14 234# 235# Notes: If no UUID was specified for the guest, a null UUID is returned. 236## 237{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 238 239## 240# @query-uuid: 241# 242# Query the guest UUID information. 243# 244# Returns: The @UuidInfo for the guest 245# 246# Since: 0.14 247# 248# Example: 249# 250# -> { "execute": "query-uuid" } 251# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 252# 253## 254{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } 255 256## 257# @GuidInfo: 258# 259# GUID information. 260# 261# @guid: the globally unique identifier 262# 263# Since: 2.9 264## 265{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 266 267## 268# @query-vm-generation-id: 269# 270# Show Virtual Machine Generation ID 271# 272# Since: 2.9 273## 274{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 275 276## 277# @system_reset: 278# 279# Performs a hard reset of a guest. 280# 281# Since: 0.14 282# 283# Example: 284# 285# -> { "execute": "system_reset" } 286# <- { "return": {} } 287# 288## 289{ 'command': 'system_reset' } 290 291## 292# @system_powerdown: 293# 294# Requests that a guest perform a powerdown operation. 295# 296# Since: 0.14 297# 298# Notes: A guest may or may not respond to this command. This command 299# returning does not indicate that a guest has accepted the request or 300# that it has shut down. Many guests will respond to this command by 301# prompting the user in some way. 302# Example: 303# 304# -> { "execute": "system_powerdown" } 305# <- { "return": {} } 306# 307## 308{ 'command': 'system_powerdown' } 309 310## 311# @system_wakeup: 312# 313# Wake up guest from suspend. If the guest has wake-up from suspend 314# support enabled (wakeup-suspend-support flag from 315# query-current-machine), wake-up guest from suspend if the guest is 316# in SUSPENDED state. Return an error otherwise. 317# 318# Since: 1.1 319# 320# Returns: nothing. 321# 322# Note: prior to 4.0, this command does nothing in case the guest 323# isn't suspended. 324# 325# Example: 326# 327# -> { "execute": "system_wakeup" } 328# <- { "return": {} } 329# 330## 331{ 'command': 'system_wakeup' } 332 333## 334# @LostTickPolicy: 335# 336# Policy for handling lost ticks in timer devices. Ticks end up getting 337# lost when, for example, the guest is paused. 338# 339# @discard: throw away the missed ticks and continue with future injection 340# normally. The guest OS will see the timer jump ahead by a 341# potentially quite significant amount all at once, as if the 342# intervening chunk of time had simply not existed; needless to 343# say, such a sudden jump can easily confuse a guest OS which is 344# not specifically prepared to deal with it. Assuming the guest 345# OS can deal correctly with the time jump, the time in the guest 346# and in the host should now match. 347# 348# @delay: continue to deliver ticks at the normal rate. The guest OS will 349# not notice anything is amiss, as from its point of view time will 350# have continued to flow normally. The time in the guest should now 351# be behind the time in the host by exactly the amount of time during 352# which ticks have been missed. 353# 354# @slew: deliver ticks at a higher rate to catch up with the missed ticks. 355# The guest OS will not notice anything is amiss, as from its point 356# of view time will have continued to flow normally. Once the timer 357# has managed to catch up with all the missing ticks, the time in 358# the guest and in the host should match. 359# 360# Since: 2.0 361## 362{ 'enum': 'LostTickPolicy', 363 'data': ['discard', 'delay', 'slew' ] } 364 365## 366# @inject-nmi: 367# 368# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64). 369# The command fails when the guest doesn't support injecting. 370# 371# Returns: If successful, nothing 372# 373# Since: 0.14 374# 375# Note: prior to 2.1, this command was only supported for x86 and s390 VMs 376# 377# Example: 378# 379# -> { "execute": "inject-nmi" } 380# <- { "return": {} } 381# 382## 383{ 'command': 'inject-nmi' } 384 385## 386# @KvmInfo: 387# 388# Information about support for KVM acceleration 389# 390# @enabled: true if KVM acceleration is active 391# 392# @present: true if KVM acceleration is built into this executable 393# 394# Since: 0.14 395## 396{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 397 398## 399# @query-kvm: 400# 401# Returns information about KVM acceleration 402# 403# Returns: @KvmInfo 404# 405# Since: 0.14 406# 407# Example: 408# 409# -> { "execute": "query-kvm" } 410# <- { "return": { "enabled": true, "present": true } } 411# 412## 413{ 'command': 'query-kvm', 'returns': 'KvmInfo' } 414 415## 416# @NumaOptionsType: 417# 418# @node: NUMA nodes configuration 419# 420# @dist: NUMA distance configuration (since 2.10) 421# 422# @cpu: property based CPU(s) to node mapping (Since: 2.10) 423# 424# @hmat-lb: memory latency and bandwidth information (Since: 5.0) 425# 426# @hmat-cache: memory side cache information (Since: 5.0) 427# 428# Since: 2.1 429## 430{ 'enum': 'NumaOptionsType', 431 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] } 432 433## 434# @NumaOptions: 435# 436# A discriminated record of NUMA options. (for OptsVisitor) 437# 438# Since: 2.1 439## 440{ 'union': 'NumaOptions', 441 'base': { 'type': 'NumaOptionsType' }, 442 'discriminator': 'type', 443 'data': { 444 'node': 'NumaNodeOptions', 445 'dist': 'NumaDistOptions', 446 'cpu': 'NumaCpuOptions', 447 'hmat-lb': 'NumaHmatLBOptions', 448 'hmat-cache': 'NumaHmatCacheOptions' }} 449 450## 451# @NumaNodeOptions: 452# 453# Create a guest NUMA node. (for OptsVisitor) 454# 455# @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 456# 457# @cpus: VCPUs belonging to this node (assign VCPUS round-robin 458# if omitted) 459# 460# @mem: memory size of this node; mutually exclusive with @memdev. 461# Equally divide total memory among nodes if both @mem and @memdev are 462# omitted. 463# 464# @memdev: memory backend object. If specified for one node, 465# it must be specified for all nodes. 466# 467# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, 468# points to the nodeid which has the memory controller 469# responsible for this NUMA node. This field provides 470# additional information as to the initiator node that 471# is closest (as in directly attached) to this node, and 472# therefore has the best performance (since 5.0) 473# 474# Since: 2.1 475## 476{ 'struct': 'NumaNodeOptions', 477 'data': { 478 '*nodeid': 'uint16', 479 '*cpus': ['uint16'], 480 '*mem': 'size', 481 '*memdev': 'str', 482 '*initiator': 'uint16' }} 483 484## 485# @NumaDistOptions: 486# 487# Set the distance between 2 NUMA nodes. 488# 489# @src: source NUMA node. 490# 491# @dst: destination NUMA node. 492# 493# @val: NUMA distance from source node to destination node. 494# When a node is unreachable from another node, set the distance 495# between them to 255. 496# 497# Since: 2.10 498## 499{ 'struct': 'NumaDistOptions', 500 'data': { 501 'src': 'uint16', 502 'dst': 'uint16', 503 'val': 'uint8' }} 504 505## 506# @X86CPURegister32: 507# 508# A X86 32-bit register 509# 510# Since: 1.5 511## 512{ 'enum': 'X86CPURegister32', 513 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 514 515## 516# @X86CPUFeatureWordInfo: 517# 518# Information about a X86 CPU feature word 519# 520# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word 521# 522# @cpuid-input-ecx: Input ECX value for CPUID instruction for that 523# feature word 524# 525# @cpuid-register: Output register containing the feature bits 526# 527# @features: value of output register, containing the feature bits 528# 529# Since: 1.5 530## 531{ 'struct': 'X86CPUFeatureWordInfo', 532 'data': { 'cpuid-input-eax': 'int', 533 '*cpuid-input-ecx': 'int', 534 'cpuid-register': 'X86CPURegister32', 535 'features': 'int' } } 536 537## 538# @DummyForceArrays: 539# 540# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally 541# 542# Since: 2.5 543## 544{ 'struct': 'DummyForceArrays', 545 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 546 547## 548# @NumaCpuOptions: 549# 550# Option "-numa cpu" overrides default cpu to node mapping. 551# It accepts the same set of cpu properties as returned by 552# query-hotpluggable-cpus[].props, where node-id could be used to 553# override default node mapping. 554# 555# Since: 2.10 556## 557{ 'struct': 'NumaCpuOptions', 558 'base': 'CpuInstanceProperties', 559 'data' : {} } 560 561## 562# @HmatLBMemoryHierarchy: 563# 564# The memory hierarchy in the System Locality Latency and Bandwidth 565# Information Structure of HMAT (Heterogeneous Memory Attribute Table) 566# 567# For more information about @HmatLBMemoryHierarchy, see chapter 568# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. 569# 570# @memory: the structure represents the memory performance 571# 572# @first-level: first level of memory side cache 573# 574# @second-level: second level of memory side cache 575# 576# @third-level: third level of memory side cache 577# 578# Since: 5.0 579## 580{ 'enum': 'HmatLBMemoryHierarchy', 581 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } 582 583## 584# @HmatLBDataType: 585# 586# Data type in the System Locality Latency and Bandwidth 587# Information Structure of HMAT (Heterogeneous Memory Attribute Table) 588# 589# For more information about @HmatLBDataType, see chapter 590# 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec. 591# 592# @access-latency: access latency (nanoseconds) 593# 594# @read-latency: read latency (nanoseconds) 595# 596# @write-latency: write latency (nanoseconds) 597# 598# @access-bandwidth: access bandwidth (Bytes per second) 599# 600# @read-bandwidth: read bandwidth (Bytes per second) 601# 602# @write-bandwidth: write bandwidth (Bytes per second) 603# 604# Since: 5.0 605## 606{ 'enum': 'HmatLBDataType', 607 'data': [ 'access-latency', 'read-latency', 'write-latency', 608 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } 609 610## 611# @NumaHmatLBOptions: 612# 613# Set the system locality latency and bandwidth information 614# between Initiator and Target proximity Domains. 615# 616# For more information about @NumaHmatLBOptions, see chapter 617# 5.2.27.4: Table 5-146 of ACPI 6.3 spec. 618# 619# @initiator: the Initiator Proximity Domain. 620# 621# @target: the Target Proximity Domain. 622# 623# @hierarchy: the Memory Hierarchy. Indicates the performance 624# of memory or side cache. 625# 626# @data-type: presents the type of data, access/read/write 627# latency or hit latency. 628# 629# @latency: the value of latency from @initiator to @target 630# proximity domain, the latency unit is "ns(nanosecond)". 631# 632# @bandwidth: the value of bandwidth between @initiator and @target 633# proximity domain, the bandwidth unit is 634# "Bytes per second". 635# 636# Since: 5.0 637## 638{ 'struct': 'NumaHmatLBOptions', 639 'data': { 640 'initiator': 'uint16', 641 'target': 'uint16', 642 'hierarchy': 'HmatLBMemoryHierarchy', 643 'data-type': 'HmatLBDataType', 644 '*latency': 'uint64', 645 '*bandwidth': 'size' }} 646 647## 648# @HmatCacheAssociativity: 649# 650# Cache associativity in the Memory Side Cache Information Structure 651# of HMAT 652# 653# For more information of @HmatCacheAssociativity, see chapter 654# 5.2.27.5: Table 5-147 of ACPI 6.3 spec. 655# 656# @none: None (no memory side cache in this proximity domain, 657# or cache associativity unknown) 658# 659# @direct: Direct Mapped 660# 661# @complex: Complex Cache Indexing (implementation specific) 662# 663# Since: 5.0 664## 665{ 'enum': 'HmatCacheAssociativity', 666 'data': [ 'none', 'direct', 'complex' ] } 667 668## 669# @HmatCacheWritePolicy: 670# 671# Cache write policy in the Memory Side Cache Information Structure 672# of HMAT 673# 674# For more information of @HmatCacheWritePolicy, see chapter 675# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 676# 677# @none: None (no memory side cache in this proximity domain, 678# or cache write policy unknown) 679# 680# @write-back: Write Back (WB) 681# 682# @write-through: Write Through (WT) 683# 684# Since: 5.0 685## 686{ 'enum': 'HmatCacheWritePolicy', 687 'data': [ 'none', 'write-back', 'write-through' ] } 688 689## 690# @NumaHmatCacheOptions: 691# 692# Set the memory side cache information for a given memory domain. 693# 694# For more information of @NumaHmatCacheOptions, see chapter 695# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 696# 697# @node-id: the memory proximity domain to which the memory belongs. 698# 699# @size: the size of memory side cache in bytes. 700# 701# @level: the cache level described in this structure. 702# 703# @associativity: the cache associativity, 704# none/direct-mapped/complex(complex cache indexing). 705# 706# @policy: the write policy, none/write-back/write-through. 707# 708# @line: the cache Line size in bytes. 709# 710# Since: 5.0 711## 712{ 'struct': 'NumaHmatCacheOptions', 713 'data': { 714 'node-id': 'uint32', 715 'size': 'size', 716 'level': 'uint8', 717 'associativity': 'HmatCacheAssociativity', 718 'policy': 'HmatCacheWritePolicy', 719 'line': 'uint16' }} 720 721## 722# @HostMemPolicy: 723# 724# Host memory policy types 725# 726# @default: restore default policy, remove any nondefault policy 727# 728# @preferred: set the preferred host nodes for allocation 729# 730# @bind: a strict policy that restricts memory allocation to the 731# host nodes specified 732# 733# @interleave: memory allocations are interleaved across the set 734# of host nodes specified 735# 736# Since: 2.1 737## 738{ 'enum': 'HostMemPolicy', 739 'data': [ 'default', 'preferred', 'bind', 'interleave' ] } 740 741## 742# @memsave: 743# 744# Save a portion of guest memory to a file. 745# 746# @val: the virtual address of the guest to start from 747# 748# @size: the size of memory region to save 749# 750# @filename: the file to save the memory to as binary data 751# 752# @cpu-index: the index of the virtual CPU to use for translating the 753# virtual address (defaults to CPU 0) 754# 755# Returns: Nothing on success 756# 757# Since: 0.14 758# 759# Notes: Errors were not reliably returned until 1.1 760# 761# Example: 762# 763# -> { "execute": "memsave", 764# "arguments": { "val": 10, 765# "size": 100, 766# "filename": "/tmp/virtual-mem-dump" } } 767# <- { "return": {} } 768# 769## 770{ 'command': 'memsave', 771 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 772 773## 774# @pmemsave: 775# 776# Save a portion of guest physical memory to a file. 777# 778# @val: the physical address of the guest to start from 779# 780# @size: the size of memory region to save 781# 782# @filename: the file to save the memory to as binary data 783# 784# Returns: Nothing on success 785# 786# Since: 0.14 787# 788# Notes: Errors were not reliably returned until 1.1 789# 790# Example: 791# 792# -> { "execute": "pmemsave", 793# "arguments": { "val": 10, 794# "size": 100, 795# "filename": "/tmp/physical-mem-dump" } } 796# <- { "return": {} } 797# 798## 799{ 'command': 'pmemsave', 800 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 801 802## 803# @Memdev: 804# 805# Information about memory backend 806# 807# @id: backend's ID if backend has 'id' property (since 2.9) 808# 809# @size: memory backend size 810# 811# @merge: enables or disables memory merge support 812# 813# @dump: includes memory backend's memory in a core dump or not 814# 815# @prealloc: enables or disables memory preallocation 816# 817# @host-nodes: host nodes for its memory policy 818# 819# @policy: memory policy of memory backend 820# 821# Since: 2.1 822## 823{ 'struct': 'Memdev', 824 'data': { 825 '*id': 'str', 826 'size': 'size', 827 'merge': 'bool', 828 'dump': 'bool', 829 'prealloc': 'bool', 830 'host-nodes': ['uint16'], 831 'policy': 'HostMemPolicy' }} 832 833## 834# @query-memdev: 835# 836# Returns information for all memory backends. 837# 838# Returns: a list of @Memdev. 839# 840# Since: 2.1 841# 842# Example: 843# 844# -> { "execute": "query-memdev" } 845# <- { "return": [ 846# { 847# "id": "mem1", 848# "size": 536870912, 849# "merge": false, 850# "dump": true, 851# "prealloc": false, 852# "host-nodes": [0, 1], 853# "policy": "bind" 854# }, 855# { 856# "size": 536870912, 857# "merge": false, 858# "dump": true, 859# "prealloc": true, 860# "host-nodes": [2, 3], 861# "policy": "preferred" 862# } 863# ] 864# } 865# 866## 867{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } 868 869## 870# @CpuInstanceProperties: 871# 872# List of properties to be used for hotplugging a CPU instance, 873# it should be passed by management with device_add command when 874# a CPU is being hotplugged. 875# 876# @node-id: NUMA node ID the CPU belongs to 877# @socket-id: socket number within node/board the CPU belongs to 878# @die-id: die number within node/board the CPU belongs to (Since 4.1) 879# @core-id: core number within die the CPU belongs to 880# @thread-id: thread number within core the CPU belongs to 881# 882# Note: currently there are 5 properties that could be present 883# but management should be prepared to pass through other 884# properties with device_add command to allow for future 885# interface extension. This also requires the filed names to be kept in 886# sync with the properties passed to -device/device_add. 887# 888# Since: 2.7 889## 890{ 'struct': 'CpuInstanceProperties', 891 'data': { '*node-id': 'int', 892 '*socket-id': 'int', 893 '*die-id': 'int', 894 '*core-id': 'int', 895 '*thread-id': 'int' 896 } 897} 898 899## 900# @HotpluggableCPU: 901# 902# @type: CPU object type for usage with device_add command 903# @props: list of properties to be used for hotplugging CPU 904# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides 905# @qom-path: link to existing CPU object if CPU is present or 906# omitted if CPU is not present. 907# 908# Since: 2.7 909## 910{ 'struct': 'HotpluggableCPU', 911 'data': { 'type': 'str', 912 'vcpus-count': 'int', 913 'props': 'CpuInstanceProperties', 914 '*qom-path': 'str' 915 } 916} 917 918## 919# @query-hotpluggable-cpus: 920# 921# TODO: Better documentation; currently there is none. 922# 923# Returns: a list of HotpluggableCPU objects. 924# 925# Since: 2.7 926# 927# Example: 928# 929# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8: 930# 931# -> { "execute": "query-hotpluggable-cpus" } 932# <- {"return": [ 933# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core", 934# "vcpus-count": 1 }, 935# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core", 936# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 937# ]}' 938# 939# For pc machine type started with -smp 1,maxcpus=2: 940# 941# -> { "execute": "query-hotpluggable-cpus" } 942# <- {"return": [ 943# { 944# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 945# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 946# }, 947# { 948# "qom-path": "/machine/unattached/device[0]", 949# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 950# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 951# } 952# ]} 953# 954# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu 955# (Since: 2.11): 956# 957# -> { "execute": "query-hotpluggable-cpus" } 958# <- {"return": [ 959# { 960# "type": "qemu-s390x-cpu", "vcpus-count": 1, 961# "props": { "core-id": 1 } 962# }, 963# { 964# "qom-path": "/machine/unattached/device[0]", 965# "type": "qemu-s390x-cpu", "vcpus-count": 1, 966# "props": { "core-id": 0 } 967# } 968# ]} 969# 970## 971{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 972 'allow-preconfig': true } 973 974## 975# @set-numa-node: 976# 977# Runtime equivalent of '-numa' CLI option, available at 978# preconfigure stage to configure numa mapping before initializing 979# machine. 980# 981# Since 3.0 982## 983{ 'command': 'set-numa-node', 'boxed': true, 984 'data': 'NumaOptions', 985 'allow-preconfig': true 986} 987 988## 989# @balloon: 990# 991# Request the balloon driver to change its balloon size. 992# 993# @value: the target logical size of the VM in bytes. 994# We can deduce the size of the balloon using this formula: 995# 996# logical_vm_size = vm_ram_size - balloon_size 997# 998# From it we have: balloon_size = vm_ram_size - @value 999# 1000# Returns: - Nothing on success 1001# - If the balloon driver is enabled but not functional because the KVM 1002# kernel module cannot support it, KvmMissingCap 1003# - If no balloon device is present, DeviceNotActive 1004# 1005# Notes: This command just issues a request to the guest. When it returns, 1006# the balloon size may not have changed. A guest can change the balloon 1007# size independent of this command. 1008# 1009# Since: 0.14 1010# 1011# Example: 1012# 1013# -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1014# <- { "return": {} } 1015# 1016# With a 2.5GiB guest this command inflated the ballon to 3GiB. 1017# 1018## 1019{ 'command': 'balloon', 'data': {'value': 'int'} } 1020 1021## 1022# @BalloonInfo: 1023# 1024# Information about the guest balloon device. 1025# 1026# @actual: the logical size of the VM in bytes 1027# Formula used: logical_vm_size = vm_ram_size - balloon_size 1028# 1029# Since: 0.14 1030# 1031## 1032{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 1033 1034## 1035# @query-balloon: 1036# 1037# Return information about the balloon device. 1038# 1039# Returns: - @BalloonInfo on success 1040# - If the balloon driver is enabled but not functional because the KVM 1041# kernel module cannot support it, KvmMissingCap 1042# - If no balloon device is present, DeviceNotActive 1043# 1044# Since: 0.14 1045# 1046# Example: 1047# 1048# -> { "execute": "query-balloon" } 1049# <- { "return": { 1050# "actual": 1073741824, 1051# } 1052# } 1053# 1054## 1055{ 'command': 'query-balloon', 'returns': 'BalloonInfo' } 1056 1057## 1058# @BALLOON_CHANGE: 1059# 1060# Emitted when the guest changes the actual BALLOON level. This value is 1061# equivalent to the @actual field return by the 'query-balloon' command 1062# 1063# @actual: the logical size of the VM in bytes 1064# Formula used: logical_vm_size = vm_ram_size - balloon_size 1065# 1066# Note: this event is rate-limited. 1067# 1068# Since: 1.2 1069# 1070# Example: 1071# 1072# <- { "event": "BALLOON_CHANGE", 1073# "data": { "actual": 944766976 }, 1074# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 1075# 1076## 1077{ 'event': 'BALLOON_CHANGE', 1078 'data': { 'actual': 'int' } } 1079 1080## 1081# @MemoryInfo: 1082# 1083# Actual memory information in bytes. 1084# 1085# @base-memory: size of "base" memory specified with command line 1086# option -m. 1087# 1088# @plugged-memory: size of memory that can be hot-unplugged. This field 1089# is omitted if target doesn't support memory hotplug 1090# (i.e. CONFIG_MEM_DEVICE not defined at build time). 1091# 1092# Since: 2.11 1093## 1094{ 'struct': 'MemoryInfo', 1095 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 1096 1097## 1098# @query-memory-size-summary: 1099# 1100# Return the amount of initially allocated and present hotpluggable (if 1101# enabled) memory in bytes. 1102# 1103# Example: 1104# 1105# -> { "execute": "query-memory-size-summary" } 1106# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 1107# 1108# Since: 2.11 1109## 1110{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 1111 1112## 1113# @PCDIMMDeviceInfo: 1114# 1115# PCDIMMDevice state information 1116# 1117# @id: device's ID 1118# 1119# @addr: physical address, where device is mapped 1120# 1121# @size: size of memory that the device provides 1122# 1123# @slot: slot number at which device is plugged in 1124# 1125# @node: NUMA node number where device is plugged in 1126# 1127# @memdev: memory backend linked with device 1128# 1129# @hotplugged: true if device was hotplugged 1130# 1131# @hotpluggable: true if device if could be added/removed while machine is running 1132# 1133# Since: 2.1 1134## 1135{ 'struct': 'PCDIMMDeviceInfo', 1136 'data': { '*id': 'str', 1137 'addr': 'int', 1138 'size': 'int', 1139 'slot': 'int', 1140 'node': 'int', 1141 'memdev': 'str', 1142 'hotplugged': 'bool', 1143 'hotpluggable': 'bool' 1144 } 1145} 1146 1147## 1148# @VirtioPMEMDeviceInfo: 1149# 1150# VirtioPMEM state information 1151# 1152# @id: device's ID 1153# 1154# @memaddr: physical address in memory, where device is mapped 1155# 1156# @size: size of memory that the device provides 1157# 1158# @memdev: memory backend linked with device 1159# 1160# Since: 4.1 1161## 1162{ 'struct': 'VirtioPMEMDeviceInfo', 1163 'data': { '*id': 'str', 1164 'memaddr': 'size', 1165 'size': 'size', 1166 'memdev': 'str' 1167 } 1168} 1169 1170## 1171# @VirtioMEMDeviceInfo: 1172# 1173# VirtioMEMDevice state information 1174# 1175# @id: device's ID 1176# 1177# @memaddr: physical address in memory, where device is mapped 1178# 1179# @requested-size: the user requested size of the device 1180# 1181# @size: the (current) size of memory that the device provides 1182# 1183# @max-size: the maximum size of memory that the device can provide 1184# 1185# @block-size: the block size of memory that the device provides 1186# 1187# @node: NUMA node number where device is assigned to 1188# 1189# @memdev: memory backend linked with the region 1190# 1191# Since: 5.1 1192## 1193{ 'struct': 'VirtioMEMDeviceInfo', 1194 'data': { '*id': 'str', 1195 'memaddr': 'size', 1196 'requested-size': 'size', 1197 'size': 'size', 1198 'max-size': 'size', 1199 'block-size': 'size', 1200 'node': 'int', 1201 'memdev': 'str' 1202 } 1203} 1204 1205## 1206# @MemoryDeviceInfo: 1207# 1208# Union containing information about a memory device 1209# 1210# nvdimm is included since 2.12. virtio-pmem is included since 4.1. 1211# virtio-mem is included since 5.1. 1212# 1213# Since: 2.1 1214## 1215{ 'union': 'MemoryDeviceInfo', 1216 'data': { 'dimm': 'PCDIMMDeviceInfo', 1217 'nvdimm': 'PCDIMMDeviceInfo', 1218 'virtio-pmem': 'VirtioPMEMDeviceInfo', 1219 'virtio-mem': 'VirtioMEMDeviceInfo' 1220 } 1221} 1222 1223## 1224# @query-memory-devices: 1225# 1226# Lists available memory devices and their state 1227# 1228# Since: 2.1 1229# 1230# Example: 1231# 1232# -> { "execute": "query-memory-devices" } 1233# <- { "return": [ { "data": 1234# { "addr": 5368709120, 1235# "hotpluggable": true, 1236# "hotplugged": true, 1237# "id": "d1", 1238# "memdev": "/objects/memX", 1239# "node": 0, 1240# "size": 1073741824, 1241# "slot": 0}, 1242# "type": "dimm" 1243# } ] } 1244# 1245## 1246{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 1247 1248## 1249# @MEMORY_DEVICE_SIZE_CHANGE: 1250# 1251# Emitted when the size of a memory device changes. Only emitted for memory 1252# devices that can actually change the size (e.g., virtio-mem due to guest 1253# action). 1254# 1255# @id: device's ID 1256# @size: the new size of memory that the device provides 1257# 1258# Note: this event is rate-limited. 1259# 1260# Since: 5.1 1261# 1262# Example: 1263# 1264# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE", 1265# "data": { "id": "vm0", "size": 1073741824}, 1266# "timestamp": { "seconds": 1588168529, "microseconds": 201316 } } 1267# 1268## 1269{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE', 1270 'data': { '*id': 'str', 'size': 'size' } } 1271 1272 1273## 1274# @MEM_UNPLUG_ERROR: 1275# 1276# Emitted when memory hot unplug error occurs. 1277# 1278# @device: device name 1279# 1280# @msg: Informative message 1281# 1282# Since: 2.4 1283# 1284# Example: 1285# 1286# <- { "event": "MEM_UNPLUG_ERROR" 1287# "data": { "device": "dimm1", 1288# "msg": "acpi: device unplug for unsupported device" 1289# }, 1290# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1291# 1292## 1293{ 'event': 'MEM_UNPLUG_ERROR', 1294 'data': { 'device': 'str', 'msg': 'str' } } 1295