xref: /openbmc/qemu/qapi/machine.json (revision 68ff2eeb299d562e437b49e9bb98f9d6f62fbf06)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4# This work is licensed under the terms of the GNU GPL, version 2 or later.
5# See the COPYING file in the top-level directory.
6
7##
8# ********
9# Machines
10# ********
11##
12
13{ 'include': 'common.json' }
14{ 'include': 'machine-common.json' }
15
16##
17# @SysEmuTarget:
18#
19# The comprehensive enumeration of QEMU system emulation ("softmmu")
20# targets.  Run "./configure --help" in the project root directory,
21# and look for the \*-softmmu targets near the "--target-list" option.
22# The individual target constants are not documented here, for the
23# time being.
24#
25# @rx: since 5.0
26#
27# @avr: since 5.1
28#
29# @loongarch64: since 7.1
30#
31# .. note:: The resulting QMP strings can be appended to the
32#    "qemu-system-" prefix to produce the corresponding QEMU
33#    executable name.  This is true even for "qemu-system-x86_64".
34#
35# Since: 3.0
36##
37{ 'enum' : 'SysEmuTarget',
38  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'hppa', 'i386',
39             'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
40             'mips64el', 'mipsel', 'or1k', 'ppc',
41             'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
42             'sh4eb', 'sparc', 'sparc64', 'tricore',
43             'x86_64', 'xtensa', 'xtensaeb' ] }
44
45##
46# @S390CpuState:
47#
48# An enumeration of cpu states that can be assumed by a virtual S390
49# CPU
50#
51# Since: 2.12
52##
53{ 'enum': 'S390CpuState',
54  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
55
56##
57# @CpuInfoS390:
58#
59# Additional information about a virtual S390 CPU
60#
61# @cpu-state: the virtual CPU's state
62#
63# @dedicated: the virtual CPU's dedication (since 8.2)
64#
65# @entitlement: the virtual CPU's entitlement (since 8.2)
66#
67# Since: 2.12
68##
69{ 'struct': 'CpuInfoS390',
70  'data': { 'cpu-state': 'S390CpuState',
71            '*dedicated': 'bool',
72            '*entitlement': 'S390CpuEntitlement' } }
73
74##
75# @CpuInfoFast:
76#
77# Information about a virtual CPU
78#
79# @cpu-index: index of the virtual CPU
80#
81# @qom-path: path to the CPU object in the QOM tree
82#
83# @thread-id: ID of the underlying host thread
84#
85# @props: properties associated with a virtual CPU, e.g. the socket id
86#
87# @target: the QEMU system emulation target, which determines which
88#     additional fields will be listed (since 3.0)
89#
90# Since: 2.12
91##
92{ 'union'         : 'CpuInfoFast',
93  'base'          : { 'cpu-index'    : 'int',
94                      'qom-path'     : 'str',
95                      'thread-id'    : 'int',
96                      '*props'       : 'CpuInstanceProperties',
97                      'target'       : 'SysEmuTarget' },
98  'discriminator' : 'target',
99  'data'          : { 's390x'        : 'CpuInfoS390' } }
100
101##
102# @query-cpus-fast:
103#
104# Return information about all virtual CPUs.
105#
106# Since: 2.12
107#
108# .. qmp-example::
109#
110#     -> { "execute": "query-cpus-fast" }
111#     <- { "return": [
112#             {
113#                 "thread-id": 25627,
114#                 "props": {
115#                     "core-id": 0,
116#                     "thread-id": 0,
117#                     "socket-id": 0
118#                 },
119#                 "qom-path": "/machine/unattached/device[0]",
120#                 "target":"x86_64",
121#                 "cpu-index": 0
122#             },
123#             {
124#                 "thread-id": 25628,
125#                 "props": {
126#                     "core-id": 0,
127#                     "thread-id": 0,
128#                     "socket-id": 1
129#                 },
130#                 "qom-path": "/machine/unattached/device[2]",
131#                 "target":"x86_64",
132#                 "cpu-index": 1
133#             }
134#         ]
135#     }
136##
137{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
138
139##
140# @CompatProperty:
141#
142# Property default values specific to a machine type, for use by
143# scripts/compare-machine-types.
144#
145# @qom-type: name of the QOM type to which the default applies
146#
147# @property: name of its property to which the default applies
148#
149# @value: the default value (machine-specific default can overwrite
150#     the "default" default, to avoid this use -machine none)
151#
152# Since: 9.1
153##
154{ 'struct': 'CompatProperty',
155  'data': { 'qom-type': 'str',
156            'property': 'str',
157            'value': 'str' } }
158
159##
160# @MachineInfo:
161#
162# Information describing a machine.
163#
164# @name: the name of the machine
165#
166# @alias: an alias for the machine name
167#
168# @is-default: whether the machine is default
169#
170# @cpu-max: maximum number of CPUs supported by the machine type
171#     (since 1.5)
172#
173# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
174#
175# @numa-mem-supported: true if '-numa node,mem' option is supported by
176#     the machine type and false otherwise (since 4.1)
177#
178# @deprecated: if true, the machine type is deprecated and may be
179#     removed in future versions of QEMU according to the QEMU
180#     deprecation policy (since 4.1)
181#
182# @default-cpu-type: default CPU model typename if none is requested
183#     via the -cpu argument.  (since 4.2)
184#
185# @default-ram-id: the default ID of initial RAM memory backend
186#     (since 5.2)
187#
188# @acpi: machine type supports ACPI (since 8.0)
189#
190# @compat-props: The machine type's compatibility properties.  Only
191#     present when `query-machines` argument @compat-props is true.
192#     (since 9.1)
193#
194# Features:
195#
196# @unstable: Member @compat-props is experimental.
197#
198# Since: 1.2
199##
200{ 'struct': 'MachineInfo',
201  'data': { 'name': 'str', '*alias': 'str',
202            '*is-default': 'bool', 'cpu-max': 'int',
203            'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
204            'deprecated': 'bool', '*default-cpu-type': 'str',
205            '*default-ram-id': 'str', 'acpi': 'bool',
206            '*compat-props': { 'type': ['CompatProperty'],
207                               'features': ['unstable'] } } }
208
209##
210# @query-machines:
211#
212# Return a list of supported machines
213#
214# @compat-props: if true, also return compatibility properties.
215#     (default: false) (since 9.1)
216#
217# Features:
218#
219# @unstable: Argument @compat-props is experimental.
220#
221# Since: 1.2
222#
223# .. qmp-example::
224#
225#     -> { "execute": "query-machines", "arguments": { "compat-props": true } }
226#     <- { "return": [
227#               {
228#                  "hotpluggable-cpus": true,
229#                  "name": "pc-q35-6.2",
230#                  "compat-props": [
231#                       {
232#                          "qom-type": "virtio-mem",
233#                          "property": "unplugged-inaccessible",
234#                          "value": "off"
235#                       }
236#                   ],
237#                   "numa-mem-supported": false,
238#                   "default-cpu-type": "qemu64-x86_64-cpu",
239#                   "cpu-max": 288,
240#                   "deprecated": false,
241#                   "default-ram-id": "pc.ram"
242#               },
243#               ...
244#        }
245##
246{ 'command': 'query-machines',
247  'data': { '*compat-props': { 'type': 'bool',
248                               'features': [ 'unstable' ] } },
249  'returns': ['MachineInfo'] }
250
251##
252# @CurrentMachineParams:
253#
254# Information describing the running machine parameters.
255#
256# @wakeup-suspend-support: true if the machine supports wake up from
257#     suspend
258#
259# Since: 4.0
260##
261{ 'struct': 'CurrentMachineParams',
262  'data': { 'wakeup-suspend-support': 'bool'} }
263
264##
265# @query-current-machine:
266#
267# Return information on the current virtual machine.
268#
269# Since: 4.0
270##
271{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
272
273##
274# @QemuTargetInfo:
275#
276# Information on the target configuration built into the QEMU binary.
277#
278# @arch: the target architecture
279#
280# Since: 1.2
281##
282{ 'struct': 'QemuTargetInfo',
283  'data': { 'arch': 'SysEmuTarget' } }
284
285##
286# @query-target:
287#
288# Return information about the target for this QEMU
289#
290# Since: 1.2
291##
292{ 'command': 'query-target', 'returns': 'QemuTargetInfo' }
293
294##
295# @UuidInfo:
296#
297# Guest UUID information (Universally Unique Identifier).
298#
299# @UUID: the UUID of the guest
300#
301# Since: 0.14
302#
303# .. note:: If no UUID was specified for the guest, the nil UUID (all
304#    zeroes) is returned.
305##
306{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
307
308##
309# @query-uuid:
310#
311# Query the guest UUID information.
312#
313# Since: 0.14
314#
315# .. qmp-example::
316#
317#     -> { "execute": "query-uuid" }
318#     <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
319##
320{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
321
322##
323# @GuidInfo:
324#
325# GUID information.
326#
327# @guid: the globally unique identifier
328#
329# Since: 2.9
330##
331{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
332
333##
334# @query-vm-generation-id:
335#
336# Show Virtual Machine Generation ID
337#
338# Since: 2.9
339##
340{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
341
342##
343# @system_reset:
344#
345# Performs a hard reset of a guest.
346#
347# Since: 0.14
348#
349# .. qmp-example::
350#
351#     -> { "execute": "system_reset" }
352#     <- { "return": {} }
353##
354{ 'command': 'system_reset' }
355
356##
357# @system_powerdown:
358#
359# Requests that a guest perform a powerdown operation.
360#
361# Since: 0.14
362#
363# .. note:: A guest may or may not respond to this command.  This
364#    command returning does not indicate that a guest has accepted the
365#    request or that it has shut down.  Many guests will respond to
366#    this command by prompting the user in some way.
367#
368# .. qmp-example::
369#
370#     -> { "execute": "system_powerdown" }
371#     <- { "return": {} }
372##
373{ 'command': 'system_powerdown' }
374
375##
376# @system_wakeup:
377#
378# Wake up guest from suspend.  If the guest has wake-up from suspend
379# support enabled (wakeup-suspend-support flag from
380# `query-current-machine`), wake-up guest from suspend if the guest is
381# in SUSPENDED state.  Return an error otherwise.
382#
383# Since: 1.1
384#
385# .. note:: Prior to 4.0, this command does nothing in case the guest
386#    isn't suspended.
387#
388# .. qmp-example::
389#
390#     -> { "execute": "system_wakeup" }
391#     <- { "return": {} }
392##
393{ 'command': 'system_wakeup' }
394
395##
396# @LostTickPolicy:
397#
398# Policy for handling lost ticks in timer devices.  Ticks end up
399# getting lost when, for example, the guest is paused.
400#
401# @discard: throw away the missed ticks and continue with future
402#     injection normally.  The guest OS will see the timer jump ahead
403#     by a potentially quite significant amount all at once, as if the
404#     intervening chunk of time had simply not existed; needless to
405#     say, such a sudden jump can easily confuse a guest OS which is
406#     not specifically prepared to deal with it.  Assuming the guest
407#     OS can deal correctly with the time jump, the time in the guest
408#     and in the host should now match.
409#
410# @delay: continue to deliver ticks at the normal rate.  The guest OS
411#     will not notice anything is amiss, as from its point of view
412#     time will have continued to flow normally.  The time in the
413#     guest should now be behind the time in the host by exactly the
414#     amount of time during which ticks have been missed.
415#
416# @slew: deliver ticks at a higher rate to catch up with the missed
417#     ticks.  The guest OS will not notice anything is amiss, as from
418#     its point of view time will have continued to flow normally.
419#     Once the timer has managed to catch up with all the missing
420#     ticks, the time in the guest and in the host should match.
421#
422# Since: 2.0
423##
424{ 'enum': 'LostTickPolicy',
425  'data': ['discard', 'delay', 'slew' ] }
426
427##
428# @inject-nmi:
429#
430# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
431# all CPUs (ppc64).  The command fails when the guest doesn't support
432# injecting.
433#
434# Since: 0.14
435#
436# .. note:: Prior to 2.1, this command was only supported for x86 and
437#    s390 VMs.
438#
439# .. qmp-example::
440#
441#     -> { "execute": "inject-nmi" }
442#     <- { "return": {} }
443##
444{ 'command': 'inject-nmi' }
445
446##
447# @KvmInfo:
448#
449# Information about support for KVM acceleration
450#
451# @enabled: true if KVM acceleration is active
452#
453# @present: true if KVM acceleration is built into this executable
454#
455# Since: 0.14
456##
457{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
458
459##
460# @query-kvm:
461#
462# Return information about KVM acceleration
463#
464# Since: 0.14
465#
466# .. qmp-example::
467#
468#     -> { "execute": "query-kvm" }
469#     <- { "return": { "enabled": true, "present": true } }
470##
471{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
472
473##
474# @NumaOptionsType:
475#
476# @node: NUMA nodes configuration
477#
478# @dist: NUMA distance configuration (since 2.10)
479#
480# @cpu: property based CPU(s) to node mapping (Since: 2.10)
481#
482# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
483#
484# @hmat-cache: memory side cache information (Since: 5.0)
485#
486# Since: 2.1
487##
488{ 'enum': 'NumaOptionsType',
489  'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
490
491##
492# @NumaOptions:
493#
494# A discriminated record of NUMA options.  (for OptsVisitor)
495#
496# @type: NUMA option type
497#
498# Since: 2.1
499##
500{ 'union': 'NumaOptions',
501  'base': { 'type': 'NumaOptionsType' },
502  'discriminator': 'type',
503  'data': {
504    'node': 'NumaNodeOptions',
505    'dist': 'NumaDistOptions',
506    'cpu': 'NumaCpuOptions',
507    'hmat-lb': 'NumaHmatLBOptions',
508    'hmat-cache': 'NumaHmatCacheOptions' }}
509
510##
511# @NumaNodeOptions:
512#
513# Create a guest NUMA node.  (for OptsVisitor)
514#
515# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
516#
517# @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
518#     omitted)
519#
520# @mem: memory size of this node; mutually exclusive with @memdev.
521#     Equally divide total memory among nodes if both @mem and @memdev
522#     are omitted.
523#
524# @memdev: memory backend object.  If specified for one node, it must
525#     be specified for all nodes.
526#
527# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
528#     to the nodeid which has the memory controller responsible for
529#     this NUMA node.  This field provides additional information as
530#     to the initiator node that is closest (as in directly attached)
531#     to this node, and therefore has the best performance (since 5.0)
532#
533# Since: 2.1
534##
535{ 'struct': 'NumaNodeOptions',
536  'data': {
537   '*nodeid': 'uint16',
538   '*cpus':   ['uint16'],
539   '*mem':    'size',
540   '*memdev': 'str',
541   '*initiator': 'uint16' }}
542
543##
544# @NumaDistOptions:
545#
546# Set the distance between 2 NUMA nodes.
547#
548# @src: source NUMA node.
549#
550# @dst: destination NUMA node.
551#
552# @val: NUMA distance from source node to destination node.  When a
553#     node is unreachable from another node, set the distance between
554#     them to 255.
555#
556# Since: 2.10
557##
558{ 'struct': 'NumaDistOptions',
559  'data': {
560   'src': 'uint16',
561   'dst': 'uint16',
562   'val': 'uint8' }}
563
564##
565# @CXLFixedMemoryWindowOptions:
566#
567# Create a CXL Fixed Memory Window
568#
569# @size: Size of the Fixed Memory Window in bytes.  Must be a multiple
570#     of 256MiB.
571#
572# @interleave-granularity: Number of contiguous bytes for which
573#     accesses will go to a given interleave target.  Accepted values
574#     [256, 512, 1k, 2k, 4k, 8k, 16k]
575#
576# @targets: Target root bridge IDs from -device ...,id=<ID> for each
577#     root bridge.
578#
579# Since: 7.1
580##
581{ 'struct': 'CXLFixedMemoryWindowOptions',
582  'data': {
583      'size': 'size',
584      '*interleave-granularity': 'size',
585      'targets': ['str'] }}
586
587##
588# @CXLFMWProperties:
589#
590# List of CXL Fixed Memory Windows.
591#
592# @cxl-fmw: List of `CXLFixedMemoryWindowOptions`
593#
594# Since: 7.1
595##
596{ 'struct' : 'CXLFMWProperties',
597  'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
598}
599
600##
601# @X86CPURegister32:
602#
603# A X86 32-bit register
604#
605# Since: 1.5
606##
607{ 'enum': 'X86CPURegister32',
608  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
609
610##
611# @X86CPUFeatureWordInfo:
612#
613# Information about a X86 CPU feature word
614#
615# @cpuid-input-eax: Input EAX value for CPUID instruction for that
616#     feature word
617#
618# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
619#     feature word
620#
621# @cpuid-register: Output register containing the feature bits
622#
623# @features: value of output register, containing the feature bits
624#
625# Since: 1.5
626##
627{ 'struct': 'X86CPUFeatureWordInfo',
628  'data': { 'cpuid-input-eax': 'int',
629            '*cpuid-input-ecx': 'int',
630            'cpuid-register': 'X86CPURegister32',
631            'features': 'int' } }
632
633##
634# @DummyForceArrays:
635#
636# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
637# internally
638#
639# Since: 2.5
640##
641{ 'struct': 'DummyForceArrays',
642  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
643
644##
645# @NumaCpuOptions:
646#
647# Option "-numa cpu" overrides default cpu to node mapping.  It accepts
648# the same set of cpu properties as returned by
649# `query-hotpluggable-cpus[].props <query-hotpluggable-cpus>`, where
650# node-id could be used to override default node mapping.
651#
652# Since: 2.10
653##
654{ 'struct': 'NumaCpuOptions',
655   'base': 'CpuInstanceProperties',
656   'data' : {} }
657
658##
659# @HmatLBMemoryHierarchy:
660#
661# The memory hierarchy in the System Locality Latency and Bandwidth
662# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
663#
664# For more information about `HmatLBMemoryHierarchy`, see chapter
665# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
666#
667# @memory: the structure represents the memory performance
668#
669# @first-level: first level of memory side cache
670#
671# @second-level: second level of memory side cache
672#
673# @third-level: third level of memory side cache
674#
675# Since: 5.0
676##
677{ 'enum': 'HmatLBMemoryHierarchy',
678  'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
679
680##
681# @HmatLBDataType:
682#
683# Data type in the System Locality Latency and Bandwidth Information
684# Structure of HMAT (Heterogeneous Memory Attribute Table)
685#
686# For more information about `HmatLBDataType`, see chapter 5.2.27.4:
687# Table 5-146: Field "Data Type" of ACPI 6.3 spec.
688#
689# @access-latency: access latency (nanoseconds)
690#
691# @read-latency: read latency (nanoseconds)
692#
693# @write-latency: write latency (nanoseconds)
694#
695# @access-bandwidth: access bandwidth (Bytes per second)
696#
697# @read-bandwidth: read bandwidth (Bytes per second)
698#
699# @write-bandwidth: write bandwidth (Bytes per second)
700#
701# Since: 5.0
702##
703{ 'enum': 'HmatLBDataType',
704  'data': [ 'access-latency', 'read-latency', 'write-latency',
705            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
706
707##
708# @NumaHmatLBOptions:
709#
710# Set the system locality latency and bandwidth information between
711# Initiator and Target proximity Domains.
712#
713# For more information about `NumaHmatLBOptions`, see chapter 5.2.27.4:
714# Table 5-146 of ACPI 6.3 spec.
715#
716# @initiator: the Initiator Proximity Domain.
717#
718# @target: the Target Proximity Domain.
719#
720# @hierarchy: the Memory Hierarchy.  Indicates the performance of
721#     memory or side cache.
722#
723# @data-type: presents the type of data, access/read/write latency or
724#     hit latency.
725#
726# @latency: the value of latency from @initiator to @target proximity
727#     domain, the latency unit is "ns(nanosecond)".
728#
729# @bandwidth: the value of bandwidth between @initiator and @target
730#     proximity domain, the bandwidth unit is "Bytes per second".
731#
732# Since: 5.0
733##
734{ 'struct': 'NumaHmatLBOptions',
735    'data': {
736    'initiator': 'uint16',
737    'target': 'uint16',
738    'hierarchy': 'HmatLBMemoryHierarchy',
739    'data-type': 'HmatLBDataType',
740    '*latency': 'uint64',
741    '*bandwidth': 'size' }}
742
743##
744# @HmatCacheAssociativity:
745#
746# Cache associativity in the Memory Side Cache Information Structure
747# of HMAT
748#
749# For more information of `HmatCacheAssociativity`, see chapter
750# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
751#
752# @none: None (no memory side cache in this proximity domain, or cache
753#     associativity unknown)
754#
755# @direct: Direct Mapped
756#
757# @complex: Complex Cache Indexing (implementation specific)
758#
759# Since: 5.0
760##
761{ 'enum': 'HmatCacheAssociativity',
762  'data': [ 'none', 'direct', 'complex' ] }
763
764##
765# @HmatCacheWritePolicy:
766#
767# Cache write policy in the Memory Side Cache Information Structure of
768# HMAT
769#
770# For more information of `HmatCacheWritePolicy`, see chapter 5.2.27.5:
771# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
772#
773# @none: None (no memory side cache in this proximity domain, or cache
774#     write policy unknown)
775#
776# @write-back: Write Back (WB)
777#
778# @write-through: Write Through (WT)
779#
780# Since: 5.0
781##
782{ 'enum': 'HmatCacheWritePolicy',
783  'data': [ 'none', 'write-back', 'write-through' ] }
784
785##
786# @NumaHmatCacheOptions:
787#
788# Set the memory side cache information for a given memory domain.
789#
790# For more information of `NumaHmatCacheOptions`, see chapter 5.2.27.5:
791# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
792#
793# @node-id: the memory proximity domain to which the memory belongs.
794#
795# @size: the size of memory side cache in bytes.
796#
797# @level: the cache level described in this structure.
798#
799# @associativity: the cache associativity,
800#     none/direct-mapped/complex(complex cache indexing).
801#
802# @policy: the write policy, none/write-back/write-through.
803#
804# @line: the cache line size in bytes.
805#
806# Since: 5.0
807##
808{ 'struct': 'NumaHmatCacheOptions',
809  'data': {
810   'node-id': 'uint32',
811   'size': 'size',
812   'level': 'uint8',
813   'associativity': 'HmatCacheAssociativity',
814   'policy': 'HmatCacheWritePolicy',
815   'line': 'uint16' }}
816
817##
818# @memsave:
819#
820# Save a portion of guest memory to a file.
821#
822# @val: the virtual address of the guest to start from
823#
824# @size: the size of memory region to save
825#
826# @filename: the file to save the memory to as binary data
827#
828# @cpu-index: the index of the virtual CPU to use for translating the
829#     virtual address (defaults to CPU 0)
830#
831# Since: 0.14
832#
833# .. caution:: Errors were not reliably returned until 1.1.
834#
835# .. qmp-example::
836#
837#     -> { "execute": "memsave",
838#          "arguments": { "val": 10,
839#                         "size": 100,
840#                         "filename": "/tmp/virtual-mem-dump" } }
841#     <- { "return": {} }
842##
843{ 'command': 'memsave',
844  'data': {
845     'val': 'uint64',
846     'size': 'size',
847     'filename': 'str',
848     '*cpu-index': 'int' } }
849
850##
851# @pmemsave:
852#
853# Save a portion of guest physical memory to a file.
854#
855# @val: the physical address of the guest to start from
856#
857# @size: the size of memory region to save
858#
859# @filename: the file to save the memory to as binary data
860#
861# Since: 0.14
862#
863# .. caution:: Errors were not reliably returned until 1.1.
864#
865# .. qmp-example::
866#
867#     -> { "execute": "pmemsave",
868#          "arguments": { "val": 10,
869#                         "size": 100,
870#                         "filename": "/tmp/physical-mem-dump" } }
871#     <- { "return": {} }
872##
873{ 'command': 'pmemsave',
874  'data': {
875    'val': 'uint64',
876    'size': 'size',
877    'filename': 'str' } }
878
879##
880# @Memdev:
881#
882# Information about memory backend
883#
884# @id: backend's ID if backend has 'id' property (since 2.9)
885#
886# @size: memory backend size
887#
888# @merge: whether memory merge support is enabled
889#
890# @dump: whether memory backend's memory is included in a core dump
891#
892# @prealloc: whether memory was preallocated
893#
894# @share: whether memory is private to QEMU or shared (since 6.1)
895#
896# @reserve: whether swap space (or huge pages) was reserved if
897#     applicable.  This corresponds to the user configuration and not
898#     the actual behavior implemented in the OS to perform the
899#     reservation.  For example, Linux will never reserve swap space
900#     for shared file mappings.  (since 6.1)
901#
902# @host-nodes: host nodes for its memory policy
903#
904# @policy: memory policy of memory backend
905#
906# Since: 2.1
907##
908{ 'struct': 'Memdev',
909  'data': {
910    '*id':        'str',
911    'size':       'size',
912    'merge':      'bool',
913    'dump':       'bool',
914    'prealloc':   'bool',
915    'share':      'bool',
916    '*reserve':    'bool',
917    'host-nodes': ['uint16'],
918    'policy':     'HostMemPolicy' }}
919
920##
921# @query-memdev:
922#
923# Return information for all memory backends.
924#
925# Since: 2.1
926#
927# .. qmp-example::
928#
929#     -> { "execute": "query-memdev" }
930#     <- { "return": [
931#            {
932#              "id": "mem1",
933#              "size": 536870912,
934#              "merge": false,
935#              "dump": true,
936#              "prealloc": false,
937#              "share": false,
938#              "host-nodes": [0, 1],
939#              "policy": "bind"
940#            },
941#            {
942#              "size": 536870912,
943#              "merge": false,
944#              "dump": true,
945#              "prealloc": true,
946#              "share": false,
947#              "host-nodes": [2, 3],
948#              "policy": "preferred"
949#            }
950#          ]
951#        }
952##
953{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
954
955##
956# @CpuInstanceProperties:
957#
958# Properties identifying a CPU.
959#
960# Which members are optional and which mandatory depends on the
961# architecture and board.
962#
963# For s390x see :ref:`cpu-topology-s390x`.
964#
965# The ids other than the node-id specify the position of the CPU
966# within the CPU topology (as defined by the machine property "smp",
967# thus see also type `SMPConfiguration`)
968#
969# @node-id: NUMA node ID the CPU belongs to
970#
971# @drawer-id: drawer number within CPU topology the CPU belongs to
972#     (since 8.2)
973#
974# @book-id: book number within parent container the CPU belongs to
975#     (since 8.2)
976#
977# @socket-id: socket number within parent container the CPU belongs to
978#
979# @die-id: die number within the parent container the CPU belongs to
980#     (since 4.1)
981#
982# @cluster-id: cluster number within the parent container the CPU
983#     belongs to (since 7.1)
984#
985# @module-id: module number within the parent container the CPU
986#    belongs to (since 9.1)
987#
988# @core-id: core number within the parent container the CPU belongs to
989#
990# @thread-id: thread number within the core the CPU  belongs to
991#
992# Since: 2.7
993##
994{ 'struct': 'CpuInstanceProperties',
995  # Keep these in sync with the properties `device_add` accepts
996  'data': { '*node-id': 'int',
997            '*drawer-id': 'int',
998            '*book-id': 'int',
999            '*socket-id': 'int',
1000            '*die-id': 'int',
1001            '*cluster-id': 'int',
1002            '*module-id': 'int',
1003            '*core-id': 'int',
1004            '*thread-id': 'int'
1005  }
1006}
1007
1008##
1009# @HotpluggableCPU:
1010#
1011# @type: CPU object type for usage with `device_add` command
1012#
1013# @props: list of properties to pass for hotplugging a CPU with
1014#     `device_add`
1015#
1016# @vcpus-count: number of logical VCPU threads `HotpluggableCPU`
1017#     provides
1018#
1019# @qom-path: link to existing CPU object if CPU is present or omitted
1020#     if CPU is not present.
1021#
1022# .. note:: Management should be prepared to pass through additional
1023#    properties with `device_add`.
1024#
1025# Since: 2.7
1026##
1027{ 'struct': 'HotpluggableCPU',
1028  'data': { 'type': 'str',
1029            'vcpus-count': 'int',
1030            'props': 'CpuInstanceProperties',
1031            '*qom-path': 'str'
1032          }
1033}
1034
1035##
1036# @query-hotpluggable-cpus:
1037#
1038# TODO: Better documentation; currently there is none.
1039#
1040# Since: 2.7
1041#
1042# .. qmp-example::
1043#    :annotated:
1044#
1045#    For pseries machine type started with
1046#    ``-smp 2,cores=2,maxcpus=4 -cpu POWER8``::
1047#
1048#     -> { "execute": "query-hotpluggable-cpus" }
1049#     <- {"return": [
1050#          { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
1051#            "vcpus-count": 1 },
1052#          { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
1053#            "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
1054#        ]}
1055#
1056# .. qmp-example::
1057#    :annotated:
1058#
1059#    For pc machine type started with ``-smp 1,maxcpus=2``::
1060#
1061#     -> { "execute": "query-hotpluggable-cpus" }
1062#     <- {"return": [
1063#          {
1064#             "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1065#             "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1066#          },
1067#          {
1068#             "qom-path": "/machine/unattached/device[0]",
1069#             "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1070#             "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1071#          }
1072#        ]}
1073#
1074# .. qmp-example::
1075#    :annotated:
1076#
1077#    For s390x-virtio-ccw machine type started with
1078#    ``-smp 1,maxcpus=2 -cpu qemu``::
1079#
1080#     -> { "execute": "query-hotpluggable-cpus" }
1081#     <- {"return": [
1082#          {
1083#             "type": "qemu-s390x-cpu", "vcpus-count": 1,
1084#             "props": { "core-id": 1 }
1085#          },
1086#          {
1087#             "qom-path": "/machine/unattached/device[0]",
1088#             "type": "qemu-s390x-cpu", "vcpus-count": 1,
1089#             "props": { "core-id": 0 }
1090#          }
1091#        ]}
1092##
1093{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1094             'allow-preconfig': true }
1095
1096##
1097# @set-numa-node:
1098#
1099# Runtime equivalent of '-numa' CLI option, available at preconfigure
1100# stage to configure numa mapping before initializing machine.
1101#
1102# Since: 3.0
1103##
1104{ 'command': 'set-numa-node', 'boxed': true,
1105  'data': 'NumaOptions',
1106  'allow-preconfig': true
1107}
1108
1109##
1110# @balloon:
1111#
1112# Request the balloon driver to change its balloon size.
1113#
1114# @value: the target logical size of the VM in bytes.  We can deduce
1115#     the size of the balloon using this formula:
1116#
1117#        logical_vm_size = vm_ram_size - balloon_size
1118#
1119#     From it we have: balloon_size = vm_ram_size - @value
1120#
1121# Errors:
1122#     - If the balloon driver is enabled but not functional because
1123#       the KVM kernel module cannot support it, KVMMissingCap
1124#     - If no balloon device is present, DeviceNotActive
1125#
1126# .. note:: This command just issues a request to the guest.  When it
1127#    returns, the balloon size may not have changed.  A guest can
1128#    change the balloon size independent of this command.
1129#
1130# Since: 0.14
1131#
1132# .. qmp-example::
1133#    :annotated:
1134#
1135#    ::
1136#
1137#      -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1138#      <- { "return": {} }
1139#
1140#    With a 2.5GiB guest this command inflated the ballon to 3GiB.
1141##
1142{ 'command': 'balloon', 'data': {'value': 'int'} }
1143
1144##
1145# @BalloonInfo:
1146#
1147# Information about the guest balloon device.
1148#
1149# @actual: the logical size of the VM in bytes.  Formula used:
1150#     logical_vm_size = vm_ram_size - balloon_size
1151#
1152# Since: 0.14
1153##
1154{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1155
1156##
1157# @query-balloon:
1158#
1159# Return information about the balloon device.
1160#
1161# Errors:
1162#     - If the balloon driver is enabled but not functional because
1163#       the KVM kernel module cannot support it, KVMMissingCap
1164#     - If no balloon device is present, DeviceNotActive
1165#
1166# Since: 0.14
1167#
1168# .. qmp-example::
1169#
1170#     -> { "execute": "query-balloon" }
1171#     <- { "return": {
1172#              "actual": 1073741824
1173#           }
1174#        }
1175##
1176{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1177
1178##
1179# @BALLOON_CHANGE:
1180#
1181# Emitted when the guest changes the actual BALLOON level.  This value
1182# is equivalent to the @actual field return by the `query-balloon`
1183# command
1184#
1185# @actual: the logical size of the VM in bytes.  Formula used:
1186#     logical_vm_size = vm_ram_size - balloon_size
1187#
1188# .. note:: This event is rate-limited.
1189#
1190# Since: 1.2
1191#
1192# .. qmp-example::
1193#
1194#     <- { "event": "BALLOON_CHANGE",
1195#          "data": { "actual": 944766976 },
1196#          "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1197##
1198{ 'event': 'BALLOON_CHANGE',
1199  'data': { 'actual': 'int' } }
1200
1201##
1202# @HvBalloonInfo:
1203#
1204# hv-balloon guest-provided memory status information.
1205#
1206# @committed: the amount of memory in use inside the guest plus the
1207#     amount of the memory unusable inside the guest (ballooned out,
1208#     offline, etc.)
1209#
1210# @available: the amount of the memory inside the guest available for
1211#     new allocations ("free")
1212#
1213# Since: 8.2
1214##
1215{ 'struct': 'HvBalloonInfo',
1216  'data': { 'committed': 'size', 'available': 'size' } }
1217
1218##
1219# @query-hv-balloon-status-report:
1220#
1221# Return the hv-balloon driver data contained in the last received
1222# "STATUS" message from the guest.
1223#
1224# Errors:
1225#     - If no hv-balloon device is present, guest memory status
1226#       reporting is not enabled or no guest memory status report
1227#       received yet, GenericError
1228#
1229# Since: 8.2
1230#
1231# .. qmp-example::
1232#
1233#     -> { "execute": "query-hv-balloon-status-report" }
1234#     <- { "return": {
1235#              "committed": 816640000,
1236#              "available": 3333054464
1237#           }
1238#        }
1239##
1240{ 'command': 'query-hv-balloon-status-report', 'returns': 'HvBalloonInfo' }
1241
1242##
1243# @HV_BALLOON_STATUS_REPORT:
1244#
1245# Emitted when the hv-balloon driver receives a "STATUS" message from
1246# the guest.
1247#
1248# .. note:: This event is rate-limited.
1249#
1250# Since: 8.2
1251#
1252# .. qmp-example::
1253#
1254#     <- { "event": "HV_BALLOON_STATUS_REPORT",
1255#          "data": { "committed": 816640000, "available": 3333054464 },
1256#          "timestamp": { "seconds": 1600295492, "microseconds": 661044 } }
1257##
1258{ 'event': 'HV_BALLOON_STATUS_REPORT',
1259  'data': 'HvBalloonInfo' }
1260
1261##
1262# @MemoryInfo:
1263#
1264# Actual memory information in bytes.
1265#
1266# @base-memory: size of "base" memory specified with command line
1267#     option -m.
1268#
1269# @plugged-memory: size of memory that can be hot-unplugged.  This
1270#     field is omitted if target doesn't support memory hotplug (i.e.
1271#     CONFIG_MEM_DEVICE not defined at build time).
1272#
1273# Since: 2.11
1274##
1275{ 'struct': 'MemoryInfo',
1276  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1277
1278##
1279# @query-memory-size-summary:
1280#
1281# Return the amount of initially allocated and present hotpluggable
1282# (if enabled) memory in bytes.
1283#
1284# TODO: This line is a hack to separate the example from the body
1285#
1286# .. qmp-example::
1287#
1288#     -> { "execute": "query-memory-size-summary" }
1289#     <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1290#
1291# Since: 2.11
1292##
1293{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1294
1295##
1296# @PCDIMMDeviceInfo:
1297#
1298# PCDIMMDevice state information
1299#
1300# @id: device's ID
1301#
1302# @addr: physical address, where device is mapped
1303#
1304# @size: size of memory that the device provides
1305#
1306# @slot: slot number at which device is plugged in
1307#
1308# @node: NUMA node number where device is plugged in
1309#
1310# @memdev: memory backend linked with device
1311#
1312# @hotplugged: true if device was hotplugged
1313#
1314# @hotpluggable: true if device if could be added/removed while
1315#     machine is running
1316#
1317# Since: 2.1
1318##
1319{ 'struct': 'PCDIMMDeviceInfo',
1320  'data': { '*id': 'str',
1321            'addr': 'int',
1322            'size': 'int',
1323            'slot': 'int',
1324            'node': 'int',
1325            'memdev': 'str',
1326            'hotplugged': 'bool',
1327            'hotpluggable': 'bool'
1328          }
1329}
1330
1331##
1332# @VirtioPMEMDeviceInfo:
1333#
1334# VirtioPMEM state information
1335#
1336# @id: device's ID
1337#
1338# @memaddr: physical address in memory, where device is mapped
1339#
1340# @size: size of memory that the device provides
1341#
1342# @memdev: memory backend linked with device
1343#
1344# Since: 4.1
1345##
1346{ 'struct': 'VirtioPMEMDeviceInfo',
1347  'data': { '*id': 'str',
1348            'memaddr': 'size',
1349            'size': 'size',
1350            'memdev': 'str'
1351          }
1352}
1353
1354##
1355# @VirtioMEMDeviceInfo:
1356#
1357# VirtioMEMDevice state information
1358#
1359# @id: device's ID
1360#
1361# @memaddr: physical address in memory, where device is mapped
1362#
1363# @requested-size: the user requested size of the device
1364#
1365# @size: the (current) size of memory that the device provides
1366#
1367# @max-size: the maximum size of memory that the device can provide
1368#
1369# @block-size: the block size of memory that the device provides
1370#
1371# @node: NUMA node number where device is assigned to
1372#
1373# @memdev: memory backend linked with the region
1374#
1375# Since: 5.1
1376##
1377{ 'struct': 'VirtioMEMDeviceInfo',
1378  'data': { '*id': 'str',
1379            'memaddr': 'size',
1380            'requested-size': 'size',
1381            'size': 'size',
1382            'max-size': 'size',
1383            'block-size': 'size',
1384            'node': 'int',
1385            'memdev': 'str'
1386          }
1387}
1388
1389##
1390# @SgxEPCDeviceInfo:
1391#
1392# Sgx EPC state information
1393#
1394# @id: device's ID
1395#
1396# @memaddr: physical address in memory, where device is mapped
1397#
1398# @size: size of memory that the device provides
1399#
1400# @memdev: memory backend linked with device
1401#
1402# @node: the numa node (Since: 7.0)
1403#
1404# Since: 6.2
1405##
1406{ 'struct': 'SgxEPCDeviceInfo',
1407  'data': { '*id': 'str',
1408            'memaddr': 'size',
1409            'size': 'size',
1410            'node': 'int',
1411            'memdev': 'str'
1412          }
1413}
1414
1415##
1416# @HvBalloonDeviceInfo:
1417#
1418# hv-balloon provided memory state information
1419#
1420# @id: device's ID
1421#
1422# @memaddr: physical address in memory, where device is mapped
1423#
1424# @max-size: the maximum size of memory that the device can provide
1425#
1426# @memdev: memory backend linked with device
1427#
1428# Since: 8.2
1429##
1430{ 'struct': 'HvBalloonDeviceInfo',
1431  'data': { '*id': 'str',
1432            '*memaddr': 'size',
1433            'max-size': 'size',
1434            '*memdev': 'str'
1435          }
1436}
1437
1438##
1439# @MemoryDeviceInfoKind:
1440#
1441# @nvdimm: since 2.12
1442#
1443# @virtio-pmem: since 4.1
1444#
1445# @virtio-mem: since 5.1
1446#
1447# @sgx-epc: since 6.2.
1448#
1449# @hv-balloon: since 8.2.
1450#
1451# Since: 2.1
1452##
1453{ 'enum': 'MemoryDeviceInfoKind',
1454  'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc',
1455            'hv-balloon' ] }
1456
1457##
1458# @PCDIMMDeviceInfoWrapper:
1459#
1460# @data: PCDIMMDevice state information
1461#
1462# Since: 2.1
1463##
1464{ 'struct': 'PCDIMMDeviceInfoWrapper',
1465  'data': { 'data': 'PCDIMMDeviceInfo' } }
1466
1467##
1468# @VirtioPMEMDeviceInfoWrapper:
1469#
1470# @data: VirtioPMEM state information
1471#
1472# Since: 2.1
1473##
1474{ 'struct': 'VirtioPMEMDeviceInfoWrapper',
1475  'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1476
1477##
1478# @VirtioMEMDeviceInfoWrapper:
1479#
1480# @data: VirtioMEMDevice state information
1481#
1482# Since: 2.1
1483##
1484{ 'struct': 'VirtioMEMDeviceInfoWrapper',
1485  'data': { 'data': 'VirtioMEMDeviceInfo' } }
1486
1487##
1488# @SgxEPCDeviceInfoWrapper:
1489#
1490# @data: Sgx EPC state information
1491#
1492# Since: 6.2
1493##
1494{ 'struct': 'SgxEPCDeviceInfoWrapper',
1495  'data': { 'data': 'SgxEPCDeviceInfo' } }
1496
1497##
1498# @HvBalloonDeviceInfoWrapper:
1499#
1500# @data: hv-balloon provided memory state information
1501#
1502# Since: 8.2
1503##
1504{ 'struct': 'HvBalloonDeviceInfoWrapper',
1505  'data': { 'data': 'HvBalloonDeviceInfo' } }
1506
1507##
1508# @MemoryDeviceInfo:
1509#
1510# Union containing information about a memory device
1511#
1512# @type: memory device type
1513#
1514# Since: 2.1
1515##
1516{ 'union': 'MemoryDeviceInfo',
1517  'base': { 'type': 'MemoryDeviceInfoKind' },
1518  'discriminator': 'type',
1519  'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1520            'nvdimm': 'PCDIMMDeviceInfoWrapper',
1521            'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1522            'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1523            'sgx-epc': 'SgxEPCDeviceInfoWrapper',
1524            'hv-balloon': 'HvBalloonDeviceInfoWrapper'
1525          }
1526}
1527
1528##
1529# @SgxEPC:
1530#
1531# Sgx EPC cmdline information
1532#
1533# @memdev: memory backend linked with device
1534#
1535# @node: the numa node (Since: 7.0)
1536#
1537# Since: 6.2
1538##
1539{ 'struct': 'SgxEPC',
1540  'data': { 'memdev': 'str',
1541            'node': 'int'
1542          }
1543}
1544
1545##
1546# @SgxEPCProperties:
1547#
1548# SGX properties of machine types.
1549#
1550# @sgx-epc: list of ids of memory-backend-epc objects.
1551#
1552# Since: 6.2
1553##
1554{ 'struct': 'SgxEPCProperties',
1555  'data': { 'sgx-epc': ['SgxEPC'] }
1556}
1557
1558##
1559# @query-memory-devices:
1560#
1561# Lists available memory devices and their state
1562#
1563# Since: 2.1
1564#
1565# .. qmp-example::
1566#
1567#     -> { "execute": "query-memory-devices" }
1568#     <- { "return": [ { "data":
1569#                           { "addr": 5368709120,
1570#                             "hotpluggable": true,
1571#                             "hotplugged": true,
1572#                             "id": "d1",
1573#                             "memdev": "/objects/memX",
1574#                             "node": 0,
1575#                             "size": 1073741824,
1576#                             "slot": 0},
1577#                        "type": "dimm"
1578#                      } ] }
1579##
1580{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1581
1582##
1583# @MEMORY_DEVICE_SIZE_CHANGE:
1584#
1585# Emitted when the size of a memory device changes.  Only emitted for
1586# memory devices that can actually change the size (e.g., virtio-mem
1587# due to guest action).
1588#
1589# @id: device's ID
1590#
1591# @size: the new size of memory that the device provides
1592#
1593# @qom-path: path to the device object in the QOM tree (since 6.2)
1594#
1595# .. note:: This event is rate-limited.
1596#
1597# Since: 5.1
1598#
1599# .. qmp-example::
1600#
1601#     <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1602#          "data": { "id": "vm0", "size": 1073741824,
1603#                    "qom-path": "/machine/unattached/device[2]" },
1604#          "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1605##
1606{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1607  'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1608
1609##
1610# @BootConfiguration:
1611#
1612# Schema for virtual machine boot configuration.
1613#
1614# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1615#
1616# @once: Boot order to apply on first boot
1617#
1618# @menu: Whether to show a boot menu
1619#
1620# @splash: The name of the file to be passed to the firmware as logo
1621#     picture, if @menu is true.
1622#
1623# @splash-time: How long to show the logo picture, in milliseconds
1624#
1625# @reboot-timeout: Timeout before guest reboots after boot fails
1626#
1627# @strict: Whether to attempt booting from devices not included in the
1628#     boot order
1629#
1630# Since: 7.1
1631##
1632{ 'struct': 'BootConfiguration', 'data': {
1633     '*order': 'str',
1634     '*once': 'str',
1635     '*menu': 'bool',
1636     '*splash': 'str',
1637     '*splash-time': 'int',
1638     '*reboot-timeout': 'int',
1639     '*strict': 'bool' } }
1640
1641##
1642# @SMPConfiguration:
1643#
1644# Schema for CPU topology configuration.  A missing value lets QEMU
1645# figure out a suitable value based on the ones that are provided.
1646#
1647# The members other than @cpus and @maxcpus define a topology of
1648# containers.
1649#
1650# The ordering from highest/coarsest to lowest/finest is: @drawers,
1651# @books, @sockets, @dies, @clusters, @cores, @threads.
1652#
1653# Different architectures support different subsets of topology
1654# containers.
1655#
1656# For example, s390x does not have clusters and dies, and the socket
1657# is the parent container of cores.
1658#
1659# @cpus: number of virtual CPUs in the virtual machine
1660#
1661# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1662#     machine
1663#
1664# @drawers: number of drawers in the CPU topology (since 8.2)
1665#
1666# @books: number of books in the CPU topology (since 8.2)
1667#
1668# @sockets: number of sockets per parent container
1669#
1670# @dies: number of dies per parent container
1671#
1672# @clusters: number of clusters per parent container (since 7.0)
1673#
1674# @modules: number of modules per parent container (since 9.1)
1675#
1676# @cores: number of cores per parent container
1677#
1678# @threads: number of threads per core
1679#
1680# Since: 6.1
1681##
1682{ 'struct': 'SMPConfiguration', 'data': {
1683     '*cpus': 'int',
1684     '*drawers': 'int',
1685     '*books': 'int',
1686     '*sockets': 'int',
1687     '*dies': 'int',
1688     '*clusters': 'int',
1689     '*modules': 'int',
1690     '*cores': 'int',
1691     '*threads': 'int',
1692     '*maxcpus': 'int' } }
1693
1694##
1695# @x-query-irq:
1696#
1697# Query interrupt statistics
1698#
1699# Features:
1700#
1701# @unstable: This command is meant for debugging.
1702#
1703# Returns: interrupt statistics
1704#
1705# Since: 6.2
1706##
1707{ 'command': 'x-query-irq',
1708  'returns': 'HumanReadableText',
1709  'features': [ 'unstable' ] }
1710
1711##
1712# @x-query-jit:
1713#
1714# Query TCG compiler statistics
1715#
1716# Features:
1717#
1718# @unstable: This command is meant for debugging.
1719#
1720# Returns: TCG compiler statistics
1721#
1722# Since: 6.2
1723##
1724{ 'command': 'x-query-jit',
1725  'returns': 'HumanReadableText',
1726  'if': 'CONFIG_TCG',
1727  'features': [ 'unstable' ] }
1728
1729##
1730# @x-query-numa:
1731#
1732# Query NUMA topology information
1733#
1734# Features:
1735#
1736# @unstable: This command is meant for debugging.
1737#
1738# Returns: topology information
1739#
1740# Since: 6.2
1741##
1742{ 'command': 'x-query-numa',
1743  'returns': 'HumanReadableText',
1744  'features': [ 'unstable' ] }
1745
1746##
1747# @x-query-ramblock:
1748#
1749# Query system ramblock information
1750#
1751# Features:
1752#
1753# @unstable: This command is meant for debugging.
1754#
1755# Returns: system ramblock information
1756#
1757# Since: 6.2
1758##
1759{ 'command': 'x-query-ramblock',
1760  'returns': 'HumanReadableText',
1761  'features': [ 'unstable' ] }
1762
1763##
1764# @x-query-roms:
1765#
1766# Query information on the registered ROMS
1767#
1768# Features:
1769#
1770# @unstable: This command is meant for debugging.
1771#
1772# Returns: registered ROMs
1773#
1774# Since: 6.2
1775##
1776{ 'command': 'x-query-roms',
1777  'returns': 'HumanReadableText',
1778  'features': [ 'unstable' ] }
1779
1780##
1781# @x-query-usb:
1782#
1783# Query information on the USB devices
1784#
1785# Features:
1786#
1787# @unstable: This command is meant for debugging.
1788#
1789# Returns: USB device information
1790#
1791# Since: 6.2
1792##
1793{ 'command': 'x-query-usb',
1794  'returns': 'HumanReadableText',
1795  'features': [ 'unstable' ] }
1796
1797##
1798# @SmbiosEntryPointType:
1799#
1800# @32: SMBIOS version 2.1 (32-bit) Entry Point
1801#
1802# @64: SMBIOS version 3.0 (64-bit) Entry Point
1803#
1804# @auto: Either 2.x or 3.x SMBIOS version, 2.x if configuration can be
1805#     described by it and 3.x otherwise (since: 9.0)
1806#
1807# Since: 7.0
1808##
1809{ 'enum': 'SmbiosEntryPointType',
1810  'data': [ '32', '64', 'auto' ] }
1811
1812##
1813# @MemorySizeConfiguration:
1814#
1815# Schema for memory size configuration.
1816#
1817# @size: memory size in bytes
1818#
1819# @max-size: maximum hotpluggable memory size in bytes
1820#
1821# @slots: number of available memory slots for hotplug
1822#
1823# Since: 7.1
1824##
1825{ 'struct': 'MemorySizeConfiguration', 'data': {
1826     '*size': 'size',
1827     '*max-size': 'size',
1828     '*slots': 'uint64' } }
1829
1830##
1831# @dumpdtb:
1832#
1833# Save the FDT in dtb format.
1834#
1835# @filename: name of the dtb file to be created
1836#
1837# Since: 7.2
1838#
1839# .. qmp-example::
1840#
1841#     -> { "execute": "dumpdtb" }
1842#          "arguments": { "filename": "fdt.dtb" } }
1843#     <- { "return": {} }
1844##
1845{ 'command': 'dumpdtb',
1846  'data': { 'filename': 'str' },
1847  'if': 'CONFIG_FDT' }
1848
1849##
1850# @x-query-interrupt-controllers:
1851#
1852# Query information on interrupt controller devices
1853#
1854# Features:
1855#
1856# @unstable: This command is meant for debugging.
1857#
1858# Returns: Interrupt controller devices information
1859#
1860# Since: 9.1
1861##
1862{ 'command': 'x-query-interrupt-controllers',
1863  'returns': 'HumanReadableText',
1864  'features': [ 'unstable' ]}
1865
1866##
1867# @dump-skeys:
1868#
1869# Dump the storage keys for an s390x guest
1870#
1871# @filename: the path to the file to dump to
1872#
1873# Since: 2.5
1874#
1875# .. qmp-example::
1876#
1877#     -> { "execute": "dump-skeys",
1878#          "arguments": { "filename": "/tmp/skeys" } }
1879#     <- { "return": {} }
1880##
1881{ 'command': 'dump-skeys',
1882  'data': { 'filename': 'str' } }
1883
1884##
1885# @CpuModelInfo:
1886#
1887# Virtual CPU model.
1888#
1889# A CPU model consists of the name of a CPU definition, to which delta
1890# changes are applied (e.g. features added/removed).  Most magic
1891# values that an architecture might require should be hidden behind
1892# the name.  However, if required, architectures can expose relevant
1893# properties.
1894#
1895# @name: the name of the CPU definition the model is based on
1896#
1897# @props: a dictionary of QOM properties to be applied
1898#
1899# Since: 2.8
1900##
1901{ 'struct': 'CpuModelInfo',
1902  'data': { 'name': 'str',
1903            '*props': 'any' } }
1904
1905##
1906# @CpuModelExpansionType:
1907#
1908# An enumeration of CPU model expansion types.
1909#
1910# @static: Expand to a static CPU model, a combination of a static
1911#     base model name and property delta changes.  As the static base
1912#     model will never change, the expanded CPU model will be the
1913#     same, independent of QEMU version, machine type, machine
1914#     options, and accelerator options.  Therefore, the resulting
1915#     model can be used by tooling without having to specify a
1916#     compatibility machine - e.g. when displaying the "host" model.
1917#     The @static CPU models are migration-safe.
1918#
1919# @full: Expand all properties.  The produced model is not guaranteed
1920#     to be migration-safe, but allows tooling to get an insight and
1921#     work with model details.
1922#
1923# .. note:: When a non-migration-safe CPU model is expanded in static
1924#    mode, some features enabled by the CPU model may be omitted,
1925#    because they can't be implemented by a static CPU model
1926#    definition (e.g. cache info passthrough and PMU passthrough in
1927#    x86).  If you need an accurate representation of the features
1928#    enabled by a non-migration-safe CPU model, use @full.  If you
1929#    need a static representation that will keep ABI compatibility
1930#    even when changing QEMU version or machine-type, use @static (but
1931#    keep in mind that some features may be omitted).
1932#
1933# Since: 2.8
1934##
1935{ 'enum': 'CpuModelExpansionType',
1936  'data': [ 'static', 'full' ] }
1937
1938##
1939# @CpuModelCompareResult:
1940#
1941# An enumeration of CPU model comparison results.  The result is
1942# usually calculated using e.g. CPU features or CPU generations.
1943#
1944# @incompatible: If model A is incompatible to model B, model A is not
1945#     guaranteed to run where model B runs and the other way around.
1946#
1947# @identical: If model A is identical to model B, model A is
1948#     guaranteed to run where model B runs and the other way around.
1949#
1950# @superset: If model A is a superset of model B, model B is
1951#     guaranteed to run where model A runs.  There are no guarantees
1952#     about the other way.
1953#
1954# @subset: If model A is a subset of model B, model A is guaranteed to
1955#     run where model B runs.  There are no guarantees about the other
1956#     way.
1957#
1958# Since: 2.8
1959##
1960{ 'enum': 'CpuModelCompareResult',
1961  'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
1962
1963##
1964# @CpuModelBaselineInfo:
1965#
1966# The result of a CPU model baseline.
1967#
1968# @model: the baselined `CpuModelInfo`.
1969#
1970# Since: 2.8
1971##
1972{ 'struct': 'CpuModelBaselineInfo',
1973  'data': { 'model': 'CpuModelInfo' } }
1974
1975##
1976# @CpuModelCompareInfo:
1977#
1978# The result of a CPU model comparison.
1979#
1980# @result: The result of the compare operation.
1981#
1982# @responsible-properties: List of properties that led to the
1983#     comparison result not being identical.
1984#
1985# @responsible-properties is a list of QOM property names that led to
1986# both CPUs not being detected as identical.  For identical models,
1987# this list is empty.  If a QOM property is read-only, that means
1988# there's no known way to make the CPU models identical.  If the
1989# special property name "type" is included, the models are by
1990# definition not identical and cannot be made identical.
1991#
1992# Since: 2.8
1993##
1994{ 'struct': 'CpuModelCompareInfo',
1995  'data': { 'result': 'CpuModelCompareResult',
1996            'responsible-properties': ['str'] } }
1997
1998##
1999# @query-cpu-model-comparison:
2000#
2001# Compares two CPU models, @modela and @modelb, returning how they
2002# compare in a specific configuration.  The results indicates how
2003# both models compare regarding runnability.  This result can be
2004# used by tooling to make decisions if a certain CPU model will
2005# run in a certain configuration or if a compatible CPU model has
2006# to be created by baselining.
2007#
2008# Usually, a CPU model is compared against the maximum possible CPU
2009# model of a certain configuration (e.g. the "host" model for KVM).
2010# If that CPU model is identical or a subset, it will run in that
2011# configuration.
2012#
2013# The result returned by this command may be affected by:
2014#
2015# * QEMU version: CPU models may look different depending on the QEMU
2016#   version.  (Except for CPU models reported as "static" in
2017#   `query-cpu-definitions`.)
2018# * machine-type: CPU model may look different depending on the
2019#   machine-type.  (Except for CPU models reported as "static" in
2020#   `query-cpu-definitions`.)
2021# * machine options (including accelerator): in some architectures,
2022#   CPU models may look different depending on machine and accelerator
2023#   options.  (Except for CPU models reported as "static" in
2024#   `query-cpu-definitions`.)
2025# * "-cpu" arguments and global properties: arguments to the -cpu
2026#   option and global properties may affect expansion of CPU models.
2027#   Using `query-cpu-model-expansion` while using these is not advised.
2028#
2029# Some architectures may not support comparing CPU models.  s390x
2030# supports comparing CPU models.
2031#
2032# @modela: description of the first CPU model to compare, referred to
2033#     as "model A" in `CpuModelCompareResult`
2034#
2035# @modelb: description of the second CPU model to compare, referred to
2036#     as "model B" in `CpuModelCompareResult`
2037#
2038# Returns: a `CpuModelCompareInfo` describing how both CPU models
2039#     compare
2040#
2041# Errors:
2042#     - if comparing CPU models is not supported by the target
2043#     - if a model cannot be used
2044#     - if a model contains an unknown cpu definition name, unknown
2045#       properties or properties with wrong types.
2046#
2047# Since: 2.8
2048##
2049{ 'command': 'query-cpu-model-comparison',
2050  'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2051  'returns': 'CpuModelCompareInfo' }
2052
2053##
2054# @query-cpu-model-baseline:
2055#
2056# Baseline two CPU models, @modela and @modelb, creating a compatible
2057# third model.  The created model will always be a static,
2058# migration-safe CPU model (see "static" CPU model expansion for
2059# details).
2060#
2061# This interface can be used by tooling to create a compatible CPU
2062# model out two CPU models.  The created CPU model will be identical
2063# to or a subset of both CPU models when comparing them.  Therefore,
2064# the created CPU model is guaranteed to run where the given CPU
2065# models run.
2066#
2067# The result returned by this command may be affected by:
2068#
2069# * QEMU version: CPU models may look different depending on the QEMU
2070#   version.  (Except for CPU models reported as "static" in
2071#   `query-cpu-definitions`.)
2072# * machine-type: CPU model may look different depending on the
2073#   machine-type.  (Except for CPU models reported as "static" in
2074#   `query-cpu-definitions`.)
2075# * machine options (including accelerator): in some architectures,
2076#   CPU models may look different depending on machine and accelerator
2077#   options.  (Except for CPU models reported as "static" in
2078#   `query-cpu-definitions`.)
2079# * "-cpu" arguments and global properties: arguments to the -cpu
2080#   option and global properties may affect expansion of CPU models.
2081#   Using `query-cpu-model-expansion` while using these is not advised.
2082#
2083# Some architectures may not support baselining CPU models.  s390x
2084# supports baselining CPU models.
2085#
2086# @modela: description of the first CPU model to baseline
2087#
2088# @modelb: description of the second CPU model to baseline
2089#
2090# Returns: a `CpuModelBaselineInfo` describing the baselined CPU model
2091#
2092# Errors:
2093#     - if baselining CPU models is not supported by the target
2094#     - if a model cannot be used
2095#     - if a model contains an unknown cpu definition name, unknown
2096#       properties or properties with wrong types.
2097#
2098# Since: 2.8
2099##
2100{ 'command': 'query-cpu-model-baseline',
2101  'data': { 'modela': 'CpuModelInfo',
2102            'modelb': 'CpuModelInfo' },
2103  'returns': 'CpuModelBaselineInfo' }
2104
2105##
2106# @CpuModelExpansionInfo:
2107#
2108# The result of a cpu model expansion.
2109#
2110# @model: the expanded `CpuModelInfo`.
2111#
2112# @deprecated-props: an optional list of properties that are flagged as
2113#     deprecated by the CPU vendor.  The list depends on the
2114#     CpuModelExpansionType: "static" properties are a subset of the
2115#     enabled-properties for the expanded model; "full" properties are
2116#     a set of properties that are deprecated across all models for
2117#     the architecture.  (since: 10.1 -- since 9.1 on s390x --).
2118#
2119# Since: 2.8
2120##
2121{ 'struct': 'CpuModelExpansionInfo',
2122  'data': { 'model': 'CpuModelInfo',
2123            '*deprecated-props' : ['str'] } }
2124
2125##
2126# @query-cpu-model-expansion:
2127#
2128# Expands a given CPU model, @model, (or a combination of CPU model +
2129# additional options) to different granularities, specified by @type,
2130# allowing tooling to get an understanding what a specific CPU model
2131# looks like in QEMU under a certain configuration.
2132#
2133# This interface can be used to query the "host" CPU model.
2134#
2135# The data returned by this command may be affected by:
2136#
2137# * QEMU version: CPU models may look different depending on the QEMU
2138#   version.  (Except for CPU models reported as "static" in
2139#   `query-cpu-definitions`.)
2140# * machine-type: CPU model may look different depending on the
2141#   machine-type.  (Except for CPU models reported as "static" in
2142#   `query-cpu-definitions`.)
2143# * machine options (including accelerator): in some architectures,
2144#   CPU models may look different depending on machine and accelerator
2145#   options.  (Except for CPU models reported as "static" in
2146#   `query-cpu-definitions`.)
2147# * "-cpu" arguments and global properties: arguments to the -cpu
2148#   option and global properties may affect expansion of CPU models.
2149#   Using `query-cpu-model-expansion` while using these is not advised.
2150#
2151# Some architectures may not support all expansion types.  s390x
2152# supports "full" and "static".  Arm only supports "full".
2153#
2154# @model: description of the CPU model to expand
2155#
2156# @type: expansion type, specifying how to expand the CPU model
2157#
2158# Returns: a `CpuModelExpansionInfo` describing the expanded CPU model
2159#
2160# Errors:
2161#     - if expanding CPU models is not supported
2162#     - if the model cannot be expanded
2163#     - if the model contains an unknown CPU definition name, unknown
2164#       properties or properties with a wrong type
2165#     - if an expansion type is not supported
2166#
2167# Since: 2.8
2168##
2169{ 'command': 'query-cpu-model-expansion',
2170  'data': { 'type': 'CpuModelExpansionType',
2171            'model': 'CpuModelInfo' },
2172  'returns': 'CpuModelExpansionInfo' }
2173
2174##
2175# @CpuDefinitionInfo:
2176#
2177# Virtual CPU definition.
2178#
2179# @name: the name of the CPU definition
2180#
2181# @migration-safe: whether a CPU definition can be safely used for
2182#     migration in combination with a QEMU compatibility machine when
2183#     migrating between different QEMU versions and between hosts with
2184#     different sets of (hardware or software) capabilities.  If not
2185#     provided, information is not available and callers should not
2186#     assume the CPU definition to be migration-safe.  (since 2.8)
2187#
2188# @static: whether a CPU definition is static and will not change
2189#     depending on QEMU version, machine type, machine options and
2190#     accelerator options.  A static model is always migration-safe.
2191#     (since 2.8)
2192#
2193# @unavailable-features: List of properties that prevent the CPU model
2194#     from running in the current host.  (since 2.8)
2195#
2196# @typename: Type name that can be used as argument to
2197#     `device-list-properties`, to introspect properties configurable
2198#     using -cpu or -global.  (since 2.9)
2199#
2200# @alias-of: Name of CPU model this model is an alias for.  The target
2201#     of the CPU model alias may change depending on the machine type.
2202#     Management software is supposed to translate CPU model aliases
2203#     in the VM configuration, because aliases may stop being
2204#     migration-safe in the future (since 4.1)
2205#
2206# @deprecated: If true, this CPU model is deprecated and may be
2207#     removed in some future version of QEMU according to the QEMU
2208#     deprecation policy.  (since 5.2)
2209#
2210# @unavailable-features is a list of QOM property names that represent
2211# CPU model attributes that prevent the CPU from running.  If the QOM
2212# property is read-only, that means there's no known way to make the
2213# CPU model run in the current host.  Implementations that choose not
2214# to provide specific information return the property name "type".  If
2215# the property is read-write, it means that it MAY be possible to run
2216# the CPU model in the current host if that property is changed.
2217# Management software can use it as hints to suggest or choose an
2218# alternative for the user, or just to generate meaningful error
2219# messages explaining why the CPU model can't be used.  If
2220# @unavailable-features is an empty list, the CPU model is runnable
2221# using the current host and machine-type.  If @unavailable-features
2222# is not present, runnability information for the CPU is not
2223# available.
2224#
2225# Since: 1.2
2226##
2227{ 'struct': 'CpuDefinitionInfo',
2228  'data': { 'name': 'str',
2229            '*migration-safe': 'bool',
2230            'static': 'bool',
2231            '*unavailable-features': [ 'str' ],
2232            'typename': 'str',
2233            '*alias-of' : 'str',
2234            'deprecated' : 'bool' } }
2235
2236##
2237# @query-cpu-definitions:
2238#
2239# Return a list of supported virtual CPU definitions
2240#
2241# Since: 1.2
2242##
2243{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2244