1 # -*- Mode: Python -*- 2 # vim: filetype=python 3 # 4 # This work is licensed under the terms of the GNU GPL, version 2 or later. 5 # See the COPYING file in the top-level directory. 6 7 ## 8 # = Machines 9 ## 10 11 { 'include': 'common.json' } 12 { 'include': 'machine-common.json' } 13 14 ## 15 # @SysEmuTarget: 16 # 17 # The comprehensive enumeration of QEMU system emulation ("softmmu") 18 # targets. Run "./configure --help" in the project root directory, 19 # and look for the \*-softmmu targets near the "--target-list" option. 20 # The individual target constants are not documented here, for the 21 # time being. 22 # 23 # @rx: since 5.0 24 # 25 # @avr: since 5.1 26 # 27 # Notes: The resulting QMP strings can be appended to the 28 # "qemu-system-" prefix to produce the corresponding QEMU 29 # executable name. This is true even for "qemu-system-x86_64". 30 # 31 # Since: 3.0 32 ## 33 { 'enum' : 'SysEmuTarget', 34 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 35 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64', 36 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc', 37 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4', 38 'sh4eb', 'sparc', 'sparc64', 'tricore', 39 'x86_64', 'xtensa', 'xtensaeb' ] } 40 41 ## 42 # @CpuS390State: 43 # 44 # An enumeration of cpu states that can be assumed by a virtual S390 45 # CPU 46 # 47 # Since: 2.12 48 ## 49 { 'enum': 'CpuS390State', 50 'prefix': 'S390_CPU_STATE', 51 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 52 53 ## 54 # @CpuInfoS390: 55 # 56 # Additional information about a virtual S390 CPU 57 # 58 # @cpu-state: the virtual CPU's state 59 # 60 # @dedicated: the virtual CPU's dedication (since 8.2) 61 # 62 # @entitlement: the virtual CPU's entitlement (since 8.2) 63 # 64 # Since: 2.12 65 ## 66 { 'struct': 'CpuInfoS390', 67 'data': { 'cpu-state': 'CpuS390State', 68 '*dedicated': 'bool', 69 '*entitlement': 'CpuS390Entitlement' } } 70 71 ## 72 # @CpuInfoFast: 73 # 74 # Information about a virtual CPU 75 # 76 # @cpu-index: index of the virtual CPU 77 # 78 # @qom-path: path to the CPU object in the QOM tree 79 # 80 # @thread-id: ID of the underlying host thread 81 # 82 # @props: properties associated with a virtual CPU, e.g. the socket id 83 # 84 # @target: the QEMU system emulation target, which determines which 85 # additional fields will be listed (since 3.0) 86 # 87 # Since: 2.12 88 ## 89 { 'union' : 'CpuInfoFast', 90 'base' : { 'cpu-index' : 'int', 91 'qom-path' : 'str', 92 'thread-id' : 'int', 93 '*props' : 'CpuInstanceProperties', 94 'target' : 'SysEmuTarget' }, 95 'discriminator' : 'target', 96 'data' : { 's390x' : 'CpuInfoS390' } } 97 98 ## 99 # @query-cpus-fast: 100 # 101 # Returns information about all virtual CPUs. 102 # 103 # Returns: list of @CpuInfoFast 104 # 105 # Since: 2.12 106 # 107 # Example: 108 # 109 # -> { "execute": "query-cpus-fast" } 110 # <- { "return": [ 111 # { 112 # "thread-id": 25627, 113 # "props": { 114 # "core-id": 0, 115 # "thread-id": 0, 116 # "socket-id": 0 117 # }, 118 # "qom-path": "/machine/unattached/device[0]", 119 # "target":"x86_64", 120 # "cpu-index": 0 121 # }, 122 # { 123 # "thread-id": 25628, 124 # "props": { 125 # "core-id": 0, 126 # "thread-id": 0, 127 # "socket-id": 1 128 # }, 129 # "qom-path": "/machine/unattached/device[2]", 130 # "target":"x86_64", 131 # "cpu-index": 1 132 # } 133 # ] 134 # } 135 ## 136 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 137 138 ## 139 # @MachineInfo: 140 # 141 # Information describing a machine. 142 # 143 # @name: the name of the machine 144 # 145 # @alias: an alias for the machine name 146 # 147 # @is-default: whether the machine is default 148 # 149 # @cpu-max: maximum number of CPUs supported by the machine type 150 # (since 1.5) 151 # 152 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7) 153 # 154 # @numa-mem-supported: true if '-numa node,mem' option is supported by 155 # the machine type and false otherwise (since 4.1) 156 # 157 # @deprecated: if true, the machine type is deprecated and may be 158 # removed in future versions of QEMU according to the QEMU 159 # deprecation policy (since 4.1) 160 # 161 # @default-cpu-type: default CPU model typename if none is requested 162 # via the -cpu argument. (since 4.2) 163 # 164 # @default-ram-id: the default ID of initial RAM memory backend (since 165 # 5.2) 166 # 167 # @acpi: machine type supports ACPI (since 8.0) 168 # 169 # Since: 1.2 170 ## 171 { 'struct': 'MachineInfo', 172 'data': { 'name': 'str', '*alias': 'str', 173 '*is-default': 'bool', 'cpu-max': 'int', 174 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool', 175 'deprecated': 'bool', '*default-cpu-type': 'str', 176 '*default-ram-id': 'str', 'acpi': 'bool' } } 177 178 ## 179 # @query-machines: 180 # 181 # Return a list of supported machines 182 # 183 # Returns: a list of MachineInfo 184 # 185 # Since: 1.2 186 ## 187 { 'command': 'query-machines', 'returns': ['MachineInfo'] } 188 189 ## 190 # @CurrentMachineParams: 191 # 192 # Information describing the running machine parameters. 193 # 194 # @wakeup-suspend-support: true if the machine supports wake up from 195 # suspend 196 # 197 # Since: 4.0 198 ## 199 { 'struct': 'CurrentMachineParams', 200 'data': { 'wakeup-suspend-support': 'bool'} } 201 202 ## 203 # @query-current-machine: 204 # 205 # Return information on the current virtual machine. 206 # 207 # Returns: CurrentMachineParams 208 # 209 # Since: 4.0 210 ## 211 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' } 212 213 ## 214 # @TargetInfo: 215 # 216 # Information describing the QEMU target. 217 # 218 # @arch: the target architecture 219 # 220 # Since: 1.2 221 ## 222 { 'struct': 'TargetInfo', 223 'data': { 'arch': 'SysEmuTarget' } } 224 225 ## 226 # @query-target: 227 # 228 # Return information about the target for this QEMU 229 # 230 # Returns: TargetInfo 231 # 232 # Since: 1.2 233 ## 234 { 'command': 'query-target', 'returns': 'TargetInfo' } 235 236 ## 237 # @UuidInfo: 238 # 239 # Guest UUID information (Universally Unique Identifier). 240 # 241 # @UUID: the UUID of the guest 242 # 243 # Since: 0.14 244 # 245 # Notes: If no UUID was specified for the guest, a null UUID is 246 # returned. 247 ## 248 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 249 250 ## 251 # @query-uuid: 252 # 253 # Query the guest UUID information. 254 # 255 # Returns: The @UuidInfo for the guest 256 # 257 # Since: 0.14 258 # 259 # Example: 260 # 261 # -> { "execute": "query-uuid" } 262 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 263 ## 264 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } 265 266 ## 267 # @GuidInfo: 268 # 269 # GUID information. 270 # 271 # @guid: the globally unique identifier 272 # 273 # Since: 2.9 274 ## 275 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 276 277 ## 278 # @query-vm-generation-id: 279 # 280 # Show Virtual Machine Generation ID 281 # 282 # Since: 2.9 283 ## 284 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 285 286 ## 287 # @system_reset: 288 # 289 # Performs a hard reset of a guest. 290 # 291 # Since: 0.14 292 # 293 # Example: 294 # 295 # -> { "execute": "system_reset" } 296 # <- { "return": {} } 297 ## 298 { 'command': 'system_reset' } 299 300 ## 301 # @system_powerdown: 302 # 303 # Requests that a guest perform a powerdown operation. 304 # 305 # Since: 0.14 306 # 307 # Notes: A guest may or may not respond to this command. This command 308 # returning does not indicate that a guest has accepted the 309 # request or that it has shut down. Many guests will respond to 310 # this command by prompting the user in some way. 311 # 312 # Example: 313 # 314 # -> { "execute": "system_powerdown" } 315 # <- { "return": {} } 316 ## 317 { 'command': 'system_powerdown' } 318 319 ## 320 # @system_wakeup: 321 # 322 # Wake up guest from suspend. If the guest has wake-up from suspend 323 # support enabled (wakeup-suspend-support flag from 324 # query-current-machine), wake-up guest from suspend if the guest is 325 # in SUSPENDED state. Return an error otherwise. 326 # 327 # Since: 1.1 328 # 329 # Note: prior to 4.0, this command does nothing in case the guest 330 # isn't suspended. 331 # 332 # Example: 333 # 334 # -> { "execute": "system_wakeup" } 335 # <- { "return": {} } 336 ## 337 { 'command': 'system_wakeup' } 338 339 ## 340 # @LostTickPolicy: 341 # 342 # Policy for handling lost ticks in timer devices. Ticks end up 343 # getting lost when, for example, the guest is paused. 344 # 345 # @discard: throw away the missed ticks and continue with future 346 # injection normally. The guest OS will see the timer jump ahead 347 # by a potentially quite significant amount all at once, as if the 348 # intervening chunk of time had simply not existed; needless to 349 # say, such a sudden jump can easily confuse a guest OS which is 350 # not specifically prepared to deal with it. Assuming the guest 351 # OS can deal correctly with the time jump, the time in the guest 352 # and in the host should now match. 353 # 354 # @delay: continue to deliver ticks at the normal rate. The guest OS 355 # will not notice anything is amiss, as from its point of view 356 # time will have continued to flow normally. The time in the 357 # guest should now be behind the time in the host by exactly the 358 # amount of time during which ticks have been missed. 359 # 360 # @slew: deliver ticks at a higher rate to catch up with the missed 361 # ticks. The guest OS will not notice anything is amiss, as from 362 # its point of view time will have continued to flow normally. 363 # Once the timer has managed to catch up with all the missing 364 # ticks, the time in the guest and in the host should match. 365 # 366 # Since: 2.0 367 ## 368 { 'enum': 'LostTickPolicy', 369 'data': ['discard', 'delay', 'slew' ] } 370 371 ## 372 # @inject-nmi: 373 # 374 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or 375 # all CPUs (ppc64). The command fails when the guest doesn't support 376 # injecting. 377 # 378 # Since: 0.14 379 # 380 # Note: prior to 2.1, this command was only supported for x86 and s390 381 # VMs 382 # 383 # Example: 384 # 385 # -> { "execute": "inject-nmi" } 386 # <- { "return": {} } 387 ## 388 { 'command': 'inject-nmi' } 389 390 ## 391 # @KvmInfo: 392 # 393 # Information about support for KVM acceleration 394 # 395 # @enabled: true if KVM acceleration is active 396 # 397 # @present: true if KVM acceleration is built into this executable 398 # 399 # Since: 0.14 400 ## 401 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 402 403 ## 404 # @query-kvm: 405 # 406 # Returns information about KVM acceleration 407 # 408 # Returns: @KvmInfo 409 # 410 # Since: 0.14 411 # 412 # Example: 413 # 414 # -> { "execute": "query-kvm" } 415 # <- { "return": { "enabled": true, "present": true } } 416 ## 417 { 'command': 'query-kvm', 'returns': 'KvmInfo' } 418 419 ## 420 # @NumaOptionsType: 421 # 422 # @node: NUMA nodes configuration 423 # 424 # @dist: NUMA distance configuration (since 2.10) 425 # 426 # @cpu: property based CPU(s) to node mapping (Since: 2.10) 427 # 428 # @hmat-lb: memory latency and bandwidth information (Since: 5.0) 429 # 430 # @hmat-cache: memory side cache information (Since: 5.0) 431 # 432 # Since: 2.1 433 ## 434 { 'enum': 'NumaOptionsType', 435 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] } 436 437 ## 438 # @NumaOptions: 439 # 440 # A discriminated record of NUMA options. (for OptsVisitor) 441 # 442 # @type: NUMA option type 443 # 444 # Since: 2.1 445 ## 446 { 'union': 'NumaOptions', 447 'base': { 'type': 'NumaOptionsType' }, 448 'discriminator': 'type', 449 'data': { 450 'node': 'NumaNodeOptions', 451 'dist': 'NumaDistOptions', 452 'cpu': 'NumaCpuOptions', 453 'hmat-lb': 'NumaHmatLBOptions', 454 'hmat-cache': 'NumaHmatCacheOptions' }} 455 456 ## 457 # @NumaNodeOptions: 458 # 459 # Create a guest NUMA node. (for OptsVisitor) 460 # 461 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 462 # 463 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin if 464 # omitted) 465 # 466 # @mem: memory size of this node; mutually exclusive with @memdev. 467 # Equally divide total memory among nodes if both @mem and @memdev 468 # are omitted. 469 # 470 # @memdev: memory backend object. If specified for one node, it must 471 # be specified for all nodes. 472 # 473 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points 474 # to the nodeid which has the memory controller responsible for 475 # this NUMA node. This field provides additional information as 476 # to the initiator node that is closest (as in directly attached) 477 # to this node, and therefore has the best performance (since 5.0) 478 # 479 # Since: 2.1 480 ## 481 { 'struct': 'NumaNodeOptions', 482 'data': { 483 '*nodeid': 'uint16', 484 '*cpus': ['uint16'], 485 '*mem': 'size', 486 '*memdev': 'str', 487 '*initiator': 'uint16' }} 488 489 ## 490 # @NumaDistOptions: 491 # 492 # Set the distance between 2 NUMA nodes. 493 # 494 # @src: source NUMA node. 495 # 496 # @dst: destination NUMA node. 497 # 498 # @val: NUMA distance from source node to destination node. When a 499 # node is unreachable from another node, set the distance between 500 # them to 255. 501 # 502 # Since: 2.10 503 ## 504 { 'struct': 'NumaDistOptions', 505 'data': { 506 'src': 'uint16', 507 'dst': 'uint16', 508 'val': 'uint8' }} 509 510 ## 511 # @CXLFixedMemoryWindowOptions: 512 # 513 # Create a CXL Fixed Memory Window 514 # 515 # @size: Size of the Fixed Memory Window in bytes. Must be a multiple 516 # of 256MiB. 517 # 518 # @interleave-granularity: Number of contiguous bytes for which 519 # accesses will go to a given interleave target. Accepted values 520 # [256, 512, 1k, 2k, 4k, 8k, 16k] 521 # 522 # @targets: Target root bridge IDs from -device ...,id=<ID> for each 523 # root bridge. 524 # 525 # Since: 7.1 526 ## 527 { 'struct': 'CXLFixedMemoryWindowOptions', 528 'data': { 529 'size': 'size', 530 '*interleave-granularity': 'size', 531 'targets': ['str'] }} 532 533 ## 534 # @CXLFMWProperties: 535 # 536 # List of CXL Fixed Memory Windows. 537 # 538 # @cxl-fmw: List of CXLFixedMemoryWindowOptions 539 # 540 # Since: 7.1 541 ## 542 { 'struct' : 'CXLFMWProperties', 543 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] } 544 } 545 546 ## 547 # @X86CPURegister32: 548 # 549 # A X86 32-bit register 550 # 551 # Since: 1.5 552 ## 553 { 'enum': 'X86CPURegister32', 554 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 555 556 ## 557 # @X86CPUFeatureWordInfo: 558 # 559 # Information about a X86 CPU feature word 560 # 561 # @cpuid-input-eax: Input EAX value for CPUID instruction for that 562 # feature word 563 # 564 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that 565 # feature word 566 # 567 # @cpuid-register: Output register containing the feature bits 568 # 569 # @features: value of output register, containing the feature bits 570 # 571 # Since: 1.5 572 ## 573 { 'struct': 'X86CPUFeatureWordInfo', 574 'data': { 'cpuid-input-eax': 'int', 575 '*cpuid-input-ecx': 'int', 576 'cpuid-register': 'X86CPURegister32', 577 'features': 'int' } } 578 579 ## 580 # @DummyForceArrays: 581 # 582 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList 583 # internally 584 # 585 # Since: 2.5 586 ## 587 { 'struct': 'DummyForceArrays', 588 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 589 590 ## 591 # @NumaCpuOptions: 592 # 593 # Option "-numa cpu" overrides default cpu to node mapping. It 594 # accepts the same set of cpu properties as returned by 595 # query-hotpluggable-cpus[].props, where node-id could be used to 596 # override default node mapping. 597 # 598 # Since: 2.10 599 ## 600 { 'struct': 'NumaCpuOptions', 601 'base': 'CpuInstanceProperties', 602 'data' : {} } 603 604 ## 605 # @HmatLBMemoryHierarchy: 606 # 607 # The memory hierarchy in the System Locality Latency and Bandwidth 608 # Information Structure of HMAT (Heterogeneous Memory Attribute Table) 609 # 610 # For more information about @HmatLBMemoryHierarchy, see chapter 611 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. 612 # 613 # @memory: the structure represents the memory performance 614 # 615 # @first-level: first level of memory side cache 616 # 617 # @second-level: second level of memory side cache 618 # 619 # @third-level: third level of memory side cache 620 # 621 # Since: 5.0 622 ## 623 { 'enum': 'HmatLBMemoryHierarchy', 624 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } 625 626 ## 627 # @HmatLBDataType: 628 # 629 # Data type in the System Locality Latency and Bandwidth Information 630 # Structure of HMAT (Heterogeneous Memory Attribute Table) 631 # 632 # For more information about @HmatLBDataType, see chapter 5.2.27.4: 633 # Table 5-146: Field "Data Type" of ACPI 6.3 spec. 634 # 635 # @access-latency: access latency (nanoseconds) 636 # 637 # @read-latency: read latency (nanoseconds) 638 # 639 # @write-latency: write latency (nanoseconds) 640 # 641 # @access-bandwidth: access bandwidth (Bytes per second) 642 # 643 # @read-bandwidth: read bandwidth (Bytes per second) 644 # 645 # @write-bandwidth: write bandwidth (Bytes per second) 646 # 647 # Since: 5.0 648 ## 649 { 'enum': 'HmatLBDataType', 650 'data': [ 'access-latency', 'read-latency', 'write-latency', 651 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } 652 653 ## 654 # @NumaHmatLBOptions: 655 # 656 # Set the system locality latency and bandwidth information between 657 # Initiator and Target proximity Domains. 658 # 659 # For more information about @NumaHmatLBOptions, see chapter 5.2.27.4: 660 # Table 5-146 of ACPI 6.3 spec. 661 # 662 # @initiator: the Initiator Proximity Domain. 663 # 664 # @target: the Target Proximity Domain. 665 # 666 # @hierarchy: the Memory Hierarchy. Indicates the performance of 667 # memory or side cache. 668 # 669 # @data-type: presents the type of data, access/read/write latency or 670 # hit latency. 671 # 672 # @latency: the value of latency from @initiator to @target proximity 673 # domain, the latency unit is "ns(nanosecond)". 674 # 675 # @bandwidth: the value of bandwidth between @initiator and @target 676 # proximity domain, the bandwidth unit is "Bytes per second". 677 # 678 # Since: 5.0 679 ## 680 { 'struct': 'NumaHmatLBOptions', 681 'data': { 682 'initiator': 'uint16', 683 'target': 'uint16', 684 'hierarchy': 'HmatLBMemoryHierarchy', 685 'data-type': 'HmatLBDataType', 686 '*latency': 'uint64', 687 '*bandwidth': 'size' }} 688 689 ## 690 # @HmatCacheAssociativity: 691 # 692 # Cache associativity in the Memory Side Cache Information Structure 693 # of HMAT 694 # 695 # For more information of @HmatCacheAssociativity, see chapter 696 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec. 697 # 698 # @none: None (no memory side cache in this proximity domain, or cache 699 # associativity unknown) 700 # 701 # @direct: Direct Mapped 702 # 703 # @complex: Complex Cache Indexing (implementation specific) 704 # 705 # Since: 5.0 706 ## 707 { 'enum': 'HmatCacheAssociativity', 708 'data': [ 'none', 'direct', 'complex' ] } 709 710 ## 711 # @HmatCacheWritePolicy: 712 # 713 # Cache write policy in the Memory Side Cache Information Structure of 714 # HMAT 715 # 716 # For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5: 717 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 718 # 719 # @none: None (no memory side cache in this proximity domain, or cache 720 # write policy unknown) 721 # 722 # @write-back: Write Back (WB) 723 # 724 # @write-through: Write Through (WT) 725 # 726 # Since: 5.0 727 ## 728 { 'enum': 'HmatCacheWritePolicy', 729 'data': [ 'none', 'write-back', 'write-through' ] } 730 731 ## 732 # @NumaHmatCacheOptions: 733 # 734 # Set the memory side cache information for a given memory domain. 735 # 736 # For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5: 737 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 738 # 739 # @node-id: the memory proximity domain to which the memory belongs. 740 # 741 # @size: the size of memory side cache in bytes. 742 # 743 # @level: the cache level described in this structure. 744 # 745 # @associativity: the cache associativity, 746 # none/direct-mapped/complex(complex cache indexing). 747 # 748 # @policy: the write policy, none/write-back/write-through. 749 # 750 # @line: the cache Line size in bytes. 751 # 752 # Since: 5.0 753 ## 754 { 'struct': 'NumaHmatCacheOptions', 755 'data': { 756 'node-id': 'uint32', 757 'size': 'size', 758 'level': 'uint8', 759 'associativity': 'HmatCacheAssociativity', 760 'policy': 'HmatCacheWritePolicy', 761 'line': 'uint16' }} 762 763 ## 764 # @memsave: 765 # 766 # Save a portion of guest memory to a file. 767 # 768 # @val: the virtual address of the guest to start from 769 # 770 # @size: the size of memory region to save 771 # 772 # @filename: the file to save the memory to as binary data 773 # 774 # @cpu-index: the index of the virtual CPU to use for translating the 775 # virtual address (defaults to CPU 0) 776 # 777 # Since: 0.14 778 # 779 # Notes: Errors were not reliably returned until 1.1 780 # 781 # Example: 782 # 783 # -> { "execute": "memsave", 784 # "arguments": { "val": 10, 785 # "size": 100, 786 # "filename": "/tmp/virtual-mem-dump" } } 787 # <- { "return": {} } 788 ## 789 { 'command': 'memsave', 790 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 791 792 ## 793 # @pmemsave: 794 # 795 # Save a portion of guest physical memory to a file. 796 # 797 # @val: the physical address of the guest to start from 798 # 799 # @size: the size of memory region to save 800 # 801 # @filename: the file to save the memory to as binary data 802 # 803 # Since: 0.14 804 # 805 # Notes: Errors were not reliably returned until 1.1 806 # 807 # Example: 808 # 809 # -> { "execute": "pmemsave", 810 # "arguments": { "val": 10, 811 # "size": 100, 812 # "filename": "/tmp/physical-mem-dump" } } 813 # <- { "return": {} } 814 ## 815 { 'command': 'pmemsave', 816 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 817 818 ## 819 # @Memdev: 820 # 821 # Information about memory backend 822 # 823 # @id: backend's ID if backend has 'id' property (since 2.9) 824 # 825 # @size: memory backend size 826 # 827 # @merge: whether memory merge support is enabled 828 # 829 # @dump: whether memory backend's memory is included in a core dump 830 # 831 # @prealloc: whether memory was preallocated 832 # 833 # @share: whether memory is private to QEMU or shared (since 6.1) 834 # 835 # @reserve: whether swap space (or huge pages) was reserved if 836 # applicable. This corresponds to the user configuration and not 837 # the actual behavior implemented in the OS to perform the 838 # reservation. For example, Linux will never reserve swap space 839 # for shared file mappings. (since 6.1) 840 # 841 # @host-nodes: host nodes for its memory policy 842 # 843 # @policy: memory policy of memory backend 844 # 845 # Since: 2.1 846 ## 847 { 'struct': 'Memdev', 848 'data': { 849 '*id': 'str', 850 'size': 'size', 851 'merge': 'bool', 852 'dump': 'bool', 853 'prealloc': 'bool', 854 'share': 'bool', 855 '*reserve': 'bool', 856 'host-nodes': ['uint16'], 857 'policy': 'HostMemPolicy' }} 858 859 ## 860 # @query-memdev: 861 # 862 # Returns information for all memory backends. 863 # 864 # Returns: a list of @Memdev. 865 # 866 # Since: 2.1 867 # 868 # Example: 869 # 870 # -> { "execute": "query-memdev" } 871 # <- { "return": [ 872 # { 873 # "id": "mem1", 874 # "size": 536870912, 875 # "merge": false, 876 # "dump": true, 877 # "prealloc": false, 878 # "share": false, 879 # "host-nodes": [0, 1], 880 # "policy": "bind" 881 # }, 882 # { 883 # "size": 536870912, 884 # "merge": false, 885 # "dump": true, 886 # "prealloc": true, 887 # "share": false, 888 # "host-nodes": [2, 3], 889 # "policy": "preferred" 890 # } 891 # ] 892 # } 893 ## 894 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } 895 896 ## 897 # @CpuInstanceProperties: 898 # 899 # List of properties to be used for hotplugging a CPU instance, it 900 # should be passed by management with device_add command when a CPU is 901 # being hotplugged. 902 # 903 # Which members are optional and which mandatory depends on the 904 # architecture and board. 905 # 906 # For s390x see :ref:`cpu-topology-s390x`. 907 # 908 # The ids other than the node-id specify the position of the CPU 909 # within the CPU topology (as defined by the machine property "smp", 910 # thus see also type @SMPConfiguration) 911 # 912 # @node-id: NUMA node ID the CPU belongs to 913 # 914 # @drawer-id: drawer number within CPU topology the CPU belongs to 915 # (since 8.2) 916 # 917 # @book-id: book number within parent container the CPU belongs to 918 # (since 8.2) 919 # 920 # @socket-id: socket number within parent container the CPU belongs to 921 # 922 # @die-id: die number within the parent container the CPU belongs to 923 # (since 4.1) 924 # 925 # @cluster-id: cluster number within the parent container the CPU 926 # belongs to (since 7.1) 927 # 928 # @core-id: core number within the parent container the CPU belongs to 929 # 930 # @thread-id: thread number within the core the CPU belongs to 931 # 932 # Note: management should be prepared to pass through additional 933 # properties with device_add. 934 # 935 # Since: 2.7 936 ## 937 { 'struct': 'CpuInstanceProperties', 938 # Keep these in sync with the properties device_add accepts 939 'data': { '*node-id': 'int', 940 '*drawer-id': 'int', 941 '*book-id': 'int', 942 '*socket-id': 'int', 943 '*die-id': 'int', 944 '*cluster-id': 'int', 945 '*core-id': 'int', 946 '*thread-id': 'int' 947 } 948 } 949 950 ## 951 # @HotpluggableCPU: 952 # 953 # @type: CPU object type for usage with device_add command 954 # 955 # @props: list of properties to be used for hotplugging CPU 956 # 957 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU 958 # provides 959 # 960 # @qom-path: link to existing CPU object if CPU is present or omitted 961 # if CPU is not present. 962 # 963 # Since: 2.7 964 ## 965 { 'struct': 'HotpluggableCPU', 966 'data': { 'type': 'str', 967 'vcpus-count': 'int', 968 'props': 'CpuInstanceProperties', 969 '*qom-path': 'str' 970 } 971 } 972 973 ## 974 # @query-hotpluggable-cpus: 975 # 976 # TODO: Better documentation; currently there is none. 977 # 978 # Returns: a list of HotpluggableCPU objects. 979 # 980 # Since: 2.7 981 # 982 # Examples: 983 # 984 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 985 # -cpu POWER8: 986 # 987 # -> { "execute": "query-hotpluggable-cpus" } 988 # <- {"return": [ 989 # { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core", 990 # "vcpus-count": 1 }, 991 # { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core", 992 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 993 # ]}' 994 # 995 # For pc machine type started with -smp 1,maxcpus=2: 996 # 997 # -> { "execute": "query-hotpluggable-cpus" } 998 # <- {"return": [ 999 # { 1000 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 1001 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 1002 # }, 1003 # { 1004 # "qom-path": "/machine/unattached/device[0]", 1005 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 1006 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 1007 # } 1008 # ]} 1009 # 1010 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 1011 # -cpu qemu (Since: 2.11): 1012 # 1013 # -> { "execute": "query-hotpluggable-cpus" } 1014 # <- {"return": [ 1015 # { 1016 # "type": "qemu-s390x-cpu", "vcpus-count": 1, 1017 # "props": { "core-id": 1 } 1018 # }, 1019 # { 1020 # "qom-path": "/machine/unattached/device[0]", 1021 # "type": "qemu-s390x-cpu", "vcpus-count": 1, 1022 # "props": { "core-id": 0 } 1023 # } 1024 # ]} 1025 ## 1026 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 1027 'allow-preconfig': true } 1028 1029 ## 1030 # @set-numa-node: 1031 # 1032 # Runtime equivalent of '-numa' CLI option, available at preconfigure 1033 # stage to configure numa mapping before initializing machine. 1034 # 1035 # Since: 3.0 1036 ## 1037 { 'command': 'set-numa-node', 'boxed': true, 1038 'data': 'NumaOptions', 1039 'allow-preconfig': true 1040 } 1041 1042 ## 1043 # @balloon: 1044 # 1045 # Request the balloon driver to change its balloon size. 1046 # 1047 # @value: the target logical size of the VM in bytes. We can deduce 1048 # the size of the balloon using this formula: 1049 # 1050 # logical_vm_size = vm_ram_size - balloon_size 1051 # 1052 # From it we have: balloon_size = vm_ram_size - @value 1053 # 1054 # Errors: 1055 # - If the balloon driver is enabled but not functional because 1056 # the KVM kernel module cannot support it, KVMMissingCap 1057 # - If no balloon device is present, DeviceNotActive 1058 # 1059 # Notes: This command just issues a request to the guest. When it 1060 # returns, the balloon size may not have changed. A guest can 1061 # change the balloon size independent of this command. 1062 # 1063 # Since: 0.14 1064 # 1065 # Example: 1066 # 1067 # -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1068 # <- { "return": {} } 1069 # 1070 # With a 2.5GiB guest this command inflated the ballon to 3GiB. 1071 ## 1072 { 'command': 'balloon', 'data': {'value': 'int'} } 1073 1074 ## 1075 # @BalloonInfo: 1076 # 1077 # Information about the guest balloon device. 1078 # 1079 # @actual: the logical size of the VM in bytes Formula used: 1080 # logical_vm_size = vm_ram_size - balloon_size 1081 # 1082 # Since: 0.14 1083 ## 1084 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 1085 1086 ## 1087 # @query-balloon: 1088 # 1089 # Return information about the balloon device. 1090 # 1091 # Returns: 1092 # @BalloonInfo 1093 # 1094 # Errors: 1095 # - If the balloon driver is enabled but not functional because 1096 # the KVM kernel module cannot support it, KVMMissingCap 1097 # - If no balloon device is present, DeviceNotActive 1098 # 1099 # Since: 0.14 1100 # 1101 # Example: 1102 # 1103 # -> { "execute": "query-balloon" } 1104 # <- { "return": { 1105 # "actual": 1073741824 1106 # } 1107 # } 1108 ## 1109 { 'command': 'query-balloon', 'returns': 'BalloonInfo' } 1110 1111 ## 1112 # @BALLOON_CHANGE: 1113 # 1114 # Emitted when the guest changes the actual BALLOON level. This value 1115 # is equivalent to the @actual field return by the 'query-balloon' 1116 # command 1117 # 1118 # @actual: the logical size of the VM in bytes Formula used: 1119 # logical_vm_size = vm_ram_size - balloon_size 1120 # 1121 # Note: this event is rate-limited. 1122 # 1123 # Since: 1.2 1124 # 1125 # Example: 1126 # 1127 # <- { "event": "BALLOON_CHANGE", 1128 # "data": { "actual": 944766976 }, 1129 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 1130 ## 1131 { 'event': 'BALLOON_CHANGE', 1132 'data': { 'actual': 'int' } } 1133 1134 ## 1135 # @HvBalloonInfo: 1136 # 1137 # hv-balloon guest-provided memory status information. 1138 # 1139 # @committed: the amount of memory in use inside the guest plus the 1140 # amount of the memory unusable inside the guest (ballooned out, 1141 # offline, etc.) 1142 # 1143 # @available: the amount of the memory inside the guest available for 1144 # new allocations ("free") 1145 # 1146 # Since: 8.2 1147 ## 1148 { 'struct': 'HvBalloonInfo', 1149 'data': { 'committed': 'size', 'available': 'size' } } 1150 1151 ## 1152 # @query-hv-balloon-status-report: 1153 # 1154 # Returns the hv-balloon driver data contained in the last received 1155 # "STATUS" message from the guest. 1156 # 1157 # Returns: 1158 # @HvBalloonInfo 1159 # 1160 # Errors: 1161 # - If no hv-balloon device is present, guest memory status 1162 # reporting is not enabled or no guest memory status report 1163 # received yet, GenericError 1164 # 1165 # Since: 8.2 1166 # 1167 # Example: 1168 # 1169 # -> { "execute": "query-hv-balloon-status-report" } 1170 # <- { "return": { 1171 # "committed": 816640000, 1172 # "available": 3333054464 1173 # } 1174 # } 1175 ## 1176 { 'command': 'query-hv-balloon-status-report', 'returns': 'HvBalloonInfo' } 1177 1178 ## 1179 # @HV_BALLOON_STATUS_REPORT: 1180 # 1181 # Emitted when the hv-balloon driver receives a "STATUS" message from 1182 # the guest. 1183 # 1184 # Note: this event is rate-limited. 1185 # 1186 # Since: 8.2 1187 # 1188 # Example: 1189 # 1190 # <- { "event": "HV_BALLOON_STATUS_REPORT", 1191 # "data": { "committed": 816640000, "available": 3333054464 }, 1192 # "timestamp": { "seconds": 1600295492, "microseconds": 661044 } } 1193 ## 1194 { 'event': 'HV_BALLOON_STATUS_REPORT', 1195 'data': 'HvBalloonInfo' } 1196 1197 ## 1198 # @MemoryInfo: 1199 # 1200 # Actual memory information in bytes. 1201 # 1202 # @base-memory: size of "base" memory specified with command line 1203 # option -m. 1204 # 1205 # @plugged-memory: size of memory that can be hot-unplugged. This 1206 # field is omitted if target doesn't support memory hotplug (i.e. 1207 # CONFIG_MEM_DEVICE not defined at build time). 1208 # 1209 # Since: 2.11 1210 ## 1211 { 'struct': 'MemoryInfo', 1212 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 1213 1214 ## 1215 # @query-memory-size-summary: 1216 # 1217 # Return the amount of initially allocated and present hotpluggable 1218 # (if enabled) memory in bytes. 1219 # 1220 # Example: 1221 # 1222 # -> { "execute": "query-memory-size-summary" } 1223 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 1224 # 1225 # Since: 2.11 1226 ## 1227 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 1228 1229 ## 1230 # @PCDIMMDeviceInfo: 1231 # 1232 # PCDIMMDevice state information 1233 # 1234 # @id: device's ID 1235 # 1236 # @addr: physical address, where device is mapped 1237 # 1238 # @size: size of memory that the device provides 1239 # 1240 # @slot: slot number at which device is plugged in 1241 # 1242 # @node: NUMA node number where device is plugged in 1243 # 1244 # @memdev: memory backend linked with device 1245 # 1246 # @hotplugged: true if device was hotplugged 1247 # 1248 # @hotpluggable: true if device if could be added/removed while 1249 # machine is running 1250 # 1251 # Since: 2.1 1252 ## 1253 { 'struct': 'PCDIMMDeviceInfo', 1254 'data': { '*id': 'str', 1255 'addr': 'int', 1256 'size': 'int', 1257 'slot': 'int', 1258 'node': 'int', 1259 'memdev': 'str', 1260 'hotplugged': 'bool', 1261 'hotpluggable': 'bool' 1262 } 1263 } 1264 1265 ## 1266 # @VirtioPMEMDeviceInfo: 1267 # 1268 # VirtioPMEM state information 1269 # 1270 # @id: device's ID 1271 # 1272 # @memaddr: physical address in memory, where device is mapped 1273 # 1274 # @size: size of memory that the device provides 1275 # 1276 # @memdev: memory backend linked with device 1277 # 1278 # Since: 4.1 1279 ## 1280 { 'struct': 'VirtioPMEMDeviceInfo', 1281 'data': { '*id': 'str', 1282 'memaddr': 'size', 1283 'size': 'size', 1284 'memdev': 'str' 1285 } 1286 } 1287 1288 ## 1289 # @VirtioMEMDeviceInfo: 1290 # 1291 # VirtioMEMDevice state information 1292 # 1293 # @id: device's ID 1294 # 1295 # @memaddr: physical address in memory, where device is mapped 1296 # 1297 # @requested-size: the user requested size of the device 1298 # 1299 # @size: the (current) size of memory that the device provides 1300 # 1301 # @max-size: the maximum size of memory that the device can provide 1302 # 1303 # @block-size: the block size of memory that the device provides 1304 # 1305 # @node: NUMA node number where device is assigned to 1306 # 1307 # @memdev: memory backend linked with the region 1308 # 1309 # Since: 5.1 1310 ## 1311 { 'struct': 'VirtioMEMDeviceInfo', 1312 'data': { '*id': 'str', 1313 'memaddr': 'size', 1314 'requested-size': 'size', 1315 'size': 'size', 1316 'max-size': 'size', 1317 'block-size': 'size', 1318 'node': 'int', 1319 'memdev': 'str' 1320 } 1321 } 1322 1323 ## 1324 # @SgxEPCDeviceInfo: 1325 # 1326 # Sgx EPC state information 1327 # 1328 # @id: device's ID 1329 # 1330 # @memaddr: physical address in memory, where device is mapped 1331 # 1332 # @size: size of memory that the device provides 1333 # 1334 # @memdev: memory backend linked with device 1335 # 1336 # @node: the numa node (Since: 7.0) 1337 # 1338 # Since: 6.2 1339 ## 1340 { 'struct': 'SgxEPCDeviceInfo', 1341 'data': { '*id': 'str', 1342 'memaddr': 'size', 1343 'size': 'size', 1344 'node': 'int', 1345 'memdev': 'str' 1346 } 1347 } 1348 1349 ## 1350 # @HvBalloonDeviceInfo: 1351 # 1352 # hv-balloon provided memory state information 1353 # 1354 # @id: device's ID 1355 # 1356 # @memaddr: physical address in memory, where device is mapped 1357 # 1358 # @max-size: the maximum size of memory that the device can provide 1359 # 1360 # @memdev: memory backend linked with device 1361 # 1362 # Since: 8.2 1363 ## 1364 { 'struct': 'HvBalloonDeviceInfo', 1365 'data': { '*id': 'str', 1366 '*memaddr': 'size', 1367 'max-size': 'size', 1368 '*memdev': 'str' 1369 } 1370 } 1371 1372 ## 1373 # @MemoryDeviceInfoKind: 1374 # 1375 # @nvdimm: since 2.12 1376 # 1377 # @virtio-pmem: since 4.1 1378 # 1379 # @virtio-mem: since 5.1 1380 # 1381 # @sgx-epc: since 6.2. 1382 # 1383 # @hv-balloon: since 8.2. 1384 # 1385 # Since: 2.1 1386 ## 1387 { 'enum': 'MemoryDeviceInfoKind', 1388 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc', 1389 'hv-balloon' ] } 1390 1391 ## 1392 # @PCDIMMDeviceInfoWrapper: 1393 # 1394 # @data: PCDIMMDevice state information 1395 # 1396 # Since: 2.1 1397 ## 1398 { 'struct': 'PCDIMMDeviceInfoWrapper', 1399 'data': { 'data': 'PCDIMMDeviceInfo' } } 1400 1401 ## 1402 # @VirtioPMEMDeviceInfoWrapper: 1403 # 1404 # @data: VirtioPMEM state information 1405 # 1406 # Since: 2.1 1407 ## 1408 { 'struct': 'VirtioPMEMDeviceInfoWrapper', 1409 'data': { 'data': 'VirtioPMEMDeviceInfo' } } 1410 1411 ## 1412 # @VirtioMEMDeviceInfoWrapper: 1413 # 1414 # @data: VirtioMEMDevice state information 1415 # 1416 # Since: 2.1 1417 ## 1418 { 'struct': 'VirtioMEMDeviceInfoWrapper', 1419 'data': { 'data': 'VirtioMEMDeviceInfo' } } 1420 1421 ## 1422 # @SgxEPCDeviceInfoWrapper: 1423 # 1424 # @data: Sgx EPC state information 1425 # 1426 # Since: 6.2 1427 ## 1428 { 'struct': 'SgxEPCDeviceInfoWrapper', 1429 'data': { 'data': 'SgxEPCDeviceInfo' } } 1430 1431 ## 1432 # @HvBalloonDeviceInfoWrapper: 1433 # 1434 # @data: hv-balloon provided memory state information 1435 # 1436 # Since: 8.2 1437 ## 1438 { 'struct': 'HvBalloonDeviceInfoWrapper', 1439 'data': { 'data': 'HvBalloonDeviceInfo' } } 1440 1441 ## 1442 # @MemoryDeviceInfo: 1443 # 1444 # Union containing information about a memory device 1445 # 1446 # @type: memory device type 1447 # 1448 # Since: 2.1 1449 ## 1450 { 'union': 'MemoryDeviceInfo', 1451 'base': { 'type': 'MemoryDeviceInfoKind' }, 1452 'discriminator': 'type', 1453 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper', 1454 'nvdimm': 'PCDIMMDeviceInfoWrapper', 1455 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper', 1456 'virtio-mem': 'VirtioMEMDeviceInfoWrapper', 1457 'sgx-epc': 'SgxEPCDeviceInfoWrapper', 1458 'hv-balloon': 'HvBalloonDeviceInfoWrapper' 1459 } 1460 } 1461 1462 ## 1463 # @SgxEPC: 1464 # 1465 # Sgx EPC cmdline information 1466 # 1467 # @memdev: memory backend linked with device 1468 # 1469 # @node: the numa node (Since: 7.0) 1470 # 1471 # Since: 6.2 1472 ## 1473 { 'struct': 'SgxEPC', 1474 'data': { 'memdev': 'str', 1475 'node': 'int' 1476 } 1477 } 1478 1479 ## 1480 # @SgxEPCProperties: 1481 # 1482 # SGX properties of machine types. 1483 # 1484 # @sgx-epc: list of ids of memory-backend-epc objects. 1485 # 1486 # Since: 6.2 1487 ## 1488 { 'struct': 'SgxEPCProperties', 1489 'data': { 'sgx-epc': ['SgxEPC'] } 1490 } 1491 1492 ## 1493 # @query-memory-devices: 1494 # 1495 # Lists available memory devices and their state 1496 # 1497 # Since: 2.1 1498 # 1499 # Example: 1500 # 1501 # -> { "execute": "query-memory-devices" } 1502 # <- { "return": [ { "data": 1503 # { "addr": 5368709120, 1504 # "hotpluggable": true, 1505 # "hotplugged": true, 1506 # "id": "d1", 1507 # "memdev": "/objects/memX", 1508 # "node": 0, 1509 # "size": 1073741824, 1510 # "slot": 0}, 1511 # "type": "dimm" 1512 # } ] } 1513 ## 1514 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 1515 1516 ## 1517 # @MEMORY_DEVICE_SIZE_CHANGE: 1518 # 1519 # Emitted when the size of a memory device changes. Only emitted for 1520 # memory devices that can actually change the size (e.g., virtio-mem 1521 # due to guest action). 1522 # 1523 # @id: device's ID 1524 # 1525 # @size: the new size of memory that the device provides 1526 # 1527 # @qom-path: path to the device object in the QOM tree (since 6.2) 1528 # 1529 # Note: this event is rate-limited. 1530 # 1531 # Since: 5.1 1532 # 1533 # Example: 1534 # 1535 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE", 1536 # "data": { "id": "vm0", "size": 1073741824, 1537 # "qom-path": "/machine/unattached/device[2]" }, 1538 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } } 1539 ## 1540 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE', 1541 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} } 1542 1543 ## 1544 # @MEM_UNPLUG_ERROR: 1545 # 1546 # Emitted when memory hot unplug error occurs. 1547 # 1548 # @device: device name 1549 # 1550 # @msg: Informative message 1551 # 1552 # Features: 1553 # 1554 # @deprecated: This event is deprecated. Use 1555 # @DEVICE_UNPLUG_GUEST_ERROR instead. 1556 # 1557 # Since: 2.4 1558 # 1559 # Example: 1560 # 1561 # <- { "event": "MEM_UNPLUG_ERROR", 1562 # "data": { "device": "dimm1", 1563 # "msg": "acpi: device unplug for unsupported device" 1564 # }, 1565 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1566 ## 1567 { 'event': 'MEM_UNPLUG_ERROR', 1568 'data': { 'device': 'str', 'msg': 'str' }, 1569 'features': ['deprecated'] } 1570 1571 ## 1572 # @BootConfiguration: 1573 # 1574 # Schema for virtual machine boot configuration. 1575 # 1576 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network) 1577 # 1578 # @once: Boot order to apply on first boot 1579 # 1580 # @menu: Whether to show a boot menu 1581 # 1582 # @splash: The name of the file to be passed to the firmware as logo 1583 # picture, if @menu is true. 1584 # 1585 # @splash-time: How long to show the logo picture, in milliseconds 1586 # 1587 # @reboot-timeout: Timeout before guest reboots after boot fails 1588 # 1589 # @strict: Whether to attempt booting from devices not included in the 1590 # boot order 1591 # 1592 # Since: 7.1 1593 ## 1594 { 'struct': 'BootConfiguration', 'data': { 1595 '*order': 'str', 1596 '*once': 'str', 1597 '*menu': 'bool', 1598 '*splash': 'str', 1599 '*splash-time': 'int', 1600 '*reboot-timeout': 'int', 1601 '*strict': 'bool' } } 1602 1603 ## 1604 # @SMPConfiguration: 1605 # 1606 # Schema for CPU topology configuration. A missing value lets QEMU 1607 # figure out a suitable value based on the ones that are provided. 1608 # 1609 # The members other than @cpus and @maxcpus define a topology of 1610 # containers. 1611 # 1612 # The ordering from highest/coarsest to lowest/finest is: 1613 # @drawers, @books, @sockets, @dies, @clusters, @cores, @threads. 1614 # 1615 # Different architectures support different subsets of topology 1616 # containers. 1617 # 1618 # For example, s390x does not have clusters and dies, and the socket 1619 # is the parent container of cores. 1620 # 1621 # @cpus: number of virtual CPUs in the virtual machine 1622 # 1623 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual 1624 # machine 1625 # 1626 # @drawers: number of drawers in the CPU topology (since 8.2) 1627 # 1628 # @books: number of books in the CPU topology (since 8.2) 1629 # 1630 # @sockets: number of sockets per parent container 1631 # 1632 # @dies: number of dies per parent container 1633 # 1634 # @clusters: number of clusters per parent container (since 7.0) 1635 # 1636 # @cores: number of cores per parent container 1637 # 1638 # @threads: number of threads per core 1639 # 1640 # Since: 6.1 1641 ## 1642 { 'struct': 'SMPConfiguration', 'data': { 1643 '*cpus': 'int', 1644 '*drawers': 'int', 1645 '*books': 'int', 1646 '*sockets': 'int', 1647 '*dies': 'int', 1648 '*clusters': 'int', 1649 '*cores': 'int', 1650 '*threads': 'int', 1651 '*maxcpus': 'int' } } 1652 1653 ## 1654 # @x-query-irq: 1655 # 1656 # Query interrupt statistics 1657 # 1658 # Features: 1659 # 1660 # @unstable: This command is meant for debugging. 1661 # 1662 # Returns: interrupt statistics 1663 # 1664 # Since: 6.2 1665 ## 1666 { 'command': 'x-query-irq', 1667 'returns': 'HumanReadableText', 1668 'features': [ 'unstable' ] } 1669 1670 ## 1671 # @x-query-jit: 1672 # 1673 # Query TCG compiler statistics 1674 # 1675 # Features: 1676 # 1677 # @unstable: This command is meant for debugging. 1678 # 1679 # Returns: TCG compiler statistics 1680 # 1681 # Since: 6.2 1682 ## 1683 { 'command': 'x-query-jit', 1684 'returns': 'HumanReadableText', 1685 'if': 'CONFIG_TCG', 1686 'features': [ 'unstable' ] } 1687 1688 ## 1689 # @x-query-numa: 1690 # 1691 # Query NUMA topology information 1692 # 1693 # Features: 1694 # 1695 # @unstable: This command is meant for debugging. 1696 # 1697 # Returns: topology information 1698 # 1699 # Since: 6.2 1700 ## 1701 { 'command': 'x-query-numa', 1702 'returns': 'HumanReadableText', 1703 'features': [ 'unstable' ] } 1704 1705 ## 1706 # @x-query-opcount: 1707 # 1708 # Query TCG opcode counters 1709 # 1710 # Features: 1711 # 1712 # @unstable: This command is meant for debugging. 1713 # 1714 # Returns: TCG opcode counters 1715 # 1716 # Since: 6.2 1717 ## 1718 { 'command': 'x-query-opcount', 1719 'returns': 'HumanReadableText', 1720 'if': 'CONFIG_TCG', 1721 'features': [ 'unstable' ] } 1722 1723 ## 1724 # @x-query-ramblock: 1725 # 1726 # Query system ramblock information 1727 # 1728 # Features: 1729 # 1730 # @unstable: This command is meant for debugging. 1731 # 1732 # Returns: system ramblock information 1733 # 1734 # Since: 6.2 1735 ## 1736 { 'command': 'x-query-ramblock', 1737 'returns': 'HumanReadableText', 1738 'features': [ 'unstable' ] } 1739 1740 ## 1741 # @x-query-rdma: 1742 # 1743 # Query RDMA state 1744 # 1745 # Features: 1746 # 1747 # @unstable: This command is meant for debugging. 1748 # 1749 # Returns: RDMA state 1750 # 1751 # Since: 6.2 1752 ## 1753 { 'command': 'x-query-rdma', 1754 'returns': 'HumanReadableText', 1755 'features': [ 'unstable' ] } 1756 1757 ## 1758 # @x-query-roms: 1759 # 1760 # Query information on the registered ROMS 1761 # 1762 # Features: 1763 # 1764 # @unstable: This command is meant for debugging. 1765 # 1766 # Returns: registered ROMs 1767 # 1768 # Since: 6.2 1769 ## 1770 { 'command': 'x-query-roms', 1771 'returns': 'HumanReadableText', 1772 'features': [ 'unstable' ] } 1773 1774 ## 1775 # @x-query-usb: 1776 # 1777 # Query information on the USB devices 1778 # 1779 # Features: 1780 # 1781 # @unstable: This command is meant for debugging. 1782 # 1783 # Returns: USB device information 1784 # 1785 # Since: 6.2 1786 ## 1787 { 'command': 'x-query-usb', 1788 'returns': 'HumanReadableText', 1789 'features': [ 'unstable' ] } 1790 1791 ## 1792 # @SmbiosEntryPointType: 1793 # 1794 # @32: SMBIOS version 2.1 (32-bit) Entry Point 1795 # 1796 # @64: SMBIOS version 3.0 (64-bit) Entry Point 1797 # 1798 # @auto: Either 2.x or 3.x SMBIOS version, 2.x if configuration can be 1799 # described by it and 3.x otherwise (since: 9.0) 1800 # 1801 # Since: 7.0 1802 ## 1803 { 'enum': 'SmbiosEntryPointType', 1804 'data': [ '32', '64', 'auto' ] } 1805 1806 ## 1807 # @MemorySizeConfiguration: 1808 # 1809 # Schema for memory size configuration. 1810 # 1811 # @size: memory size in bytes 1812 # 1813 # @max-size: maximum hotpluggable memory size in bytes 1814 # 1815 # @slots: number of available memory slots for hotplug 1816 # 1817 # Since: 7.1 1818 ## 1819 { 'struct': 'MemorySizeConfiguration', 'data': { 1820 '*size': 'size', 1821 '*max-size': 'size', 1822 '*slots': 'uint64' } } 1823 1824 ## 1825 # @dumpdtb: 1826 # 1827 # Save the FDT in dtb format. 1828 # 1829 # @filename: name of the dtb file to be created 1830 # 1831 # Since: 7.2 1832 # 1833 # Example: 1834 # 1835 # -> { "execute": "dumpdtb" } 1836 # "arguments": { "filename": "fdt.dtb" } } 1837 # <- { "return": {} } 1838 ## 1839 { 'command': 'dumpdtb', 1840 'data': { 'filename': 'str' }, 1841 'if': 'CONFIG_FDT' } 1842