xref: /openbmc/qemu/qapi/machine.json (revision 66210a1a30f2384bb59f9dad8d769dba56dd30f1)
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
6 
7 ##
8 # = Machines
9 ##
10 
11 { 'include': 'common.json' }
12 { 'include': 'machine-common.json' }
13 
14 ##
15 # @SysEmuTarget:
16 #
17 # The comprehensive enumeration of QEMU system emulation ("softmmu")
18 # targets.  Run "./configure --help" in the project root directory,
19 # and look for the \*-softmmu targets near the "--target-list" option.
20 # The individual target constants are not documented here, for the
21 # time being.
22 #
23 # @rx: since 5.0
24 #
25 # @avr: since 5.1
26 #
27 # Notes: The resulting QMP strings can be appended to the
28 #     "qemu-system-" prefix to produce the corresponding QEMU
29 #     executable name.  This is true even for "qemu-system-x86_64".
30 #
31 # Since: 3.0
32 ##
33 { 'enum' : 'SysEmuTarget',
34   'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
35              'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
36              'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
37              'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
38              'sh4eb', 'sparc', 'sparc64', 'tricore',
39              'x86_64', 'xtensa', 'xtensaeb' ] }
40 
41 ##
42 # @CpuS390State:
43 #
44 # An enumeration of cpu states that can be assumed by a virtual S390
45 # CPU
46 #
47 # Since: 2.12
48 ##
49 { 'enum': 'CpuS390State',
50   'prefix': 'S390_CPU_STATE',
51   'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
52 
53 ##
54 # @CpuInfoS390:
55 #
56 # Additional information about a virtual S390 CPU
57 #
58 # @cpu-state: the virtual CPU's state
59 #
60 # @dedicated: the virtual CPU's dedication (since 8.2)
61 #
62 # @entitlement: the virtual CPU's entitlement (since 8.2)
63 #
64 # Since: 2.12
65 ##
66 { 'struct': 'CpuInfoS390',
67   'data': { 'cpu-state': 'CpuS390State',
68             '*dedicated': 'bool',
69             '*entitlement': 'CpuS390Entitlement' } }
70 
71 ##
72 # @CpuInfoFast:
73 #
74 # Information about a virtual CPU
75 #
76 # @cpu-index: index of the virtual CPU
77 #
78 # @qom-path: path to the CPU object in the QOM tree
79 #
80 # @thread-id: ID of the underlying host thread
81 #
82 # @props: properties associated with a virtual CPU, e.g. the socket id
83 #
84 # @target: the QEMU system emulation target, which determines which
85 #     additional fields will be listed (since 3.0)
86 #
87 # Since: 2.12
88 ##
89 { 'union'         : 'CpuInfoFast',
90   'base'          : { 'cpu-index'    : 'int',
91                       'qom-path'     : 'str',
92                       'thread-id'    : 'int',
93                       '*props'       : 'CpuInstanceProperties',
94                       'target'       : 'SysEmuTarget' },
95   'discriminator' : 'target',
96   'data'          : { 's390x'        : 'CpuInfoS390' } }
97 
98 ##
99 # @query-cpus-fast:
100 #
101 # Returns information about all virtual CPUs.
102 #
103 # Returns: list of @CpuInfoFast
104 #
105 # Since: 2.12
106 #
107 # Example:
108 #
109 #     -> { "execute": "query-cpus-fast" }
110 #     <- { "return": [
111 #             {
112 #                 "thread-id": 25627,
113 #                 "props": {
114 #                     "core-id": 0,
115 #                     "thread-id": 0,
116 #                     "socket-id": 0
117 #                 },
118 #                 "qom-path": "/machine/unattached/device[0]",
119 #                 "target":"x86_64",
120 #                 "cpu-index": 0
121 #             },
122 #             {
123 #                 "thread-id": 25628,
124 #                 "props": {
125 #                     "core-id": 0,
126 #                     "thread-id": 0,
127 #                     "socket-id": 1
128 #                 },
129 #                 "qom-path": "/machine/unattached/device[2]",
130 #                 "target":"x86_64",
131 #                 "cpu-index": 1
132 #             }
133 #         ]
134 #     }
135 ##
136 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
137 
138 ##
139 # @MachineInfo:
140 #
141 # Information describing a machine.
142 #
143 # @name: the name of the machine
144 #
145 # @alias: an alias for the machine name
146 #
147 # @is-default: whether the machine is default
148 #
149 # @cpu-max: maximum number of CPUs supported by the machine type
150 #     (since 1.5)
151 #
152 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
153 #
154 # @numa-mem-supported: true if '-numa node,mem' option is supported by
155 #     the machine type and false otherwise (since 4.1)
156 #
157 # @deprecated: if true, the machine type is deprecated and may be
158 #     removed in future versions of QEMU according to the QEMU
159 #     deprecation policy (since 4.1)
160 #
161 # @default-cpu-type: default CPU model typename if none is requested
162 #     via the -cpu argument.  (since 4.2)
163 #
164 # @default-ram-id: the default ID of initial RAM memory backend (since
165 #     5.2)
166 #
167 # @acpi: machine type supports ACPI (since 8.0)
168 #
169 # Since: 1.2
170 ##
171 { 'struct': 'MachineInfo',
172   'data': { 'name': 'str', '*alias': 'str',
173             '*is-default': 'bool', 'cpu-max': 'int',
174             'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
175             'deprecated': 'bool', '*default-cpu-type': 'str',
176             '*default-ram-id': 'str', 'acpi': 'bool' } }
177 
178 ##
179 # @query-machines:
180 #
181 # Return a list of supported machines
182 #
183 # Returns: a list of MachineInfo
184 #
185 # Since: 1.2
186 ##
187 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
188 
189 ##
190 # @CurrentMachineParams:
191 #
192 # Information describing the running machine parameters.
193 #
194 # @wakeup-suspend-support: true if the machine supports wake up from
195 #     suspend
196 #
197 # Since: 4.0
198 ##
199 { 'struct': 'CurrentMachineParams',
200   'data': { 'wakeup-suspend-support': 'bool'} }
201 
202 ##
203 # @query-current-machine:
204 #
205 # Return information on the current virtual machine.
206 #
207 # Returns: CurrentMachineParams
208 #
209 # Since: 4.0
210 ##
211 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
212 
213 ##
214 # @TargetInfo:
215 #
216 # Information describing the QEMU target.
217 #
218 # @arch: the target architecture
219 #
220 # Since: 1.2
221 ##
222 { 'struct': 'TargetInfo',
223   'data': { 'arch': 'SysEmuTarget' } }
224 
225 ##
226 # @query-target:
227 #
228 # Return information about the target for this QEMU
229 #
230 # Returns: TargetInfo
231 #
232 # Since: 1.2
233 ##
234 { 'command': 'query-target', 'returns': 'TargetInfo' }
235 
236 ##
237 # @UuidInfo:
238 #
239 # Guest UUID information (Universally Unique Identifier).
240 #
241 # @UUID: the UUID of the guest
242 #
243 # Since: 0.14
244 #
245 # Notes: If no UUID was specified for the guest, a null UUID is
246 #     returned.
247 ##
248 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
249 
250 ##
251 # @query-uuid:
252 #
253 # Query the guest UUID information.
254 #
255 # Returns: The @UuidInfo for the guest
256 #
257 # Since: 0.14
258 #
259 # Example:
260 #
261 #     -> { "execute": "query-uuid" }
262 #     <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
263 ##
264 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
265 
266 ##
267 # @GuidInfo:
268 #
269 # GUID information.
270 #
271 # @guid: the globally unique identifier
272 #
273 # Since: 2.9
274 ##
275 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
276 
277 ##
278 # @query-vm-generation-id:
279 #
280 # Show Virtual Machine Generation ID
281 #
282 # Since: 2.9
283 ##
284 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
285 
286 ##
287 # @system_reset:
288 #
289 # Performs a hard reset of a guest.
290 #
291 # Since: 0.14
292 #
293 # Example:
294 #
295 #     -> { "execute": "system_reset" }
296 #     <- { "return": {} }
297 ##
298 { 'command': 'system_reset' }
299 
300 ##
301 # @system_powerdown:
302 #
303 # Requests that a guest perform a powerdown operation.
304 #
305 # Since: 0.14
306 #
307 # Notes: A guest may or may not respond to this command.  This command
308 #     returning does not indicate that a guest has accepted the
309 #     request or that it has shut down.  Many guests will respond to
310 #     this command by prompting the user in some way.
311 #
312 # Example:
313 #
314 #     -> { "execute": "system_powerdown" }
315 #     <- { "return": {} }
316 ##
317 { 'command': 'system_powerdown' }
318 
319 ##
320 # @system_wakeup:
321 #
322 # Wake up guest from suspend.  If the guest has wake-up from suspend
323 # support enabled (wakeup-suspend-support flag from
324 # query-current-machine), wake-up guest from suspend if the guest is
325 # in SUSPENDED state.  Return an error otherwise.
326 #
327 # Since: 1.1
328 #
329 # Note: prior to 4.0, this command does nothing in case the guest
330 #     isn't suspended.
331 #
332 # Example:
333 #
334 #     -> { "execute": "system_wakeup" }
335 #     <- { "return": {} }
336 ##
337 { 'command': 'system_wakeup' }
338 
339 ##
340 # @LostTickPolicy:
341 #
342 # Policy for handling lost ticks in timer devices.  Ticks end up
343 # getting lost when, for example, the guest is paused.
344 #
345 # @discard: throw away the missed ticks and continue with future
346 #     injection normally.  The guest OS will see the timer jump ahead
347 #     by a potentially quite significant amount all at once, as if the
348 #     intervening chunk of time had simply not existed; needless to
349 #     say, such a sudden jump can easily confuse a guest OS which is
350 #     not specifically prepared to deal with it.  Assuming the guest
351 #     OS can deal correctly with the time jump, the time in the guest
352 #     and in the host should now match.
353 #
354 # @delay: continue to deliver ticks at the normal rate.  The guest OS
355 #     will not notice anything is amiss, as from its point of view
356 #     time will have continued to flow normally.  The time in the
357 #     guest should now be behind the time in the host by exactly the
358 #     amount of time during which ticks have been missed.
359 #
360 # @slew: deliver ticks at a higher rate to catch up with the missed
361 #     ticks.  The guest OS will not notice anything is amiss, as from
362 #     its point of view time will have continued to flow normally.
363 #     Once the timer has managed to catch up with all the missing
364 #     ticks, the time in the guest and in the host should match.
365 #
366 # Since: 2.0
367 ##
368 { 'enum': 'LostTickPolicy',
369   'data': ['discard', 'delay', 'slew' ] }
370 
371 ##
372 # @inject-nmi:
373 #
374 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
375 # all CPUs (ppc64). The command fails when the guest doesn't support
376 # injecting.
377 #
378 # Since: 0.14
379 #
380 # Note: prior to 2.1, this command was only supported for x86 and s390
381 #     VMs
382 #
383 # Example:
384 #
385 #     -> { "execute": "inject-nmi" }
386 #     <- { "return": {} }
387 ##
388 { 'command': 'inject-nmi' }
389 
390 ##
391 # @KvmInfo:
392 #
393 # Information about support for KVM acceleration
394 #
395 # @enabled: true if KVM acceleration is active
396 #
397 # @present: true if KVM acceleration is built into this executable
398 #
399 # Since: 0.14
400 ##
401 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
402 
403 ##
404 # @query-kvm:
405 #
406 # Returns information about KVM acceleration
407 #
408 # Returns: @KvmInfo
409 #
410 # Since: 0.14
411 #
412 # Example:
413 #
414 #     -> { "execute": "query-kvm" }
415 #     <- { "return": { "enabled": true, "present": true } }
416 ##
417 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
418 
419 ##
420 # @NumaOptionsType:
421 #
422 # @node: NUMA nodes configuration
423 #
424 # @dist: NUMA distance configuration (since 2.10)
425 #
426 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
427 #
428 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
429 #
430 # @hmat-cache: memory side cache information (Since: 5.0)
431 #
432 # Since: 2.1
433 ##
434 { 'enum': 'NumaOptionsType',
435   'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
436 
437 ##
438 # @NumaOptions:
439 #
440 # A discriminated record of NUMA options.  (for OptsVisitor)
441 #
442 # @type: NUMA option type
443 #
444 # Since: 2.1
445 ##
446 { 'union': 'NumaOptions',
447   'base': { 'type': 'NumaOptionsType' },
448   'discriminator': 'type',
449   'data': {
450     'node': 'NumaNodeOptions',
451     'dist': 'NumaDistOptions',
452     'cpu': 'NumaCpuOptions',
453     'hmat-lb': 'NumaHmatLBOptions',
454     'hmat-cache': 'NumaHmatCacheOptions' }}
455 
456 ##
457 # @NumaNodeOptions:
458 #
459 # Create a guest NUMA node.  (for OptsVisitor)
460 #
461 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
462 #
463 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
464 #     omitted)
465 #
466 # @mem: memory size of this node; mutually exclusive with @memdev.
467 #     Equally divide total memory among nodes if both @mem and @memdev
468 #     are omitted.
469 #
470 # @memdev: memory backend object.  If specified for one node, it must
471 #     be specified for all nodes.
472 #
473 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
474 #     to the nodeid which has the memory controller responsible for
475 #     this NUMA node.  This field provides additional information as
476 #     to the initiator node that is closest (as in directly attached)
477 #     to this node, and therefore has the best performance (since 5.0)
478 #
479 # Since: 2.1
480 ##
481 { 'struct': 'NumaNodeOptions',
482   'data': {
483    '*nodeid': 'uint16',
484    '*cpus':   ['uint16'],
485    '*mem':    'size',
486    '*memdev': 'str',
487    '*initiator': 'uint16' }}
488 
489 ##
490 # @NumaDistOptions:
491 #
492 # Set the distance between 2 NUMA nodes.
493 #
494 # @src: source NUMA node.
495 #
496 # @dst: destination NUMA node.
497 #
498 # @val: NUMA distance from source node to destination node.  When a
499 #     node is unreachable from another node, set the distance between
500 #     them to 255.
501 #
502 # Since: 2.10
503 ##
504 { 'struct': 'NumaDistOptions',
505   'data': {
506    'src': 'uint16',
507    'dst': 'uint16',
508    'val': 'uint8' }}
509 
510 ##
511 # @CXLFixedMemoryWindowOptions:
512 #
513 # Create a CXL Fixed Memory Window
514 #
515 # @size: Size of the Fixed Memory Window in bytes.  Must be a multiple
516 #     of 256MiB.
517 #
518 # @interleave-granularity: Number of contiguous bytes for which
519 #     accesses will go to a given interleave target.  Accepted values
520 #     [256, 512, 1k, 2k, 4k, 8k, 16k]
521 #
522 # @targets: Target root bridge IDs from -device ...,id=<ID> for each
523 #     root bridge.
524 #
525 # Since: 7.1
526 ##
527 { 'struct': 'CXLFixedMemoryWindowOptions',
528   'data': {
529       'size': 'size',
530       '*interleave-granularity': 'size',
531       'targets': ['str'] }}
532 
533 ##
534 # @CXLFMWProperties:
535 #
536 # List of CXL Fixed Memory Windows.
537 #
538 # @cxl-fmw: List of CXLFixedMemoryWindowOptions
539 #
540 # Since: 7.1
541 ##
542 { 'struct' : 'CXLFMWProperties',
543   'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
544 }
545 
546 ##
547 # @X86CPURegister32:
548 #
549 # A X86 32-bit register
550 #
551 # Since: 1.5
552 ##
553 { 'enum': 'X86CPURegister32',
554   'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
555 
556 ##
557 # @X86CPUFeatureWordInfo:
558 #
559 # Information about a X86 CPU feature word
560 #
561 # @cpuid-input-eax: Input EAX value for CPUID instruction for that
562 #     feature word
563 #
564 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
565 #     feature word
566 #
567 # @cpuid-register: Output register containing the feature bits
568 #
569 # @features: value of output register, containing the feature bits
570 #
571 # Since: 1.5
572 ##
573 { 'struct': 'X86CPUFeatureWordInfo',
574   'data': { 'cpuid-input-eax': 'int',
575             '*cpuid-input-ecx': 'int',
576             'cpuid-register': 'X86CPURegister32',
577             'features': 'int' } }
578 
579 ##
580 # @DummyForceArrays:
581 #
582 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
583 # internally
584 #
585 # Since: 2.5
586 ##
587 { 'struct': 'DummyForceArrays',
588   'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
589 
590 ##
591 # @NumaCpuOptions:
592 #
593 # Option "-numa cpu" overrides default cpu to node mapping.  It
594 # accepts the same set of cpu properties as returned by
595 # query-hotpluggable-cpus[].props, where node-id could be used to
596 # override default node mapping.
597 #
598 # Since: 2.10
599 ##
600 { 'struct': 'NumaCpuOptions',
601    'base': 'CpuInstanceProperties',
602    'data' : {} }
603 
604 ##
605 # @HmatLBMemoryHierarchy:
606 #
607 # The memory hierarchy in the System Locality Latency and Bandwidth
608 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
609 #
610 # For more information about @HmatLBMemoryHierarchy, see chapter
611 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
612 #
613 # @memory: the structure represents the memory performance
614 #
615 # @first-level: first level of memory side cache
616 #
617 # @second-level: second level of memory side cache
618 #
619 # @third-level: third level of memory side cache
620 #
621 # Since: 5.0
622 ##
623 { 'enum': 'HmatLBMemoryHierarchy',
624   'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
625 
626 ##
627 # @HmatLBDataType:
628 #
629 # Data type in the System Locality Latency and Bandwidth Information
630 # Structure of HMAT (Heterogeneous Memory Attribute Table)
631 #
632 # For more information about @HmatLBDataType, see chapter 5.2.27.4:
633 # Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
634 #
635 # @access-latency: access latency (nanoseconds)
636 #
637 # @read-latency: read latency (nanoseconds)
638 #
639 # @write-latency: write latency (nanoseconds)
640 #
641 # @access-bandwidth: access bandwidth (Bytes per second)
642 #
643 # @read-bandwidth: read bandwidth (Bytes per second)
644 #
645 # @write-bandwidth: write bandwidth (Bytes per second)
646 #
647 # Since: 5.0
648 ##
649 { 'enum': 'HmatLBDataType',
650   'data': [ 'access-latency', 'read-latency', 'write-latency',
651             'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
652 
653 ##
654 # @NumaHmatLBOptions:
655 #
656 # Set the system locality latency and bandwidth information between
657 # Initiator and Target proximity Domains.
658 #
659 # For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
660 # Table 5-146 of ACPI 6.3 spec.
661 #
662 # @initiator: the Initiator Proximity Domain.
663 #
664 # @target: the Target Proximity Domain.
665 #
666 # @hierarchy: the Memory Hierarchy.  Indicates the performance of
667 #     memory or side cache.
668 #
669 # @data-type: presents the type of data, access/read/write latency or
670 #     hit latency.
671 #
672 # @latency: the value of latency from @initiator to @target proximity
673 #     domain, the latency unit is "ns(nanosecond)".
674 #
675 # @bandwidth: the value of bandwidth between @initiator and @target
676 #     proximity domain, the bandwidth unit is "Bytes per second".
677 #
678 # Since: 5.0
679 ##
680 { 'struct': 'NumaHmatLBOptions',
681     'data': {
682     'initiator': 'uint16',
683     'target': 'uint16',
684     'hierarchy': 'HmatLBMemoryHierarchy',
685     'data-type': 'HmatLBDataType',
686     '*latency': 'uint64',
687     '*bandwidth': 'size' }}
688 
689 ##
690 # @HmatCacheAssociativity:
691 #
692 # Cache associativity in the Memory Side Cache Information Structure
693 # of HMAT
694 #
695 # For more information of @HmatCacheAssociativity, see chapter
696 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
697 #
698 # @none: None (no memory side cache in this proximity domain, or cache
699 #     associativity unknown)
700 #
701 # @direct: Direct Mapped
702 #
703 # @complex: Complex Cache Indexing (implementation specific)
704 #
705 # Since: 5.0
706 ##
707 { 'enum': 'HmatCacheAssociativity',
708   'data': [ 'none', 'direct', 'complex' ] }
709 
710 ##
711 # @HmatCacheWritePolicy:
712 #
713 # Cache write policy in the Memory Side Cache Information Structure of
714 # HMAT
715 #
716 # For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
717 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
718 #
719 # @none: None (no memory side cache in this proximity domain, or cache
720 #     write policy unknown)
721 #
722 # @write-back: Write Back (WB)
723 #
724 # @write-through: Write Through (WT)
725 #
726 # Since: 5.0
727 ##
728 { 'enum': 'HmatCacheWritePolicy',
729   'data': [ 'none', 'write-back', 'write-through' ] }
730 
731 ##
732 # @NumaHmatCacheOptions:
733 #
734 # Set the memory side cache information for a given memory domain.
735 #
736 # For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
737 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
738 #
739 # @node-id: the memory proximity domain to which the memory belongs.
740 #
741 # @size: the size of memory side cache in bytes.
742 #
743 # @level: the cache level described in this structure.
744 #
745 # @associativity: the cache associativity,
746 #     none/direct-mapped/complex(complex cache indexing).
747 #
748 # @policy: the write policy, none/write-back/write-through.
749 #
750 # @line: the cache Line size in bytes.
751 #
752 # Since: 5.0
753 ##
754 { 'struct': 'NumaHmatCacheOptions',
755   'data': {
756    'node-id': 'uint32',
757    'size': 'size',
758    'level': 'uint8',
759    'associativity': 'HmatCacheAssociativity',
760    'policy': 'HmatCacheWritePolicy',
761    'line': 'uint16' }}
762 
763 ##
764 # @memsave:
765 #
766 # Save a portion of guest memory to a file.
767 #
768 # @val: the virtual address of the guest to start from
769 #
770 # @size: the size of memory region to save
771 #
772 # @filename: the file to save the memory to as binary data
773 #
774 # @cpu-index: the index of the virtual CPU to use for translating the
775 #     virtual address (defaults to CPU 0)
776 #
777 # Since: 0.14
778 #
779 # Notes: Errors were not reliably returned until 1.1
780 #
781 # Example:
782 #
783 #     -> { "execute": "memsave",
784 #          "arguments": { "val": 10,
785 #                         "size": 100,
786 #                         "filename": "/tmp/virtual-mem-dump" } }
787 #     <- { "return": {} }
788 ##
789 { 'command': 'memsave',
790   'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
791 
792 ##
793 # @pmemsave:
794 #
795 # Save a portion of guest physical memory to a file.
796 #
797 # @val: the physical address of the guest to start from
798 #
799 # @size: the size of memory region to save
800 #
801 # @filename: the file to save the memory to as binary data
802 #
803 # Since: 0.14
804 #
805 # Notes: Errors were not reliably returned until 1.1
806 #
807 # Example:
808 #
809 #     -> { "execute": "pmemsave",
810 #          "arguments": { "val": 10,
811 #                         "size": 100,
812 #                         "filename": "/tmp/physical-mem-dump" } }
813 #     <- { "return": {} }
814 ##
815 { 'command': 'pmemsave',
816   'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
817 
818 ##
819 # @Memdev:
820 #
821 # Information about memory backend
822 #
823 # @id: backend's ID if backend has 'id' property (since 2.9)
824 #
825 # @size: memory backend size
826 #
827 # @merge: whether memory merge support is enabled
828 #
829 # @dump: whether memory backend's memory is included in a core dump
830 #
831 # @prealloc: whether memory was preallocated
832 #
833 # @share: whether memory is private to QEMU or shared (since 6.1)
834 #
835 # @reserve: whether swap space (or huge pages) was reserved if
836 #     applicable.  This corresponds to the user configuration and not
837 #     the actual behavior implemented in the OS to perform the
838 #     reservation.  For example, Linux will never reserve swap space
839 #     for shared file mappings.  (since 6.1)
840 #
841 # @host-nodes: host nodes for its memory policy
842 #
843 # @policy: memory policy of memory backend
844 #
845 # Since: 2.1
846 ##
847 { 'struct': 'Memdev',
848   'data': {
849     '*id':        'str',
850     'size':       'size',
851     'merge':      'bool',
852     'dump':       'bool',
853     'prealloc':   'bool',
854     'share':      'bool',
855     '*reserve':    'bool',
856     'host-nodes': ['uint16'],
857     'policy':     'HostMemPolicy' }}
858 
859 ##
860 # @query-memdev:
861 #
862 # Returns information for all memory backends.
863 #
864 # Returns: a list of @Memdev.
865 #
866 # Since: 2.1
867 #
868 # Example:
869 #
870 #     -> { "execute": "query-memdev" }
871 #     <- { "return": [
872 #            {
873 #              "id": "mem1",
874 #              "size": 536870912,
875 #              "merge": false,
876 #              "dump": true,
877 #              "prealloc": false,
878 #              "share": false,
879 #              "host-nodes": [0, 1],
880 #              "policy": "bind"
881 #            },
882 #            {
883 #              "size": 536870912,
884 #              "merge": false,
885 #              "dump": true,
886 #              "prealloc": true,
887 #              "share": false,
888 #              "host-nodes": [2, 3],
889 #              "policy": "preferred"
890 #            }
891 #          ]
892 #        }
893 ##
894 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
895 
896 ##
897 # @CpuInstanceProperties:
898 #
899 # List of properties to be used for hotplugging a CPU instance, it
900 # should be passed by management with device_add command when a CPU is
901 # being hotplugged.
902 #
903 # Which members are optional and which mandatory depends on the
904 # architecture and board.
905 #
906 # For s390x see :ref:`cpu-topology-s390x`.
907 #
908 # The ids other than the node-id specify the position of the CPU
909 # within the CPU topology (as defined by the machine property "smp",
910 # thus see also type @SMPConfiguration)
911 #
912 # @node-id: NUMA node ID the CPU belongs to
913 #
914 # @drawer-id: drawer number within CPU topology the CPU belongs to
915 #     (since 8.2)
916 #
917 # @book-id: book number within parent container the CPU belongs to
918 #     (since 8.2)
919 #
920 # @socket-id: socket number within parent container the CPU belongs to
921 #
922 # @die-id: die number within the parent container the CPU belongs to
923 #     (since 4.1)
924 #
925 # @cluster-id: cluster number within the parent container the CPU
926 #     belongs to (since 7.1)
927 #
928 # @core-id: core number within the parent container the CPU belongs to
929 #
930 # @thread-id: thread number within the core the CPU  belongs to
931 #
932 # Note: management should be prepared to pass through additional
933 #     properties with device_add.
934 #
935 # Since: 2.7
936 ##
937 { 'struct': 'CpuInstanceProperties',
938   # Keep these in sync with the properties device_add accepts
939   'data': { '*node-id': 'int',
940             '*drawer-id': 'int',
941             '*book-id': 'int',
942             '*socket-id': 'int',
943             '*die-id': 'int',
944             '*cluster-id': 'int',
945             '*core-id': 'int',
946             '*thread-id': 'int'
947   }
948 }
949 
950 ##
951 # @HotpluggableCPU:
952 #
953 # @type: CPU object type for usage with device_add command
954 #
955 # @props: list of properties to be used for hotplugging CPU
956 #
957 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU
958 #     provides
959 #
960 # @qom-path: link to existing CPU object if CPU is present or omitted
961 #     if CPU is not present.
962 #
963 # Since: 2.7
964 ##
965 { 'struct': 'HotpluggableCPU',
966   'data': { 'type': 'str',
967             'vcpus-count': 'int',
968             'props': 'CpuInstanceProperties',
969             '*qom-path': 'str'
970           }
971 }
972 
973 ##
974 # @query-hotpluggable-cpus:
975 #
976 # TODO: Better documentation; currently there is none.
977 #
978 # Returns: a list of HotpluggableCPU objects.
979 #
980 # Since: 2.7
981 #
982 # Examples:
983 #
984 #     For pseries machine type started with -smp 2,cores=2,maxcpus=4
985 #     -cpu POWER8:
986 #
987 #     -> { "execute": "query-hotpluggable-cpus" }
988 #     <- {"return": [
989 #          { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
990 #            "vcpus-count": 1 },
991 #          { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
992 #            "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
993 #        ]}'
994 #
995 #     For pc machine type started with -smp 1,maxcpus=2:
996 #
997 #     -> { "execute": "query-hotpluggable-cpus" }
998 #     <- {"return": [
999 #          {
1000 #             "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1001 #             "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1002 #          },
1003 #          {
1004 #             "qom-path": "/machine/unattached/device[0]",
1005 #             "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1006 #             "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1007 #          }
1008 #        ]}
1009 #
1010 #     For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2
1011 #     -cpu qemu (Since: 2.11):
1012 #
1013 #     -> { "execute": "query-hotpluggable-cpus" }
1014 #     <- {"return": [
1015 #          {
1016 #             "type": "qemu-s390x-cpu", "vcpus-count": 1,
1017 #             "props": { "core-id": 1 }
1018 #          },
1019 #          {
1020 #             "qom-path": "/machine/unattached/device[0]",
1021 #             "type": "qemu-s390x-cpu", "vcpus-count": 1,
1022 #             "props": { "core-id": 0 }
1023 #          }
1024 #        ]}
1025 ##
1026 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1027              'allow-preconfig': true }
1028 
1029 ##
1030 # @set-numa-node:
1031 #
1032 # Runtime equivalent of '-numa' CLI option, available at preconfigure
1033 # stage to configure numa mapping before initializing machine.
1034 #
1035 # Since: 3.0
1036 ##
1037 { 'command': 'set-numa-node', 'boxed': true,
1038   'data': 'NumaOptions',
1039   'allow-preconfig': true
1040 }
1041 
1042 ##
1043 # @balloon:
1044 #
1045 # Request the balloon driver to change its balloon size.
1046 #
1047 # @value: the target logical size of the VM in bytes.  We can deduce
1048 #     the size of the balloon using this formula:
1049 #
1050 #        logical_vm_size = vm_ram_size - balloon_size
1051 #
1052 #     From it we have: balloon_size = vm_ram_size - @value
1053 #
1054 # Errors:
1055 #     - If the balloon driver is enabled but not functional because
1056 #       the KVM kernel module cannot support it, KVMMissingCap
1057 #     - If no balloon device is present, DeviceNotActive
1058 #
1059 # Notes: This command just issues a request to the guest.  When it
1060 #     returns, the balloon size may not have changed.  A guest can
1061 #     change the balloon size independent of this command.
1062 #
1063 # Since: 0.14
1064 #
1065 # Example:
1066 #
1067 #     -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1068 #     <- { "return": {} }
1069 #
1070 #     With a 2.5GiB guest this command inflated the ballon to 3GiB.
1071 ##
1072 { 'command': 'balloon', 'data': {'value': 'int'} }
1073 
1074 ##
1075 # @BalloonInfo:
1076 #
1077 # Information about the guest balloon device.
1078 #
1079 # @actual: the logical size of the VM in bytes Formula used:
1080 #     logical_vm_size = vm_ram_size - balloon_size
1081 #
1082 # Since: 0.14
1083 ##
1084 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1085 
1086 ##
1087 # @query-balloon:
1088 #
1089 # Return information about the balloon device.
1090 #
1091 # Returns:
1092 #     @BalloonInfo
1093 #
1094 # Errors:
1095 #     - If the balloon driver is enabled but not functional because
1096 #       the KVM kernel module cannot support it, KVMMissingCap
1097 #     - If no balloon device is present, DeviceNotActive
1098 #
1099 # Since: 0.14
1100 #
1101 # Example:
1102 #
1103 #     -> { "execute": "query-balloon" }
1104 #     <- { "return": {
1105 #              "actual": 1073741824
1106 #           }
1107 #        }
1108 ##
1109 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1110 
1111 ##
1112 # @BALLOON_CHANGE:
1113 #
1114 # Emitted when the guest changes the actual BALLOON level.  This value
1115 # is equivalent to the @actual field return by the 'query-balloon'
1116 # command
1117 #
1118 # @actual: the logical size of the VM in bytes Formula used:
1119 #     logical_vm_size = vm_ram_size - balloon_size
1120 #
1121 # Note: this event is rate-limited.
1122 #
1123 # Since: 1.2
1124 #
1125 # Example:
1126 #
1127 #     <- { "event": "BALLOON_CHANGE",
1128 #          "data": { "actual": 944766976 },
1129 #          "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1130 ##
1131 { 'event': 'BALLOON_CHANGE',
1132   'data': { 'actual': 'int' } }
1133 
1134 ##
1135 # @HvBalloonInfo:
1136 #
1137 # hv-balloon guest-provided memory status information.
1138 #
1139 # @committed: the amount of memory in use inside the guest plus the
1140 #     amount of the memory unusable inside the guest (ballooned out,
1141 #     offline, etc.)
1142 #
1143 # @available: the amount of the memory inside the guest available for
1144 #     new allocations ("free")
1145 #
1146 # Since: 8.2
1147 ##
1148 { 'struct': 'HvBalloonInfo',
1149   'data': { 'committed': 'size', 'available': 'size' } }
1150 
1151 ##
1152 # @query-hv-balloon-status-report:
1153 #
1154 # Returns the hv-balloon driver data contained in the last received
1155 # "STATUS" message from the guest.
1156 #
1157 # Returns:
1158 #     @HvBalloonInfo
1159 #
1160 # Errors:
1161 #     - If no hv-balloon device is present, guest memory status
1162 #       reporting is not enabled or no guest memory status report
1163 #       received yet, GenericError
1164 #
1165 # Since: 8.2
1166 #
1167 # Example:
1168 #
1169 #     -> { "execute": "query-hv-balloon-status-report" }
1170 #     <- { "return": {
1171 #              "committed": 816640000,
1172 #              "available": 3333054464
1173 #           }
1174 #        }
1175 ##
1176 { 'command': 'query-hv-balloon-status-report', 'returns': 'HvBalloonInfo' }
1177 
1178 ##
1179 # @HV_BALLOON_STATUS_REPORT:
1180 #
1181 # Emitted when the hv-balloon driver receives a "STATUS" message from
1182 # the guest.
1183 #
1184 # Note: this event is rate-limited.
1185 #
1186 # Since: 8.2
1187 #
1188 # Example:
1189 #
1190 #     <- { "event": "HV_BALLOON_STATUS_REPORT",
1191 #          "data": { "committed": 816640000, "available": 3333054464 },
1192 #          "timestamp": { "seconds": 1600295492, "microseconds": 661044 } }
1193 ##
1194 { 'event': 'HV_BALLOON_STATUS_REPORT',
1195   'data': 'HvBalloonInfo' }
1196 
1197 ##
1198 # @MemoryInfo:
1199 #
1200 # Actual memory information in bytes.
1201 #
1202 # @base-memory: size of "base" memory specified with command line
1203 #     option -m.
1204 #
1205 # @plugged-memory: size of memory that can be hot-unplugged.  This
1206 #     field is omitted if target doesn't support memory hotplug (i.e.
1207 #     CONFIG_MEM_DEVICE not defined at build time).
1208 #
1209 # Since: 2.11
1210 ##
1211 { 'struct': 'MemoryInfo',
1212   'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1213 
1214 ##
1215 # @query-memory-size-summary:
1216 #
1217 # Return the amount of initially allocated and present hotpluggable
1218 # (if enabled) memory in bytes.
1219 #
1220 # Example:
1221 #
1222 #     -> { "execute": "query-memory-size-summary" }
1223 #     <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1224 #
1225 # Since: 2.11
1226 ##
1227 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1228 
1229 ##
1230 # @PCDIMMDeviceInfo:
1231 #
1232 # PCDIMMDevice state information
1233 #
1234 # @id: device's ID
1235 #
1236 # @addr: physical address, where device is mapped
1237 #
1238 # @size: size of memory that the device provides
1239 #
1240 # @slot: slot number at which device is plugged in
1241 #
1242 # @node: NUMA node number where device is plugged in
1243 #
1244 # @memdev: memory backend linked with device
1245 #
1246 # @hotplugged: true if device was hotplugged
1247 #
1248 # @hotpluggable: true if device if could be added/removed while
1249 #     machine is running
1250 #
1251 # Since: 2.1
1252 ##
1253 { 'struct': 'PCDIMMDeviceInfo',
1254   'data': { '*id': 'str',
1255             'addr': 'int',
1256             'size': 'int',
1257             'slot': 'int',
1258             'node': 'int',
1259             'memdev': 'str',
1260             'hotplugged': 'bool',
1261             'hotpluggable': 'bool'
1262           }
1263 }
1264 
1265 ##
1266 # @VirtioPMEMDeviceInfo:
1267 #
1268 # VirtioPMEM state information
1269 #
1270 # @id: device's ID
1271 #
1272 # @memaddr: physical address in memory, where device is mapped
1273 #
1274 # @size: size of memory that the device provides
1275 #
1276 # @memdev: memory backend linked with device
1277 #
1278 # Since: 4.1
1279 ##
1280 { 'struct': 'VirtioPMEMDeviceInfo',
1281   'data': { '*id': 'str',
1282             'memaddr': 'size',
1283             'size': 'size',
1284             'memdev': 'str'
1285           }
1286 }
1287 
1288 ##
1289 # @VirtioMEMDeviceInfo:
1290 #
1291 # VirtioMEMDevice state information
1292 #
1293 # @id: device's ID
1294 #
1295 # @memaddr: physical address in memory, where device is mapped
1296 #
1297 # @requested-size: the user requested size of the device
1298 #
1299 # @size: the (current) size of memory that the device provides
1300 #
1301 # @max-size: the maximum size of memory that the device can provide
1302 #
1303 # @block-size: the block size of memory that the device provides
1304 #
1305 # @node: NUMA node number where device is assigned to
1306 #
1307 # @memdev: memory backend linked with the region
1308 #
1309 # Since: 5.1
1310 ##
1311 { 'struct': 'VirtioMEMDeviceInfo',
1312   'data': { '*id': 'str',
1313             'memaddr': 'size',
1314             'requested-size': 'size',
1315             'size': 'size',
1316             'max-size': 'size',
1317             'block-size': 'size',
1318             'node': 'int',
1319             'memdev': 'str'
1320           }
1321 }
1322 
1323 ##
1324 # @SgxEPCDeviceInfo:
1325 #
1326 # Sgx EPC state information
1327 #
1328 # @id: device's ID
1329 #
1330 # @memaddr: physical address in memory, where device is mapped
1331 #
1332 # @size: size of memory that the device provides
1333 #
1334 # @memdev: memory backend linked with device
1335 #
1336 # @node: the numa node (Since: 7.0)
1337 #
1338 # Since: 6.2
1339 ##
1340 { 'struct': 'SgxEPCDeviceInfo',
1341   'data': { '*id': 'str',
1342             'memaddr': 'size',
1343             'size': 'size',
1344             'node': 'int',
1345             'memdev': 'str'
1346           }
1347 }
1348 
1349 ##
1350 # @HvBalloonDeviceInfo:
1351 #
1352 # hv-balloon provided memory state information
1353 #
1354 # @id: device's ID
1355 #
1356 # @memaddr: physical address in memory, where device is mapped
1357 #
1358 # @max-size: the maximum size of memory that the device can provide
1359 #
1360 # @memdev: memory backend linked with device
1361 #
1362 # Since: 8.2
1363 ##
1364 { 'struct': 'HvBalloonDeviceInfo',
1365   'data': { '*id': 'str',
1366             '*memaddr': 'size',
1367             'max-size': 'size',
1368             '*memdev': 'str'
1369           }
1370 }
1371 
1372 ##
1373 # @MemoryDeviceInfoKind:
1374 #
1375 # @nvdimm: since 2.12
1376 #
1377 # @virtio-pmem: since 4.1
1378 #
1379 # @virtio-mem: since 5.1
1380 #
1381 # @sgx-epc: since 6.2.
1382 #
1383 # @hv-balloon: since 8.2.
1384 #
1385 # Since: 2.1
1386 ##
1387 { 'enum': 'MemoryDeviceInfoKind',
1388   'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc',
1389             'hv-balloon' ] }
1390 
1391 ##
1392 # @PCDIMMDeviceInfoWrapper:
1393 #
1394 # @data: PCDIMMDevice state information
1395 #
1396 # Since: 2.1
1397 ##
1398 { 'struct': 'PCDIMMDeviceInfoWrapper',
1399   'data': { 'data': 'PCDIMMDeviceInfo' } }
1400 
1401 ##
1402 # @VirtioPMEMDeviceInfoWrapper:
1403 #
1404 # @data: VirtioPMEM state information
1405 #
1406 # Since: 2.1
1407 ##
1408 { 'struct': 'VirtioPMEMDeviceInfoWrapper',
1409   'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1410 
1411 ##
1412 # @VirtioMEMDeviceInfoWrapper:
1413 #
1414 # @data: VirtioMEMDevice state information
1415 #
1416 # Since: 2.1
1417 ##
1418 { 'struct': 'VirtioMEMDeviceInfoWrapper',
1419   'data': { 'data': 'VirtioMEMDeviceInfo' } }
1420 
1421 ##
1422 # @SgxEPCDeviceInfoWrapper:
1423 #
1424 # @data: Sgx EPC state information
1425 #
1426 # Since: 6.2
1427 ##
1428 { 'struct': 'SgxEPCDeviceInfoWrapper',
1429   'data': { 'data': 'SgxEPCDeviceInfo' } }
1430 
1431 ##
1432 # @HvBalloonDeviceInfoWrapper:
1433 #
1434 # @data: hv-balloon provided memory state information
1435 #
1436 # Since: 8.2
1437 ##
1438 { 'struct': 'HvBalloonDeviceInfoWrapper',
1439   'data': { 'data': 'HvBalloonDeviceInfo' } }
1440 
1441 ##
1442 # @MemoryDeviceInfo:
1443 #
1444 # Union containing information about a memory device
1445 #
1446 # @type: memory device type
1447 #
1448 # Since: 2.1
1449 ##
1450 { 'union': 'MemoryDeviceInfo',
1451   'base': { 'type': 'MemoryDeviceInfoKind' },
1452   'discriminator': 'type',
1453   'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1454             'nvdimm': 'PCDIMMDeviceInfoWrapper',
1455             'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1456             'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1457             'sgx-epc': 'SgxEPCDeviceInfoWrapper',
1458             'hv-balloon': 'HvBalloonDeviceInfoWrapper'
1459           }
1460 }
1461 
1462 ##
1463 # @SgxEPC:
1464 #
1465 # Sgx EPC cmdline information
1466 #
1467 # @memdev: memory backend linked with device
1468 #
1469 # @node: the numa node (Since: 7.0)
1470 #
1471 # Since: 6.2
1472 ##
1473 { 'struct': 'SgxEPC',
1474   'data': { 'memdev': 'str',
1475             'node': 'int'
1476           }
1477 }
1478 
1479 ##
1480 # @SgxEPCProperties:
1481 #
1482 # SGX properties of machine types.
1483 #
1484 # @sgx-epc: list of ids of memory-backend-epc objects.
1485 #
1486 # Since: 6.2
1487 ##
1488 { 'struct': 'SgxEPCProperties',
1489   'data': { 'sgx-epc': ['SgxEPC'] }
1490 }
1491 
1492 ##
1493 # @query-memory-devices:
1494 #
1495 # Lists available memory devices and their state
1496 #
1497 # Since: 2.1
1498 #
1499 # Example:
1500 #
1501 #     -> { "execute": "query-memory-devices" }
1502 #     <- { "return": [ { "data":
1503 #                           { "addr": 5368709120,
1504 #                             "hotpluggable": true,
1505 #                             "hotplugged": true,
1506 #                             "id": "d1",
1507 #                             "memdev": "/objects/memX",
1508 #                             "node": 0,
1509 #                             "size": 1073741824,
1510 #                             "slot": 0},
1511 #                        "type": "dimm"
1512 #                      } ] }
1513 ##
1514 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1515 
1516 ##
1517 # @MEMORY_DEVICE_SIZE_CHANGE:
1518 #
1519 # Emitted when the size of a memory device changes.  Only emitted for
1520 # memory devices that can actually change the size (e.g., virtio-mem
1521 # due to guest action).
1522 #
1523 # @id: device's ID
1524 #
1525 # @size: the new size of memory that the device provides
1526 #
1527 # @qom-path: path to the device object in the QOM tree (since 6.2)
1528 #
1529 # Note: this event is rate-limited.
1530 #
1531 # Since: 5.1
1532 #
1533 # Example:
1534 #
1535 #     <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1536 #          "data": { "id": "vm0", "size": 1073741824,
1537 #                    "qom-path": "/machine/unattached/device[2]" },
1538 #          "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1539 ##
1540 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1541   'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1542 
1543 ##
1544 # @MEM_UNPLUG_ERROR:
1545 #
1546 # Emitted when memory hot unplug error occurs.
1547 #
1548 # @device: device name
1549 #
1550 # @msg: Informative message
1551 #
1552 # Features:
1553 #
1554 # @deprecated: This event is deprecated.  Use
1555 #     @DEVICE_UNPLUG_GUEST_ERROR instead.
1556 #
1557 # Since: 2.4
1558 #
1559 # Example:
1560 #
1561 #     <- { "event": "MEM_UNPLUG_ERROR",
1562 #          "data": { "device": "dimm1",
1563 #                    "msg": "acpi: device unplug for unsupported device"
1564 #          },
1565 #          "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1566 ##
1567 { 'event': 'MEM_UNPLUG_ERROR',
1568   'data': { 'device': 'str', 'msg': 'str' },
1569   'features': ['deprecated'] }
1570 
1571 ##
1572 # @BootConfiguration:
1573 #
1574 # Schema for virtual machine boot configuration.
1575 #
1576 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1577 #
1578 # @once: Boot order to apply on first boot
1579 #
1580 # @menu: Whether to show a boot menu
1581 #
1582 # @splash: The name of the file to be passed to the firmware as logo
1583 #     picture, if @menu is true.
1584 #
1585 # @splash-time: How long to show the logo picture, in milliseconds
1586 #
1587 # @reboot-timeout: Timeout before guest reboots after boot fails
1588 #
1589 # @strict: Whether to attempt booting from devices not included in the
1590 #     boot order
1591 #
1592 # Since: 7.1
1593 ##
1594 { 'struct': 'BootConfiguration', 'data': {
1595      '*order': 'str',
1596      '*once': 'str',
1597      '*menu': 'bool',
1598      '*splash': 'str',
1599      '*splash-time': 'int',
1600      '*reboot-timeout': 'int',
1601      '*strict': 'bool' } }
1602 
1603 ##
1604 # @SMPConfiguration:
1605 #
1606 # Schema for CPU topology configuration.  A missing value lets QEMU
1607 # figure out a suitable value based on the ones that are provided.
1608 #
1609 # The members other than @cpus and @maxcpus define a topology of
1610 # containers.
1611 #
1612 # The ordering from highest/coarsest to lowest/finest is:
1613 # @drawers, @books, @sockets, @dies, @clusters, @cores, @threads.
1614 #
1615 # Different architectures support different subsets of topology
1616 # containers.
1617 #
1618 # For example, s390x does not have clusters and dies, and the socket
1619 # is the parent container of cores.
1620 #
1621 # @cpus: number of virtual CPUs in the virtual machine
1622 #
1623 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1624 #     machine
1625 #
1626 # @drawers: number of drawers in the CPU topology (since 8.2)
1627 #
1628 # @books: number of books in the CPU topology (since 8.2)
1629 #
1630 # @sockets: number of sockets per parent container
1631 #
1632 # @dies: number of dies per parent container
1633 #
1634 # @clusters: number of clusters per parent container (since 7.0)
1635 #
1636 # @cores: number of cores per parent container
1637 #
1638 # @threads: number of threads per core
1639 #
1640 # Since: 6.1
1641 ##
1642 { 'struct': 'SMPConfiguration', 'data': {
1643      '*cpus': 'int',
1644      '*drawers': 'int',
1645      '*books': 'int',
1646      '*sockets': 'int',
1647      '*dies': 'int',
1648      '*clusters': 'int',
1649      '*cores': 'int',
1650      '*threads': 'int',
1651      '*maxcpus': 'int' } }
1652 
1653 ##
1654 # @x-query-irq:
1655 #
1656 # Query interrupt statistics
1657 #
1658 # Features:
1659 #
1660 # @unstable: This command is meant for debugging.
1661 #
1662 # Returns: interrupt statistics
1663 #
1664 # Since: 6.2
1665 ##
1666 { 'command': 'x-query-irq',
1667   'returns': 'HumanReadableText',
1668   'features': [ 'unstable' ] }
1669 
1670 ##
1671 # @x-query-jit:
1672 #
1673 # Query TCG compiler statistics
1674 #
1675 # Features:
1676 #
1677 # @unstable: This command is meant for debugging.
1678 #
1679 # Returns: TCG compiler statistics
1680 #
1681 # Since: 6.2
1682 ##
1683 { 'command': 'x-query-jit',
1684   'returns': 'HumanReadableText',
1685   'if': 'CONFIG_TCG',
1686   'features': [ 'unstable' ] }
1687 
1688 ##
1689 # @x-query-numa:
1690 #
1691 # Query NUMA topology information
1692 #
1693 # Features:
1694 #
1695 # @unstable: This command is meant for debugging.
1696 #
1697 # Returns: topology information
1698 #
1699 # Since: 6.2
1700 ##
1701 { 'command': 'x-query-numa',
1702   'returns': 'HumanReadableText',
1703   'features': [ 'unstable' ] }
1704 
1705 ##
1706 # @x-query-opcount:
1707 #
1708 # Query TCG opcode counters
1709 #
1710 # Features:
1711 #
1712 # @unstable: This command is meant for debugging.
1713 #
1714 # Returns: TCG opcode counters
1715 #
1716 # Since: 6.2
1717 ##
1718 { 'command': 'x-query-opcount',
1719   'returns': 'HumanReadableText',
1720   'if': 'CONFIG_TCG',
1721   'features': [ 'unstable' ] }
1722 
1723 ##
1724 # @x-query-ramblock:
1725 #
1726 # Query system ramblock information
1727 #
1728 # Features:
1729 #
1730 # @unstable: This command is meant for debugging.
1731 #
1732 # Returns: system ramblock information
1733 #
1734 # Since: 6.2
1735 ##
1736 { 'command': 'x-query-ramblock',
1737   'returns': 'HumanReadableText',
1738   'features': [ 'unstable' ] }
1739 
1740 ##
1741 # @x-query-rdma:
1742 #
1743 # Query RDMA state
1744 #
1745 # Features:
1746 #
1747 # @unstable: This command is meant for debugging.
1748 #
1749 # Returns: RDMA state
1750 #
1751 # Since: 6.2
1752 ##
1753 { 'command': 'x-query-rdma',
1754   'returns': 'HumanReadableText',
1755   'features': [ 'unstable' ] }
1756 
1757 ##
1758 # @x-query-roms:
1759 #
1760 # Query information on the registered ROMS
1761 #
1762 # Features:
1763 #
1764 # @unstable: This command is meant for debugging.
1765 #
1766 # Returns: registered ROMs
1767 #
1768 # Since: 6.2
1769 ##
1770 { 'command': 'x-query-roms',
1771   'returns': 'HumanReadableText',
1772   'features': [ 'unstable' ] }
1773 
1774 ##
1775 # @x-query-usb:
1776 #
1777 # Query information on the USB devices
1778 #
1779 # Features:
1780 #
1781 # @unstable: This command is meant for debugging.
1782 #
1783 # Returns: USB device information
1784 #
1785 # Since: 6.2
1786 ##
1787 { 'command': 'x-query-usb',
1788   'returns': 'HumanReadableText',
1789   'features': [ 'unstable' ] }
1790 
1791 ##
1792 # @SmbiosEntryPointType:
1793 #
1794 # @32: SMBIOS version 2.1 (32-bit) Entry Point
1795 #
1796 # @64: SMBIOS version 3.0 (64-bit) Entry Point
1797 #
1798 # @auto: Either 2.x or 3.x SMBIOS version, 2.x if configuration can be
1799 #     described by it and 3.x otherwise (since: 9.0)
1800 #
1801 # Since: 7.0
1802 ##
1803 { 'enum': 'SmbiosEntryPointType',
1804   'data': [ '32', '64', 'auto' ] }
1805 
1806 ##
1807 # @MemorySizeConfiguration:
1808 #
1809 # Schema for memory size configuration.
1810 #
1811 # @size: memory size in bytes
1812 #
1813 # @max-size: maximum hotpluggable memory size in bytes
1814 #
1815 # @slots: number of available memory slots for hotplug
1816 #
1817 # Since: 7.1
1818 ##
1819 { 'struct': 'MemorySizeConfiguration', 'data': {
1820      '*size': 'size',
1821      '*max-size': 'size',
1822      '*slots': 'uint64' } }
1823 
1824 ##
1825 # @dumpdtb:
1826 #
1827 # Save the FDT in dtb format.
1828 #
1829 # @filename: name of the dtb file to be created
1830 #
1831 # Since: 7.2
1832 #
1833 # Example:
1834 #
1835 #     -> { "execute": "dumpdtb" }
1836 #          "arguments": { "filename": "fdt.dtb" } }
1837 #     <- { "return": {} }
1838 ##
1839 { 'command': 'dumpdtb',
1840   'data': { 'filename': 'str' },
1841   'if': 'CONFIG_FDT' }
1842