xref: /openbmc/qemu/qapi/machine.json (revision 6016b7b46edb714a53a31536b30ead9c3aafaef7)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4# This work is licensed under the terms of the GNU GPL, version 2 or later.
5# See the COPYING file in the top-level directory.
6
7##
8# = Machines
9##
10
11{ 'include': 'common.json' }
12
13##
14# @SysEmuTarget:
15#
16# The comprehensive enumeration of QEMU system emulation ("softmmu")
17# targets. Run "./configure --help" in the project root directory, and
18# look for the \*-softmmu targets near the "--target-list" option. The
19# individual target constants are not documented here, for the time
20# being.
21#
22# @rx: since 5.0
23# @avr: since 5.1
24#
25# Notes: The resulting QMP strings can be appended to the "qemu-system-"
26#        prefix to produce the corresponding QEMU executable name. This
27#        is true even for "qemu-system-x86_64".
28#
29# Since: 3.0
30##
31{ 'enum' : 'SysEmuTarget',
32  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
33             'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
34             'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
35             'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
36             'sh4eb', 'sparc', 'sparc64', 'tricore',
37             'x86_64', 'xtensa', 'xtensaeb' ] }
38
39##
40# @CpuS390State:
41#
42# An enumeration of cpu states that can be assumed by a virtual
43# S390 CPU
44#
45# Since: 2.12
46##
47{ 'enum': 'CpuS390State',
48  'prefix': 'S390_CPU_STATE',
49  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
50
51##
52# @CpuInfoS390:
53#
54# Additional information about a virtual S390 CPU
55#
56# @cpu-state: the virtual CPU's state
57#
58# Since: 2.12
59##
60{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
61
62##
63# @CpuInfoFast:
64#
65# Information about a virtual CPU
66#
67# @cpu-index: index of the virtual CPU
68#
69# @qom-path: path to the CPU object in the QOM tree
70#
71# @thread-id: ID of the underlying host thread
72#
73# @props: properties describing to which node/socket/core/thread
74#         virtual CPU belongs to, provided if supported by board
75#
76# @target: the QEMU system emulation target, which determines which
77#          additional fields will be listed (since 3.0)
78#
79# Since: 2.12
80#
81##
82{ 'union'         : 'CpuInfoFast',
83  'base'          : { 'cpu-index'    : 'int',
84                      'qom-path'     : 'str',
85                      'thread-id'    : 'int',
86                      '*props'       : 'CpuInstanceProperties',
87                      'target'       : 'SysEmuTarget' },
88  'discriminator' : 'target',
89  'data'          : { 's390x'        : 'CpuInfoS390' } }
90
91##
92# @query-cpus-fast:
93#
94# Returns information about all virtual CPUs.
95#
96# Returns: list of @CpuInfoFast
97#
98# Since: 2.12
99#
100# Example:
101#
102# -> { "execute": "query-cpus-fast" }
103# <- { "return": [
104#         {
105#             "thread-id": 25627,
106#             "props": {
107#                 "core-id": 0,
108#                 "thread-id": 0,
109#                 "socket-id": 0
110#             },
111#             "qom-path": "/machine/unattached/device[0]",
112#             "arch":"x86",
113#             "target":"x86_64",
114#             "cpu-index": 0
115#         },
116#         {
117#             "thread-id": 25628,
118#             "props": {
119#                 "core-id": 0,
120#                 "thread-id": 0,
121#                 "socket-id": 1
122#             },
123#             "qom-path": "/machine/unattached/device[2]",
124#             "arch":"x86",
125#             "target":"x86_64",
126#             "cpu-index": 1
127#         }
128#     ]
129# }
130##
131{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
132
133##
134# @MachineInfo:
135#
136# Information describing a machine.
137#
138# @name: the name of the machine
139#
140# @alias: an alias for the machine name
141#
142# @is-default: whether the machine is default
143#
144# @cpu-max: maximum number of CPUs supported by the machine type
145#           (since 1.5)
146#
147# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
148#
149# @numa-mem-supported: true if '-numa node,mem' option is supported by
150#                      the machine type and false otherwise (since 4.1)
151#
152# @deprecated: if true, the machine type is deprecated and may be removed
153#              in future versions of QEMU according to the QEMU deprecation
154#              policy (since 4.1)
155#
156# @default-cpu-type: default CPU model typename if none is requested via
157#                    the -cpu argument. (since 4.2)
158#
159# @default-ram-id: the default ID of initial RAM memory backend (since 5.2)
160#
161# Since: 1.2
162##
163{ 'struct': 'MachineInfo',
164  'data': { 'name': 'str', '*alias': 'str',
165            '*is-default': 'bool', 'cpu-max': 'int',
166            'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
167            'deprecated': 'bool', '*default-cpu-type': 'str',
168            '*default-ram-id': 'str' } }
169
170##
171# @query-machines:
172#
173# Return a list of supported machines
174#
175# Returns: a list of MachineInfo
176#
177# Since: 1.2
178##
179{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
180
181##
182# @CurrentMachineParams:
183#
184# Information describing the running machine parameters.
185#
186# @wakeup-suspend-support: true if the machine supports wake up from
187#                          suspend
188#
189# Since: 4.0
190##
191{ 'struct': 'CurrentMachineParams',
192  'data': { 'wakeup-suspend-support': 'bool'} }
193
194##
195# @query-current-machine:
196#
197# Return information on the current virtual machine.
198#
199# Returns: CurrentMachineParams
200#
201# Since: 4.0
202##
203{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
204
205##
206# @TargetInfo:
207#
208# Information describing the QEMU target.
209#
210# @arch: the target architecture
211#
212# Since: 1.2
213##
214{ 'struct': 'TargetInfo',
215  'data': { 'arch': 'SysEmuTarget' } }
216
217##
218# @query-target:
219#
220# Return information about the target for this QEMU
221#
222# Returns: TargetInfo
223#
224# Since: 1.2
225##
226{ 'command': 'query-target', 'returns': 'TargetInfo' }
227
228##
229# @UuidInfo:
230#
231# Guest UUID information (Universally Unique Identifier).
232#
233# @UUID: the UUID of the guest
234#
235# Since: 0.14
236#
237# Notes: If no UUID was specified for the guest, a null UUID is returned.
238##
239{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
240
241##
242# @query-uuid:
243#
244# Query the guest UUID information.
245#
246# Returns: The @UuidInfo for the guest
247#
248# Since: 0.14
249#
250# Example:
251#
252# -> { "execute": "query-uuid" }
253# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
254#
255##
256{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
257
258##
259# @GuidInfo:
260#
261# GUID information.
262#
263# @guid: the globally unique identifier
264#
265# Since: 2.9
266##
267{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
268
269##
270# @query-vm-generation-id:
271#
272# Show Virtual Machine Generation ID
273#
274# Since: 2.9
275##
276{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
277
278##
279# @system_reset:
280#
281# Performs a hard reset of a guest.
282#
283# Since: 0.14
284#
285# Example:
286#
287# -> { "execute": "system_reset" }
288# <- { "return": {} }
289#
290##
291{ 'command': 'system_reset' }
292
293##
294# @system_powerdown:
295#
296# Requests that a guest perform a powerdown operation.
297#
298# Since: 0.14
299#
300# Notes: A guest may or may not respond to this command.  This command
301#        returning does not indicate that a guest has accepted the request or
302#        that it has shut down.  Many guests will respond to this command by
303#        prompting the user in some way.
304# Example:
305#
306# -> { "execute": "system_powerdown" }
307# <- { "return": {} }
308#
309##
310{ 'command': 'system_powerdown' }
311
312##
313# @system_wakeup:
314#
315# Wake up guest from suspend. If the guest has wake-up from suspend
316# support enabled (wakeup-suspend-support flag from
317# query-current-machine), wake-up guest from suspend if the guest is
318# in SUSPENDED state. Return an error otherwise.
319#
320# Since:  1.1
321#
322# Returns:  nothing.
323#
324# Note: prior to 4.0, this command does nothing in case the guest
325#       isn't suspended.
326#
327# Example:
328#
329# -> { "execute": "system_wakeup" }
330# <- { "return": {} }
331#
332##
333{ 'command': 'system_wakeup' }
334
335##
336# @LostTickPolicy:
337#
338# Policy for handling lost ticks in timer devices.  Ticks end up getting
339# lost when, for example, the guest is paused.
340#
341# @discard: throw away the missed ticks and continue with future injection
342#           normally.  The guest OS will see the timer jump ahead by a
343#           potentially quite significant amount all at once, as if the
344#           intervening chunk of time had simply not existed; needless to
345#           say, such a sudden jump can easily confuse a guest OS which is
346#           not specifically prepared to deal with it.  Assuming the guest
347#           OS can deal correctly with the time jump, the time in the guest
348#           and in the host should now match.
349#
350# @delay: continue to deliver ticks at the normal rate.  The guest OS will
351#         not notice anything is amiss, as from its point of view time will
352#         have continued to flow normally.  The time in the guest should now
353#         be behind the time in the host by exactly the amount of time during
354#         which ticks have been missed.
355#
356# @slew: deliver ticks at a higher rate to catch up with the missed ticks.
357#        The guest OS will not notice anything is amiss, as from its point
358#        of view time will have continued to flow normally.  Once the timer
359#        has managed to catch up with all the missing ticks, the time in
360#        the guest and in the host should match.
361#
362# Since: 2.0
363##
364{ 'enum': 'LostTickPolicy',
365  'data': ['discard', 'delay', 'slew' ] }
366
367##
368# @inject-nmi:
369#
370# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
371# The command fails when the guest doesn't support injecting.
372#
373# Returns:  If successful, nothing
374#
375# Since:  0.14
376#
377# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
378#
379# Example:
380#
381# -> { "execute": "inject-nmi" }
382# <- { "return": {} }
383#
384##
385{ 'command': 'inject-nmi' }
386
387##
388# @KvmInfo:
389#
390# Information about support for KVM acceleration
391#
392# @enabled: true if KVM acceleration is active
393#
394# @present: true if KVM acceleration is built into this executable
395#
396# Since: 0.14
397##
398{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
399
400##
401# @query-kvm:
402#
403# Returns information about KVM acceleration
404#
405# Returns: @KvmInfo
406#
407# Since: 0.14
408#
409# Example:
410#
411# -> { "execute": "query-kvm" }
412# <- { "return": { "enabled": true, "present": true } }
413#
414##
415{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
416
417##
418# @NumaOptionsType:
419#
420# @node: NUMA nodes configuration
421#
422# @dist: NUMA distance configuration (since 2.10)
423#
424# @cpu: property based CPU(s) to node mapping (Since: 2.10)
425#
426# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
427#
428# @hmat-cache: memory side cache information (Since: 5.0)
429#
430# Since: 2.1
431##
432{ 'enum': 'NumaOptionsType',
433  'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
434
435##
436# @NumaOptions:
437#
438# A discriminated record of NUMA options. (for OptsVisitor)
439#
440# Since: 2.1
441##
442{ 'union': 'NumaOptions',
443  'base': { 'type': 'NumaOptionsType' },
444  'discriminator': 'type',
445  'data': {
446    'node': 'NumaNodeOptions',
447    'dist': 'NumaDistOptions',
448    'cpu': 'NumaCpuOptions',
449    'hmat-lb': 'NumaHmatLBOptions',
450    'hmat-cache': 'NumaHmatCacheOptions' }}
451
452##
453# @NumaNodeOptions:
454#
455# Create a guest NUMA node. (for OptsVisitor)
456#
457# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
458#
459# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
460#         if omitted)
461#
462# @mem: memory size of this node; mutually exclusive with @memdev.
463#       Equally divide total memory among nodes if both @mem and @memdev are
464#       omitted.
465#
466# @memdev: memory backend object.  If specified for one node,
467#          it must be specified for all nodes.
468#
469# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
470#             points to the nodeid which has the memory controller
471#             responsible for this NUMA node. This field provides
472#             additional information as to the initiator node that
473#             is closest (as in directly attached) to this node, and
474#             therefore has the best performance (since 5.0)
475#
476# Since: 2.1
477##
478{ 'struct': 'NumaNodeOptions',
479  'data': {
480   '*nodeid': 'uint16',
481   '*cpus':   ['uint16'],
482   '*mem':    'size',
483   '*memdev': 'str',
484   '*initiator': 'uint16' }}
485
486##
487# @NumaDistOptions:
488#
489# Set the distance between 2 NUMA nodes.
490#
491# @src: source NUMA node.
492#
493# @dst: destination NUMA node.
494#
495# @val: NUMA distance from source node to destination node.
496#       When a node is unreachable from another node, set the distance
497#       between them to 255.
498#
499# Since: 2.10
500##
501{ 'struct': 'NumaDistOptions',
502  'data': {
503   'src': 'uint16',
504   'dst': 'uint16',
505   'val': 'uint8' }}
506
507##
508# @X86CPURegister32:
509#
510# A X86 32-bit register
511#
512# Since: 1.5
513##
514{ 'enum': 'X86CPURegister32',
515  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
516
517##
518# @X86CPUFeatureWordInfo:
519#
520# Information about a X86 CPU feature word
521#
522# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
523#
524# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
525#                   feature word
526#
527# @cpuid-register: Output register containing the feature bits
528#
529# @features: value of output register, containing the feature bits
530#
531# Since: 1.5
532##
533{ 'struct': 'X86CPUFeatureWordInfo',
534  'data': { 'cpuid-input-eax': 'int',
535            '*cpuid-input-ecx': 'int',
536            'cpuid-register': 'X86CPURegister32',
537            'features': 'int' } }
538
539##
540# @DummyForceArrays:
541#
542# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
543#
544# Since: 2.5
545##
546{ 'struct': 'DummyForceArrays',
547  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
548
549##
550# @NumaCpuOptions:
551#
552# Option "-numa cpu" overrides default cpu to node mapping.
553# It accepts the same set of cpu properties as returned by
554# query-hotpluggable-cpus[].props, where node-id could be used to
555# override default node mapping.
556#
557# Since: 2.10
558##
559{ 'struct': 'NumaCpuOptions',
560   'base': 'CpuInstanceProperties',
561   'data' : {} }
562
563##
564# @HmatLBMemoryHierarchy:
565#
566# The memory hierarchy in the System Locality Latency and Bandwidth
567# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
568#
569# For more information about @HmatLBMemoryHierarchy, see chapter
570# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
571#
572# @memory: the structure represents the memory performance
573#
574# @first-level: first level of memory side cache
575#
576# @second-level: second level of memory side cache
577#
578# @third-level: third level of memory side cache
579#
580# Since: 5.0
581##
582{ 'enum': 'HmatLBMemoryHierarchy',
583  'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
584
585##
586# @HmatLBDataType:
587#
588# Data type in the System Locality Latency and Bandwidth
589# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
590#
591# For more information about @HmatLBDataType, see chapter
592# 5.2.27.4: Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
593#
594# @access-latency: access latency (nanoseconds)
595#
596# @read-latency: read latency (nanoseconds)
597#
598# @write-latency: write latency (nanoseconds)
599#
600# @access-bandwidth: access bandwidth (Bytes per second)
601#
602# @read-bandwidth: read bandwidth (Bytes per second)
603#
604# @write-bandwidth: write bandwidth (Bytes per second)
605#
606# Since: 5.0
607##
608{ 'enum': 'HmatLBDataType',
609  'data': [ 'access-latency', 'read-latency', 'write-latency',
610            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
611
612##
613# @NumaHmatLBOptions:
614#
615# Set the system locality latency and bandwidth information
616# between Initiator and Target proximity Domains.
617#
618# For more information about @NumaHmatLBOptions, see chapter
619# 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
620#
621# @initiator: the Initiator Proximity Domain.
622#
623# @target: the Target Proximity Domain.
624#
625# @hierarchy: the Memory Hierarchy. Indicates the performance
626#             of memory or side cache.
627#
628# @data-type: presents the type of data, access/read/write
629#             latency or hit latency.
630#
631# @latency: the value of latency from @initiator to @target
632#           proximity domain, the latency unit is "ns(nanosecond)".
633#
634# @bandwidth: the value of bandwidth between @initiator and @target
635#             proximity domain, the bandwidth unit is
636#             "Bytes per second".
637#
638# Since: 5.0
639##
640{ 'struct': 'NumaHmatLBOptions',
641    'data': {
642    'initiator': 'uint16',
643    'target': 'uint16',
644    'hierarchy': 'HmatLBMemoryHierarchy',
645    'data-type': 'HmatLBDataType',
646    '*latency': 'uint64',
647    '*bandwidth': 'size' }}
648
649##
650# @HmatCacheAssociativity:
651#
652# Cache associativity in the Memory Side Cache Information Structure
653# of HMAT
654#
655# For more information of @HmatCacheAssociativity, see chapter
656# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
657#
658# @none: None (no memory side cache in this proximity domain,
659#              or cache associativity unknown)
660#
661# @direct: Direct Mapped
662#
663# @complex: Complex Cache Indexing (implementation specific)
664#
665# Since: 5.0
666##
667{ 'enum': 'HmatCacheAssociativity',
668  'data': [ 'none', 'direct', 'complex' ] }
669
670##
671# @HmatCacheWritePolicy:
672#
673# Cache write policy in the Memory Side Cache Information Structure
674# of HMAT
675#
676# For more information of @HmatCacheWritePolicy, see chapter
677# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
678#
679# @none: None (no memory side cache in this proximity domain,
680#        or cache write policy unknown)
681#
682# @write-back: Write Back (WB)
683#
684# @write-through: Write Through (WT)
685#
686# Since: 5.0
687##
688{ 'enum': 'HmatCacheWritePolicy',
689  'data': [ 'none', 'write-back', 'write-through' ] }
690
691##
692# @NumaHmatCacheOptions:
693#
694# Set the memory side cache information for a given memory domain.
695#
696# For more information of @NumaHmatCacheOptions, see chapter
697# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
698#
699# @node-id: the memory proximity domain to which the memory belongs.
700#
701# @size: the size of memory side cache in bytes.
702#
703# @level: the cache level described in this structure.
704#
705# @associativity: the cache associativity,
706#                 none/direct-mapped/complex(complex cache indexing).
707#
708# @policy: the write policy, none/write-back/write-through.
709#
710# @line: the cache Line size in bytes.
711#
712# Since: 5.0
713##
714{ 'struct': 'NumaHmatCacheOptions',
715  'data': {
716   'node-id': 'uint32',
717   'size': 'size',
718   'level': 'uint8',
719   'associativity': 'HmatCacheAssociativity',
720   'policy': 'HmatCacheWritePolicy',
721   'line': 'uint16' }}
722
723##
724# @memsave:
725#
726# Save a portion of guest memory to a file.
727#
728# @val: the virtual address of the guest to start from
729#
730# @size: the size of memory region to save
731#
732# @filename: the file to save the memory to as binary data
733#
734# @cpu-index: the index of the virtual CPU to use for translating the
735#             virtual address (defaults to CPU 0)
736#
737# Returns: Nothing on success
738#
739# Since: 0.14
740#
741# Notes: Errors were not reliably returned until 1.1
742#
743# Example:
744#
745# -> { "execute": "memsave",
746#      "arguments": { "val": 10,
747#                     "size": 100,
748#                     "filename": "/tmp/virtual-mem-dump" } }
749# <- { "return": {} }
750#
751##
752{ 'command': 'memsave',
753  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
754
755##
756# @pmemsave:
757#
758# Save a portion of guest physical memory to a file.
759#
760# @val: the physical address of the guest to start from
761#
762# @size: the size of memory region to save
763#
764# @filename: the file to save the memory to as binary data
765#
766# Returns: Nothing on success
767#
768# Since: 0.14
769#
770# Notes: Errors were not reliably returned until 1.1
771#
772# Example:
773#
774# -> { "execute": "pmemsave",
775#      "arguments": { "val": 10,
776#                     "size": 100,
777#                     "filename": "/tmp/physical-mem-dump" } }
778# <- { "return": {} }
779#
780##
781{ 'command': 'pmemsave',
782  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
783
784##
785# @Memdev:
786#
787# Information about memory backend
788#
789# @id: backend's ID if backend has 'id' property (since 2.9)
790#
791# @size: memory backend size
792#
793# @merge: whether memory merge support is enabled
794#
795# @dump: whether memory backend's memory is included in a core dump
796#
797# @prealloc: whether memory was preallocated
798#
799# @share: whether memory is private to QEMU or shared (since 6.1)
800#
801# @reserve: whether swap space (or huge pages) was reserved if applicable.
802#           This corresponds to the user configuration and not the actual
803#           behavior implemented in the OS to perform the reservation.
804#           For example, Linux will never reserve swap space for shared
805#           file mappings. (since 6.1)
806#
807# @host-nodes: host nodes for its memory policy
808#
809# @policy: memory policy of memory backend
810#
811# Since: 2.1
812##
813{ 'struct': 'Memdev',
814  'data': {
815    '*id':        'str',
816    'size':       'size',
817    'merge':      'bool',
818    'dump':       'bool',
819    'prealloc':   'bool',
820    'share':      'bool',
821    '*reserve':    'bool',
822    'host-nodes': ['uint16'],
823    'policy':     'HostMemPolicy' }}
824
825##
826# @query-memdev:
827#
828# Returns information for all memory backends.
829#
830# Returns: a list of @Memdev.
831#
832# Since: 2.1
833#
834# Example:
835#
836# -> { "execute": "query-memdev" }
837# <- { "return": [
838#        {
839#          "id": "mem1",
840#          "size": 536870912,
841#          "merge": false,
842#          "dump": true,
843#          "prealloc": false,
844#          "host-nodes": [0, 1],
845#          "policy": "bind"
846#        },
847#        {
848#          "size": 536870912,
849#          "merge": false,
850#          "dump": true,
851#          "prealloc": true,
852#          "host-nodes": [2, 3],
853#          "policy": "preferred"
854#        }
855#      ]
856#    }
857#
858##
859{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
860
861##
862# @CpuInstanceProperties:
863#
864# List of properties to be used for hotplugging a CPU instance,
865# it should be passed by management with device_add command when
866# a CPU is being hotplugged.
867#
868# @node-id: NUMA node ID the CPU belongs to
869# @socket-id: socket number within node/board the CPU belongs to
870# @die-id: die number within socket the CPU belongs to (since 4.1)
871# @core-id: core number within die the CPU belongs to
872# @thread-id: thread number within core the CPU belongs to
873#
874# Note: currently there are 5 properties that could be present
875#       but management should be prepared to pass through other
876#       properties with device_add command to allow for future
877#       interface extension. This also requires the filed names to be kept in
878#       sync with the properties passed to -device/device_add.
879#
880# Since: 2.7
881##
882{ 'struct': 'CpuInstanceProperties',
883  'data': { '*node-id': 'int',
884            '*socket-id': 'int',
885            '*die-id': 'int',
886            '*core-id': 'int',
887            '*thread-id': 'int'
888  }
889}
890
891##
892# @HotpluggableCPU:
893#
894# @type: CPU object type for usage with device_add command
895# @props: list of properties to be used for hotplugging CPU
896# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
897# @qom-path: link to existing CPU object if CPU is present or
898#            omitted if CPU is not present.
899#
900# Since: 2.7
901##
902{ 'struct': 'HotpluggableCPU',
903  'data': { 'type': 'str',
904            'vcpus-count': 'int',
905            'props': 'CpuInstanceProperties',
906            '*qom-path': 'str'
907          }
908}
909
910##
911# @query-hotpluggable-cpus:
912#
913# TODO: Better documentation; currently there is none.
914#
915# Returns: a list of HotpluggableCPU objects.
916#
917# Since: 2.7
918#
919# Example:
920#
921# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
922#
923# -> { "execute": "query-hotpluggable-cpus" }
924# <- {"return": [
925#      { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
926#        "vcpus-count": 1 },
927#      { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
928#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
929#    ]}'
930#
931# For pc machine type started with -smp 1,maxcpus=2:
932#
933# -> { "execute": "query-hotpluggable-cpus" }
934# <- {"return": [
935#      {
936#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
937#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
938#      },
939#      {
940#         "qom-path": "/machine/unattached/device[0]",
941#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
942#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
943#      }
944#    ]}
945#
946# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
947# (Since: 2.11):
948#
949# -> { "execute": "query-hotpluggable-cpus" }
950# <- {"return": [
951#      {
952#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
953#         "props": { "core-id": 1 }
954#      },
955#      {
956#         "qom-path": "/machine/unattached/device[0]",
957#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
958#         "props": { "core-id": 0 }
959#      }
960#    ]}
961#
962##
963{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
964             'allow-preconfig': true }
965
966##
967# @set-numa-node:
968#
969# Runtime equivalent of '-numa' CLI option, available at
970# preconfigure stage to configure numa mapping before initializing
971# machine.
972#
973# Since 3.0
974##
975{ 'command': 'set-numa-node', 'boxed': true,
976  'data': 'NumaOptions',
977  'allow-preconfig': true
978}
979
980##
981# @balloon:
982#
983# Request the balloon driver to change its balloon size.
984#
985# @value: the target logical size of the VM in bytes.
986#         We can deduce the size of the balloon using this formula:
987#
988#            logical_vm_size = vm_ram_size - balloon_size
989#
990#         From it we have: balloon_size = vm_ram_size - @value
991#
992# Returns: - Nothing on success
993#          - If the balloon driver is enabled but not functional because the KVM
994#            kernel module cannot support it, KvmMissingCap
995#          - If no balloon device is present, DeviceNotActive
996#
997# Notes: This command just issues a request to the guest.  When it returns,
998#        the balloon size may not have changed.  A guest can change the balloon
999#        size independent of this command.
1000#
1001# Since: 0.14
1002#
1003# Example:
1004#
1005# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1006# <- { "return": {} }
1007#
1008# With a 2.5GiB guest this command inflated the ballon to 3GiB.
1009#
1010##
1011{ 'command': 'balloon', 'data': {'value': 'int'} }
1012
1013##
1014# @BalloonInfo:
1015#
1016# Information about the guest balloon device.
1017#
1018# @actual: the logical size of the VM in bytes
1019#          Formula used: logical_vm_size = vm_ram_size - balloon_size
1020#
1021# Since: 0.14
1022#
1023##
1024{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1025
1026##
1027# @query-balloon:
1028#
1029# Return information about the balloon device.
1030#
1031# Returns: - @BalloonInfo on success
1032#          - If the balloon driver is enabled but not functional because the KVM
1033#            kernel module cannot support it, KvmMissingCap
1034#          - If no balloon device is present, DeviceNotActive
1035#
1036# Since: 0.14
1037#
1038# Example:
1039#
1040# -> { "execute": "query-balloon" }
1041# <- { "return": {
1042#          "actual": 1073741824,
1043#       }
1044#    }
1045#
1046##
1047{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1048
1049##
1050# @BALLOON_CHANGE:
1051#
1052# Emitted when the guest changes the actual BALLOON level. This value is
1053# equivalent to the @actual field return by the 'query-balloon' command
1054#
1055# @actual: the logical size of the VM in bytes
1056#          Formula used: logical_vm_size = vm_ram_size - balloon_size
1057#
1058# Note: this event is rate-limited.
1059#
1060# Since: 1.2
1061#
1062# Example:
1063#
1064# <- { "event": "BALLOON_CHANGE",
1065#      "data": { "actual": 944766976 },
1066#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1067#
1068##
1069{ 'event': 'BALLOON_CHANGE',
1070  'data': { 'actual': 'int' } }
1071
1072##
1073# @MemoryInfo:
1074#
1075# Actual memory information in bytes.
1076#
1077# @base-memory: size of "base" memory specified with command line
1078#               option -m.
1079#
1080# @plugged-memory: size of memory that can be hot-unplugged. This field
1081#                  is omitted if target doesn't support memory hotplug
1082#                  (i.e. CONFIG_MEM_DEVICE not defined at build time).
1083#
1084# Since: 2.11
1085##
1086{ 'struct': 'MemoryInfo',
1087  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1088
1089##
1090# @query-memory-size-summary:
1091#
1092# Return the amount of initially allocated and present hotpluggable (if
1093# enabled) memory in bytes.
1094#
1095# Example:
1096#
1097# -> { "execute": "query-memory-size-summary" }
1098# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1099#
1100# Since: 2.11
1101##
1102{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1103
1104##
1105# @PCDIMMDeviceInfo:
1106#
1107# PCDIMMDevice state information
1108#
1109# @id: device's ID
1110#
1111# @addr: physical address, where device is mapped
1112#
1113# @size: size of memory that the device provides
1114#
1115# @slot: slot number at which device is plugged in
1116#
1117# @node: NUMA node number where device is plugged in
1118#
1119# @memdev: memory backend linked with device
1120#
1121# @hotplugged: true if device was hotplugged
1122#
1123# @hotpluggable: true if device if could be added/removed while machine is running
1124#
1125# Since: 2.1
1126##
1127{ 'struct': 'PCDIMMDeviceInfo',
1128  'data': { '*id': 'str',
1129            'addr': 'int',
1130            'size': 'int',
1131            'slot': 'int',
1132            'node': 'int',
1133            'memdev': 'str',
1134            'hotplugged': 'bool',
1135            'hotpluggable': 'bool'
1136          }
1137}
1138
1139##
1140# @VirtioPMEMDeviceInfo:
1141#
1142# VirtioPMEM state information
1143#
1144# @id: device's ID
1145#
1146# @memaddr: physical address in memory, where device is mapped
1147#
1148# @size: size of memory that the device provides
1149#
1150# @memdev: memory backend linked with device
1151#
1152# Since: 4.1
1153##
1154{ 'struct': 'VirtioPMEMDeviceInfo',
1155  'data': { '*id': 'str',
1156            'memaddr': 'size',
1157            'size': 'size',
1158            'memdev': 'str'
1159          }
1160}
1161
1162##
1163# @VirtioMEMDeviceInfo:
1164#
1165# VirtioMEMDevice state information
1166#
1167# @id: device's ID
1168#
1169# @memaddr: physical address in memory, where device is mapped
1170#
1171# @requested-size: the user requested size of the device
1172#
1173# @size: the (current) size of memory that the device provides
1174#
1175# @max-size: the maximum size of memory that the device can provide
1176#
1177# @block-size: the block size of memory that the device provides
1178#
1179# @node: NUMA node number where device is assigned to
1180#
1181# @memdev: memory backend linked with the region
1182#
1183# Since: 5.1
1184##
1185{ 'struct': 'VirtioMEMDeviceInfo',
1186  'data': { '*id': 'str',
1187            'memaddr': 'size',
1188            'requested-size': 'size',
1189            'size': 'size',
1190            'max-size': 'size',
1191            'block-size': 'size',
1192            'node': 'int',
1193            'memdev': 'str'
1194          }
1195}
1196
1197##
1198# @SgxEPCDeviceInfo:
1199#
1200# Sgx EPC state information
1201#
1202# @id: device's ID
1203#
1204# @memaddr: physical address in memory, where device is mapped
1205#
1206# @size: size of memory that the device provides
1207#
1208# @memdev: memory backend linked with device
1209#
1210# @node: the numa node
1211#
1212# Since: 6.2
1213##
1214{ 'struct': 'SgxEPCDeviceInfo',
1215  'data': { '*id': 'str',
1216            'memaddr': 'size',
1217            'size': 'size',
1218            'node': 'int',
1219            'memdev': 'str'
1220          }
1221}
1222
1223##
1224# @MemoryDeviceInfoKind:
1225#
1226# Since: 2.1
1227##
1228{ 'enum': 'MemoryDeviceInfoKind',
1229  'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1230
1231##
1232# @PCDIMMDeviceInfoWrapper:
1233#
1234# Since: 2.1
1235##
1236{ 'struct': 'PCDIMMDeviceInfoWrapper',
1237  'data': { 'data': 'PCDIMMDeviceInfo' } }
1238
1239##
1240# @VirtioPMEMDeviceInfoWrapper:
1241#
1242# Since: 2.1
1243##
1244{ 'struct': 'VirtioPMEMDeviceInfoWrapper',
1245  'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1246
1247##
1248# @VirtioMEMDeviceInfoWrapper:
1249#
1250# Since: 2.1
1251##
1252{ 'struct': 'VirtioMEMDeviceInfoWrapper',
1253  'data': { 'data': 'VirtioMEMDeviceInfo' } }
1254
1255##
1256# @SgxEPCDeviceInfoWrapper:
1257#
1258# Since: 6.2
1259##
1260{ 'struct': 'SgxEPCDeviceInfoWrapper',
1261  'data': { 'data': 'SgxEPCDeviceInfo' } }
1262
1263##
1264# @MemoryDeviceInfo:
1265#
1266# Union containing information about a memory device
1267#
1268# nvdimm is included since 2.12. virtio-pmem is included since 4.1.
1269# virtio-mem is included since 5.1. sgx-epc is included since 6.2.
1270#
1271# Since: 2.1
1272##
1273{ 'union': 'MemoryDeviceInfo',
1274  'base': { 'type': 'MemoryDeviceInfoKind' },
1275  'discriminator': 'type',
1276  'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1277            'nvdimm': 'PCDIMMDeviceInfoWrapper',
1278            'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1279            'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1280            'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1281          }
1282}
1283
1284##
1285# @SgxEPC:
1286#
1287# Sgx EPC cmdline information
1288#
1289# @memdev: memory backend linked with device
1290#
1291# @node: the numa node
1292#
1293# Since: 6.2
1294##
1295{ 'struct': 'SgxEPC',
1296  'data': { 'memdev': 'str',
1297            'node': 'int'
1298          }
1299}
1300
1301##
1302# @SgxEPCProperties:
1303#
1304# SGX properties of machine types.
1305#
1306# @sgx-epc: list of ids of memory-backend-epc objects.
1307#
1308# Since: 6.2
1309##
1310{ 'struct': 'SgxEPCProperties',
1311  'data': { 'sgx-epc': ['SgxEPC'] }
1312}
1313
1314##
1315# @query-memory-devices:
1316#
1317# Lists available memory devices and their state
1318#
1319# Since: 2.1
1320#
1321# Example:
1322#
1323# -> { "execute": "query-memory-devices" }
1324# <- { "return": [ { "data":
1325#                       { "addr": 5368709120,
1326#                         "hotpluggable": true,
1327#                         "hotplugged": true,
1328#                         "id": "d1",
1329#                         "memdev": "/objects/memX",
1330#                         "node": 0,
1331#                         "size": 1073741824,
1332#                         "slot": 0},
1333#                    "type": "dimm"
1334#                  } ] }
1335#
1336##
1337{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1338
1339##
1340# @MEMORY_DEVICE_SIZE_CHANGE:
1341#
1342# Emitted when the size of a memory device changes. Only emitted for memory
1343# devices that can actually change the size (e.g., virtio-mem due to guest
1344# action).
1345#
1346# @id: device's ID
1347#
1348# @size: the new size of memory that the device provides
1349#
1350# @qom-path: path to the device object in the QOM tree (since 6.2)
1351#
1352# Note: this event is rate-limited.
1353#
1354# Since: 5.1
1355#
1356# Example:
1357#
1358# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1359#      "data": { "id": "vm0", "size": 1073741824},
1360#      "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1361#
1362##
1363{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1364  'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1365
1366
1367##
1368# @MEM_UNPLUG_ERROR:
1369#
1370# Emitted when memory hot unplug error occurs.
1371#
1372# @device: device name
1373#
1374# @msg: Informative message
1375#
1376# Features:
1377# @deprecated: This event is deprecated. Use @DEVICE_UNPLUG_GUEST_ERROR
1378#              instead.
1379#
1380# Since: 2.4
1381#
1382# Example:
1383#
1384# <- { "event": "MEM_UNPLUG_ERROR"
1385#      "data": { "device": "dimm1",
1386#                "msg": "acpi: device unplug for unsupported device"
1387#      },
1388#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1389#
1390##
1391{ 'event': 'MEM_UNPLUG_ERROR',
1392  'data': { 'device': 'str', 'msg': 'str' },
1393  'features': ['deprecated'] }
1394
1395##
1396# @SMPConfiguration:
1397#
1398# Schema for CPU topology configuration.  A missing value lets
1399# QEMU figure out a suitable value based on the ones that are provided.
1400#
1401# @cpus: number of virtual CPUs in the virtual machine
1402#
1403# @sockets: number of sockets in the CPU topology
1404#
1405# @dies: number of dies per socket in the CPU topology
1406#
1407# @cores: number of cores per die in the CPU topology
1408#
1409# @threads: number of threads per core in the CPU topology
1410#
1411# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine
1412#
1413# Since: 6.1
1414##
1415{ 'struct': 'SMPConfiguration', 'data': {
1416     '*cpus': 'int',
1417     '*sockets': 'int',
1418     '*dies': 'int',
1419     '*cores': 'int',
1420     '*threads': 'int',
1421     '*maxcpus': 'int' } }
1422
1423##
1424# @x-query-irq:
1425#
1426# Query interrupt statistics
1427#
1428# Features:
1429# @unstable: This command is meant for debugging.
1430#
1431# Returns: interrupt statistics
1432#
1433# Since: 6.2
1434##
1435{ 'command': 'x-query-irq',
1436  'returns': 'HumanReadableText',
1437  'features': [ 'unstable' ] }
1438
1439##
1440# @x-query-jit:
1441#
1442# Query TCG compiler statistics
1443#
1444# Features:
1445# @unstable: This command is meant for debugging.
1446#
1447# Returns: TCG compiler statistics
1448#
1449# Since: 6.2
1450##
1451{ 'command': 'x-query-jit',
1452  'returns': 'HumanReadableText',
1453  'if': 'CONFIG_TCG',
1454  'features': [ 'unstable' ] }
1455
1456##
1457# @x-query-numa:
1458#
1459# Query NUMA topology information
1460#
1461# Features:
1462# @unstable: This command is meant for debugging.
1463#
1464# Returns: topology information
1465#
1466# Since: 6.2
1467##
1468{ 'command': 'x-query-numa',
1469  'returns': 'HumanReadableText',
1470  'features': [ 'unstable' ] }
1471
1472##
1473# @x-query-opcount:
1474#
1475# Query TCG opcode counters
1476#
1477# Features:
1478# @unstable: This command is meant for debugging.
1479#
1480# Returns: TCG opcode counters
1481#
1482# Since: 6.2
1483##
1484{ 'command': 'x-query-opcount',
1485  'returns': 'HumanReadableText',
1486  'if': 'CONFIG_TCG',
1487  'features': [ 'unstable' ] }
1488
1489##
1490# @x-query-profile:
1491#
1492# Query TCG profiling information
1493#
1494# Features:
1495# @unstable: This command is meant for debugging.
1496#
1497# Returns: profile information
1498#
1499# Since: 6.2
1500##
1501{ 'command': 'x-query-profile',
1502  'returns': 'HumanReadableText',
1503  'features': [ 'unstable' ] }
1504
1505##
1506# @x-query-ramblock:
1507#
1508# Query system ramblock information
1509#
1510# Features:
1511# @unstable: This command is meant for debugging.
1512#
1513# Returns: system ramblock information
1514#
1515# Since: 6.2
1516##
1517{ 'command': 'x-query-ramblock',
1518  'returns': 'HumanReadableText',
1519  'features': [ 'unstable' ] }
1520
1521##
1522# @x-query-rdma:
1523#
1524# Query RDMA state
1525#
1526# Features:
1527# @unstable: This command is meant for debugging.
1528#
1529# Returns: RDMA state
1530#
1531# Since: 6.2
1532##
1533{ 'command': 'x-query-rdma',
1534  'returns': 'HumanReadableText',
1535  'features': [ 'unstable' ] }
1536
1537##
1538# @x-query-roms:
1539#
1540# Query information on the registered ROMS
1541#
1542# Features:
1543# @unstable: This command is meant for debugging.
1544#
1545# Returns: registered ROMs
1546#
1547# Since: 6.2
1548##
1549{ 'command': 'x-query-roms',
1550  'returns': 'HumanReadableText',
1551  'features': [ 'unstable' ] }
1552
1553##
1554# @x-query-usb:
1555#
1556# Query information on the USB devices
1557#
1558# Features:
1559# @unstable: This command is meant for debugging.
1560#
1561# Returns: USB device information
1562#
1563# Since: 6.2
1564##
1565{ 'command': 'x-query-usb',
1566  'returns': 'HumanReadableText',
1567  'features': [ 'unstable' ] }
1568