xref: /openbmc/qemu/qapi/machine.json (revision 5de1aff2)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4# This work is licensed under the terms of the GNU GPL, version 2 or later.
5# See the COPYING file in the top-level directory.
6
7##
8# = Machines
9##
10
11{ 'include': 'common.json' }
12{ 'include': 'machine-common.json' }
13
14##
15# @SysEmuTarget:
16#
17# The comprehensive enumeration of QEMU system emulation ("softmmu")
18# targets.  Run "./configure --help" in the project root directory,
19# and look for the \*-softmmu targets near the "--target-list" option.
20# The individual target constants are not documented here, for the
21# time being.
22#
23# @rx: since 5.0
24#
25# @avr: since 5.1
26#
27# Notes: The resulting QMP strings can be appended to the
28#     "qemu-system-" prefix to produce the corresponding QEMU
29#     executable name.  This is true even for "qemu-system-x86_64".
30#
31# Since: 3.0
32##
33{ 'enum' : 'SysEmuTarget',
34  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
35             'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
36             'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
37             'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
38             'sh4eb', 'sparc', 'sparc64', 'tricore',
39             'x86_64', 'xtensa', 'xtensaeb' ] }
40
41##
42# @CpuS390State:
43#
44# An enumeration of cpu states that can be assumed by a virtual S390
45# CPU
46#
47# Since: 2.12
48##
49{ 'enum': 'CpuS390State',
50  'prefix': 'S390_CPU_STATE',
51  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
52
53##
54# @CpuInfoS390:
55#
56# Additional information about a virtual S390 CPU
57#
58# @cpu-state: the virtual CPU's state
59#
60# Since: 2.12
61##
62{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
63
64##
65# @CpuInfoFast:
66#
67# Information about a virtual CPU
68#
69# @cpu-index: index of the virtual CPU
70#
71# @qom-path: path to the CPU object in the QOM tree
72#
73# @thread-id: ID of the underlying host thread
74#
75# @props: properties associated with a virtual CPU, e.g. the socket id
76#
77# @target: the QEMU system emulation target, which determines which
78#     additional fields will be listed (since 3.0)
79#
80# Since: 2.12
81##
82{ 'union'         : 'CpuInfoFast',
83  'base'          : { 'cpu-index'    : 'int',
84                      'qom-path'     : 'str',
85                      'thread-id'    : 'int',
86                      '*props'       : 'CpuInstanceProperties',
87                      'target'       : 'SysEmuTarget' },
88  'discriminator' : 'target',
89  'data'          : { 's390x'        : 'CpuInfoS390' } }
90
91##
92# @query-cpus-fast:
93#
94# Returns information about all virtual CPUs.
95#
96# Returns: list of @CpuInfoFast
97#
98# Since: 2.12
99#
100# Example:
101#
102# -> { "execute": "query-cpus-fast" }
103# <- { "return": [
104#         {
105#             "thread-id": 25627,
106#             "props": {
107#                 "core-id": 0,
108#                 "thread-id": 0,
109#                 "socket-id": 0
110#             },
111#             "qom-path": "/machine/unattached/device[0]",
112#             "target":"x86_64",
113#             "cpu-index": 0
114#         },
115#         {
116#             "thread-id": 25628,
117#             "props": {
118#                 "core-id": 0,
119#                 "thread-id": 0,
120#                 "socket-id": 1
121#             },
122#             "qom-path": "/machine/unattached/device[2]",
123#             "target":"x86_64",
124#             "cpu-index": 1
125#         }
126#     ]
127# }
128##
129{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
130
131##
132# @MachineInfo:
133#
134# Information describing a machine.
135#
136# @name: the name of the machine
137#
138# @alias: an alias for the machine name
139#
140# @is-default: whether the machine is default
141#
142# @cpu-max: maximum number of CPUs supported by the machine type
143#     (since 1.5)
144#
145# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
146#
147# @numa-mem-supported: true if '-numa node,mem' option is supported by
148#     the machine type and false otherwise (since 4.1)
149#
150# @deprecated: if true, the machine type is deprecated and may be
151#     removed in future versions of QEMU according to the QEMU
152#     deprecation policy (since 4.1)
153#
154# @default-cpu-type: default CPU model typename if none is requested
155#     via the -cpu argument.  (since 4.2)
156#
157# @default-ram-id: the default ID of initial RAM memory backend (since
158#     5.2)
159#
160# @acpi: machine type supports ACPI (since 8.0)
161#
162# Since: 1.2
163##
164{ 'struct': 'MachineInfo',
165  'data': { 'name': 'str', '*alias': 'str',
166            '*is-default': 'bool', 'cpu-max': 'int',
167            'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
168            'deprecated': 'bool', '*default-cpu-type': 'str',
169            '*default-ram-id': 'str', 'acpi': 'bool' } }
170
171##
172# @query-machines:
173#
174# Return a list of supported machines
175#
176# Returns: a list of MachineInfo
177#
178# Since: 1.2
179##
180{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
181
182##
183# @CurrentMachineParams:
184#
185# Information describing the running machine parameters.
186#
187# @wakeup-suspend-support: true if the machine supports wake up from
188#     suspend
189#
190# Since: 4.0
191##
192{ 'struct': 'CurrentMachineParams',
193  'data': { 'wakeup-suspend-support': 'bool'} }
194
195##
196# @query-current-machine:
197#
198# Return information on the current virtual machine.
199#
200# Returns: CurrentMachineParams
201#
202# Since: 4.0
203##
204{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
205
206##
207# @TargetInfo:
208#
209# Information describing the QEMU target.
210#
211# @arch: the target architecture
212#
213# Since: 1.2
214##
215{ 'struct': 'TargetInfo',
216  'data': { 'arch': 'SysEmuTarget' } }
217
218##
219# @query-target:
220#
221# Return information about the target for this QEMU
222#
223# Returns: TargetInfo
224#
225# Since: 1.2
226##
227{ 'command': 'query-target', 'returns': 'TargetInfo' }
228
229##
230# @UuidInfo:
231#
232# Guest UUID information (Universally Unique Identifier).
233#
234# @UUID: the UUID of the guest
235#
236# Since: 0.14
237#
238# Notes: If no UUID was specified for the guest, a null UUID is
239#     returned.
240##
241{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
242
243##
244# @query-uuid:
245#
246# Query the guest UUID information.
247#
248# Returns: The @UuidInfo for the guest
249#
250# Since: 0.14
251#
252# Example:
253#
254# -> { "execute": "query-uuid" }
255# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
256##
257{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
258
259##
260# @GuidInfo:
261#
262# GUID information.
263#
264# @guid: the globally unique identifier
265#
266# Since: 2.9
267##
268{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
269
270##
271# @query-vm-generation-id:
272#
273# Show Virtual Machine Generation ID
274#
275# Since: 2.9
276##
277{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
278
279##
280# @system_reset:
281#
282# Performs a hard reset of a guest.
283#
284# Since: 0.14
285#
286# Example:
287#
288# -> { "execute": "system_reset" }
289# <- { "return": {} }
290##
291{ 'command': 'system_reset' }
292
293##
294# @system_powerdown:
295#
296# Requests that a guest perform a powerdown operation.
297#
298# Since: 0.14
299#
300# Notes: A guest may or may not respond to this command.  This command
301#     returning does not indicate that a guest has accepted the
302#     request or that it has shut down.  Many guests will respond to
303#     this command by prompting the user in some way.
304#
305# Example:
306#
307# -> { "execute": "system_powerdown" }
308# <- { "return": {} }
309##
310{ 'command': 'system_powerdown' }
311
312##
313# @system_wakeup:
314#
315# Wake up guest from suspend.  If the guest has wake-up from suspend
316# support enabled (wakeup-suspend-support flag from
317# query-current-machine), wake-up guest from suspend if the guest is
318# in SUSPENDED state.  Return an error otherwise.
319#
320# Since: 1.1
321#
322# Returns: nothing.
323#
324# Note: prior to 4.0, this command does nothing in case the guest
325#     isn't suspended.
326#
327# Example:
328#
329# -> { "execute": "system_wakeup" }
330# <- { "return": {} }
331##
332{ 'command': 'system_wakeup' }
333
334##
335# @LostTickPolicy:
336#
337# Policy for handling lost ticks in timer devices.  Ticks end up
338# getting lost when, for example, the guest is paused.
339#
340# @discard: throw away the missed ticks and continue with future
341#     injection normally.  The guest OS will see the timer jump ahead
342#     by a potentially quite significant amount all at once, as if the
343#     intervening chunk of time had simply not existed; needless to
344#     say, such a sudden jump can easily confuse a guest OS which is
345#     not specifically prepared to deal with it.  Assuming the guest
346#     OS can deal correctly with the time jump, the time in the guest
347#     and in the host should now match.
348#
349# @delay: continue to deliver ticks at the normal rate.  The guest OS
350#     will not notice anything is amiss, as from its point of view
351#     time will have continued to flow normally.  The time in the
352#     guest should now be behind the time in the host by exactly the
353#     amount of time during which ticks have been missed.
354#
355# @slew: deliver ticks at a higher rate to catch up with the missed
356#     ticks.  The guest OS will not notice anything is amiss, as from
357#     its point of view time will have continued to flow normally.
358#     Once the timer has managed to catch up with all the missing
359#     ticks, the time in the guest and in the host should match.
360#
361# Since: 2.0
362##
363{ 'enum': 'LostTickPolicy',
364  'data': ['discard', 'delay', 'slew' ] }
365
366##
367# @inject-nmi:
368#
369# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
370# all CPUs (ppc64). The command fails when the guest doesn't support
371# injecting.
372#
373# Returns: If successful, nothing
374#
375# Since: 0.14
376#
377# Note: prior to 2.1, this command was only supported for x86 and s390
378#     VMs
379#
380# Example:
381#
382# -> { "execute": "inject-nmi" }
383# <- { "return": {} }
384##
385{ 'command': 'inject-nmi' }
386
387##
388# @KvmInfo:
389#
390# Information about support for KVM acceleration
391#
392# @enabled: true if KVM acceleration is active
393#
394# @present: true if KVM acceleration is built into this executable
395#
396# Since: 0.14
397##
398{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
399
400##
401# @query-kvm:
402#
403# Returns information about KVM acceleration
404#
405# Returns: @KvmInfo
406#
407# Since: 0.14
408#
409# Example:
410#
411# -> { "execute": "query-kvm" }
412# <- { "return": { "enabled": true, "present": true } }
413##
414{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
415
416##
417# @NumaOptionsType:
418#
419# @node: NUMA nodes configuration
420#
421# @dist: NUMA distance configuration (since 2.10)
422#
423# @cpu: property based CPU(s) to node mapping (Since: 2.10)
424#
425# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
426#
427# @hmat-cache: memory side cache information (Since: 5.0)
428#
429# Since: 2.1
430##
431{ 'enum': 'NumaOptionsType',
432  'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
433
434##
435# @NumaOptions:
436#
437# A discriminated record of NUMA options.  (for OptsVisitor)
438#
439# Since: 2.1
440##
441{ 'union': 'NumaOptions',
442  'base': { 'type': 'NumaOptionsType' },
443  'discriminator': 'type',
444  'data': {
445    'node': 'NumaNodeOptions',
446    'dist': 'NumaDistOptions',
447    'cpu': 'NumaCpuOptions',
448    'hmat-lb': 'NumaHmatLBOptions',
449    'hmat-cache': 'NumaHmatCacheOptions' }}
450
451##
452# @NumaNodeOptions:
453#
454# Create a guest NUMA node.  (for OptsVisitor)
455#
456# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
457#
458# @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
459#     omitted)
460#
461# @mem: memory size of this node; mutually exclusive with @memdev.
462#     Equally divide total memory among nodes if both @mem and @memdev
463#     are omitted.
464#
465# @memdev: memory backend object.  If specified for one node, it must
466#     be specified for all nodes.
467#
468# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
469#     to the nodeid which has the memory controller responsible for
470#     this NUMA node.  This field provides additional information as
471#     to the initiator node that is closest (as in directly attached)
472#     to this node, and therefore has the best performance (since 5.0)
473#
474# Since: 2.1
475##
476{ 'struct': 'NumaNodeOptions',
477  'data': {
478   '*nodeid': 'uint16',
479   '*cpus':   ['uint16'],
480   '*mem':    'size',
481   '*memdev': 'str',
482   '*initiator': 'uint16' }}
483
484##
485# @NumaDistOptions:
486#
487# Set the distance between 2 NUMA nodes.
488#
489# @src: source NUMA node.
490#
491# @dst: destination NUMA node.
492#
493# @val: NUMA distance from source node to destination node.  When a
494#     node is unreachable from another node, set the distance between
495#     them to 255.
496#
497# Since: 2.10
498##
499{ 'struct': 'NumaDistOptions',
500  'data': {
501   'src': 'uint16',
502   'dst': 'uint16',
503   'val': 'uint8' }}
504
505##
506# @CXLFixedMemoryWindowOptions:
507#
508# Create a CXL Fixed Memory Window
509#
510# @size: Size of the Fixed Memory Window in bytes.  Must be a multiple
511#     of 256MiB.
512#
513# @interleave-granularity: Number of contiguous bytes for which
514#     accesses will go to a given interleave target.  Accepted values
515#     [256, 512, 1k, 2k, 4k, 8k, 16k]
516#
517# @targets: Target root bridge IDs from -device ...,id=<ID> for each
518#     root bridge.
519#
520# Since: 7.1
521##
522{ 'struct': 'CXLFixedMemoryWindowOptions',
523  'data': {
524      'size': 'size',
525      '*interleave-granularity': 'size',
526      'targets': ['str'] }}
527
528##
529# @CXLFMWProperties:
530#
531# List of CXL Fixed Memory Windows.
532#
533# @cxl-fmw: List of CXLFixedMemoryWindowOptions
534#
535# Since: 7.1
536##
537{ 'struct' : 'CXLFMWProperties',
538  'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
539}
540
541##
542# @X86CPURegister32:
543#
544# A X86 32-bit register
545#
546# Since: 1.5
547##
548{ 'enum': 'X86CPURegister32',
549  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
550
551##
552# @X86CPUFeatureWordInfo:
553#
554# Information about a X86 CPU feature word
555#
556# @cpuid-input-eax: Input EAX value for CPUID instruction for that
557#     feature word
558#
559# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
560#     feature word
561#
562# @cpuid-register: Output register containing the feature bits
563#
564# @features: value of output register, containing the feature bits
565#
566# Since: 1.5
567##
568{ 'struct': 'X86CPUFeatureWordInfo',
569  'data': { 'cpuid-input-eax': 'int',
570            '*cpuid-input-ecx': 'int',
571            'cpuid-register': 'X86CPURegister32',
572            'features': 'int' } }
573
574##
575# @DummyForceArrays:
576#
577# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
578# internally
579#
580# Since: 2.5
581##
582{ 'struct': 'DummyForceArrays',
583  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
584
585##
586# @NumaCpuOptions:
587#
588# Option "-numa cpu" overrides default cpu to node mapping.  It
589# accepts the same set of cpu properties as returned by
590# query-hotpluggable-cpus[].props, where node-id could be used to
591# override default node mapping.
592#
593# Since: 2.10
594##
595{ 'struct': 'NumaCpuOptions',
596   'base': 'CpuInstanceProperties',
597   'data' : {} }
598
599##
600# @HmatLBMemoryHierarchy:
601#
602# The memory hierarchy in the System Locality Latency and Bandwidth
603# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
604#
605# For more information about @HmatLBMemoryHierarchy, see chapter
606# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
607#
608# @memory: the structure represents the memory performance
609#
610# @first-level: first level of memory side cache
611#
612# @second-level: second level of memory side cache
613#
614# @third-level: third level of memory side cache
615#
616# Since: 5.0
617##
618{ 'enum': 'HmatLBMemoryHierarchy',
619  'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
620
621##
622# @HmatLBDataType:
623#
624# Data type in the System Locality Latency and Bandwidth Information
625# Structure of HMAT (Heterogeneous Memory Attribute Table)
626#
627# For more information about @HmatLBDataType, see chapter 5.2.27.4:
628# Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
629#
630# @access-latency: access latency (nanoseconds)
631#
632# @read-latency: read latency (nanoseconds)
633#
634# @write-latency: write latency (nanoseconds)
635#
636# @access-bandwidth: access bandwidth (Bytes per second)
637#
638# @read-bandwidth: read bandwidth (Bytes per second)
639#
640# @write-bandwidth: write bandwidth (Bytes per second)
641#
642# Since: 5.0
643##
644{ 'enum': 'HmatLBDataType',
645  'data': [ 'access-latency', 'read-latency', 'write-latency',
646            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
647
648##
649# @NumaHmatLBOptions:
650#
651# Set the system locality latency and bandwidth information between
652# Initiator and Target proximity Domains.
653#
654# For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
655# Table 5-146 of ACPI 6.3 spec.
656#
657# @initiator: the Initiator Proximity Domain.
658#
659# @target: the Target Proximity Domain.
660#
661# @hierarchy: the Memory Hierarchy.  Indicates the performance of
662#     memory or side cache.
663#
664# @data-type: presents the type of data, access/read/write latency or
665#     hit latency.
666#
667# @latency: the value of latency from @initiator to @target proximity
668#     domain, the latency unit is "ns(nanosecond)".
669#
670# @bandwidth: the value of bandwidth between @initiator and @target
671#     proximity domain, the bandwidth unit is "Bytes per second".
672#
673# Since: 5.0
674##
675{ 'struct': 'NumaHmatLBOptions',
676    'data': {
677    'initiator': 'uint16',
678    'target': 'uint16',
679    'hierarchy': 'HmatLBMemoryHierarchy',
680    'data-type': 'HmatLBDataType',
681    '*latency': 'uint64',
682    '*bandwidth': 'size' }}
683
684##
685# @HmatCacheAssociativity:
686#
687# Cache associativity in the Memory Side Cache Information Structure
688# of HMAT
689#
690# For more information of @HmatCacheAssociativity, see chapter
691# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
692#
693# @none: None (no memory side cache in this proximity domain, or cache
694#     associativity unknown)
695#
696# @direct: Direct Mapped
697#
698# @complex: Complex Cache Indexing (implementation specific)
699#
700# Since: 5.0
701##
702{ 'enum': 'HmatCacheAssociativity',
703  'data': [ 'none', 'direct', 'complex' ] }
704
705##
706# @HmatCacheWritePolicy:
707#
708# Cache write policy in the Memory Side Cache Information Structure of
709# HMAT
710#
711# For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
712# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
713#
714# @none: None (no memory side cache in this proximity domain, or cache
715#     write policy unknown)
716#
717# @write-back: Write Back (WB)
718#
719# @write-through: Write Through (WT)
720#
721# Since: 5.0
722##
723{ 'enum': 'HmatCacheWritePolicy',
724  'data': [ 'none', 'write-back', 'write-through' ] }
725
726##
727# @NumaHmatCacheOptions:
728#
729# Set the memory side cache information for a given memory domain.
730#
731# For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
732# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
733#
734# @node-id: the memory proximity domain to which the memory belongs.
735#
736# @size: the size of memory side cache in bytes.
737#
738# @level: the cache level described in this structure.
739#
740# @associativity: the cache associativity,
741#     none/direct-mapped/complex(complex cache indexing).
742#
743# @policy: the write policy, none/write-back/write-through.
744#
745# @line: the cache Line size in bytes.
746#
747# Since: 5.0
748##
749{ 'struct': 'NumaHmatCacheOptions',
750  'data': {
751   'node-id': 'uint32',
752   'size': 'size',
753   'level': 'uint8',
754   'associativity': 'HmatCacheAssociativity',
755   'policy': 'HmatCacheWritePolicy',
756   'line': 'uint16' }}
757
758##
759# @memsave:
760#
761# Save a portion of guest memory to a file.
762#
763# @val: the virtual address of the guest to start from
764#
765# @size: the size of memory region to save
766#
767# @filename: the file to save the memory to as binary data
768#
769# @cpu-index: the index of the virtual CPU to use for translating the
770#     virtual address (defaults to CPU 0)
771#
772# Returns: Nothing on success
773#
774# Since: 0.14
775#
776# Notes: Errors were not reliably returned until 1.1
777#
778# Example:
779#
780# -> { "execute": "memsave",
781#      "arguments": { "val": 10,
782#                     "size": 100,
783#                     "filename": "/tmp/virtual-mem-dump" } }
784# <- { "return": {} }
785##
786{ 'command': 'memsave',
787  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
788
789##
790# @pmemsave:
791#
792# Save a portion of guest physical memory to a file.
793#
794# @val: the physical address of the guest to start from
795#
796# @size: the size of memory region to save
797#
798# @filename: the file to save the memory to as binary data
799#
800# Returns: Nothing on success
801#
802# Since: 0.14
803#
804# Notes: Errors were not reliably returned until 1.1
805#
806# Example:
807#
808# -> { "execute": "pmemsave",
809#      "arguments": { "val": 10,
810#                     "size": 100,
811#                     "filename": "/tmp/physical-mem-dump" } }
812# <- { "return": {} }
813##
814{ 'command': 'pmemsave',
815  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
816
817##
818# @Memdev:
819#
820# Information about memory backend
821#
822# @id: backend's ID if backend has 'id' property (since 2.9)
823#
824# @size: memory backend size
825#
826# @merge: whether memory merge support is enabled
827#
828# @dump: whether memory backend's memory is included in a core dump
829#
830# @prealloc: whether memory was preallocated
831#
832# @share: whether memory is private to QEMU or shared (since 6.1)
833#
834# @reserve: whether swap space (or huge pages) was reserved if
835#     applicable.  This corresponds to the user configuration and not
836#     the actual behavior implemented in the OS to perform the
837#     reservation.  For example, Linux will never reserve swap space
838#     for shared file mappings.  (since 6.1)
839#
840# @host-nodes: host nodes for its memory policy
841#
842# @policy: memory policy of memory backend
843#
844# Since: 2.1
845##
846{ 'struct': 'Memdev',
847  'data': {
848    '*id':        'str',
849    'size':       'size',
850    'merge':      'bool',
851    'dump':       'bool',
852    'prealloc':   'bool',
853    'share':      'bool',
854    '*reserve':    'bool',
855    'host-nodes': ['uint16'],
856    'policy':     'HostMemPolicy' }}
857
858##
859# @query-memdev:
860#
861# Returns information for all memory backends.
862#
863# Returns: a list of @Memdev.
864#
865# Since: 2.1
866#
867# Example:
868#
869# -> { "execute": "query-memdev" }
870# <- { "return": [
871#        {
872#          "id": "mem1",
873#          "size": 536870912,
874#          "merge": false,
875#          "dump": true,
876#          "prealloc": false,
877#          "share": false,
878#          "host-nodes": [0, 1],
879#          "policy": "bind"
880#        },
881#        {
882#          "size": 536870912,
883#          "merge": false,
884#          "dump": true,
885#          "prealloc": true,
886#          "share": false,
887#          "host-nodes": [2, 3],
888#          "policy": "preferred"
889#        }
890#      ]
891#    }
892##
893{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
894
895##
896# @CpuInstanceProperties:
897#
898# List of properties to be used for hotplugging a CPU instance, it
899# should be passed by management with device_add command when a CPU is
900# being hotplugged.
901#
902# Which members are optional and which mandatory depends on the
903# architecture and board.
904#
905# The ids other than the node-id specify the position of the CPU
906# within the CPU topology (as defined by the machine property "smp",
907# thus see also type @SMPConfiguration)
908#
909# @node-id: NUMA node ID the CPU belongs to
910#
911# @drawer-id: drawer number within CPU topology the CPU belongs to
912#     (since 8.2)
913#
914# @book-id: book number within parent container the CPU belongs to
915#     (since 8.2)
916#
917# @socket-id: socket number within parent container the CPU belongs to
918#
919# @die-id: die number within the parent container the CPU belongs to
920#    (since 4.1)
921#
922# @cluster-id: cluster number within the parent container the CPU
923#     belongs to (since 7.1)
924#
925# @core-id: core number within the parent container the CPU
926#     belongs to
927#
928# @thread-id: thread number within the core the CPU  belongs to
929#
930# Note: management should be prepared to pass through additional
931#     properties with device_add.
932#
933# Since: 2.7
934##
935{ 'struct': 'CpuInstanceProperties',
936  # Keep these in sync with the properties device_add accepts
937  'data': { '*node-id': 'int',
938            '*drawer-id': 'int',
939            '*book-id': 'int',
940            '*socket-id': 'int',
941            '*die-id': 'int',
942            '*cluster-id': 'int',
943            '*core-id': 'int',
944            '*thread-id': 'int'
945  }
946}
947
948##
949# @HotpluggableCPU:
950#
951# @type: CPU object type for usage with device_add command
952#
953# @props: list of properties to be used for hotplugging CPU
954#
955# @vcpus-count: number of logical VCPU threads @HotpluggableCPU
956#     provides
957#
958# @qom-path: link to existing CPU object if CPU is present or omitted
959#     if CPU is not present.
960#
961# Since: 2.7
962##
963{ 'struct': 'HotpluggableCPU',
964  'data': { 'type': 'str',
965            'vcpus-count': 'int',
966            'props': 'CpuInstanceProperties',
967            '*qom-path': 'str'
968          }
969}
970
971##
972# @query-hotpluggable-cpus:
973#
974# TODO: Better documentation; currently there is none.
975#
976# Returns: a list of HotpluggableCPU objects.
977#
978# Since: 2.7
979#
980# Examples:
981#
982# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu
983# POWER8:
984#
985# -> { "execute": "query-hotpluggable-cpus" }
986# <- {"return": [
987#      { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
988#        "vcpus-count": 1 },
989#      { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
990#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
991#    ]}'
992#
993# For pc machine type started with -smp 1,maxcpus=2:
994#
995# -> { "execute": "query-hotpluggable-cpus" }
996# <- {"return": [
997#      {
998#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
999#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1000#      },
1001#      {
1002#         "qom-path": "/machine/unattached/device[0]",
1003#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1004#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1005#      }
1006#    ]}
1007#
1008# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu
1009# qemu (Since: 2.11):
1010#
1011# -> { "execute": "query-hotpluggable-cpus" }
1012# <- {"return": [
1013#      {
1014#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
1015#         "props": { "core-id": 1 }
1016#      },
1017#      {
1018#         "qom-path": "/machine/unattached/device[0]",
1019#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
1020#         "props": { "core-id": 0 }
1021#      }
1022#    ]}
1023##
1024{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1025             'allow-preconfig': true }
1026
1027##
1028# @set-numa-node:
1029#
1030# Runtime equivalent of '-numa' CLI option, available at preconfigure
1031# stage to configure numa mapping before initializing machine.
1032#
1033# Since: 3.0
1034##
1035{ 'command': 'set-numa-node', 'boxed': true,
1036  'data': 'NumaOptions',
1037  'allow-preconfig': true
1038}
1039
1040##
1041# @balloon:
1042#
1043# Request the balloon driver to change its balloon size.
1044#
1045# @value: the target logical size of the VM in bytes.  We can deduce
1046#     the size of the balloon using this formula:
1047#
1048#        logical_vm_size = vm_ram_size - balloon_size
1049#
1050#     From it we have: balloon_size = vm_ram_size - @value
1051#
1052# Returns:
1053# - Nothing on success
1054# - If the balloon driver is enabled but not functional because the
1055#   KVM kernel module cannot support it, KVMMissingCap
1056# - If no balloon device is present, DeviceNotActive
1057#
1058# Notes: This command just issues a request to the guest.  When it
1059#     returns, the balloon size may not have changed.  A guest can
1060#     change the balloon size independent of this command.
1061#
1062# Since: 0.14
1063#
1064# Example:
1065#
1066# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1067# <- { "return": {} }
1068#
1069# With a 2.5GiB guest this command inflated the ballon to 3GiB.
1070##
1071{ 'command': 'balloon', 'data': {'value': 'int'} }
1072
1073##
1074# @BalloonInfo:
1075#
1076# Information about the guest balloon device.
1077#
1078# @actual: the logical size of the VM in bytes Formula used:
1079#     logical_vm_size = vm_ram_size - balloon_size
1080#
1081# Since: 0.14
1082##
1083{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1084
1085##
1086# @query-balloon:
1087#
1088# Return information about the balloon device.
1089#
1090# Returns:
1091# - @BalloonInfo on success
1092# - If the balloon driver is enabled but not functional because the
1093#   KVM kernel module cannot support it, KVMMissingCap
1094# - If no balloon device is present, DeviceNotActive
1095#
1096# Since: 0.14
1097#
1098# Example:
1099#
1100# -> { "execute": "query-balloon" }
1101# <- { "return": {
1102#          "actual": 1073741824
1103#       }
1104#    }
1105##
1106{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1107
1108##
1109# @BALLOON_CHANGE:
1110#
1111# Emitted when the guest changes the actual BALLOON level.  This value
1112# is equivalent to the @actual field return by the 'query-balloon'
1113# command
1114#
1115# @actual: the logical size of the VM in bytes Formula used:
1116#     logical_vm_size = vm_ram_size - balloon_size
1117#
1118# Note: this event is rate-limited.
1119#
1120# Since: 1.2
1121#
1122# Example:
1123#
1124# <- { "event": "BALLOON_CHANGE",
1125#      "data": { "actual": 944766976 },
1126#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1127##
1128{ 'event': 'BALLOON_CHANGE',
1129  'data': { 'actual': 'int' } }
1130
1131##
1132# @MemoryInfo:
1133#
1134# Actual memory information in bytes.
1135#
1136# @base-memory: size of "base" memory specified with command line
1137#     option -m.
1138#
1139# @plugged-memory: size of memory that can be hot-unplugged.  This
1140#     field is omitted if target doesn't support memory hotplug (i.e.
1141#     CONFIG_MEM_DEVICE not defined at build time).
1142#
1143# Since: 2.11
1144##
1145{ 'struct': 'MemoryInfo',
1146  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1147
1148##
1149# @query-memory-size-summary:
1150#
1151# Return the amount of initially allocated and present hotpluggable
1152# (if enabled) memory in bytes.
1153#
1154# Example:
1155#
1156# -> { "execute": "query-memory-size-summary" }
1157# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1158#
1159# Since: 2.11
1160##
1161{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1162
1163##
1164# @PCDIMMDeviceInfo:
1165#
1166# PCDIMMDevice state information
1167#
1168# @id: device's ID
1169#
1170# @addr: physical address, where device is mapped
1171#
1172# @size: size of memory that the device provides
1173#
1174# @slot: slot number at which device is plugged in
1175#
1176# @node: NUMA node number where device is plugged in
1177#
1178# @memdev: memory backend linked with device
1179#
1180# @hotplugged: true if device was hotplugged
1181#
1182# @hotpluggable: true if device if could be added/removed while
1183#     machine is running
1184#
1185# Since: 2.1
1186##
1187{ 'struct': 'PCDIMMDeviceInfo',
1188  'data': { '*id': 'str',
1189            'addr': 'int',
1190            'size': 'int',
1191            'slot': 'int',
1192            'node': 'int',
1193            'memdev': 'str',
1194            'hotplugged': 'bool',
1195            'hotpluggable': 'bool'
1196          }
1197}
1198
1199##
1200# @VirtioPMEMDeviceInfo:
1201#
1202# VirtioPMEM state information
1203#
1204# @id: device's ID
1205#
1206# @memaddr: physical address in memory, where device is mapped
1207#
1208# @size: size of memory that the device provides
1209#
1210# @memdev: memory backend linked with device
1211#
1212# Since: 4.1
1213##
1214{ 'struct': 'VirtioPMEMDeviceInfo',
1215  'data': { '*id': 'str',
1216            'memaddr': 'size',
1217            'size': 'size',
1218            'memdev': 'str'
1219          }
1220}
1221
1222##
1223# @VirtioMEMDeviceInfo:
1224#
1225# VirtioMEMDevice state information
1226#
1227# @id: device's ID
1228#
1229# @memaddr: physical address in memory, where device is mapped
1230#
1231# @requested-size: the user requested size of the device
1232#
1233# @size: the (current) size of memory that the device provides
1234#
1235# @max-size: the maximum size of memory that the device can provide
1236#
1237# @block-size: the block size of memory that the device provides
1238#
1239# @node: NUMA node number where device is assigned to
1240#
1241# @memdev: memory backend linked with the region
1242#
1243# Since: 5.1
1244##
1245{ 'struct': 'VirtioMEMDeviceInfo',
1246  'data': { '*id': 'str',
1247            'memaddr': 'size',
1248            'requested-size': 'size',
1249            'size': 'size',
1250            'max-size': 'size',
1251            'block-size': 'size',
1252            'node': 'int',
1253            'memdev': 'str'
1254          }
1255}
1256
1257##
1258# @SgxEPCDeviceInfo:
1259#
1260# Sgx EPC state information
1261#
1262# @id: device's ID
1263#
1264# @memaddr: physical address in memory, where device is mapped
1265#
1266# @size: size of memory that the device provides
1267#
1268# @memdev: memory backend linked with device
1269#
1270# @node: the numa node (Since: 7.0)
1271#
1272# Since: 6.2
1273##
1274{ 'struct': 'SgxEPCDeviceInfo',
1275  'data': { '*id': 'str',
1276            'memaddr': 'size',
1277            'size': 'size',
1278            'node': 'int',
1279            'memdev': 'str'
1280          }
1281}
1282
1283##
1284# @MemoryDeviceInfoKind:
1285#
1286# @nvdimm: since 2.12
1287#
1288# @virtio-pmem: since 4.1
1289#
1290# @virtio-mem: since 5.1
1291#
1292# @sgx-epc: since 6.2.
1293#
1294# Since: 2.1
1295##
1296{ 'enum': 'MemoryDeviceInfoKind',
1297  'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1298
1299##
1300# @PCDIMMDeviceInfoWrapper:
1301#
1302# Since: 2.1
1303##
1304{ 'struct': 'PCDIMMDeviceInfoWrapper',
1305  'data': { 'data': 'PCDIMMDeviceInfo' } }
1306
1307##
1308# @VirtioPMEMDeviceInfoWrapper:
1309#
1310# Since: 2.1
1311##
1312{ 'struct': 'VirtioPMEMDeviceInfoWrapper',
1313  'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1314
1315##
1316# @VirtioMEMDeviceInfoWrapper:
1317#
1318# Since: 2.1
1319##
1320{ 'struct': 'VirtioMEMDeviceInfoWrapper',
1321  'data': { 'data': 'VirtioMEMDeviceInfo' } }
1322
1323##
1324# @SgxEPCDeviceInfoWrapper:
1325#
1326# Since: 6.2
1327##
1328{ 'struct': 'SgxEPCDeviceInfoWrapper',
1329  'data': { 'data': 'SgxEPCDeviceInfo' } }
1330
1331##
1332# @MemoryDeviceInfo:
1333#
1334# Union containing information about a memory device
1335#
1336# Since: 2.1
1337##
1338{ 'union': 'MemoryDeviceInfo',
1339  'base': { 'type': 'MemoryDeviceInfoKind' },
1340  'discriminator': 'type',
1341  'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1342            'nvdimm': 'PCDIMMDeviceInfoWrapper',
1343            'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1344            'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1345            'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1346          }
1347}
1348
1349##
1350# @SgxEPC:
1351#
1352# Sgx EPC cmdline information
1353#
1354# @memdev: memory backend linked with device
1355#
1356# @node: the numa node (Since: 7.0)
1357#
1358# Since: 6.2
1359##
1360{ 'struct': 'SgxEPC',
1361  'data': { 'memdev': 'str',
1362            'node': 'int'
1363          }
1364}
1365
1366##
1367# @SgxEPCProperties:
1368#
1369# SGX properties of machine types.
1370#
1371# @sgx-epc: list of ids of memory-backend-epc objects.
1372#
1373# Since: 6.2
1374##
1375{ 'struct': 'SgxEPCProperties',
1376  'data': { 'sgx-epc': ['SgxEPC'] }
1377}
1378
1379##
1380# @query-memory-devices:
1381#
1382# Lists available memory devices and their state
1383#
1384# Since: 2.1
1385#
1386# Example:
1387#
1388# -> { "execute": "query-memory-devices" }
1389# <- { "return": [ { "data":
1390#                       { "addr": 5368709120,
1391#                         "hotpluggable": true,
1392#                         "hotplugged": true,
1393#                         "id": "d1",
1394#                         "memdev": "/objects/memX",
1395#                         "node": 0,
1396#                         "size": 1073741824,
1397#                         "slot": 0},
1398#                    "type": "dimm"
1399#                  } ] }
1400##
1401{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1402
1403##
1404# @MEMORY_DEVICE_SIZE_CHANGE:
1405#
1406# Emitted when the size of a memory device changes.  Only emitted for
1407# memory devices that can actually change the size (e.g., virtio-mem
1408# due to guest action).
1409#
1410# @id: device's ID
1411#
1412# @size: the new size of memory that the device provides
1413#
1414# @qom-path: path to the device object in the QOM tree (since 6.2)
1415#
1416# Note: this event is rate-limited.
1417#
1418# Since: 5.1
1419#
1420# Example:
1421#
1422# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1423#      "data": { "id": "vm0", "size": 1073741824,
1424#                "qom-path": "/machine/unattached/device[2]" },
1425#      "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1426##
1427{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1428  'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1429
1430##
1431# @MEM_UNPLUG_ERROR:
1432#
1433# Emitted when memory hot unplug error occurs.
1434#
1435# @device: device name
1436#
1437# @msg: Informative message
1438#
1439# Features:
1440#
1441# @deprecated: This event is deprecated.  Use
1442#     @DEVICE_UNPLUG_GUEST_ERROR instead.
1443#
1444# Since: 2.4
1445#
1446# Example:
1447#
1448# <- { "event": "MEM_UNPLUG_ERROR",
1449#      "data": { "device": "dimm1",
1450#                "msg": "acpi: device unplug for unsupported device"
1451#      },
1452#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1453##
1454{ 'event': 'MEM_UNPLUG_ERROR',
1455  'data': { 'device': 'str', 'msg': 'str' },
1456  'features': ['deprecated'] }
1457
1458##
1459# @BootConfiguration:
1460#
1461# Schema for virtual machine boot configuration.
1462#
1463# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1464#
1465# @once: Boot order to apply on first boot
1466#
1467# @menu: Whether to show a boot menu
1468#
1469# @splash: The name of the file to be passed to the firmware as logo
1470#     picture, if @menu is true.
1471#
1472# @splash-time: How long to show the logo picture, in milliseconds
1473#
1474# @reboot-timeout: Timeout before guest reboots after boot fails
1475#
1476# @strict: Whether to attempt booting from devices not included in the
1477#     boot order
1478#
1479# Since: 7.1
1480##
1481{ 'struct': 'BootConfiguration', 'data': {
1482     '*order': 'str',
1483     '*once': 'str',
1484     '*menu': 'bool',
1485     '*splash': 'str',
1486     '*splash-time': 'int',
1487     '*reboot-timeout': 'int',
1488     '*strict': 'bool' } }
1489
1490##
1491# @SMPConfiguration:
1492#
1493# Schema for CPU topology configuration.  A missing value lets QEMU
1494# figure out a suitable value based on the ones that are provided.
1495#
1496# The members other than @cpus and @maxcpus define a topology of
1497# containers.
1498#
1499# The ordering from highest/coarsest to lowest/finest is:
1500# @drawers, @books, @sockets, @dies, @clusters, @cores, @threads.
1501#
1502# Different architectures support different subsets of topology
1503# containers.
1504#
1505# For example, s390x does not have clusters and dies, and the socket
1506# is the parent container of cores.
1507#
1508# @cpus: number of virtual CPUs in the virtual machine
1509#
1510# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1511#     machine
1512#
1513# @drawers: number of drawers in the CPU topology (since 8.2)
1514#
1515# @books: number of books in the CPU topology (since 8.2)
1516#
1517# @sockets: number of sockets per parent container
1518#
1519# @dies: number of dies per parent container
1520#
1521# @clusters: number of clusters per parent container (since 7.0)
1522#
1523# @cores: number of cores per parent container
1524#
1525# @threads: number of threads per core
1526#
1527# Since: 6.1
1528##
1529{ 'struct': 'SMPConfiguration', 'data': {
1530     '*cpus': 'int',
1531     '*drawers': 'int',
1532     '*books': 'int',
1533     '*sockets': 'int',
1534     '*dies': 'int',
1535     '*clusters': 'int',
1536     '*cores': 'int',
1537     '*threads': 'int',
1538     '*maxcpus': 'int' } }
1539
1540##
1541# @x-query-irq:
1542#
1543# Query interrupt statistics
1544#
1545# Features:
1546#
1547# @unstable: This command is meant for debugging.
1548#
1549# Returns: interrupt statistics
1550#
1551# Since: 6.2
1552##
1553{ 'command': 'x-query-irq',
1554  'returns': 'HumanReadableText',
1555  'features': [ 'unstable' ] }
1556
1557##
1558# @x-query-jit:
1559#
1560# Query TCG compiler statistics
1561#
1562# Features:
1563#
1564# @unstable: This command is meant for debugging.
1565#
1566# Returns: TCG compiler statistics
1567#
1568# Since: 6.2
1569##
1570{ 'command': 'x-query-jit',
1571  'returns': 'HumanReadableText',
1572  'if': 'CONFIG_TCG',
1573  'features': [ 'unstable' ] }
1574
1575##
1576# @x-query-numa:
1577#
1578# Query NUMA topology information
1579#
1580# Features:
1581#
1582# @unstable: This command is meant for debugging.
1583#
1584# Returns: topology information
1585#
1586# Since: 6.2
1587##
1588{ 'command': 'x-query-numa',
1589  'returns': 'HumanReadableText',
1590  'features': [ 'unstable' ] }
1591
1592##
1593# @x-query-opcount:
1594#
1595# Query TCG opcode counters
1596#
1597# Features:
1598#
1599# @unstable: This command is meant for debugging.
1600#
1601# Returns: TCG opcode counters
1602#
1603# Since: 6.2
1604##
1605{ 'command': 'x-query-opcount',
1606  'returns': 'HumanReadableText',
1607  'if': 'CONFIG_TCG',
1608  'features': [ 'unstable' ] }
1609
1610##
1611# @x-query-ramblock:
1612#
1613# Query system ramblock information
1614#
1615# Features:
1616#
1617# @unstable: This command is meant for debugging.
1618#
1619# Returns: system ramblock information
1620#
1621# Since: 6.2
1622##
1623{ 'command': 'x-query-ramblock',
1624  'returns': 'HumanReadableText',
1625  'features': [ 'unstable' ] }
1626
1627##
1628# @x-query-rdma:
1629#
1630# Query RDMA state
1631#
1632# Features:
1633#
1634# @unstable: This command is meant for debugging.
1635#
1636# Returns: RDMA state
1637#
1638# Since: 6.2
1639##
1640{ 'command': 'x-query-rdma',
1641  'returns': 'HumanReadableText',
1642  'features': [ 'unstable' ] }
1643
1644##
1645# @x-query-roms:
1646#
1647# Query information on the registered ROMS
1648#
1649# Features:
1650#
1651# @unstable: This command is meant for debugging.
1652#
1653# Returns: registered ROMs
1654#
1655# Since: 6.2
1656##
1657{ 'command': 'x-query-roms',
1658  'returns': 'HumanReadableText',
1659  'features': [ 'unstable' ] }
1660
1661##
1662# @x-query-usb:
1663#
1664# Query information on the USB devices
1665#
1666# Features:
1667#
1668# @unstable: This command is meant for debugging.
1669#
1670# Returns: USB device information
1671#
1672# Since: 6.2
1673##
1674{ 'command': 'x-query-usb',
1675  'returns': 'HumanReadableText',
1676  'features': [ 'unstable' ] }
1677
1678##
1679# @SmbiosEntryPointType:
1680#
1681# @32: SMBIOS version 2.1 (32-bit) Entry Point
1682#
1683# @64: SMBIOS version 3.0 (64-bit) Entry Point
1684#
1685# Since: 7.0
1686##
1687{ 'enum': 'SmbiosEntryPointType',
1688  'data': [ '32', '64' ] }
1689
1690##
1691# @MemorySizeConfiguration:
1692#
1693# Schema for memory size configuration.
1694#
1695# @size: memory size in bytes
1696#
1697# @max-size: maximum hotpluggable memory size in bytes
1698#
1699# @slots: number of available memory slots for hotplug
1700#
1701# Since: 7.1
1702##
1703{ 'struct': 'MemorySizeConfiguration', 'data': {
1704     '*size': 'size',
1705     '*max-size': 'size',
1706     '*slots': 'uint64' } }
1707
1708##
1709# @dumpdtb:
1710#
1711# Save the FDT in dtb format.
1712#
1713# @filename: name of the dtb file to be created
1714#
1715# Since: 7.2
1716#
1717# Example:
1718#
1719# -> { "execute": "dumpdtb" }
1720#      "arguments": { "filename": "fdt.dtb" } }
1721# <- { "return": {} }
1722##
1723{ 'command': 'dumpdtb',
1724  'data': { 'filename': 'str' },
1725  'if': 'CONFIG_FDT' }
1726