xref: /openbmc/qemu/qapi/machine.json (revision 3da4aef8)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4# This work is licensed under the terms of the GNU GPL, version 2 or later.
5# See the COPYING file in the top-level directory.
6
7##
8# = Machines
9##
10
11{ 'include': 'common.json' }
12
13##
14# @SysEmuTarget:
15#
16# The comprehensive enumeration of QEMU system emulation ("softmmu")
17# targets.  Run "./configure --help" in the project root directory,
18# and look for the \*-softmmu targets near the "--target-list" option.
19# The individual target constants are not documented here, for the
20# time being.
21#
22# @rx: since 5.0
23#
24# @avr: since 5.1
25#
26# Notes: The resulting QMP strings can be appended to the
27#     "qemu-system-" prefix to produce the corresponding QEMU
28#     executable name.  This is true even for "qemu-system-x86_64".
29#
30# Since: 3.0
31##
32{ 'enum' : 'SysEmuTarget',
33  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
34             'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
35             'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
36             'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
37             'sh4eb', 'sparc', 'sparc64', 'tricore',
38             'x86_64', 'xtensa', 'xtensaeb' ] }
39
40##
41# @CpuS390State:
42#
43# An enumeration of cpu states that can be assumed by a virtual S390
44# CPU
45#
46# Since: 2.12
47##
48{ 'enum': 'CpuS390State',
49  'prefix': 'S390_CPU_STATE',
50  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
51
52##
53# @CpuInfoS390:
54#
55# Additional information about a virtual S390 CPU
56#
57# @cpu-state: the virtual CPU's state
58#
59# Since: 2.12
60##
61{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
62
63##
64# @CpuInfoFast:
65#
66# Information about a virtual CPU
67#
68# @cpu-index: index of the virtual CPU
69#
70# @qom-path: path to the CPU object in the QOM tree
71#
72# @thread-id: ID of the underlying host thread
73#
74# @props: properties associated with a virtual CPU, e.g. the socket id
75#
76# @target: the QEMU system emulation target, which determines which
77#     additional fields will be listed (since 3.0)
78#
79# Since: 2.12
80##
81{ 'union'         : 'CpuInfoFast',
82  'base'          : { 'cpu-index'    : 'int',
83                      'qom-path'     : 'str',
84                      'thread-id'    : 'int',
85                      '*props'       : 'CpuInstanceProperties',
86                      'target'       : 'SysEmuTarget' },
87  'discriminator' : 'target',
88  'data'          : { 's390x'        : 'CpuInfoS390' } }
89
90##
91# @query-cpus-fast:
92#
93# Returns information about all virtual CPUs.
94#
95# Returns: list of @CpuInfoFast
96#
97# Since: 2.12
98#
99# Example:
100#
101# -> { "execute": "query-cpus-fast" }
102# <- { "return": [
103#         {
104#             "thread-id": 25627,
105#             "props": {
106#                 "core-id": 0,
107#                 "thread-id": 0,
108#                 "socket-id": 0
109#             },
110#             "qom-path": "/machine/unattached/device[0]",
111#             "target":"x86_64",
112#             "cpu-index": 0
113#         },
114#         {
115#             "thread-id": 25628,
116#             "props": {
117#                 "core-id": 0,
118#                 "thread-id": 0,
119#                 "socket-id": 1
120#             },
121#             "qom-path": "/machine/unattached/device[2]",
122#             "target":"x86_64",
123#             "cpu-index": 1
124#         }
125#     ]
126# }
127##
128{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
129
130##
131# @MachineInfo:
132#
133# Information describing a machine.
134#
135# @name: the name of the machine
136#
137# @alias: an alias for the machine name
138#
139# @is-default: whether the machine is default
140#
141# @cpu-max: maximum number of CPUs supported by the machine type
142#     (since 1.5)
143#
144# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
145#
146# @numa-mem-supported: true if '-numa node,mem' option is supported by
147#     the machine type and false otherwise (since 4.1)
148#
149# @deprecated: if true, the machine type is deprecated and may be
150#     removed in future versions of QEMU according to the QEMU
151#     deprecation policy (since 4.1)
152#
153# @default-cpu-type: default CPU model typename if none is requested
154#     via the -cpu argument.  (since 4.2)
155#
156# @default-ram-id: the default ID of initial RAM memory backend (since
157#     5.2)
158#
159# @acpi: machine type supports ACPI (since 8.0)
160#
161# Since: 1.2
162##
163{ 'struct': 'MachineInfo',
164  'data': { 'name': 'str', '*alias': 'str',
165            '*is-default': 'bool', 'cpu-max': 'int',
166            'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
167            'deprecated': 'bool', '*default-cpu-type': 'str',
168            '*default-ram-id': 'str', 'acpi': 'bool' } }
169
170##
171# @query-machines:
172#
173# Return a list of supported machines
174#
175# Returns: a list of MachineInfo
176#
177# Since: 1.2
178##
179{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
180
181##
182# @CurrentMachineParams:
183#
184# Information describing the running machine parameters.
185#
186# @wakeup-suspend-support: true if the machine supports wake up from
187#     suspend
188#
189# Since: 4.0
190##
191{ 'struct': 'CurrentMachineParams',
192  'data': { 'wakeup-suspend-support': 'bool'} }
193
194##
195# @query-current-machine:
196#
197# Return information on the current virtual machine.
198#
199# Returns: CurrentMachineParams
200#
201# Since: 4.0
202##
203{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
204
205##
206# @TargetInfo:
207#
208# Information describing the QEMU target.
209#
210# @arch: the target architecture
211#
212# Since: 1.2
213##
214{ 'struct': 'TargetInfo',
215  'data': { 'arch': 'SysEmuTarget' } }
216
217##
218# @query-target:
219#
220# Return information about the target for this QEMU
221#
222# Returns: TargetInfo
223#
224# Since: 1.2
225##
226{ 'command': 'query-target', 'returns': 'TargetInfo' }
227
228##
229# @UuidInfo:
230#
231# Guest UUID information (Universally Unique Identifier).
232#
233# @UUID: the UUID of the guest
234#
235# Since: 0.14
236#
237# Notes: If no UUID was specified for the guest, a null UUID is
238#     returned.
239##
240{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
241
242##
243# @query-uuid:
244#
245# Query the guest UUID information.
246#
247# Returns: The @UuidInfo for the guest
248#
249# Since: 0.14
250#
251# Example:
252#
253# -> { "execute": "query-uuid" }
254# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
255##
256{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
257
258##
259# @GuidInfo:
260#
261# GUID information.
262#
263# @guid: the globally unique identifier
264#
265# Since: 2.9
266##
267{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
268
269##
270# @query-vm-generation-id:
271#
272# Show Virtual Machine Generation ID
273#
274# Since: 2.9
275##
276{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
277
278##
279# @system_reset:
280#
281# Performs a hard reset of a guest.
282#
283# Since: 0.14
284#
285# Example:
286#
287# -> { "execute": "system_reset" }
288# <- { "return": {} }
289##
290{ 'command': 'system_reset' }
291
292##
293# @system_powerdown:
294#
295# Requests that a guest perform a powerdown operation.
296#
297# Since: 0.14
298#
299# Notes: A guest may or may not respond to this command.  This command
300#     returning does not indicate that a guest has accepted the
301#     request or that it has shut down.  Many guests will respond to
302#     this command by prompting the user in some way.
303#
304# Example:
305#
306# -> { "execute": "system_powerdown" }
307# <- { "return": {} }
308##
309{ 'command': 'system_powerdown' }
310
311##
312# @system_wakeup:
313#
314# Wake up guest from suspend.  If the guest has wake-up from suspend
315# support enabled (wakeup-suspend-support flag from
316# query-current-machine), wake-up guest from suspend if the guest is
317# in SUSPENDED state.  Return an error otherwise.
318#
319# Since: 1.1
320#
321# Returns: nothing.
322#
323# Note: prior to 4.0, this command does nothing in case the guest
324#     isn't suspended.
325#
326# Example:
327#
328# -> { "execute": "system_wakeup" }
329# <- { "return": {} }
330##
331{ 'command': 'system_wakeup' }
332
333##
334# @LostTickPolicy:
335#
336# Policy for handling lost ticks in timer devices.  Ticks end up
337# getting lost when, for example, the guest is paused.
338#
339# @discard: throw away the missed ticks and continue with future
340#     injection normally.  The guest OS will see the timer jump ahead
341#     by a potentially quite significant amount all at once, as if the
342#     intervening chunk of time had simply not existed; needless to
343#     say, such a sudden jump can easily confuse a guest OS which is
344#     not specifically prepared to deal with it.  Assuming the guest
345#     OS can deal correctly with the time jump, the time in the guest
346#     and in the host should now match.
347#
348# @delay: continue to deliver ticks at the normal rate.  The guest OS
349#     will not notice anything is amiss, as from its point of view
350#     time will have continued to flow normally.  The time in the
351#     guest should now be behind the time in the host by exactly the
352#     amount of time during which ticks have been missed.
353#
354# @slew: deliver ticks at a higher rate to catch up with the missed
355#     ticks.  The guest OS will not notice anything is amiss, as from
356#     its point of view time will have continued to flow normally.
357#     Once the timer has managed to catch up with all the missing
358#     ticks, the time in the guest and in the host should match.
359#
360# Since: 2.0
361##
362{ 'enum': 'LostTickPolicy',
363  'data': ['discard', 'delay', 'slew' ] }
364
365##
366# @inject-nmi:
367#
368# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
369# all CPUs (ppc64). The command fails when the guest doesn't support
370# injecting.
371#
372# Returns: If successful, nothing
373#
374# Since: 0.14
375#
376# Note: prior to 2.1, this command was only supported for x86 and s390
377#     VMs
378#
379# Example:
380#
381# -> { "execute": "inject-nmi" }
382# <- { "return": {} }
383##
384{ 'command': 'inject-nmi' }
385
386##
387# @KvmInfo:
388#
389# Information about support for KVM acceleration
390#
391# @enabled: true if KVM acceleration is active
392#
393# @present: true if KVM acceleration is built into this executable
394#
395# Since: 0.14
396##
397{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
398
399##
400# @query-kvm:
401#
402# Returns information about KVM acceleration
403#
404# Returns: @KvmInfo
405#
406# Since: 0.14
407#
408# Example:
409#
410# -> { "execute": "query-kvm" }
411# <- { "return": { "enabled": true, "present": true } }
412##
413{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
414
415##
416# @NumaOptionsType:
417#
418# @node: NUMA nodes configuration
419#
420# @dist: NUMA distance configuration (since 2.10)
421#
422# @cpu: property based CPU(s) to node mapping (Since: 2.10)
423#
424# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
425#
426# @hmat-cache: memory side cache information (Since: 5.0)
427#
428# Since: 2.1
429##
430{ 'enum': 'NumaOptionsType',
431  'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
432
433##
434# @NumaOptions:
435#
436# A discriminated record of NUMA options.  (for OptsVisitor)
437#
438# Since: 2.1
439##
440{ 'union': 'NumaOptions',
441  'base': { 'type': 'NumaOptionsType' },
442  'discriminator': 'type',
443  'data': {
444    'node': 'NumaNodeOptions',
445    'dist': 'NumaDistOptions',
446    'cpu': 'NumaCpuOptions',
447    'hmat-lb': 'NumaHmatLBOptions',
448    'hmat-cache': 'NumaHmatCacheOptions' }}
449
450##
451# @NumaNodeOptions:
452#
453# Create a guest NUMA node.  (for OptsVisitor)
454#
455# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
456#
457# @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
458#     omitted)
459#
460# @mem: memory size of this node; mutually exclusive with @memdev.
461#     Equally divide total memory among nodes if both @mem and @memdev
462#     are omitted.
463#
464# @memdev: memory backend object.  If specified for one node, it must
465#     be specified for all nodes.
466#
467# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
468#     to the nodeid which has the memory controller responsible for
469#     this NUMA node.  This field provides additional information as
470#     to the initiator node that is closest (as in directly attached)
471#     to this node, and therefore has the best performance (since 5.0)
472#
473# Since: 2.1
474##
475{ 'struct': 'NumaNodeOptions',
476  'data': {
477   '*nodeid': 'uint16',
478   '*cpus':   ['uint16'],
479   '*mem':    'size',
480   '*memdev': 'str',
481   '*initiator': 'uint16' }}
482
483##
484# @NumaDistOptions:
485#
486# Set the distance between 2 NUMA nodes.
487#
488# @src: source NUMA node.
489#
490# @dst: destination NUMA node.
491#
492# @val: NUMA distance from source node to destination node.  When a
493#     node is unreachable from another node, set the distance between
494#     them to 255.
495#
496# Since: 2.10
497##
498{ 'struct': 'NumaDistOptions',
499  'data': {
500   'src': 'uint16',
501   'dst': 'uint16',
502   'val': 'uint8' }}
503
504##
505# @CXLFixedMemoryWindowOptions:
506#
507# Create a CXL Fixed Memory Window
508#
509# @size: Size of the Fixed Memory Window in bytes.  Must be a multiple
510#     of 256MiB.
511#
512# @interleave-granularity: Number of contiguous bytes for which
513#     accesses will go to a given interleave target.  Accepted values
514#     [256, 512, 1k, 2k, 4k, 8k, 16k]
515#
516# @targets: Target root bridge IDs from -device ...,id=<ID> for each
517#     root bridge.
518#
519# Since: 7.1
520##
521{ 'struct': 'CXLFixedMemoryWindowOptions',
522  'data': {
523      'size': 'size',
524      '*interleave-granularity': 'size',
525      'targets': ['str'] }}
526
527##
528# @CXLFMWProperties:
529#
530# List of CXL Fixed Memory Windows.
531#
532# @cxl-fmw: List of CXLFixedMemoryWindowOptions
533#
534# Since: 7.1
535##
536{ 'struct' : 'CXLFMWProperties',
537  'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
538}
539
540##
541# @X86CPURegister32:
542#
543# A X86 32-bit register
544#
545# Since: 1.5
546##
547{ 'enum': 'X86CPURegister32',
548  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
549
550##
551# @X86CPUFeatureWordInfo:
552#
553# Information about a X86 CPU feature word
554#
555# @cpuid-input-eax: Input EAX value for CPUID instruction for that
556#     feature word
557#
558# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
559#     feature word
560#
561# @cpuid-register: Output register containing the feature bits
562#
563# @features: value of output register, containing the feature bits
564#
565# Since: 1.5
566##
567{ 'struct': 'X86CPUFeatureWordInfo',
568  'data': { 'cpuid-input-eax': 'int',
569            '*cpuid-input-ecx': 'int',
570            'cpuid-register': 'X86CPURegister32',
571            'features': 'int' } }
572
573##
574# @DummyForceArrays:
575#
576# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
577# internally
578#
579# Since: 2.5
580##
581{ 'struct': 'DummyForceArrays',
582  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
583
584##
585# @NumaCpuOptions:
586#
587# Option "-numa cpu" overrides default cpu to node mapping.  It
588# accepts the same set of cpu properties as returned by
589# query-hotpluggable-cpus[].props, where node-id could be used to
590# override default node mapping.
591#
592# Since: 2.10
593##
594{ 'struct': 'NumaCpuOptions',
595   'base': 'CpuInstanceProperties',
596   'data' : {} }
597
598##
599# @HmatLBMemoryHierarchy:
600#
601# The memory hierarchy in the System Locality Latency and Bandwidth
602# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
603#
604# For more information about @HmatLBMemoryHierarchy, see chapter
605# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
606#
607# @memory: the structure represents the memory performance
608#
609# @first-level: first level of memory side cache
610#
611# @second-level: second level of memory side cache
612#
613# @third-level: third level of memory side cache
614#
615# Since: 5.0
616##
617{ 'enum': 'HmatLBMemoryHierarchy',
618  'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
619
620##
621# @HmatLBDataType:
622#
623# Data type in the System Locality Latency and Bandwidth Information
624# Structure of HMAT (Heterogeneous Memory Attribute Table)
625#
626# For more information about @HmatLBDataType, see chapter 5.2.27.4:
627# Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
628#
629# @access-latency: access latency (nanoseconds)
630#
631# @read-latency: read latency (nanoseconds)
632#
633# @write-latency: write latency (nanoseconds)
634#
635# @access-bandwidth: access bandwidth (Bytes per second)
636#
637# @read-bandwidth: read bandwidth (Bytes per second)
638#
639# @write-bandwidth: write bandwidth (Bytes per second)
640#
641# Since: 5.0
642##
643{ 'enum': 'HmatLBDataType',
644  'data': [ 'access-latency', 'read-latency', 'write-latency',
645            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
646
647##
648# @NumaHmatLBOptions:
649#
650# Set the system locality latency and bandwidth information between
651# Initiator and Target proximity Domains.
652#
653# For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
654# Table 5-146 of ACPI 6.3 spec.
655#
656# @initiator: the Initiator Proximity Domain.
657#
658# @target: the Target Proximity Domain.
659#
660# @hierarchy: the Memory Hierarchy.  Indicates the performance of
661#     memory or side cache.
662#
663# @data-type: presents the type of data, access/read/write latency or
664#     hit latency.
665#
666# @latency: the value of latency from @initiator to @target proximity
667#     domain, the latency unit is "ns(nanosecond)".
668#
669# @bandwidth: the value of bandwidth between @initiator and @target
670#     proximity domain, the bandwidth unit is "Bytes per second".
671#
672# Since: 5.0
673##
674{ 'struct': 'NumaHmatLBOptions',
675    'data': {
676    'initiator': 'uint16',
677    'target': 'uint16',
678    'hierarchy': 'HmatLBMemoryHierarchy',
679    'data-type': 'HmatLBDataType',
680    '*latency': 'uint64',
681    '*bandwidth': 'size' }}
682
683##
684# @HmatCacheAssociativity:
685#
686# Cache associativity in the Memory Side Cache Information Structure
687# of HMAT
688#
689# For more information of @HmatCacheAssociativity, see chapter
690# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
691#
692# @none: None (no memory side cache in this proximity domain, or cache
693#     associativity unknown)
694#
695# @direct: Direct Mapped
696#
697# @complex: Complex Cache Indexing (implementation specific)
698#
699# Since: 5.0
700##
701{ 'enum': 'HmatCacheAssociativity',
702  'data': [ 'none', 'direct', 'complex' ] }
703
704##
705# @HmatCacheWritePolicy:
706#
707# Cache write policy in the Memory Side Cache Information Structure of
708# HMAT
709#
710# For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
711# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
712#
713# @none: None (no memory side cache in this proximity domain, or cache
714#     write policy unknown)
715#
716# @write-back: Write Back (WB)
717#
718# @write-through: Write Through (WT)
719#
720# Since: 5.0
721##
722{ 'enum': 'HmatCacheWritePolicy',
723  'data': [ 'none', 'write-back', 'write-through' ] }
724
725##
726# @NumaHmatCacheOptions:
727#
728# Set the memory side cache information for a given memory domain.
729#
730# For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
731# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
732#
733# @node-id: the memory proximity domain to which the memory belongs.
734#
735# @size: the size of memory side cache in bytes.
736#
737# @level: the cache level described in this structure.
738#
739# @associativity: the cache associativity,
740#     none/direct-mapped/complex(complex cache indexing).
741#
742# @policy: the write policy, none/write-back/write-through.
743#
744# @line: the cache Line size in bytes.
745#
746# Since: 5.0
747##
748{ 'struct': 'NumaHmatCacheOptions',
749  'data': {
750   'node-id': 'uint32',
751   'size': 'size',
752   'level': 'uint8',
753   'associativity': 'HmatCacheAssociativity',
754   'policy': 'HmatCacheWritePolicy',
755   'line': 'uint16' }}
756
757##
758# @memsave:
759#
760# Save a portion of guest memory to a file.
761#
762# @val: the virtual address of the guest to start from
763#
764# @size: the size of memory region to save
765#
766# @filename: the file to save the memory to as binary data
767#
768# @cpu-index: the index of the virtual CPU to use for translating the
769#     virtual address (defaults to CPU 0)
770#
771# Returns: Nothing on success
772#
773# Since: 0.14
774#
775# Notes: Errors were not reliably returned until 1.1
776#
777# Example:
778#
779# -> { "execute": "memsave",
780#      "arguments": { "val": 10,
781#                     "size": 100,
782#                     "filename": "/tmp/virtual-mem-dump" } }
783# <- { "return": {} }
784##
785{ 'command': 'memsave',
786  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
787
788##
789# @pmemsave:
790#
791# Save a portion of guest physical memory to a file.
792#
793# @val: the physical address of the guest to start from
794#
795# @size: the size of memory region to save
796#
797# @filename: the file to save the memory to as binary data
798#
799# Returns: Nothing on success
800#
801# Since: 0.14
802#
803# Notes: Errors were not reliably returned until 1.1
804#
805# Example:
806#
807# -> { "execute": "pmemsave",
808#      "arguments": { "val": 10,
809#                     "size": 100,
810#                     "filename": "/tmp/physical-mem-dump" } }
811# <- { "return": {} }
812##
813{ 'command': 'pmemsave',
814  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
815
816##
817# @Memdev:
818#
819# Information about memory backend
820#
821# @id: backend's ID if backend has 'id' property (since 2.9)
822#
823# @size: memory backend size
824#
825# @merge: whether memory merge support is enabled
826#
827# @dump: whether memory backend's memory is included in a core dump
828#
829# @prealloc: whether memory was preallocated
830#
831# @share: whether memory is private to QEMU or shared (since 6.1)
832#
833# @reserve: whether swap space (or huge pages) was reserved if
834#     applicable.  This corresponds to the user configuration and not
835#     the actual behavior implemented in the OS to perform the
836#     reservation.  For example, Linux will never reserve swap space
837#     for shared file mappings.  (since 6.1)
838#
839# @host-nodes: host nodes for its memory policy
840#
841# @policy: memory policy of memory backend
842#
843# Since: 2.1
844##
845{ 'struct': 'Memdev',
846  'data': {
847    '*id':        'str',
848    'size':       'size',
849    'merge':      'bool',
850    'dump':       'bool',
851    'prealloc':   'bool',
852    'share':      'bool',
853    '*reserve':    'bool',
854    'host-nodes': ['uint16'],
855    'policy':     'HostMemPolicy' }}
856
857##
858# @query-memdev:
859#
860# Returns information for all memory backends.
861#
862# Returns: a list of @Memdev.
863#
864# Since: 2.1
865#
866# Example:
867#
868# -> { "execute": "query-memdev" }
869# <- { "return": [
870#        {
871#          "id": "mem1",
872#          "size": 536870912,
873#          "merge": false,
874#          "dump": true,
875#          "prealloc": false,
876#          "share": false,
877#          "host-nodes": [0, 1],
878#          "policy": "bind"
879#        },
880#        {
881#          "size": 536870912,
882#          "merge": false,
883#          "dump": true,
884#          "prealloc": true,
885#          "share": false,
886#          "host-nodes": [2, 3],
887#          "policy": "preferred"
888#        }
889#      ]
890#    }
891##
892{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
893
894##
895# @CpuInstanceProperties:
896#
897# List of properties to be used for hotplugging a CPU instance, it
898# should be passed by management with device_add command when a CPU is
899# being hotplugged.
900#
901# Which members are optional and which mandatory depends on the
902# architecture and board.
903#
904# The ids other than the node-id specify the position of the CPU
905# within the CPU topology (as defined by the machine property "smp",
906# thus see also type @SMPConfiguration)
907#
908# @node-id: NUMA node ID the CPU belongs to
909#
910# @socket-id: socket number within CPU topology the CPU belongs to
911#
912# @die-id: die number within the parent container the CPU belongs to
913#    (since 4.1)
914#
915# @cluster-id: cluster number within the parent container the CPU
916#     belongs to (since 7.1)
917#
918# @core-id: core number within the parent container the CPU
919#     belongs to
920#
921# @thread-id: thread number within the core the CPU  belongs to
922#
923# Note: management should be prepared to pass through additional
924#     properties with device_add.
925#
926# Since: 2.7
927##
928{ 'struct': 'CpuInstanceProperties',
929  # Keep these in sync with the properties device_add accepts
930  'data': { '*node-id': 'int',
931            '*socket-id': 'int',
932            '*die-id': 'int',
933            '*cluster-id': 'int',
934            '*core-id': 'int',
935            '*thread-id': 'int'
936  }
937}
938
939##
940# @HotpluggableCPU:
941#
942# @type: CPU object type for usage with device_add command
943#
944# @props: list of properties to be used for hotplugging CPU
945#
946# @vcpus-count: number of logical VCPU threads @HotpluggableCPU
947#     provides
948#
949# @qom-path: link to existing CPU object if CPU is present or omitted
950#     if CPU is not present.
951#
952# Since: 2.7
953##
954{ 'struct': 'HotpluggableCPU',
955  'data': { 'type': 'str',
956            'vcpus-count': 'int',
957            'props': 'CpuInstanceProperties',
958            '*qom-path': 'str'
959          }
960}
961
962##
963# @query-hotpluggable-cpus:
964#
965# TODO: Better documentation; currently there is none.
966#
967# Returns: a list of HotpluggableCPU objects.
968#
969# Since: 2.7
970#
971# Examples:
972#
973# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu
974# POWER8:
975#
976# -> { "execute": "query-hotpluggable-cpus" }
977# <- {"return": [
978#      { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
979#        "vcpus-count": 1 },
980#      { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
981#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
982#    ]}'
983#
984# For pc machine type started with -smp 1,maxcpus=2:
985#
986# -> { "execute": "query-hotpluggable-cpus" }
987# <- {"return": [
988#      {
989#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
990#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
991#      },
992#      {
993#         "qom-path": "/machine/unattached/device[0]",
994#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
995#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
996#      }
997#    ]}
998#
999# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu
1000# qemu (Since: 2.11):
1001#
1002# -> { "execute": "query-hotpluggable-cpus" }
1003# <- {"return": [
1004#      {
1005#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
1006#         "props": { "core-id": 1 }
1007#      },
1008#      {
1009#         "qom-path": "/machine/unattached/device[0]",
1010#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
1011#         "props": { "core-id": 0 }
1012#      }
1013#    ]}
1014##
1015{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1016             'allow-preconfig': true }
1017
1018##
1019# @set-numa-node:
1020#
1021# Runtime equivalent of '-numa' CLI option, available at preconfigure
1022# stage to configure numa mapping before initializing machine.
1023#
1024# Since: 3.0
1025##
1026{ 'command': 'set-numa-node', 'boxed': true,
1027  'data': 'NumaOptions',
1028  'allow-preconfig': true
1029}
1030
1031##
1032# @balloon:
1033#
1034# Request the balloon driver to change its balloon size.
1035#
1036# @value: the target logical size of the VM in bytes.  We can deduce
1037#     the size of the balloon using this formula:
1038#
1039#        logical_vm_size = vm_ram_size - balloon_size
1040#
1041#     From it we have: balloon_size = vm_ram_size - @value
1042#
1043# Returns:
1044# - Nothing on success
1045# - If the balloon driver is enabled but not functional because the
1046#   KVM kernel module cannot support it, KVMMissingCap
1047# - If no balloon device is present, DeviceNotActive
1048#
1049# Notes: This command just issues a request to the guest.  When it
1050#     returns, the balloon size may not have changed.  A guest can
1051#     change the balloon size independent of this command.
1052#
1053# Since: 0.14
1054#
1055# Example:
1056#
1057# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1058# <- { "return": {} }
1059#
1060# With a 2.5GiB guest this command inflated the ballon to 3GiB.
1061##
1062{ 'command': 'balloon', 'data': {'value': 'int'} }
1063
1064##
1065# @BalloonInfo:
1066#
1067# Information about the guest balloon device.
1068#
1069# @actual: the logical size of the VM in bytes Formula used:
1070#     logical_vm_size = vm_ram_size - balloon_size
1071#
1072# Since: 0.14
1073##
1074{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1075
1076##
1077# @query-balloon:
1078#
1079# Return information about the balloon device.
1080#
1081# Returns:
1082# - @BalloonInfo on success
1083# - If the balloon driver is enabled but not functional because the
1084#   KVM kernel module cannot support it, KVMMissingCap
1085# - If no balloon device is present, DeviceNotActive
1086#
1087# Since: 0.14
1088#
1089# Example:
1090#
1091# -> { "execute": "query-balloon" }
1092# <- { "return": {
1093#          "actual": 1073741824
1094#       }
1095#    }
1096##
1097{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1098
1099##
1100# @BALLOON_CHANGE:
1101#
1102# Emitted when the guest changes the actual BALLOON level.  This value
1103# is equivalent to the @actual field return by the 'query-balloon'
1104# command
1105#
1106# @actual: the logical size of the VM in bytes Formula used:
1107#     logical_vm_size = vm_ram_size - balloon_size
1108#
1109# Note: this event is rate-limited.
1110#
1111# Since: 1.2
1112#
1113# Example:
1114#
1115# <- { "event": "BALLOON_CHANGE",
1116#      "data": { "actual": 944766976 },
1117#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1118##
1119{ 'event': 'BALLOON_CHANGE',
1120  'data': { 'actual': 'int' } }
1121
1122##
1123# @MemoryInfo:
1124#
1125# Actual memory information in bytes.
1126#
1127# @base-memory: size of "base" memory specified with command line
1128#     option -m.
1129#
1130# @plugged-memory: size of memory that can be hot-unplugged.  This
1131#     field is omitted if target doesn't support memory hotplug (i.e.
1132#     CONFIG_MEM_DEVICE not defined at build time).
1133#
1134# Since: 2.11
1135##
1136{ 'struct': 'MemoryInfo',
1137  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1138
1139##
1140# @query-memory-size-summary:
1141#
1142# Return the amount of initially allocated and present hotpluggable
1143# (if enabled) memory in bytes.
1144#
1145# Example:
1146#
1147# -> { "execute": "query-memory-size-summary" }
1148# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1149#
1150# Since: 2.11
1151##
1152{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1153
1154##
1155# @PCDIMMDeviceInfo:
1156#
1157# PCDIMMDevice state information
1158#
1159# @id: device's ID
1160#
1161# @addr: physical address, where device is mapped
1162#
1163# @size: size of memory that the device provides
1164#
1165# @slot: slot number at which device is plugged in
1166#
1167# @node: NUMA node number where device is plugged in
1168#
1169# @memdev: memory backend linked with device
1170#
1171# @hotplugged: true if device was hotplugged
1172#
1173# @hotpluggable: true if device if could be added/removed while
1174#     machine is running
1175#
1176# Since: 2.1
1177##
1178{ 'struct': 'PCDIMMDeviceInfo',
1179  'data': { '*id': 'str',
1180            'addr': 'int',
1181            'size': 'int',
1182            'slot': 'int',
1183            'node': 'int',
1184            'memdev': 'str',
1185            'hotplugged': 'bool',
1186            'hotpluggable': 'bool'
1187          }
1188}
1189
1190##
1191# @VirtioPMEMDeviceInfo:
1192#
1193# VirtioPMEM state information
1194#
1195# @id: device's ID
1196#
1197# @memaddr: physical address in memory, where device is mapped
1198#
1199# @size: size of memory that the device provides
1200#
1201# @memdev: memory backend linked with device
1202#
1203# Since: 4.1
1204##
1205{ 'struct': 'VirtioPMEMDeviceInfo',
1206  'data': { '*id': 'str',
1207            'memaddr': 'size',
1208            'size': 'size',
1209            'memdev': 'str'
1210          }
1211}
1212
1213##
1214# @VirtioMEMDeviceInfo:
1215#
1216# VirtioMEMDevice state information
1217#
1218# @id: device's ID
1219#
1220# @memaddr: physical address in memory, where device is mapped
1221#
1222# @requested-size: the user requested size of the device
1223#
1224# @size: the (current) size of memory that the device provides
1225#
1226# @max-size: the maximum size of memory that the device can provide
1227#
1228# @block-size: the block size of memory that the device provides
1229#
1230# @node: NUMA node number where device is assigned to
1231#
1232# @memdev: memory backend linked with the region
1233#
1234# Since: 5.1
1235##
1236{ 'struct': 'VirtioMEMDeviceInfo',
1237  'data': { '*id': 'str',
1238            'memaddr': 'size',
1239            'requested-size': 'size',
1240            'size': 'size',
1241            'max-size': 'size',
1242            'block-size': 'size',
1243            'node': 'int',
1244            'memdev': 'str'
1245          }
1246}
1247
1248##
1249# @SgxEPCDeviceInfo:
1250#
1251# Sgx EPC state information
1252#
1253# @id: device's ID
1254#
1255# @memaddr: physical address in memory, where device is mapped
1256#
1257# @size: size of memory that the device provides
1258#
1259# @memdev: memory backend linked with device
1260#
1261# @node: the numa node (Since: 7.0)
1262#
1263# Since: 6.2
1264##
1265{ 'struct': 'SgxEPCDeviceInfo',
1266  'data': { '*id': 'str',
1267            'memaddr': 'size',
1268            'size': 'size',
1269            'node': 'int',
1270            'memdev': 'str'
1271          }
1272}
1273
1274##
1275# @MemoryDeviceInfoKind:
1276#
1277# @nvdimm: since 2.12
1278#
1279# @virtio-pmem: since 4.1
1280#
1281# @virtio-mem: since 5.1
1282#
1283# @sgx-epc: since 6.2.
1284#
1285# Since: 2.1
1286##
1287{ 'enum': 'MemoryDeviceInfoKind',
1288  'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1289
1290##
1291# @PCDIMMDeviceInfoWrapper:
1292#
1293# Since: 2.1
1294##
1295{ 'struct': 'PCDIMMDeviceInfoWrapper',
1296  'data': { 'data': 'PCDIMMDeviceInfo' } }
1297
1298##
1299# @VirtioPMEMDeviceInfoWrapper:
1300#
1301# Since: 2.1
1302##
1303{ 'struct': 'VirtioPMEMDeviceInfoWrapper',
1304  'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1305
1306##
1307# @VirtioMEMDeviceInfoWrapper:
1308#
1309# Since: 2.1
1310##
1311{ 'struct': 'VirtioMEMDeviceInfoWrapper',
1312  'data': { 'data': 'VirtioMEMDeviceInfo' } }
1313
1314##
1315# @SgxEPCDeviceInfoWrapper:
1316#
1317# Since: 6.2
1318##
1319{ 'struct': 'SgxEPCDeviceInfoWrapper',
1320  'data': { 'data': 'SgxEPCDeviceInfo' } }
1321
1322##
1323# @MemoryDeviceInfo:
1324#
1325# Union containing information about a memory device
1326#
1327# Since: 2.1
1328##
1329{ 'union': 'MemoryDeviceInfo',
1330  'base': { 'type': 'MemoryDeviceInfoKind' },
1331  'discriminator': 'type',
1332  'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1333            'nvdimm': 'PCDIMMDeviceInfoWrapper',
1334            'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1335            'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1336            'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1337          }
1338}
1339
1340##
1341# @SgxEPC:
1342#
1343# Sgx EPC cmdline information
1344#
1345# @memdev: memory backend linked with device
1346#
1347# @node: the numa node (Since: 7.0)
1348#
1349# Since: 6.2
1350##
1351{ 'struct': 'SgxEPC',
1352  'data': { 'memdev': 'str',
1353            'node': 'int'
1354          }
1355}
1356
1357##
1358# @SgxEPCProperties:
1359#
1360# SGX properties of machine types.
1361#
1362# @sgx-epc: list of ids of memory-backend-epc objects.
1363#
1364# Since: 6.2
1365##
1366{ 'struct': 'SgxEPCProperties',
1367  'data': { 'sgx-epc': ['SgxEPC'] }
1368}
1369
1370##
1371# @query-memory-devices:
1372#
1373# Lists available memory devices and their state
1374#
1375# Since: 2.1
1376#
1377# Example:
1378#
1379# -> { "execute": "query-memory-devices" }
1380# <- { "return": [ { "data":
1381#                       { "addr": 5368709120,
1382#                         "hotpluggable": true,
1383#                         "hotplugged": true,
1384#                         "id": "d1",
1385#                         "memdev": "/objects/memX",
1386#                         "node": 0,
1387#                         "size": 1073741824,
1388#                         "slot": 0},
1389#                    "type": "dimm"
1390#                  } ] }
1391##
1392{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1393
1394##
1395# @MEMORY_DEVICE_SIZE_CHANGE:
1396#
1397# Emitted when the size of a memory device changes.  Only emitted for
1398# memory devices that can actually change the size (e.g., virtio-mem
1399# due to guest action).
1400#
1401# @id: device's ID
1402#
1403# @size: the new size of memory that the device provides
1404#
1405# @qom-path: path to the device object in the QOM tree (since 6.2)
1406#
1407# Note: this event is rate-limited.
1408#
1409# Since: 5.1
1410#
1411# Example:
1412#
1413# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1414#      "data": { "id": "vm0", "size": 1073741824,
1415#                "qom-path": "/machine/unattached/device[2]" },
1416#      "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1417##
1418{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1419  'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1420
1421##
1422# @MEM_UNPLUG_ERROR:
1423#
1424# Emitted when memory hot unplug error occurs.
1425#
1426# @device: device name
1427#
1428# @msg: Informative message
1429#
1430# Features:
1431#
1432# @deprecated: This event is deprecated.  Use
1433#     @DEVICE_UNPLUG_GUEST_ERROR instead.
1434#
1435# Since: 2.4
1436#
1437# Example:
1438#
1439# <- { "event": "MEM_UNPLUG_ERROR",
1440#      "data": { "device": "dimm1",
1441#                "msg": "acpi: device unplug for unsupported device"
1442#      },
1443#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1444##
1445{ 'event': 'MEM_UNPLUG_ERROR',
1446  'data': { 'device': 'str', 'msg': 'str' },
1447  'features': ['deprecated'] }
1448
1449##
1450# @BootConfiguration:
1451#
1452# Schema for virtual machine boot configuration.
1453#
1454# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1455#
1456# @once: Boot order to apply on first boot
1457#
1458# @menu: Whether to show a boot menu
1459#
1460# @splash: The name of the file to be passed to the firmware as logo
1461#     picture, if @menu is true.
1462#
1463# @splash-time: How long to show the logo picture, in milliseconds
1464#
1465# @reboot-timeout: Timeout before guest reboots after boot fails
1466#
1467# @strict: Whether to attempt booting from devices not included in the
1468#     boot order
1469#
1470# Since: 7.1
1471##
1472{ 'struct': 'BootConfiguration', 'data': {
1473     '*order': 'str',
1474     '*once': 'str',
1475     '*menu': 'bool',
1476     '*splash': 'str',
1477     '*splash-time': 'int',
1478     '*reboot-timeout': 'int',
1479     '*strict': 'bool' } }
1480
1481##
1482# @SMPConfiguration:
1483#
1484# Schema for CPU topology configuration.  A missing value lets QEMU
1485# figure out a suitable value based on the ones that are provided.
1486#
1487# The members other than @cpus and @maxcpus define a topology of
1488# containers.
1489#
1490# The ordering from highest/coarsest to lowest/finest is:
1491# @sockets, @dies, @clusters, @cores, @threads.
1492#
1493# Different architectures support different subsets of topology
1494# containers.
1495#
1496# For example, s390x does not have clusters and dies, and the socket
1497# is the parent container of cores.
1498#
1499# @cpus: number of virtual CPUs in the virtual machine
1500#
1501# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1502#     machine
1503#
1504# @sockets: number of sockets in the CPU topology
1505#
1506# @dies: number of dies per parent container
1507#
1508# @clusters: number of clusters per parent container (since 7.0)
1509#
1510# @cores: number of cores per parent container
1511#
1512# @threads: number of threads per core
1513#
1514# Since: 6.1
1515##
1516{ 'struct': 'SMPConfiguration', 'data': {
1517     '*cpus': 'int',
1518     '*sockets': 'int',
1519     '*dies': 'int',
1520     '*clusters': 'int',
1521     '*cores': 'int',
1522     '*threads': 'int',
1523     '*maxcpus': 'int' } }
1524
1525##
1526# @x-query-irq:
1527#
1528# Query interrupt statistics
1529#
1530# Features:
1531#
1532# @unstable: This command is meant for debugging.
1533#
1534# Returns: interrupt statistics
1535#
1536# Since: 6.2
1537##
1538{ 'command': 'x-query-irq',
1539  'returns': 'HumanReadableText',
1540  'features': [ 'unstable' ] }
1541
1542##
1543# @x-query-jit:
1544#
1545# Query TCG compiler statistics
1546#
1547# Features:
1548#
1549# @unstable: This command is meant for debugging.
1550#
1551# Returns: TCG compiler statistics
1552#
1553# Since: 6.2
1554##
1555{ 'command': 'x-query-jit',
1556  'returns': 'HumanReadableText',
1557  'if': 'CONFIG_TCG',
1558  'features': [ 'unstable' ] }
1559
1560##
1561# @x-query-numa:
1562#
1563# Query NUMA topology information
1564#
1565# Features:
1566#
1567# @unstable: This command is meant for debugging.
1568#
1569# Returns: topology information
1570#
1571# Since: 6.2
1572##
1573{ 'command': 'x-query-numa',
1574  'returns': 'HumanReadableText',
1575  'features': [ 'unstable' ] }
1576
1577##
1578# @x-query-opcount:
1579#
1580# Query TCG opcode counters
1581#
1582# Features:
1583#
1584# @unstable: This command is meant for debugging.
1585#
1586# Returns: TCG opcode counters
1587#
1588# Since: 6.2
1589##
1590{ 'command': 'x-query-opcount',
1591  'returns': 'HumanReadableText',
1592  'if': 'CONFIG_TCG',
1593  'features': [ 'unstable' ] }
1594
1595##
1596# @x-query-ramblock:
1597#
1598# Query system ramblock information
1599#
1600# Features:
1601#
1602# @unstable: This command is meant for debugging.
1603#
1604# Returns: system ramblock information
1605#
1606# Since: 6.2
1607##
1608{ 'command': 'x-query-ramblock',
1609  'returns': 'HumanReadableText',
1610  'features': [ 'unstable' ] }
1611
1612##
1613# @x-query-rdma:
1614#
1615# Query RDMA state
1616#
1617# Features:
1618#
1619# @unstable: This command is meant for debugging.
1620#
1621# Returns: RDMA state
1622#
1623# Since: 6.2
1624##
1625{ 'command': 'x-query-rdma',
1626  'returns': 'HumanReadableText',
1627  'features': [ 'unstable' ] }
1628
1629##
1630# @x-query-roms:
1631#
1632# Query information on the registered ROMS
1633#
1634# Features:
1635#
1636# @unstable: This command is meant for debugging.
1637#
1638# Returns: registered ROMs
1639#
1640# Since: 6.2
1641##
1642{ 'command': 'x-query-roms',
1643  'returns': 'HumanReadableText',
1644  'features': [ 'unstable' ] }
1645
1646##
1647# @x-query-usb:
1648#
1649# Query information on the USB devices
1650#
1651# Features:
1652#
1653# @unstable: This command is meant for debugging.
1654#
1655# Returns: USB device information
1656#
1657# Since: 6.2
1658##
1659{ 'command': 'x-query-usb',
1660  'returns': 'HumanReadableText',
1661  'features': [ 'unstable' ] }
1662
1663##
1664# @SmbiosEntryPointType:
1665#
1666# @32: SMBIOS version 2.1 (32-bit) Entry Point
1667#
1668# @64: SMBIOS version 3.0 (64-bit) Entry Point
1669#
1670# Since: 7.0
1671##
1672{ 'enum': 'SmbiosEntryPointType',
1673  'data': [ '32', '64' ] }
1674
1675##
1676# @MemorySizeConfiguration:
1677#
1678# Schema for memory size configuration.
1679#
1680# @size: memory size in bytes
1681#
1682# @max-size: maximum hotpluggable memory size in bytes
1683#
1684# @slots: number of available memory slots for hotplug
1685#
1686# Since: 7.1
1687##
1688{ 'struct': 'MemorySizeConfiguration', 'data': {
1689     '*size': 'size',
1690     '*max-size': 'size',
1691     '*slots': 'uint64' } }
1692
1693##
1694# @dumpdtb:
1695#
1696# Save the FDT in dtb format.
1697#
1698# @filename: name of the dtb file to be created
1699#
1700# Since: 7.2
1701#
1702# Example:
1703#
1704# -> { "execute": "dumpdtb" }
1705#      "arguments": { "filename": "fdt.dtb" } }
1706# <- { "return": {} }
1707##
1708{ 'command': 'dumpdtb',
1709  'data': { 'filename': 'str' },
1710  'if': 'CONFIG_FDT' }
1711