xref: /openbmc/qemu/qapi/machine.json (revision 39920a04)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4# This work is licensed under the terms of the GNU GPL, version 2 or later.
5# See the COPYING file in the top-level directory.
6
7##
8# = Machines
9##
10
11{ 'include': 'common.json' }
12
13##
14# @SysEmuTarget:
15#
16# The comprehensive enumeration of QEMU system emulation ("softmmu")
17# targets. Run "./configure --help" in the project root directory, and
18# look for the \*-softmmu targets near the "--target-list" option. The
19# individual target constants are not documented here, for the time
20# being.
21#
22# @rx: since 5.0
23# @avr: since 5.1
24#
25# Notes: The resulting QMP strings can be appended to the "qemu-system-"
26#        prefix to produce the corresponding QEMU executable name. This
27#        is true even for "qemu-system-x86_64".
28#
29# Since: 3.0
30##
31{ 'enum' : 'SysEmuTarget',
32  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
33             'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
34             'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
35             'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
36             'sh4eb', 'sparc', 'sparc64', 'tricore',
37             'x86_64', 'xtensa', 'xtensaeb' ] }
38
39##
40# @CpuS390State:
41#
42# An enumeration of cpu states that can be assumed by a virtual
43# S390 CPU
44#
45# Since: 2.12
46##
47{ 'enum': 'CpuS390State',
48  'prefix': 'S390_CPU_STATE',
49  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
50
51##
52# @CpuInfoS390:
53#
54# Additional information about a virtual S390 CPU
55#
56# @cpu-state: the virtual CPU's state
57#
58# Since: 2.12
59##
60{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
61
62##
63# @CpuInfoFast:
64#
65# Information about a virtual CPU
66#
67# @cpu-index: index of the virtual CPU
68#
69# @qom-path: path to the CPU object in the QOM tree
70#
71# @thread-id: ID of the underlying host thread
72#
73# @props: properties describing to which node/socket/core/thread
74#         virtual CPU belongs to, provided if supported by board
75#
76# @target: the QEMU system emulation target, which determines which
77#          additional fields will be listed (since 3.0)
78#
79# Since: 2.12
80##
81{ 'union'         : 'CpuInfoFast',
82  'base'          : { 'cpu-index'    : 'int',
83                      'qom-path'     : 'str',
84                      'thread-id'    : 'int',
85                      '*props'       : 'CpuInstanceProperties',
86                      'target'       : 'SysEmuTarget' },
87  'discriminator' : 'target',
88  'data'          : { 's390x'        : 'CpuInfoS390' } }
89
90##
91# @query-cpus-fast:
92#
93# Returns information about all virtual CPUs.
94#
95# Returns: list of @CpuInfoFast
96#
97# Since: 2.12
98#
99# Example:
100#
101# -> { "execute": "query-cpus-fast" }
102# <- { "return": [
103#         {
104#             "thread-id": 25627,
105#             "props": {
106#                 "core-id": 0,
107#                 "thread-id": 0,
108#                 "socket-id": 0
109#             },
110#             "qom-path": "/machine/unattached/device[0]",
111#             "target":"x86_64",
112#             "cpu-index": 0
113#         },
114#         {
115#             "thread-id": 25628,
116#             "props": {
117#                 "core-id": 0,
118#                 "thread-id": 0,
119#                 "socket-id": 1
120#             },
121#             "qom-path": "/machine/unattached/device[2]",
122#             "target":"x86_64",
123#             "cpu-index": 1
124#         }
125#     ]
126# }
127##
128{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
129
130##
131# @MachineInfo:
132#
133# Information describing a machine.
134#
135# @name: the name of the machine
136#
137# @alias: an alias for the machine name
138#
139# @is-default: whether the machine is default
140#
141# @cpu-max: maximum number of CPUs supported by the machine type
142#           (since 1.5)
143#
144# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
145#
146# @numa-mem-supported: true if '-numa node,mem' option is supported by
147#                      the machine type and false otherwise (since 4.1)
148#
149# @deprecated: if true, the machine type is deprecated and may be removed
150#              in future versions of QEMU according to the QEMU deprecation
151#              policy (since 4.1)
152#
153# @default-cpu-type: default CPU model typename if none is requested via
154#                    the -cpu argument. (since 4.2)
155#
156# @default-ram-id: the default ID of initial RAM memory backend (since 5.2)
157#
158# @acpi: machine type supports ACPI (since 8.0)
159#
160# Since: 1.2
161##
162{ 'struct': 'MachineInfo',
163  'data': { 'name': 'str', '*alias': 'str',
164            '*is-default': 'bool', 'cpu-max': 'int',
165            'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
166            'deprecated': 'bool', '*default-cpu-type': 'str',
167            '*default-ram-id': 'str', 'acpi': 'bool' } }
168
169##
170# @query-machines:
171#
172# Return a list of supported machines
173#
174# Returns: a list of MachineInfo
175#
176# Since: 1.2
177##
178{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
179
180##
181# @CurrentMachineParams:
182#
183# Information describing the running machine parameters.
184#
185# @wakeup-suspend-support: true if the machine supports wake up from
186#                          suspend
187#
188# Since: 4.0
189##
190{ 'struct': 'CurrentMachineParams',
191  'data': { 'wakeup-suspend-support': 'bool'} }
192
193##
194# @query-current-machine:
195#
196# Return information on the current virtual machine.
197#
198# Returns: CurrentMachineParams
199#
200# Since: 4.0
201##
202{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
203
204##
205# @TargetInfo:
206#
207# Information describing the QEMU target.
208#
209# @arch: the target architecture
210#
211# Since: 1.2
212##
213{ 'struct': 'TargetInfo',
214  'data': { 'arch': 'SysEmuTarget' } }
215
216##
217# @query-target:
218#
219# Return information about the target for this QEMU
220#
221# Returns: TargetInfo
222#
223# Since: 1.2
224##
225{ 'command': 'query-target', 'returns': 'TargetInfo' }
226
227##
228# @UuidInfo:
229#
230# Guest UUID information (Universally Unique Identifier).
231#
232# @UUID: the UUID of the guest
233#
234# Since: 0.14
235#
236# Notes: If no UUID was specified for the guest, a null UUID is returned.
237##
238{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
239
240##
241# @query-uuid:
242#
243# Query the guest UUID information.
244#
245# Returns: The @UuidInfo for the guest
246#
247# Since: 0.14
248#
249# Example:
250#
251# -> { "execute": "query-uuid" }
252# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
253#
254##
255{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
256
257##
258# @GuidInfo:
259#
260# GUID information.
261#
262# @guid: the globally unique identifier
263#
264# Since: 2.9
265##
266{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
267
268##
269# @query-vm-generation-id:
270#
271# Show Virtual Machine Generation ID
272#
273# Since: 2.9
274##
275{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
276
277##
278# @system_reset:
279#
280# Performs a hard reset of a guest.
281#
282# Since: 0.14
283#
284# Example:
285#
286# -> { "execute": "system_reset" }
287# <- { "return": {} }
288#
289##
290{ 'command': 'system_reset' }
291
292##
293# @system_powerdown:
294#
295# Requests that a guest perform a powerdown operation.
296#
297# Since: 0.14
298#
299# Notes: A guest may or may not respond to this command.  This command
300#        returning does not indicate that a guest has accepted the request or
301#        that it has shut down.  Many guests will respond to this command by
302#        prompting the user in some way.
303#
304# Example:
305#
306# -> { "execute": "system_powerdown" }
307# <- { "return": {} }
308#
309##
310{ 'command': 'system_powerdown' }
311
312##
313# @system_wakeup:
314#
315# Wake up guest from suspend. If the guest has wake-up from suspend
316# support enabled (wakeup-suspend-support flag from
317# query-current-machine), wake-up guest from suspend if the guest is
318# in SUSPENDED state. Return an error otherwise.
319#
320# Since: 1.1
321#
322# Returns: nothing.
323#
324# Note: prior to 4.0, this command does nothing in case the guest
325#       isn't suspended.
326#
327# Example:
328#
329# -> { "execute": "system_wakeup" }
330# <- { "return": {} }
331#
332##
333{ 'command': 'system_wakeup' }
334
335##
336# @LostTickPolicy:
337#
338# Policy for handling lost ticks in timer devices.  Ticks end up getting
339# lost when, for example, the guest is paused.
340#
341# @discard: throw away the missed ticks and continue with future injection
342#           normally.  The guest OS will see the timer jump ahead by a
343#           potentially quite significant amount all at once, as if the
344#           intervening chunk of time had simply not existed; needless to
345#           say, such a sudden jump can easily confuse a guest OS which is
346#           not specifically prepared to deal with it.  Assuming the guest
347#           OS can deal correctly with the time jump, the time in the guest
348#           and in the host should now match.
349#
350# @delay: continue to deliver ticks at the normal rate.  The guest OS will
351#         not notice anything is amiss, as from its point of view time will
352#         have continued to flow normally.  The time in the guest should now
353#         be behind the time in the host by exactly the amount of time during
354#         which ticks have been missed.
355#
356# @slew: deliver ticks at a higher rate to catch up with the missed ticks.
357#        The guest OS will not notice anything is amiss, as from its point
358#        of view time will have continued to flow normally.  Once the timer
359#        has managed to catch up with all the missing ticks, the time in
360#        the guest and in the host should match.
361#
362# Since: 2.0
363##
364{ 'enum': 'LostTickPolicy',
365  'data': ['discard', 'delay', 'slew' ] }
366
367##
368# @inject-nmi:
369#
370# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
371# The command fails when the guest doesn't support injecting.
372#
373# Returns: If successful, nothing
374#
375# Since: 0.14
376#
377# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
378#
379# Example:
380#
381# -> { "execute": "inject-nmi" }
382# <- { "return": {} }
383#
384##
385{ 'command': 'inject-nmi' }
386
387##
388# @KvmInfo:
389#
390# Information about support for KVM acceleration
391#
392# @enabled: true if KVM acceleration is active
393#
394# @present: true if KVM acceleration is built into this executable
395#
396# Since: 0.14
397##
398{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
399
400##
401# @query-kvm:
402#
403# Returns information about KVM acceleration
404#
405# Returns: @KvmInfo
406#
407# Since: 0.14
408#
409# Example:
410#
411# -> { "execute": "query-kvm" }
412# <- { "return": { "enabled": true, "present": true } }
413#
414##
415{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
416
417##
418# @NumaOptionsType:
419#
420# @node: NUMA nodes configuration
421#
422# @dist: NUMA distance configuration (since 2.10)
423#
424# @cpu: property based CPU(s) to node mapping (Since: 2.10)
425#
426# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
427#
428# @hmat-cache: memory side cache information (Since: 5.0)
429#
430# Since: 2.1
431##
432{ 'enum': 'NumaOptionsType',
433  'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
434
435##
436# @NumaOptions:
437#
438# A discriminated record of NUMA options. (for OptsVisitor)
439#
440# Since: 2.1
441##
442{ 'union': 'NumaOptions',
443  'base': { 'type': 'NumaOptionsType' },
444  'discriminator': 'type',
445  'data': {
446    'node': 'NumaNodeOptions',
447    'dist': 'NumaDistOptions',
448    'cpu': 'NumaCpuOptions',
449    'hmat-lb': 'NumaHmatLBOptions',
450    'hmat-cache': 'NumaHmatCacheOptions' }}
451
452##
453# @NumaNodeOptions:
454#
455# Create a guest NUMA node. (for OptsVisitor)
456#
457# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
458#
459# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
460#        if omitted)
461#
462# @mem: memory size of this node; mutually exclusive with @memdev.
463#       Equally divide total memory among nodes if both @mem and @memdev are
464#       omitted.
465#
466# @memdev: memory backend object.  If specified for one node,
467#          it must be specified for all nodes.
468#
469# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
470#             points to the nodeid which has the memory controller
471#             responsible for this NUMA node. This field provides
472#             additional information as to the initiator node that
473#             is closest (as in directly attached) to this node, and
474#             therefore has the best performance (since 5.0)
475#
476# Since: 2.1
477##
478{ 'struct': 'NumaNodeOptions',
479  'data': {
480   '*nodeid': 'uint16',
481   '*cpus':   ['uint16'],
482   '*mem':    'size',
483   '*memdev': 'str',
484   '*initiator': 'uint16' }}
485
486##
487# @NumaDistOptions:
488#
489# Set the distance between 2 NUMA nodes.
490#
491# @src: source NUMA node.
492#
493# @dst: destination NUMA node.
494#
495# @val: NUMA distance from source node to destination node.
496#       When a node is unreachable from another node, set the distance
497#       between them to 255.
498#
499# Since: 2.10
500##
501{ 'struct': 'NumaDistOptions',
502  'data': {
503   'src': 'uint16',
504   'dst': 'uint16',
505   'val': 'uint8' }}
506
507##
508# @CXLFixedMemoryWindowOptions:
509#
510# Create a CXL Fixed Memory Window
511#
512# @size: Size of the Fixed Memory Window in bytes. Must be a multiple
513#        of 256MiB.
514# @interleave-granularity: Number of contiguous bytes for which
515#                          accesses will go to a given interleave target.
516#                          Accepted values [256, 512, 1k, 2k, 4k, 8k, 16k]
517# @targets: Target root bridge IDs from -device ...,id=<ID> for each root
518#           bridge.
519#
520# Since: 7.1
521##
522{ 'struct': 'CXLFixedMemoryWindowOptions',
523  'data': {
524      'size': 'size',
525      '*interleave-granularity': 'size',
526      'targets': ['str'] }}
527
528##
529# @CXLFMWProperties:
530#
531# List of CXL Fixed Memory Windows.
532#
533# @cxl-fmw: List of CXLFixedMemoryWindowOptions
534#
535# Since: 7.1
536##
537{ 'struct' : 'CXLFMWProperties',
538  'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
539}
540
541##
542# @X86CPURegister32:
543#
544# A X86 32-bit register
545#
546# Since: 1.5
547##
548{ 'enum': 'X86CPURegister32',
549  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
550
551##
552# @X86CPUFeatureWordInfo:
553#
554# Information about a X86 CPU feature word
555#
556# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
557#
558# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
559#                   feature word
560#
561# @cpuid-register: Output register containing the feature bits
562#
563# @features: value of output register, containing the feature bits
564#
565# Since: 1.5
566##
567{ 'struct': 'X86CPUFeatureWordInfo',
568  'data': { 'cpuid-input-eax': 'int',
569            '*cpuid-input-ecx': 'int',
570            'cpuid-register': 'X86CPURegister32',
571            'features': 'int' } }
572
573##
574# @DummyForceArrays:
575#
576# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
577#
578# Since: 2.5
579##
580{ 'struct': 'DummyForceArrays',
581  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
582
583##
584# @NumaCpuOptions:
585#
586# Option "-numa cpu" overrides default cpu to node mapping.
587# It accepts the same set of cpu properties as returned by
588# query-hotpluggable-cpus[].props, where node-id could be used to
589# override default node mapping.
590#
591# Since: 2.10
592##
593{ 'struct': 'NumaCpuOptions',
594   'base': 'CpuInstanceProperties',
595   'data' : {} }
596
597##
598# @HmatLBMemoryHierarchy:
599#
600# The memory hierarchy in the System Locality Latency and Bandwidth
601# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
602#
603# For more information about @HmatLBMemoryHierarchy, see chapter
604# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
605#
606# @memory: the structure represents the memory performance
607#
608# @first-level: first level of memory side cache
609#
610# @second-level: second level of memory side cache
611#
612# @third-level: third level of memory side cache
613#
614# Since: 5.0
615##
616{ 'enum': 'HmatLBMemoryHierarchy',
617  'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
618
619##
620# @HmatLBDataType:
621#
622# Data type in the System Locality Latency and Bandwidth
623# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
624#
625# For more information about @HmatLBDataType, see chapter
626# 5.2.27.4: Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
627#
628# @access-latency: access latency (nanoseconds)
629#
630# @read-latency: read latency (nanoseconds)
631#
632# @write-latency: write latency (nanoseconds)
633#
634# @access-bandwidth: access bandwidth (Bytes per second)
635#
636# @read-bandwidth: read bandwidth (Bytes per second)
637#
638# @write-bandwidth: write bandwidth (Bytes per second)
639#
640# Since: 5.0
641##
642{ 'enum': 'HmatLBDataType',
643  'data': [ 'access-latency', 'read-latency', 'write-latency',
644            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
645
646##
647# @NumaHmatLBOptions:
648#
649# Set the system locality latency and bandwidth information
650# between Initiator and Target proximity Domains.
651#
652# For more information about @NumaHmatLBOptions, see chapter
653# 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
654#
655# @initiator: the Initiator Proximity Domain.
656#
657# @target: the Target Proximity Domain.
658#
659# @hierarchy: the Memory Hierarchy. Indicates the performance
660#             of memory or side cache.
661#
662# @data-type: presents the type of data, access/read/write
663#             latency or hit latency.
664#
665# @latency: the value of latency from @initiator to @target
666#           proximity domain, the latency unit is "ns(nanosecond)".
667#
668# @bandwidth: the value of bandwidth between @initiator and @target
669#             proximity domain, the bandwidth unit is
670#             "Bytes per second".
671#
672# Since: 5.0
673##
674{ 'struct': 'NumaHmatLBOptions',
675    'data': {
676    'initiator': 'uint16',
677    'target': 'uint16',
678    'hierarchy': 'HmatLBMemoryHierarchy',
679    'data-type': 'HmatLBDataType',
680    '*latency': 'uint64',
681    '*bandwidth': 'size' }}
682
683##
684# @HmatCacheAssociativity:
685#
686# Cache associativity in the Memory Side Cache Information Structure
687# of HMAT
688#
689# For more information of @HmatCacheAssociativity, see chapter
690# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
691#
692# @none: None (no memory side cache in this proximity domain,
693#        or cache associativity unknown)
694#
695# @direct: Direct Mapped
696#
697# @complex: Complex Cache Indexing (implementation specific)
698#
699# Since: 5.0
700##
701{ 'enum': 'HmatCacheAssociativity',
702  'data': [ 'none', 'direct', 'complex' ] }
703
704##
705# @HmatCacheWritePolicy:
706#
707# Cache write policy in the Memory Side Cache Information Structure
708# of HMAT
709#
710# For more information of @HmatCacheWritePolicy, see chapter
711# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
712#
713# @none: None (no memory side cache in this proximity domain,
714#        or cache write policy unknown)
715#
716# @write-back: Write Back (WB)
717#
718# @write-through: Write Through (WT)
719#
720# Since: 5.0
721##
722{ 'enum': 'HmatCacheWritePolicy',
723  'data': [ 'none', 'write-back', 'write-through' ] }
724
725##
726# @NumaHmatCacheOptions:
727#
728# Set the memory side cache information for a given memory domain.
729#
730# For more information of @NumaHmatCacheOptions, see chapter
731# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
732#
733# @node-id: the memory proximity domain to which the memory belongs.
734#
735# @size: the size of memory side cache in bytes.
736#
737# @level: the cache level described in this structure.
738#
739# @associativity: the cache associativity,
740#                 none/direct-mapped/complex(complex cache indexing).
741#
742# @policy: the write policy, none/write-back/write-through.
743#
744# @line: the cache Line size in bytes.
745#
746# Since: 5.0
747##
748{ 'struct': 'NumaHmatCacheOptions',
749  'data': {
750   'node-id': 'uint32',
751   'size': 'size',
752   'level': 'uint8',
753   'associativity': 'HmatCacheAssociativity',
754   'policy': 'HmatCacheWritePolicy',
755   'line': 'uint16' }}
756
757##
758# @memsave:
759#
760# Save a portion of guest memory to a file.
761#
762# @val: the virtual address of the guest to start from
763#
764# @size: the size of memory region to save
765#
766# @filename: the file to save the memory to as binary data
767#
768# @cpu-index: the index of the virtual CPU to use for translating the
769#             virtual address (defaults to CPU 0)
770#
771# Returns: Nothing on success
772#
773# Since: 0.14
774#
775# Notes: Errors were not reliably returned until 1.1
776#
777# Example:
778#
779# -> { "execute": "memsave",
780#      "arguments": { "val": 10,
781#                     "size": 100,
782#                     "filename": "/tmp/virtual-mem-dump" } }
783# <- { "return": {} }
784#
785##
786{ 'command': 'memsave',
787  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
788
789##
790# @pmemsave:
791#
792# Save a portion of guest physical memory to a file.
793#
794# @val: the physical address of the guest to start from
795#
796# @size: the size of memory region to save
797#
798# @filename: the file to save the memory to as binary data
799#
800# Returns: Nothing on success
801#
802# Since: 0.14
803#
804# Notes: Errors were not reliably returned until 1.1
805#
806# Example:
807#
808# -> { "execute": "pmemsave",
809#      "arguments": { "val": 10,
810#                     "size": 100,
811#                     "filename": "/tmp/physical-mem-dump" } }
812# <- { "return": {} }
813#
814##
815{ 'command': 'pmemsave',
816  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
817
818##
819# @Memdev:
820#
821# Information about memory backend
822#
823# @id: backend's ID if backend has 'id' property (since 2.9)
824#
825# @size: memory backend size
826#
827# @merge: whether memory merge support is enabled
828#
829# @dump: whether memory backend's memory is included in a core dump
830#
831# @prealloc: whether memory was preallocated
832#
833# @share: whether memory is private to QEMU or shared (since 6.1)
834#
835# @reserve: whether swap space (or huge pages) was reserved if applicable.
836#           This corresponds to the user configuration and not the actual
837#           behavior implemented in the OS to perform the reservation.
838#           For example, Linux will never reserve swap space for shared
839#           file mappings. (since 6.1)
840#
841# @host-nodes: host nodes for its memory policy
842#
843# @policy: memory policy of memory backend
844#
845# Since: 2.1
846##
847{ 'struct': 'Memdev',
848  'data': {
849    '*id':        'str',
850    'size':       'size',
851    'merge':      'bool',
852    'dump':       'bool',
853    'prealloc':   'bool',
854    'share':      'bool',
855    '*reserve':    'bool',
856    'host-nodes': ['uint16'],
857    'policy':     'HostMemPolicy' }}
858
859##
860# @query-memdev:
861#
862# Returns information for all memory backends.
863#
864# Returns: a list of @Memdev.
865#
866# Since: 2.1
867#
868# Example:
869#
870# -> { "execute": "query-memdev" }
871# <- { "return": [
872#        {
873#          "id": "mem1",
874#          "size": 536870912,
875#          "merge": false,
876#          "dump": true,
877#          "prealloc": false,
878#          "share": false,
879#          "host-nodes": [0, 1],
880#          "policy": "bind"
881#        },
882#        {
883#          "size": 536870912,
884#          "merge": false,
885#          "dump": true,
886#          "prealloc": true,
887#          "share": false,
888#          "host-nodes": [2, 3],
889#          "policy": "preferred"
890#        }
891#      ]
892#    }
893#
894##
895{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
896
897##
898# @CpuInstanceProperties:
899#
900# List of properties to be used for hotplugging a CPU instance,
901# it should be passed by management with device_add command when
902# a CPU is being hotplugged.
903#
904# @node-id: NUMA node ID the CPU belongs to
905# @socket-id: socket number within node/board the CPU belongs to
906# @die-id: die number within socket the CPU belongs to (since 4.1)
907# @cluster-id: cluster number within die the CPU belongs to (since 7.1)
908# @core-id: core number within cluster the CPU belongs to
909# @thread-id: thread number within core the CPU belongs to
910#
911# Note: currently there are 6 properties that could be present
912#       but management should be prepared to pass through other
913#       properties with device_add command to allow for future
914#       interface extension. This also requires the filed names to be kept in
915#       sync with the properties passed to -device/device_add.
916#
917# Since: 2.7
918##
919{ 'struct': 'CpuInstanceProperties',
920  'data': { '*node-id': 'int',
921            '*socket-id': 'int',
922            '*die-id': 'int',
923            '*cluster-id': 'int',
924            '*core-id': 'int',
925            '*thread-id': 'int'
926  }
927}
928
929##
930# @HotpluggableCPU:
931#
932# @type: CPU object type for usage with device_add command
933# @props: list of properties to be used for hotplugging CPU
934# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
935# @qom-path: link to existing CPU object if CPU is present or
936#            omitted if CPU is not present.
937#
938# Since: 2.7
939##
940{ 'struct': 'HotpluggableCPU',
941  'data': { 'type': 'str',
942            'vcpus-count': 'int',
943            'props': 'CpuInstanceProperties',
944            '*qom-path': 'str'
945          }
946}
947
948##
949# @query-hotpluggable-cpus:
950#
951# TODO: Better documentation; currently there is none.
952#
953# Returns: a list of HotpluggableCPU objects.
954#
955# Since: 2.7
956#
957# Examples:
958#
959# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
960#
961# -> { "execute": "query-hotpluggable-cpus" }
962# <- {"return": [
963#      { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
964#        "vcpus-count": 1 },
965#      { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
966#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
967#    ]}'
968#
969# For pc machine type started with -smp 1,maxcpus=2:
970#
971# -> { "execute": "query-hotpluggable-cpus" }
972# <- {"return": [
973#      {
974#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
975#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
976#      },
977#      {
978#         "qom-path": "/machine/unattached/device[0]",
979#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
980#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
981#      }
982#    ]}
983#
984# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
985# (Since: 2.11):
986#
987# -> { "execute": "query-hotpluggable-cpus" }
988# <- {"return": [
989#      {
990#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
991#         "props": { "core-id": 1 }
992#      },
993#      {
994#         "qom-path": "/machine/unattached/device[0]",
995#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
996#         "props": { "core-id": 0 }
997#      }
998#    ]}
999#
1000##
1001{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1002             'allow-preconfig': true }
1003
1004##
1005# @set-numa-node:
1006#
1007# Runtime equivalent of '-numa' CLI option, available at
1008# preconfigure stage to configure numa mapping before initializing
1009# machine.
1010#
1011# Since: 3.0
1012##
1013{ 'command': 'set-numa-node', 'boxed': true,
1014  'data': 'NumaOptions',
1015  'allow-preconfig': true
1016}
1017
1018##
1019# @balloon:
1020#
1021# Request the balloon driver to change its balloon size.
1022#
1023# @value: the target logical size of the VM in bytes.
1024#         We can deduce the size of the balloon using this formula:
1025#
1026#            logical_vm_size = vm_ram_size - balloon_size
1027#
1028#         From it we have: balloon_size = vm_ram_size - @value
1029#
1030# Returns: - Nothing on success
1031#          - If the balloon driver is enabled but not functional because the KVM
1032#            kernel module cannot support it, KVMMissingCap
1033#          - If no balloon device is present, DeviceNotActive
1034#
1035# Notes: This command just issues a request to the guest.  When it returns,
1036#        the balloon size may not have changed.  A guest can change the balloon
1037#        size independent of this command.
1038#
1039# Since: 0.14
1040#
1041# Example:
1042#
1043# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1044# <- { "return": {} }
1045#
1046# With a 2.5GiB guest this command inflated the ballon to 3GiB.
1047#
1048##
1049{ 'command': 'balloon', 'data': {'value': 'int'} }
1050
1051##
1052# @BalloonInfo:
1053#
1054# Information about the guest balloon device.
1055#
1056# @actual: the logical size of the VM in bytes
1057#          Formula used: logical_vm_size = vm_ram_size - balloon_size
1058#
1059# Since: 0.14
1060##
1061{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1062
1063##
1064# @query-balloon:
1065#
1066# Return information about the balloon device.
1067#
1068# Returns: - @BalloonInfo on success
1069#          - If the balloon driver is enabled but not functional because the KVM
1070#            kernel module cannot support it, KVMMissingCap
1071#          - If no balloon device is present, DeviceNotActive
1072#
1073# Since: 0.14
1074#
1075# Example:
1076#
1077# -> { "execute": "query-balloon" }
1078# <- { "return": {
1079#          "actual": 1073741824
1080#       }
1081#    }
1082#
1083##
1084{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1085
1086##
1087# @BALLOON_CHANGE:
1088#
1089# Emitted when the guest changes the actual BALLOON level. This value is
1090# equivalent to the @actual field return by the 'query-balloon' command
1091#
1092# @actual: the logical size of the VM in bytes
1093#          Formula used: logical_vm_size = vm_ram_size - balloon_size
1094#
1095# Note: this event is rate-limited.
1096#
1097# Since: 1.2
1098#
1099# Example:
1100#
1101# <- { "event": "BALLOON_CHANGE",
1102#      "data": { "actual": 944766976 },
1103#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1104#
1105##
1106{ 'event': 'BALLOON_CHANGE',
1107  'data': { 'actual': 'int' } }
1108
1109##
1110# @MemoryInfo:
1111#
1112# Actual memory information in bytes.
1113#
1114# @base-memory: size of "base" memory specified with command line
1115#               option -m.
1116#
1117# @plugged-memory: size of memory that can be hot-unplugged. This field
1118#                  is omitted if target doesn't support memory hotplug
1119#                  (i.e. CONFIG_MEM_DEVICE not defined at build time).
1120#
1121# Since: 2.11
1122##
1123{ 'struct': 'MemoryInfo',
1124  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1125
1126##
1127# @query-memory-size-summary:
1128#
1129# Return the amount of initially allocated and present hotpluggable (if
1130# enabled) memory in bytes.
1131#
1132# Example:
1133#
1134# -> { "execute": "query-memory-size-summary" }
1135# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1136#
1137# Since: 2.11
1138##
1139{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1140
1141##
1142# @PCDIMMDeviceInfo:
1143#
1144# PCDIMMDevice state information
1145#
1146# @id: device's ID
1147#
1148# @addr: physical address, where device is mapped
1149#
1150# @size: size of memory that the device provides
1151#
1152# @slot: slot number at which device is plugged in
1153#
1154# @node: NUMA node number where device is plugged in
1155#
1156# @memdev: memory backend linked with device
1157#
1158# @hotplugged: true if device was hotplugged
1159#
1160# @hotpluggable: true if device if could be added/removed while machine is running
1161#
1162# Since: 2.1
1163##
1164{ 'struct': 'PCDIMMDeviceInfo',
1165  'data': { '*id': 'str',
1166            'addr': 'int',
1167            'size': 'int',
1168            'slot': 'int',
1169            'node': 'int',
1170            'memdev': 'str',
1171            'hotplugged': 'bool',
1172            'hotpluggable': 'bool'
1173          }
1174}
1175
1176##
1177# @VirtioPMEMDeviceInfo:
1178#
1179# VirtioPMEM state information
1180#
1181# @id: device's ID
1182#
1183# @memaddr: physical address in memory, where device is mapped
1184#
1185# @size: size of memory that the device provides
1186#
1187# @memdev: memory backend linked with device
1188#
1189# Since: 4.1
1190##
1191{ 'struct': 'VirtioPMEMDeviceInfo',
1192  'data': { '*id': 'str',
1193            'memaddr': 'size',
1194            'size': 'size',
1195            'memdev': 'str'
1196          }
1197}
1198
1199##
1200# @VirtioMEMDeviceInfo:
1201#
1202# VirtioMEMDevice state information
1203#
1204# @id: device's ID
1205#
1206# @memaddr: physical address in memory, where device is mapped
1207#
1208# @requested-size: the user requested size of the device
1209#
1210# @size: the (current) size of memory that the device provides
1211#
1212# @max-size: the maximum size of memory that the device can provide
1213#
1214# @block-size: the block size of memory that the device provides
1215#
1216# @node: NUMA node number where device is assigned to
1217#
1218# @memdev: memory backend linked with the region
1219#
1220# Since: 5.1
1221##
1222{ 'struct': 'VirtioMEMDeviceInfo',
1223  'data': { '*id': 'str',
1224            'memaddr': 'size',
1225            'requested-size': 'size',
1226            'size': 'size',
1227            'max-size': 'size',
1228            'block-size': 'size',
1229            'node': 'int',
1230            'memdev': 'str'
1231          }
1232}
1233
1234##
1235# @SgxEPCDeviceInfo:
1236#
1237# Sgx EPC state information
1238#
1239# @id: device's ID
1240#
1241# @memaddr: physical address in memory, where device is mapped
1242#
1243# @size: size of memory that the device provides
1244#
1245# @memdev: memory backend linked with device
1246#
1247# @node: the numa node (Since: 7.0)
1248#
1249# Since: 6.2
1250##
1251{ 'struct': 'SgxEPCDeviceInfo',
1252  'data': { '*id': 'str',
1253            'memaddr': 'size',
1254            'size': 'size',
1255            'node': 'int',
1256            'memdev': 'str'
1257          }
1258}
1259
1260##
1261# @MemoryDeviceInfoKind:
1262#
1263# @nvdimm: since 2.12
1264#
1265# @virtio-pmem: since 4.1
1266#
1267# @virtio-mem: since 5.1
1268#
1269# @sgx-epc: since 6.2.
1270#
1271# Since: 2.1
1272##
1273{ 'enum': 'MemoryDeviceInfoKind',
1274  'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1275
1276##
1277# @PCDIMMDeviceInfoWrapper:
1278#
1279# Since: 2.1
1280##
1281{ 'struct': 'PCDIMMDeviceInfoWrapper',
1282  'data': { 'data': 'PCDIMMDeviceInfo' } }
1283
1284##
1285# @VirtioPMEMDeviceInfoWrapper:
1286#
1287# Since: 2.1
1288##
1289{ 'struct': 'VirtioPMEMDeviceInfoWrapper',
1290  'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1291
1292##
1293# @VirtioMEMDeviceInfoWrapper:
1294#
1295# Since: 2.1
1296##
1297{ 'struct': 'VirtioMEMDeviceInfoWrapper',
1298  'data': { 'data': 'VirtioMEMDeviceInfo' } }
1299
1300##
1301# @SgxEPCDeviceInfoWrapper:
1302#
1303# Since: 6.2
1304##
1305{ 'struct': 'SgxEPCDeviceInfoWrapper',
1306  'data': { 'data': 'SgxEPCDeviceInfo' } }
1307
1308##
1309# @MemoryDeviceInfo:
1310#
1311# Union containing information about a memory device
1312#
1313# Since: 2.1
1314##
1315{ 'union': 'MemoryDeviceInfo',
1316  'base': { 'type': 'MemoryDeviceInfoKind' },
1317  'discriminator': 'type',
1318  'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1319            'nvdimm': 'PCDIMMDeviceInfoWrapper',
1320            'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1321            'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1322            'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1323          }
1324}
1325
1326##
1327# @SgxEPC:
1328#
1329# Sgx EPC cmdline information
1330#
1331# @memdev: memory backend linked with device
1332#
1333# @node: the numa node (Since: 7.0)
1334#
1335# Since: 6.2
1336##
1337{ 'struct': 'SgxEPC',
1338  'data': { 'memdev': 'str',
1339            'node': 'int'
1340          }
1341}
1342
1343##
1344# @SgxEPCProperties:
1345#
1346# SGX properties of machine types.
1347#
1348# @sgx-epc: list of ids of memory-backend-epc objects.
1349#
1350# Since: 6.2
1351##
1352{ 'struct': 'SgxEPCProperties',
1353  'data': { 'sgx-epc': ['SgxEPC'] }
1354}
1355
1356##
1357# @query-memory-devices:
1358#
1359# Lists available memory devices and their state
1360#
1361# Since: 2.1
1362#
1363# Example:
1364#
1365# -> { "execute": "query-memory-devices" }
1366# <- { "return": [ { "data":
1367#                       { "addr": 5368709120,
1368#                         "hotpluggable": true,
1369#                         "hotplugged": true,
1370#                         "id": "d1",
1371#                         "memdev": "/objects/memX",
1372#                         "node": 0,
1373#                         "size": 1073741824,
1374#                         "slot": 0},
1375#                    "type": "dimm"
1376#                  } ] }
1377#
1378##
1379{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1380
1381##
1382# @MEMORY_DEVICE_SIZE_CHANGE:
1383#
1384# Emitted when the size of a memory device changes. Only emitted for memory
1385# devices that can actually change the size (e.g., virtio-mem due to guest
1386# action).
1387#
1388# @id: device's ID
1389#
1390# @size: the new size of memory that the device provides
1391#
1392# @qom-path: path to the device object in the QOM tree (since 6.2)
1393#
1394# Note: this event is rate-limited.
1395#
1396# Since: 5.1
1397#
1398# Example:
1399#
1400# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1401#      "data": { "id": "vm0", "size": 1073741824,
1402#                "qom-path": "/machine/unattached/device[2]" },
1403#      "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1404#
1405##
1406{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1407  'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1408
1409##
1410# @MEM_UNPLUG_ERROR:
1411#
1412# Emitted when memory hot unplug error occurs.
1413#
1414# @device: device name
1415#
1416# @msg: Informative message
1417#
1418# Features:
1419# @deprecated: This event is deprecated. Use @DEVICE_UNPLUG_GUEST_ERROR
1420#              instead.
1421#
1422# Since: 2.4
1423#
1424# Example:
1425#
1426# <- { "event": "MEM_UNPLUG_ERROR",
1427#      "data": { "device": "dimm1",
1428#                "msg": "acpi: device unplug for unsupported device"
1429#      },
1430#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1431#
1432##
1433{ 'event': 'MEM_UNPLUG_ERROR',
1434  'data': { 'device': 'str', 'msg': 'str' },
1435  'features': ['deprecated'] }
1436
1437##
1438# @BootConfiguration:
1439#
1440# Schema for virtual machine boot configuration.
1441#
1442# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1443#
1444# @once: Boot order to apply on first boot
1445#
1446# @menu: Whether to show a boot menu
1447#
1448# @splash: The name of the file to be passed to the firmware as logo picture, if @menu is true.
1449#
1450# @splash-time: How long to show the logo picture, in milliseconds
1451#
1452# @reboot-timeout: Timeout before guest reboots after boot fails
1453#
1454# @strict: Whether to attempt booting from devices not included in the boot order
1455#
1456# Since: 7.1
1457##
1458{ 'struct': 'BootConfiguration', 'data': {
1459     '*order': 'str',
1460     '*once': 'str',
1461     '*menu': 'bool',
1462     '*splash': 'str',
1463     '*splash-time': 'int',
1464     '*reboot-timeout': 'int',
1465     '*strict': 'bool' } }
1466
1467##
1468# @SMPConfiguration:
1469#
1470# Schema for CPU topology configuration.  A missing value lets
1471# QEMU figure out a suitable value based on the ones that are provided.
1472#
1473# @cpus: number of virtual CPUs in the virtual machine
1474#
1475# @sockets: number of sockets in the CPU topology
1476#
1477# @dies: number of dies per socket in the CPU topology
1478#
1479# @clusters: number of clusters per die in the CPU topology (since 7.0)
1480#
1481# @cores: number of cores per cluster in the CPU topology
1482#
1483# @threads: number of threads per core in the CPU topology
1484#
1485# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine
1486#
1487# Since: 6.1
1488##
1489{ 'struct': 'SMPConfiguration', 'data': {
1490     '*cpus': 'int',
1491     '*sockets': 'int',
1492     '*dies': 'int',
1493     '*clusters': 'int',
1494     '*cores': 'int',
1495     '*threads': 'int',
1496     '*maxcpus': 'int' } }
1497
1498##
1499# @x-query-irq:
1500#
1501# Query interrupt statistics
1502#
1503# Features:
1504# @unstable: This command is meant for debugging.
1505#
1506# Returns: interrupt statistics
1507#
1508# Since: 6.2
1509##
1510{ 'command': 'x-query-irq',
1511  'returns': 'HumanReadableText',
1512  'features': [ 'unstable' ] }
1513
1514##
1515# @x-query-jit:
1516#
1517# Query TCG compiler statistics
1518#
1519# Features:
1520# @unstable: This command is meant for debugging.
1521#
1522# Returns: TCG compiler statistics
1523#
1524# Since: 6.2
1525##
1526{ 'command': 'x-query-jit',
1527  'returns': 'HumanReadableText',
1528  'if': 'CONFIG_TCG',
1529  'features': [ 'unstable' ] }
1530
1531##
1532# @x-query-numa:
1533#
1534# Query NUMA topology information
1535#
1536# Features:
1537# @unstable: This command is meant for debugging.
1538#
1539# Returns: topology information
1540#
1541# Since: 6.2
1542##
1543{ 'command': 'x-query-numa',
1544  'returns': 'HumanReadableText',
1545  'features': [ 'unstable' ] }
1546
1547##
1548# @x-query-opcount:
1549#
1550# Query TCG opcode counters
1551#
1552# Features:
1553# @unstable: This command is meant for debugging.
1554#
1555# Returns: TCG opcode counters
1556#
1557# Since: 6.2
1558##
1559{ 'command': 'x-query-opcount',
1560  'returns': 'HumanReadableText',
1561  'if': 'CONFIG_TCG',
1562  'features': [ 'unstable' ] }
1563
1564##
1565# @x-query-profile:
1566#
1567# Query TCG profiling information
1568#
1569# Features:
1570# @unstable: This command is meant for debugging.
1571#
1572# Returns: profile information
1573#
1574# Since: 6.2
1575##
1576{ 'command': 'x-query-profile',
1577  'returns': 'HumanReadableText',
1578  'if': 'CONFIG_TCG',
1579  'features': [ 'unstable' ] }
1580
1581##
1582# @x-query-ramblock:
1583#
1584# Query system ramblock information
1585#
1586# Features:
1587# @unstable: This command is meant for debugging.
1588#
1589# Returns: system ramblock information
1590#
1591# Since: 6.2
1592##
1593{ 'command': 'x-query-ramblock',
1594  'returns': 'HumanReadableText',
1595  'features': [ 'unstable' ] }
1596
1597##
1598# @x-query-rdma:
1599#
1600# Query RDMA state
1601#
1602# Features:
1603# @unstable: This command is meant for debugging.
1604#
1605# Returns: RDMA state
1606#
1607# Since: 6.2
1608##
1609{ 'command': 'x-query-rdma',
1610  'returns': 'HumanReadableText',
1611  'features': [ 'unstable' ] }
1612
1613##
1614# @x-query-roms:
1615#
1616# Query information on the registered ROMS
1617#
1618# Features:
1619# @unstable: This command is meant for debugging.
1620#
1621# Returns: registered ROMs
1622#
1623# Since: 6.2
1624##
1625{ 'command': 'x-query-roms',
1626  'returns': 'HumanReadableText',
1627  'features': [ 'unstable' ] }
1628
1629##
1630# @x-query-usb:
1631#
1632# Query information on the USB devices
1633#
1634# Features:
1635# @unstable: This command is meant for debugging.
1636#
1637# Returns: USB device information
1638#
1639# Since: 6.2
1640##
1641{ 'command': 'x-query-usb',
1642  'returns': 'HumanReadableText',
1643  'features': [ 'unstable' ] }
1644
1645##
1646# @SmbiosEntryPointType:
1647#
1648# @32: SMBIOS version 2.1 (32-bit) Entry Point
1649#
1650# @64: SMBIOS version 3.0 (64-bit) Entry Point
1651#
1652# Since: 7.0
1653##
1654{ 'enum': 'SmbiosEntryPointType',
1655  'data': [ '32', '64' ] }
1656
1657##
1658# @MemorySizeConfiguration:
1659#
1660# Schema for memory size configuration.
1661#
1662# @size: memory size in bytes
1663#
1664# @max-size: maximum hotpluggable memory size in bytes
1665#
1666# @slots: number of available memory slots for hotplug
1667#
1668# Since: 7.1
1669##
1670{ 'struct': 'MemorySizeConfiguration', 'data': {
1671     '*size': 'size',
1672     '*max-size': 'size',
1673     '*slots': 'uint64' } }
1674
1675##
1676# @dumpdtb:
1677#
1678# Save the FDT in dtb format.
1679#
1680# @filename: name of the dtb file to be created
1681#
1682# Since: 7.2
1683#
1684# Example:
1685# -> { "execute": "dumpdtb" }
1686#      "arguments": { "filename": "fdt.dtb" } }
1687# <- { "return": {} }
1688#
1689##
1690{ 'command': 'dumpdtb',
1691  'data': { 'filename': 'str' },
1692  'if': 'CONFIG_FDT' }
1693