1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4# This work is licensed under the terms of the GNU GPL, version 2 or later. 5# See the COPYING file in the top-level directory. 6 7## 8# = Machines 9## 10 11{ 'include': 'common.json' } 12 13## 14# @SysEmuTarget: 15# 16# The comprehensive enumeration of QEMU system emulation ("softmmu") 17# targets. Run "./configure --help" in the project root directory, and 18# look for the \*-softmmu targets near the "--target-list" option. The 19# individual target constants are not documented here, for the time 20# being. 21# 22# @rx: since 5.0 23# @avr: since 5.1 24# 25# Notes: The resulting QMP strings can be appended to the "qemu-system-" 26# prefix to produce the corresponding QEMU executable name. This 27# is true even for "qemu-system-x86_64". 28# 29# Since: 3.0 30## 31{ 'enum' : 'SysEmuTarget', 32 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 33 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64', 34 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc', 35 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4', 36 'sh4eb', 'sparc', 'sparc64', 'tricore', 37 'x86_64', 'xtensa', 'xtensaeb' ] } 38 39## 40# @CpuS390State: 41# 42# An enumeration of cpu states that can be assumed by a virtual 43# S390 CPU 44# 45# Since: 2.12 46## 47{ 'enum': 'CpuS390State', 48 'prefix': 'S390_CPU_STATE', 49 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 50 51## 52# @CpuInfoS390: 53# 54# Additional information about a virtual S390 CPU 55# 56# @cpu-state: the virtual CPU's state 57# 58# Since: 2.12 59## 60{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } } 61 62## 63# @CpuInfoFast: 64# 65# Information about a virtual CPU 66# 67# @cpu-index: index of the virtual CPU 68# 69# @qom-path: path to the CPU object in the QOM tree 70# 71# @thread-id: ID of the underlying host thread 72# 73# @props: properties describing to which node/socket/core/thread 74# virtual CPU belongs to, provided if supported by board 75# 76# @target: the QEMU system emulation target, which determines which 77# additional fields will be listed (since 3.0) 78# 79# Since: 2.12 80## 81{ 'union' : 'CpuInfoFast', 82 'base' : { 'cpu-index' : 'int', 83 'qom-path' : 'str', 84 'thread-id' : 'int', 85 '*props' : 'CpuInstanceProperties', 86 'target' : 'SysEmuTarget' }, 87 'discriminator' : 'target', 88 'data' : { 's390x' : 'CpuInfoS390' } } 89 90## 91# @query-cpus-fast: 92# 93# Returns information about all virtual CPUs. 94# 95# Returns: list of @CpuInfoFast 96# 97# Since: 2.12 98# 99# Example: 100# 101# -> { "execute": "query-cpus-fast" } 102# <- { "return": [ 103# { 104# "thread-id": 25627, 105# "props": { 106# "core-id": 0, 107# "thread-id": 0, 108# "socket-id": 0 109# }, 110# "qom-path": "/machine/unattached/device[0]", 111# "target":"x86_64", 112# "cpu-index": 0 113# }, 114# { 115# "thread-id": 25628, 116# "props": { 117# "core-id": 0, 118# "thread-id": 0, 119# "socket-id": 1 120# }, 121# "qom-path": "/machine/unattached/device[2]", 122# "target":"x86_64", 123# "cpu-index": 1 124# } 125# ] 126# } 127## 128{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 129 130## 131# @MachineInfo: 132# 133# Information describing a machine. 134# 135# @name: the name of the machine 136# 137# @alias: an alias for the machine name 138# 139# @is-default: whether the machine is default 140# 141# @cpu-max: maximum number of CPUs supported by the machine type 142# (since 1.5) 143# 144# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7) 145# 146# @numa-mem-supported: true if '-numa node,mem' option is supported by 147# the machine type and false otherwise (since 4.1) 148# 149# @deprecated: if true, the machine type is deprecated and may be removed 150# in future versions of QEMU according to the QEMU deprecation 151# policy (since 4.1) 152# 153# @default-cpu-type: default CPU model typename if none is requested via 154# the -cpu argument. (since 4.2) 155# 156# @default-ram-id: the default ID of initial RAM memory backend (since 5.2) 157# 158# @acpi: machine type supports ACPI (since 8.0) 159# 160# Since: 1.2 161## 162{ 'struct': 'MachineInfo', 163 'data': { 'name': 'str', '*alias': 'str', 164 '*is-default': 'bool', 'cpu-max': 'int', 165 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool', 166 'deprecated': 'bool', '*default-cpu-type': 'str', 167 '*default-ram-id': 'str', 'acpi': 'bool' } } 168 169## 170# @query-machines: 171# 172# Return a list of supported machines 173# 174# Returns: a list of MachineInfo 175# 176# Since: 1.2 177## 178{ 'command': 'query-machines', 'returns': ['MachineInfo'] } 179 180## 181# @CurrentMachineParams: 182# 183# Information describing the running machine parameters. 184# 185# @wakeup-suspend-support: true if the machine supports wake up from 186# suspend 187# 188# Since: 4.0 189## 190{ 'struct': 'CurrentMachineParams', 191 'data': { 'wakeup-suspend-support': 'bool'} } 192 193## 194# @query-current-machine: 195# 196# Return information on the current virtual machine. 197# 198# Returns: CurrentMachineParams 199# 200# Since: 4.0 201## 202{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' } 203 204## 205# @TargetInfo: 206# 207# Information describing the QEMU target. 208# 209# @arch: the target architecture 210# 211# Since: 1.2 212## 213{ 'struct': 'TargetInfo', 214 'data': { 'arch': 'SysEmuTarget' } } 215 216## 217# @query-target: 218# 219# Return information about the target for this QEMU 220# 221# Returns: TargetInfo 222# 223# Since: 1.2 224## 225{ 'command': 'query-target', 'returns': 'TargetInfo' } 226 227## 228# @UuidInfo: 229# 230# Guest UUID information (Universally Unique Identifier). 231# 232# @UUID: the UUID of the guest 233# 234# Since: 0.14 235# 236# Notes: If no UUID was specified for the guest, a null UUID is returned. 237## 238{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 239 240## 241# @query-uuid: 242# 243# Query the guest UUID information. 244# 245# Returns: The @UuidInfo for the guest 246# 247# Since: 0.14 248# 249# Example: 250# 251# -> { "execute": "query-uuid" } 252# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 253# 254## 255{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } 256 257## 258# @GuidInfo: 259# 260# GUID information. 261# 262# @guid: the globally unique identifier 263# 264# Since: 2.9 265## 266{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 267 268## 269# @query-vm-generation-id: 270# 271# Show Virtual Machine Generation ID 272# 273# Since: 2.9 274## 275{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 276 277## 278# @system_reset: 279# 280# Performs a hard reset of a guest. 281# 282# Since: 0.14 283# 284# Example: 285# 286# -> { "execute": "system_reset" } 287# <- { "return": {} } 288# 289## 290{ 'command': 'system_reset' } 291 292## 293# @system_powerdown: 294# 295# Requests that a guest perform a powerdown operation. 296# 297# Since: 0.14 298# 299# Notes: A guest may or may not respond to this command. This command 300# returning does not indicate that a guest has accepted the request or 301# that it has shut down. Many guests will respond to this command by 302# prompting the user in some way. 303# 304# Example: 305# 306# -> { "execute": "system_powerdown" } 307# <- { "return": {} } 308# 309## 310{ 'command': 'system_powerdown' } 311 312## 313# @system_wakeup: 314# 315# Wake up guest from suspend. If the guest has wake-up from suspend 316# support enabled (wakeup-suspend-support flag from 317# query-current-machine), wake-up guest from suspend if the guest is 318# in SUSPENDED state. Return an error otherwise. 319# 320# Since: 1.1 321# 322# Returns: nothing. 323# 324# Note: prior to 4.0, this command does nothing in case the guest 325# isn't suspended. 326# 327# Example: 328# 329# -> { "execute": "system_wakeup" } 330# <- { "return": {} } 331# 332## 333{ 'command': 'system_wakeup' } 334 335## 336# @LostTickPolicy: 337# 338# Policy for handling lost ticks in timer devices. Ticks end up getting 339# lost when, for example, the guest is paused. 340# 341# @discard: throw away the missed ticks and continue with future injection 342# normally. The guest OS will see the timer jump ahead by a 343# potentially quite significant amount all at once, as if the 344# intervening chunk of time had simply not existed; needless to 345# say, such a sudden jump can easily confuse a guest OS which is 346# not specifically prepared to deal with it. Assuming the guest 347# OS can deal correctly with the time jump, the time in the guest 348# and in the host should now match. 349# 350# @delay: continue to deliver ticks at the normal rate. The guest OS will 351# not notice anything is amiss, as from its point of view time will 352# have continued to flow normally. The time in the guest should now 353# be behind the time in the host by exactly the amount of time during 354# which ticks have been missed. 355# 356# @slew: deliver ticks at a higher rate to catch up with the missed ticks. 357# The guest OS will not notice anything is amiss, as from its point 358# of view time will have continued to flow normally. Once the timer 359# has managed to catch up with all the missing ticks, the time in 360# the guest and in the host should match. 361# 362# Since: 2.0 363## 364{ 'enum': 'LostTickPolicy', 365 'data': ['discard', 'delay', 'slew' ] } 366 367## 368# @inject-nmi: 369# 370# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64). 371# The command fails when the guest doesn't support injecting. 372# 373# Returns: If successful, nothing 374# 375# Since: 0.14 376# 377# Note: prior to 2.1, this command was only supported for x86 and s390 VMs 378# 379# Example: 380# 381# -> { "execute": "inject-nmi" } 382# <- { "return": {} } 383# 384## 385{ 'command': 'inject-nmi' } 386 387## 388# @KvmInfo: 389# 390# Information about support for KVM acceleration 391# 392# @enabled: true if KVM acceleration is active 393# 394# @present: true if KVM acceleration is built into this executable 395# 396# Since: 0.14 397## 398{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 399 400## 401# @query-kvm: 402# 403# Returns information about KVM acceleration 404# 405# Returns: @KvmInfo 406# 407# Since: 0.14 408# 409# Example: 410# 411# -> { "execute": "query-kvm" } 412# <- { "return": { "enabled": true, "present": true } } 413# 414## 415{ 'command': 'query-kvm', 'returns': 'KvmInfo' } 416 417## 418# @NumaOptionsType: 419# 420# @node: NUMA nodes configuration 421# 422# @dist: NUMA distance configuration (since 2.10) 423# 424# @cpu: property based CPU(s) to node mapping (Since: 2.10) 425# 426# @hmat-lb: memory latency and bandwidth information (Since: 5.0) 427# 428# @hmat-cache: memory side cache information (Since: 5.0) 429# 430# Since: 2.1 431## 432{ 'enum': 'NumaOptionsType', 433 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] } 434 435## 436# @NumaOptions: 437# 438# A discriminated record of NUMA options. (for OptsVisitor) 439# 440# Since: 2.1 441## 442{ 'union': 'NumaOptions', 443 'base': { 'type': 'NumaOptionsType' }, 444 'discriminator': 'type', 445 'data': { 446 'node': 'NumaNodeOptions', 447 'dist': 'NumaDistOptions', 448 'cpu': 'NumaCpuOptions', 449 'hmat-lb': 'NumaHmatLBOptions', 450 'hmat-cache': 'NumaHmatCacheOptions' }} 451 452## 453# @NumaNodeOptions: 454# 455# Create a guest NUMA node. (for OptsVisitor) 456# 457# @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 458# 459# @cpus: VCPUs belonging to this node (assign VCPUS round-robin 460# if omitted) 461# 462# @mem: memory size of this node; mutually exclusive with @memdev. 463# Equally divide total memory among nodes if both @mem and @memdev are 464# omitted. 465# 466# @memdev: memory backend object. If specified for one node, 467# it must be specified for all nodes. 468# 469# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, 470# points to the nodeid which has the memory controller 471# responsible for this NUMA node. This field provides 472# additional information as to the initiator node that 473# is closest (as in directly attached) to this node, and 474# therefore has the best performance (since 5.0) 475# 476# Since: 2.1 477## 478{ 'struct': 'NumaNodeOptions', 479 'data': { 480 '*nodeid': 'uint16', 481 '*cpus': ['uint16'], 482 '*mem': 'size', 483 '*memdev': 'str', 484 '*initiator': 'uint16' }} 485 486## 487# @NumaDistOptions: 488# 489# Set the distance between 2 NUMA nodes. 490# 491# @src: source NUMA node. 492# 493# @dst: destination NUMA node. 494# 495# @val: NUMA distance from source node to destination node. 496# When a node is unreachable from another node, set the distance 497# between them to 255. 498# 499# Since: 2.10 500## 501{ 'struct': 'NumaDistOptions', 502 'data': { 503 'src': 'uint16', 504 'dst': 'uint16', 505 'val': 'uint8' }} 506 507## 508# @CXLFixedMemoryWindowOptions: 509# 510# Create a CXL Fixed Memory Window 511# 512# @size: Size of the Fixed Memory Window in bytes. Must be a multiple 513# of 256MiB. 514# @interleave-granularity: Number of contiguous bytes for which 515# accesses will go to a given interleave target. 516# Accepted values [256, 512, 1k, 2k, 4k, 8k, 16k] 517# @targets: Target root bridge IDs from -device ...,id=<ID> for each root 518# bridge. 519# 520# Since: 7.1 521## 522{ 'struct': 'CXLFixedMemoryWindowOptions', 523 'data': { 524 'size': 'size', 525 '*interleave-granularity': 'size', 526 'targets': ['str'] }} 527 528## 529# @CXLFMWProperties: 530# 531# List of CXL Fixed Memory Windows. 532# 533# @cxl-fmw: List of CXLFixedMemoryWindowOptions 534# 535# Since: 7.1 536## 537{ 'struct' : 'CXLFMWProperties', 538 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] } 539} 540 541## 542# @X86CPURegister32: 543# 544# A X86 32-bit register 545# 546# Since: 1.5 547## 548{ 'enum': 'X86CPURegister32', 549 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 550 551## 552# @X86CPUFeatureWordInfo: 553# 554# Information about a X86 CPU feature word 555# 556# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word 557# 558# @cpuid-input-ecx: Input ECX value for CPUID instruction for that 559# feature word 560# 561# @cpuid-register: Output register containing the feature bits 562# 563# @features: value of output register, containing the feature bits 564# 565# Since: 1.5 566## 567{ 'struct': 'X86CPUFeatureWordInfo', 568 'data': { 'cpuid-input-eax': 'int', 569 '*cpuid-input-ecx': 'int', 570 'cpuid-register': 'X86CPURegister32', 571 'features': 'int' } } 572 573## 574# @DummyForceArrays: 575# 576# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally 577# 578# Since: 2.5 579## 580{ 'struct': 'DummyForceArrays', 581 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 582 583## 584# @NumaCpuOptions: 585# 586# Option "-numa cpu" overrides default cpu to node mapping. 587# It accepts the same set of cpu properties as returned by 588# query-hotpluggable-cpus[].props, where node-id could be used to 589# override default node mapping. 590# 591# Since: 2.10 592## 593{ 'struct': 'NumaCpuOptions', 594 'base': 'CpuInstanceProperties', 595 'data' : {} } 596 597## 598# @HmatLBMemoryHierarchy: 599# 600# The memory hierarchy in the System Locality Latency and Bandwidth 601# Information Structure of HMAT (Heterogeneous Memory Attribute Table) 602# 603# For more information about @HmatLBMemoryHierarchy, see chapter 604# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. 605# 606# @memory: the structure represents the memory performance 607# 608# @first-level: first level of memory side cache 609# 610# @second-level: second level of memory side cache 611# 612# @third-level: third level of memory side cache 613# 614# Since: 5.0 615## 616{ 'enum': 'HmatLBMemoryHierarchy', 617 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } 618 619## 620# @HmatLBDataType: 621# 622# Data type in the System Locality Latency and Bandwidth 623# Information Structure of HMAT (Heterogeneous Memory Attribute Table) 624# 625# For more information about @HmatLBDataType, see chapter 626# 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec. 627# 628# @access-latency: access latency (nanoseconds) 629# 630# @read-latency: read latency (nanoseconds) 631# 632# @write-latency: write latency (nanoseconds) 633# 634# @access-bandwidth: access bandwidth (Bytes per second) 635# 636# @read-bandwidth: read bandwidth (Bytes per second) 637# 638# @write-bandwidth: write bandwidth (Bytes per second) 639# 640# Since: 5.0 641## 642{ 'enum': 'HmatLBDataType', 643 'data': [ 'access-latency', 'read-latency', 'write-latency', 644 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } 645 646## 647# @NumaHmatLBOptions: 648# 649# Set the system locality latency and bandwidth information 650# between Initiator and Target proximity Domains. 651# 652# For more information about @NumaHmatLBOptions, see chapter 653# 5.2.27.4: Table 5-146 of ACPI 6.3 spec. 654# 655# @initiator: the Initiator Proximity Domain. 656# 657# @target: the Target Proximity Domain. 658# 659# @hierarchy: the Memory Hierarchy. Indicates the performance 660# of memory or side cache. 661# 662# @data-type: presents the type of data, access/read/write 663# latency or hit latency. 664# 665# @latency: the value of latency from @initiator to @target 666# proximity domain, the latency unit is "ns(nanosecond)". 667# 668# @bandwidth: the value of bandwidth between @initiator and @target 669# proximity domain, the bandwidth unit is 670# "Bytes per second". 671# 672# Since: 5.0 673## 674{ 'struct': 'NumaHmatLBOptions', 675 'data': { 676 'initiator': 'uint16', 677 'target': 'uint16', 678 'hierarchy': 'HmatLBMemoryHierarchy', 679 'data-type': 'HmatLBDataType', 680 '*latency': 'uint64', 681 '*bandwidth': 'size' }} 682 683## 684# @HmatCacheAssociativity: 685# 686# Cache associativity in the Memory Side Cache Information Structure 687# of HMAT 688# 689# For more information of @HmatCacheAssociativity, see chapter 690# 5.2.27.5: Table 5-147 of ACPI 6.3 spec. 691# 692# @none: None (no memory side cache in this proximity domain, 693# or cache associativity unknown) 694# 695# @direct: Direct Mapped 696# 697# @complex: Complex Cache Indexing (implementation specific) 698# 699# Since: 5.0 700## 701{ 'enum': 'HmatCacheAssociativity', 702 'data': [ 'none', 'direct', 'complex' ] } 703 704## 705# @HmatCacheWritePolicy: 706# 707# Cache write policy in the Memory Side Cache Information Structure 708# of HMAT 709# 710# For more information of @HmatCacheWritePolicy, see chapter 711# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 712# 713# @none: None (no memory side cache in this proximity domain, 714# or cache write policy unknown) 715# 716# @write-back: Write Back (WB) 717# 718# @write-through: Write Through (WT) 719# 720# Since: 5.0 721## 722{ 'enum': 'HmatCacheWritePolicy', 723 'data': [ 'none', 'write-back', 'write-through' ] } 724 725## 726# @NumaHmatCacheOptions: 727# 728# Set the memory side cache information for a given memory domain. 729# 730# For more information of @NumaHmatCacheOptions, see chapter 731# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 732# 733# @node-id: the memory proximity domain to which the memory belongs. 734# 735# @size: the size of memory side cache in bytes. 736# 737# @level: the cache level described in this structure. 738# 739# @associativity: the cache associativity, 740# none/direct-mapped/complex(complex cache indexing). 741# 742# @policy: the write policy, none/write-back/write-through. 743# 744# @line: the cache Line size in bytes. 745# 746# Since: 5.0 747## 748{ 'struct': 'NumaHmatCacheOptions', 749 'data': { 750 'node-id': 'uint32', 751 'size': 'size', 752 'level': 'uint8', 753 'associativity': 'HmatCacheAssociativity', 754 'policy': 'HmatCacheWritePolicy', 755 'line': 'uint16' }} 756 757## 758# @memsave: 759# 760# Save a portion of guest memory to a file. 761# 762# @val: the virtual address of the guest to start from 763# 764# @size: the size of memory region to save 765# 766# @filename: the file to save the memory to as binary data 767# 768# @cpu-index: the index of the virtual CPU to use for translating the 769# virtual address (defaults to CPU 0) 770# 771# Returns: Nothing on success 772# 773# Since: 0.14 774# 775# Notes: Errors were not reliably returned until 1.1 776# 777# Example: 778# 779# -> { "execute": "memsave", 780# "arguments": { "val": 10, 781# "size": 100, 782# "filename": "/tmp/virtual-mem-dump" } } 783# <- { "return": {} } 784# 785## 786{ 'command': 'memsave', 787 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 788 789## 790# @pmemsave: 791# 792# Save a portion of guest physical memory to a file. 793# 794# @val: the physical address of the guest to start from 795# 796# @size: the size of memory region to save 797# 798# @filename: the file to save the memory to as binary data 799# 800# Returns: Nothing on success 801# 802# Since: 0.14 803# 804# Notes: Errors were not reliably returned until 1.1 805# 806# Example: 807# 808# -> { "execute": "pmemsave", 809# "arguments": { "val": 10, 810# "size": 100, 811# "filename": "/tmp/physical-mem-dump" } } 812# <- { "return": {} } 813# 814## 815{ 'command': 'pmemsave', 816 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 817 818## 819# @Memdev: 820# 821# Information about memory backend 822# 823# @id: backend's ID if backend has 'id' property (since 2.9) 824# 825# @size: memory backend size 826# 827# @merge: whether memory merge support is enabled 828# 829# @dump: whether memory backend's memory is included in a core dump 830# 831# @prealloc: whether memory was preallocated 832# 833# @share: whether memory is private to QEMU or shared (since 6.1) 834# 835# @reserve: whether swap space (or huge pages) was reserved if applicable. 836# This corresponds to the user configuration and not the actual 837# behavior implemented in the OS to perform the reservation. 838# For example, Linux will never reserve swap space for shared 839# file mappings. (since 6.1) 840# 841# @host-nodes: host nodes for its memory policy 842# 843# @policy: memory policy of memory backend 844# 845# Since: 2.1 846## 847{ 'struct': 'Memdev', 848 'data': { 849 '*id': 'str', 850 'size': 'size', 851 'merge': 'bool', 852 'dump': 'bool', 853 'prealloc': 'bool', 854 'share': 'bool', 855 '*reserve': 'bool', 856 'host-nodes': ['uint16'], 857 'policy': 'HostMemPolicy' }} 858 859## 860# @query-memdev: 861# 862# Returns information for all memory backends. 863# 864# Returns: a list of @Memdev. 865# 866# Since: 2.1 867# 868# Example: 869# 870# -> { "execute": "query-memdev" } 871# <- { "return": [ 872# { 873# "id": "mem1", 874# "size": 536870912, 875# "merge": false, 876# "dump": true, 877# "prealloc": false, 878# "share": false, 879# "host-nodes": [0, 1], 880# "policy": "bind" 881# }, 882# { 883# "size": 536870912, 884# "merge": false, 885# "dump": true, 886# "prealloc": true, 887# "share": false, 888# "host-nodes": [2, 3], 889# "policy": "preferred" 890# } 891# ] 892# } 893# 894## 895{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } 896 897## 898# @CpuInstanceProperties: 899# 900# List of properties to be used for hotplugging a CPU instance, 901# it should be passed by management with device_add command when 902# a CPU is being hotplugged. 903# 904# @node-id: NUMA node ID the CPU belongs to 905# @socket-id: socket number within node/board the CPU belongs to 906# @die-id: die number within socket the CPU belongs to (since 4.1) 907# @cluster-id: cluster number within die the CPU belongs to (since 7.1) 908# @core-id: core number within cluster the CPU belongs to 909# @thread-id: thread number within core the CPU belongs to 910# 911# Note: currently there are 6 properties that could be present 912# but management should be prepared to pass through other 913# properties with device_add command to allow for future 914# interface extension. This also requires the filed names to be kept in 915# sync with the properties passed to -device/device_add. 916# 917# Since: 2.7 918## 919{ 'struct': 'CpuInstanceProperties', 920 'data': { '*node-id': 'int', 921 '*socket-id': 'int', 922 '*die-id': 'int', 923 '*cluster-id': 'int', 924 '*core-id': 'int', 925 '*thread-id': 'int' 926 } 927} 928 929## 930# @HotpluggableCPU: 931# 932# @type: CPU object type for usage with device_add command 933# @props: list of properties to be used for hotplugging CPU 934# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides 935# @qom-path: link to existing CPU object if CPU is present or 936# omitted if CPU is not present. 937# 938# Since: 2.7 939## 940{ 'struct': 'HotpluggableCPU', 941 'data': { 'type': 'str', 942 'vcpus-count': 'int', 943 'props': 'CpuInstanceProperties', 944 '*qom-path': 'str' 945 } 946} 947 948## 949# @query-hotpluggable-cpus: 950# 951# TODO: Better documentation; currently there is none. 952# 953# Returns: a list of HotpluggableCPU objects. 954# 955# Since: 2.7 956# 957# Examples: 958# 959# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8: 960# 961# -> { "execute": "query-hotpluggable-cpus" } 962# <- {"return": [ 963# { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core", 964# "vcpus-count": 1 }, 965# { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core", 966# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 967# ]}' 968# 969# For pc machine type started with -smp 1,maxcpus=2: 970# 971# -> { "execute": "query-hotpluggable-cpus" } 972# <- {"return": [ 973# { 974# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 975# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 976# }, 977# { 978# "qom-path": "/machine/unattached/device[0]", 979# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 980# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 981# } 982# ]} 983# 984# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu 985# (Since: 2.11): 986# 987# -> { "execute": "query-hotpluggable-cpus" } 988# <- {"return": [ 989# { 990# "type": "qemu-s390x-cpu", "vcpus-count": 1, 991# "props": { "core-id": 1 } 992# }, 993# { 994# "qom-path": "/machine/unattached/device[0]", 995# "type": "qemu-s390x-cpu", "vcpus-count": 1, 996# "props": { "core-id": 0 } 997# } 998# ]} 999# 1000## 1001{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 1002 'allow-preconfig': true } 1003 1004## 1005# @set-numa-node: 1006# 1007# Runtime equivalent of '-numa' CLI option, available at 1008# preconfigure stage to configure numa mapping before initializing 1009# machine. 1010# 1011# Since: 3.0 1012## 1013{ 'command': 'set-numa-node', 'boxed': true, 1014 'data': 'NumaOptions', 1015 'allow-preconfig': true 1016} 1017 1018## 1019# @balloon: 1020# 1021# Request the balloon driver to change its balloon size. 1022# 1023# @value: the target logical size of the VM in bytes. 1024# We can deduce the size of the balloon using this formula: 1025# 1026# logical_vm_size = vm_ram_size - balloon_size 1027# 1028# From it we have: balloon_size = vm_ram_size - @value 1029# 1030# Returns: - Nothing on success 1031# - If the balloon driver is enabled but not functional because the KVM 1032# kernel module cannot support it, KVMMissingCap 1033# - If no balloon device is present, DeviceNotActive 1034# 1035# Notes: This command just issues a request to the guest. When it returns, 1036# the balloon size may not have changed. A guest can change the balloon 1037# size independent of this command. 1038# 1039# Since: 0.14 1040# 1041# Example: 1042# 1043# -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1044# <- { "return": {} } 1045# 1046# With a 2.5GiB guest this command inflated the ballon to 3GiB. 1047# 1048## 1049{ 'command': 'balloon', 'data': {'value': 'int'} } 1050 1051## 1052# @BalloonInfo: 1053# 1054# Information about the guest balloon device. 1055# 1056# @actual: the logical size of the VM in bytes 1057# Formula used: logical_vm_size = vm_ram_size - balloon_size 1058# 1059# Since: 0.14 1060## 1061{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 1062 1063## 1064# @query-balloon: 1065# 1066# Return information about the balloon device. 1067# 1068# Returns: - @BalloonInfo on success 1069# - If the balloon driver is enabled but not functional because the KVM 1070# kernel module cannot support it, KVMMissingCap 1071# - If no balloon device is present, DeviceNotActive 1072# 1073# Since: 0.14 1074# 1075# Example: 1076# 1077# -> { "execute": "query-balloon" } 1078# <- { "return": { 1079# "actual": 1073741824 1080# } 1081# } 1082# 1083## 1084{ 'command': 'query-balloon', 'returns': 'BalloonInfo' } 1085 1086## 1087# @BALLOON_CHANGE: 1088# 1089# Emitted when the guest changes the actual BALLOON level. This value is 1090# equivalent to the @actual field return by the 'query-balloon' command 1091# 1092# @actual: the logical size of the VM in bytes 1093# Formula used: logical_vm_size = vm_ram_size - balloon_size 1094# 1095# Note: this event is rate-limited. 1096# 1097# Since: 1.2 1098# 1099# Example: 1100# 1101# <- { "event": "BALLOON_CHANGE", 1102# "data": { "actual": 944766976 }, 1103# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 1104# 1105## 1106{ 'event': 'BALLOON_CHANGE', 1107 'data': { 'actual': 'int' } } 1108 1109## 1110# @MemoryInfo: 1111# 1112# Actual memory information in bytes. 1113# 1114# @base-memory: size of "base" memory specified with command line 1115# option -m. 1116# 1117# @plugged-memory: size of memory that can be hot-unplugged. This field 1118# is omitted if target doesn't support memory hotplug 1119# (i.e. CONFIG_MEM_DEVICE not defined at build time). 1120# 1121# Since: 2.11 1122## 1123{ 'struct': 'MemoryInfo', 1124 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 1125 1126## 1127# @query-memory-size-summary: 1128# 1129# Return the amount of initially allocated and present hotpluggable (if 1130# enabled) memory in bytes. 1131# 1132# Example: 1133# 1134# -> { "execute": "query-memory-size-summary" } 1135# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 1136# 1137# Since: 2.11 1138## 1139{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 1140 1141## 1142# @PCDIMMDeviceInfo: 1143# 1144# PCDIMMDevice state information 1145# 1146# @id: device's ID 1147# 1148# @addr: physical address, where device is mapped 1149# 1150# @size: size of memory that the device provides 1151# 1152# @slot: slot number at which device is plugged in 1153# 1154# @node: NUMA node number where device is plugged in 1155# 1156# @memdev: memory backend linked with device 1157# 1158# @hotplugged: true if device was hotplugged 1159# 1160# @hotpluggable: true if device if could be added/removed while machine is running 1161# 1162# Since: 2.1 1163## 1164{ 'struct': 'PCDIMMDeviceInfo', 1165 'data': { '*id': 'str', 1166 'addr': 'int', 1167 'size': 'int', 1168 'slot': 'int', 1169 'node': 'int', 1170 'memdev': 'str', 1171 'hotplugged': 'bool', 1172 'hotpluggable': 'bool' 1173 } 1174} 1175 1176## 1177# @VirtioPMEMDeviceInfo: 1178# 1179# VirtioPMEM state information 1180# 1181# @id: device's ID 1182# 1183# @memaddr: physical address in memory, where device is mapped 1184# 1185# @size: size of memory that the device provides 1186# 1187# @memdev: memory backend linked with device 1188# 1189# Since: 4.1 1190## 1191{ 'struct': 'VirtioPMEMDeviceInfo', 1192 'data': { '*id': 'str', 1193 'memaddr': 'size', 1194 'size': 'size', 1195 'memdev': 'str' 1196 } 1197} 1198 1199## 1200# @VirtioMEMDeviceInfo: 1201# 1202# VirtioMEMDevice state information 1203# 1204# @id: device's ID 1205# 1206# @memaddr: physical address in memory, where device is mapped 1207# 1208# @requested-size: the user requested size of the device 1209# 1210# @size: the (current) size of memory that the device provides 1211# 1212# @max-size: the maximum size of memory that the device can provide 1213# 1214# @block-size: the block size of memory that the device provides 1215# 1216# @node: NUMA node number where device is assigned to 1217# 1218# @memdev: memory backend linked with the region 1219# 1220# Since: 5.1 1221## 1222{ 'struct': 'VirtioMEMDeviceInfo', 1223 'data': { '*id': 'str', 1224 'memaddr': 'size', 1225 'requested-size': 'size', 1226 'size': 'size', 1227 'max-size': 'size', 1228 'block-size': 'size', 1229 'node': 'int', 1230 'memdev': 'str' 1231 } 1232} 1233 1234## 1235# @SgxEPCDeviceInfo: 1236# 1237# Sgx EPC state information 1238# 1239# @id: device's ID 1240# 1241# @memaddr: physical address in memory, where device is mapped 1242# 1243# @size: size of memory that the device provides 1244# 1245# @memdev: memory backend linked with device 1246# 1247# @node: the numa node (Since: 7.0) 1248# 1249# Since: 6.2 1250## 1251{ 'struct': 'SgxEPCDeviceInfo', 1252 'data': { '*id': 'str', 1253 'memaddr': 'size', 1254 'size': 'size', 1255 'node': 'int', 1256 'memdev': 'str' 1257 } 1258} 1259 1260## 1261# @MemoryDeviceInfoKind: 1262# 1263# @nvdimm: since 2.12 1264# 1265# @virtio-pmem: since 4.1 1266# 1267# @virtio-mem: since 5.1 1268# 1269# @sgx-epc: since 6.2. 1270# 1271# Since: 2.1 1272## 1273{ 'enum': 'MemoryDeviceInfoKind', 1274 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] } 1275 1276## 1277# @PCDIMMDeviceInfoWrapper: 1278# 1279# Since: 2.1 1280## 1281{ 'struct': 'PCDIMMDeviceInfoWrapper', 1282 'data': { 'data': 'PCDIMMDeviceInfo' } } 1283 1284## 1285# @VirtioPMEMDeviceInfoWrapper: 1286# 1287# Since: 2.1 1288## 1289{ 'struct': 'VirtioPMEMDeviceInfoWrapper', 1290 'data': { 'data': 'VirtioPMEMDeviceInfo' } } 1291 1292## 1293# @VirtioMEMDeviceInfoWrapper: 1294# 1295# Since: 2.1 1296## 1297{ 'struct': 'VirtioMEMDeviceInfoWrapper', 1298 'data': { 'data': 'VirtioMEMDeviceInfo' } } 1299 1300## 1301# @SgxEPCDeviceInfoWrapper: 1302# 1303# Since: 6.2 1304## 1305{ 'struct': 'SgxEPCDeviceInfoWrapper', 1306 'data': { 'data': 'SgxEPCDeviceInfo' } } 1307 1308## 1309# @MemoryDeviceInfo: 1310# 1311# Union containing information about a memory device 1312# 1313# Since: 2.1 1314## 1315{ 'union': 'MemoryDeviceInfo', 1316 'base': { 'type': 'MemoryDeviceInfoKind' }, 1317 'discriminator': 'type', 1318 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper', 1319 'nvdimm': 'PCDIMMDeviceInfoWrapper', 1320 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper', 1321 'virtio-mem': 'VirtioMEMDeviceInfoWrapper', 1322 'sgx-epc': 'SgxEPCDeviceInfoWrapper' 1323 } 1324} 1325 1326## 1327# @SgxEPC: 1328# 1329# Sgx EPC cmdline information 1330# 1331# @memdev: memory backend linked with device 1332# 1333# @node: the numa node (Since: 7.0) 1334# 1335# Since: 6.2 1336## 1337{ 'struct': 'SgxEPC', 1338 'data': { 'memdev': 'str', 1339 'node': 'int' 1340 } 1341} 1342 1343## 1344# @SgxEPCProperties: 1345# 1346# SGX properties of machine types. 1347# 1348# @sgx-epc: list of ids of memory-backend-epc objects. 1349# 1350# Since: 6.2 1351## 1352{ 'struct': 'SgxEPCProperties', 1353 'data': { 'sgx-epc': ['SgxEPC'] } 1354} 1355 1356## 1357# @query-memory-devices: 1358# 1359# Lists available memory devices and their state 1360# 1361# Since: 2.1 1362# 1363# Example: 1364# 1365# -> { "execute": "query-memory-devices" } 1366# <- { "return": [ { "data": 1367# { "addr": 5368709120, 1368# "hotpluggable": true, 1369# "hotplugged": true, 1370# "id": "d1", 1371# "memdev": "/objects/memX", 1372# "node": 0, 1373# "size": 1073741824, 1374# "slot": 0}, 1375# "type": "dimm" 1376# } ] } 1377# 1378## 1379{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 1380 1381## 1382# @MEMORY_DEVICE_SIZE_CHANGE: 1383# 1384# Emitted when the size of a memory device changes. Only emitted for memory 1385# devices that can actually change the size (e.g., virtio-mem due to guest 1386# action). 1387# 1388# @id: device's ID 1389# 1390# @size: the new size of memory that the device provides 1391# 1392# @qom-path: path to the device object in the QOM tree (since 6.2) 1393# 1394# Note: this event is rate-limited. 1395# 1396# Since: 5.1 1397# 1398# Example: 1399# 1400# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE", 1401# "data": { "id": "vm0", "size": 1073741824, 1402# "qom-path": "/machine/unattached/device[2]" }, 1403# "timestamp": { "seconds": 1588168529, "microseconds": 201316 } } 1404# 1405## 1406{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE', 1407 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} } 1408 1409## 1410# @MEM_UNPLUG_ERROR: 1411# 1412# Emitted when memory hot unplug error occurs. 1413# 1414# @device: device name 1415# 1416# @msg: Informative message 1417# 1418# Features: 1419# @deprecated: This event is deprecated. Use @DEVICE_UNPLUG_GUEST_ERROR 1420# instead. 1421# 1422# Since: 2.4 1423# 1424# Example: 1425# 1426# <- { "event": "MEM_UNPLUG_ERROR", 1427# "data": { "device": "dimm1", 1428# "msg": "acpi: device unplug for unsupported device" 1429# }, 1430# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1431# 1432## 1433{ 'event': 'MEM_UNPLUG_ERROR', 1434 'data': { 'device': 'str', 'msg': 'str' }, 1435 'features': ['deprecated'] } 1436 1437## 1438# @BootConfiguration: 1439# 1440# Schema for virtual machine boot configuration. 1441# 1442# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network) 1443# 1444# @once: Boot order to apply on first boot 1445# 1446# @menu: Whether to show a boot menu 1447# 1448# @splash: The name of the file to be passed to the firmware as logo picture, if @menu is true. 1449# 1450# @splash-time: How long to show the logo picture, in milliseconds 1451# 1452# @reboot-timeout: Timeout before guest reboots after boot fails 1453# 1454# @strict: Whether to attempt booting from devices not included in the boot order 1455# 1456# Since: 7.1 1457## 1458{ 'struct': 'BootConfiguration', 'data': { 1459 '*order': 'str', 1460 '*once': 'str', 1461 '*menu': 'bool', 1462 '*splash': 'str', 1463 '*splash-time': 'int', 1464 '*reboot-timeout': 'int', 1465 '*strict': 'bool' } } 1466 1467## 1468# @SMPConfiguration: 1469# 1470# Schema for CPU topology configuration. A missing value lets 1471# QEMU figure out a suitable value based on the ones that are provided. 1472# 1473# @cpus: number of virtual CPUs in the virtual machine 1474# 1475# @sockets: number of sockets in the CPU topology 1476# 1477# @dies: number of dies per socket in the CPU topology 1478# 1479# @clusters: number of clusters per die in the CPU topology (since 7.0) 1480# 1481# @cores: number of cores per cluster in the CPU topology 1482# 1483# @threads: number of threads per core in the CPU topology 1484# 1485# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine 1486# 1487# Since: 6.1 1488## 1489{ 'struct': 'SMPConfiguration', 'data': { 1490 '*cpus': 'int', 1491 '*sockets': 'int', 1492 '*dies': 'int', 1493 '*clusters': 'int', 1494 '*cores': 'int', 1495 '*threads': 'int', 1496 '*maxcpus': 'int' } } 1497 1498## 1499# @x-query-irq: 1500# 1501# Query interrupt statistics 1502# 1503# Features: 1504# @unstable: This command is meant for debugging. 1505# 1506# Returns: interrupt statistics 1507# 1508# Since: 6.2 1509## 1510{ 'command': 'x-query-irq', 1511 'returns': 'HumanReadableText', 1512 'features': [ 'unstable' ] } 1513 1514## 1515# @x-query-jit: 1516# 1517# Query TCG compiler statistics 1518# 1519# Features: 1520# @unstable: This command is meant for debugging. 1521# 1522# Returns: TCG compiler statistics 1523# 1524# Since: 6.2 1525## 1526{ 'command': 'x-query-jit', 1527 'returns': 'HumanReadableText', 1528 'if': 'CONFIG_TCG', 1529 'features': [ 'unstable' ] } 1530 1531## 1532# @x-query-numa: 1533# 1534# Query NUMA topology information 1535# 1536# Features: 1537# @unstable: This command is meant for debugging. 1538# 1539# Returns: topology information 1540# 1541# Since: 6.2 1542## 1543{ 'command': 'x-query-numa', 1544 'returns': 'HumanReadableText', 1545 'features': [ 'unstable' ] } 1546 1547## 1548# @x-query-opcount: 1549# 1550# Query TCG opcode counters 1551# 1552# Features: 1553# @unstable: This command is meant for debugging. 1554# 1555# Returns: TCG opcode counters 1556# 1557# Since: 6.2 1558## 1559{ 'command': 'x-query-opcount', 1560 'returns': 'HumanReadableText', 1561 'if': 'CONFIG_TCG', 1562 'features': [ 'unstable' ] } 1563 1564## 1565# @x-query-profile: 1566# 1567# Query TCG profiling information 1568# 1569# Features: 1570# @unstable: This command is meant for debugging. 1571# 1572# Returns: profile information 1573# 1574# Since: 6.2 1575## 1576{ 'command': 'x-query-profile', 1577 'returns': 'HumanReadableText', 1578 'if': 'CONFIG_TCG', 1579 'features': [ 'unstable' ] } 1580 1581## 1582# @x-query-ramblock: 1583# 1584# Query system ramblock information 1585# 1586# Features: 1587# @unstable: This command is meant for debugging. 1588# 1589# Returns: system ramblock information 1590# 1591# Since: 6.2 1592## 1593{ 'command': 'x-query-ramblock', 1594 'returns': 'HumanReadableText', 1595 'features': [ 'unstable' ] } 1596 1597## 1598# @x-query-rdma: 1599# 1600# Query RDMA state 1601# 1602# Features: 1603# @unstable: This command is meant for debugging. 1604# 1605# Returns: RDMA state 1606# 1607# Since: 6.2 1608## 1609{ 'command': 'x-query-rdma', 1610 'returns': 'HumanReadableText', 1611 'features': [ 'unstable' ] } 1612 1613## 1614# @x-query-roms: 1615# 1616# Query information on the registered ROMS 1617# 1618# Features: 1619# @unstable: This command is meant for debugging. 1620# 1621# Returns: registered ROMs 1622# 1623# Since: 6.2 1624## 1625{ 'command': 'x-query-roms', 1626 'returns': 'HumanReadableText', 1627 'features': [ 'unstable' ] } 1628 1629## 1630# @x-query-usb: 1631# 1632# Query information on the USB devices 1633# 1634# Features: 1635# @unstable: This command is meant for debugging. 1636# 1637# Returns: USB device information 1638# 1639# Since: 6.2 1640## 1641{ 'command': 'x-query-usb', 1642 'returns': 'HumanReadableText', 1643 'features': [ 'unstable' ] } 1644 1645## 1646# @SmbiosEntryPointType: 1647# 1648# @32: SMBIOS version 2.1 (32-bit) Entry Point 1649# 1650# @64: SMBIOS version 3.0 (64-bit) Entry Point 1651# 1652# Since: 7.0 1653## 1654{ 'enum': 'SmbiosEntryPointType', 1655 'data': [ '32', '64' ] } 1656 1657## 1658# @MemorySizeConfiguration: 1659# 1660# Schema for memory size configuration. 1661# 1662# @size: memory size in bytes 1663# 1664# @max-size: maximum hotpluggable memory size in bytes 1665# 1666# @slots: number of available memory slots for hotplug 1667# 1668# Since: 7.1 1669## 1670{ 'struct': 'MemorySizeConfiguration', 'data': { 1671 '*size': 'size', 1672 '*max-size': 'size', 1673 '*slots': 'uint64' } } 1674 1675## 1676# @dumpdtb: 1677# 1678# Save the FDT in dtb format. 1679# 1680# @filename: name of the dtb file to be created 1681# 1682# Since: 7.2 1683# 1684# Example: 1685# -> { "execute": "dumpdtb" } 1686# "arguments": { "filename": "fdt.dtb" } } 1687# <- { "return": {} } 1688# 1689## 1690{ 'command': 'dumpdtb', 1691 'data': { 'filename': 'str' }, 1692 'if': 'CONFIG_FDT' } 1693