xref: /openbmc/qemu/qapi/machine.json (revision 33e2c4d8)
1# -*- Mode: Python -*-
2#
3# This work is licensed under the terms of the GNU GPL, version 2 or later.
4# See the COPYING file in the top-level directory.
5
6##
7# = Machines
8##
9
10##
11# @SysEmuTarget:
12#
13# The comprehensive enumeration of QEMU system emulation ("softmmu")
14# targets. Run "./configure --help" in the project root directory, and
15# look for the *-softmmu targets near the "--target-list" option. The
16# individual target constants are not documented here, for the time
17# being.
18#
19# Notes: The resulting QMP strings can be appended to the "qemu-system-"
20#        prefix to produce the corresponding QEMU executable name. This
21#        is true even for "qemu-system-x86_64".
22#
23# Since: 3.0
24##
25{ 'enum' : 'SysEmuTarget',
26  'data' : [ 'aarch64', 'alpha', 'arm', 'cris', 'hppa', 'i386', 'lm32',
27             'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
28             'mips64el', 'mipsel', 'moxie', 'nios2', 'or1k', 'ppc',
29             'ppc64', 'riscv32', 'riscv64', 's390x', 'sh4',
30             'sh4eb', 'sparc', 'sparc64', 'tricore', 'unicore32',
31             'x86_64', 'xtensa', 'xtensaeb' ] }
32
33##
34# @CpuInfoArch:
35#
36# An enumeration of cpu types that enable additional information during
37# @query-cpus and @query-cpus-fast.
38#
39# @s390: since 2.12
40#
41# @riscv: since 2.12
42#
43# Since: 2.6
44##
45{ 'enum': 'CpuInfoArch',
46  'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
47
48##
49# @CpuInfo:
50#
51# Information about a virtual CPU
52#
53# @CPU: the index of the virtual CPU
54#
55# @current: this only exists for backwards compatibility and should be ignored
56#
57# @halted: true if the virtual CPU is in the halt state.  Halt usually refers
58#          to a processor specific low power mode.
59#
60# @qom_path: path to the CPU object in the QOM tree (since 2.4)
61#
62# @thread_id: ID of the underlying host thread
63#
64# @props: properties describing to which node/socket/core/thread
65#         virtual CPU belongs to, provided if supported by board (since 2.10)
66#
67# @arch: architecture of the cpu, which determines which additional fields
68#        will be listed (since 2.6)
69#
70# Since: 0.14.0
71#
72# Notes: @halted is a transient state that changes frequently.  By the time the
73#        data is sent to the client, the guest may no longer be halted.
74##
75{ 'union': 'CpuInfo',
76  'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
77           'qom_path': 'str', 'thread_id': 'int',
78           '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
79  'discriminator': 'arch',
80  'data': { 'x86': 'CpuInfoX86',
81            'sparc': 'CpuInfoSPARC',
82            'ppc': 'CpuInfoPPC',
83            'mips': 'CpuInfoMIPS',
84            'tricore': 'CpuInfoTricore',
85            's390': 'CpuInfoS390',
86            'riscv': 'CpuInfoRISCV' } }
87
88##
89# @CpuInfoX86:
90#
91# Additional information about a virtual i386 or x86_64 CPU
92#
93# @pc: the 64-bit instruction pointer
94#
95# Since: 2.6
96##
97{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
98
99##
100# @CpuInfoSPARC:
101#
102# Additional information about a virtual SPARC CPU
103#
104# @pc: the PC component of the instruction pointer
105#
106# @npc: the NPC component of the instruction pointer
107#
108# Since: 2.6
109##
110{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
111
112##
113# @CpuInfoPPC:
114#
115# Additional information about a virtual PPC CPU
116#
117# @nip: the instruction pointer
118#
119# Since: 2.6
120##
121{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
122
123##
124# @CpuInfoMIPS:
125#
126# Additional information about a virtual MIPS CPU
127#
128# @PC: the instruction pointer
129#
130# Since: 2.6
131##
132{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
133
134##
135# @CpuInfoTricore:
136#
137# Additional information about a virtual Tricore CPU
138#
139# @PC: the instruction pointer
140#
141# Since: 2.6
142##
143{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
144
145##
146# @CpuInfoRISCV:
147#
148# Additional information about a virtual RISCV CPU
149#
150# @pc: the instruction pointer
151#
152# Since 2.12
153##
154{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
155
156##
157# @CpuS390State:
158#
159# An enumeration of cpu states that can be assumed by a virtual
160# S390 CPU
161#
162# Since: 2.12
163##
164{ 'enum': 'CpuS390State',
165  'prefix': 'S390_CPU_STATE',
166  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
167
168##
169# @CpuInfoS390:
170#
171# Additional information about a virtual S390 CPU
172#
173# @cpu-state: the virtual CPU's state
174#
175# Since: 2.12
176##
177{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
178
179##
180# @query-cpus:
181#
182# Returns a list of information about each virtual CPU.
183#
184# This command causes vCPU threads to exit to userspace, which causes
185# a small interruption to guest CPU execution. This will have a negative
186# impact on realtime guests and other latency sensitive guest workloads.
187# It is recommended to use @query-cpus-fast instead of this command to
188# avoid the vCPU interruption.
189#
190# Returns: a list of @CpuInfo for each virtual CPU
191#
192# Since: 0.14.0
193#
194# Example:
195#
196# -> { "execute": "query-cpus" }
197# <- { "return": [
198#          {
199#             "CPU":0,
200#             "current":true,
201#             "halted":false,
202#             "qom_path":"/machine/unattached/device[0]",
203#             "arch":"x86",
204#             "pc":3227107138,
205#             "thread_id":3134
206#          },
207#          {
208#             "CPU":1,
209#             "current":false,
210#             "halted":true,
211#             "qom_path":"/machine/unattached/device[2]",
212#             "arch":"x86",
213#             "pc":7108165,
214#             "thread_id":3135
215#          }
216#       ]
217#    }
218#
219# Notes: This interface is deprecated (since 2.12.0), and it is strongly
220#        recommended that you avoid using it. Use @query-cpus-fast to
221#        obtain information about virtual CPUs.
222#
223##
224{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
225
226##
227# @CpuInfoFast:
228#
229# Information about a virtual CPU
230#
231# @cpu-index: index of the virtual CPU
232#
233# @qom-path: path to the CPU object in the QOM tree
234#
235# @thread-id: ID of the underlying host thread
236#
237# @props: properties describing to which node/socket/core/thread
238#         virtual CPU belongs to, provided if supported by board
239#
240# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
241#        of @target
242#
243# @target: the QEMU system emulation target, which determines which
244#          additional fields will be listed (since 3.0)
245#
246# Since: 2.12
247#
248##
249{ 'union'         : 'CpuInfoFast',
250  'base'          : { 'cpu-index'    : 'int',
251                      'qom-path'     : 'str',
252                      'thread-id'    : 'int',
253                      '*props'       : 'CpuInstanceProperties',
254                      'arch'         : 'CpuInfoArch',
255                      'target'       : 'SysEmuTarget' },
256  'discriminator' : 'target',
257  'data'          : { 's390x'        : 'CpuInfoS390' } }
258
259##
260# @query-cpus-fast:
261#
262# Returns information about all virtual CPUs. This command does not
263# incur a performance penalty and should be used in production
264# instead of query-cpus.
265#
266# Returns: list of @CpuInfoFast
267#
268# Since: 2.12
269#
270# Example:
271#
272# -> { "execute": "query-cpus-fast" }
273# <- { "return": [
274#         {
275#             "thread-id": 25627,
276#             "props": {
277#                 "core-id": 0,
278#                 "thread-id": 0,
279#                 "socket-id": 0
280#             },
281#             "qom-path": "/machine/unattached/device[0]",
282#             "arch":"x86",
283#             "target":"x86_64",
284#             "cpu-index": 0
285#         },
286#         {
287#             "thread-id": 25628,
288#             "props": {
289#                 "core-id": 0,
290#                 "thread-id": 0,
291#                 "socket-id": 1
292#             },
293#             "qom-path": "/machine/unattached/device[2]",
294#             "arch":"x86",
295#             "target":"x86_64",
296#             "cpu-index": 1
297#         }
298#     ]
299# }
300##
301{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
302
303##
304# @cpu-add:
305#
306# Adds CPU with specified ID.
307#
308# @id: ID of CPU to be created, valid values [0..max_cpus)
309#
310# Returns: Nothing on success
311#
312# Since: 1.5
313#
314# Note: This command is deprecated.  The `device_add` command should be
315#       used instead.  See the `query-hotpluggable-cpus` command for
316#       details.
317#
318# Example:
319#
320# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
321# <- { "return": {} }
322#
323##
324{ 'command': 'cpu-add', 'data': {'id': 'int'} }
325
326##
327# @MachineInfo:
328#
329# Information describing a machine.
330#
331# @name: the name of the machine
332#
333# @alias: an alias for the machine name
334#
335# @is-default: whether the machine is default
336#
337# @cpu-max: maximum number of CPUs supported by the machine type
338#           (since 1.5.0)
339#
340# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
341#
342# @numa-mem-supported: true if '-numa node,mem' option is supported by
343#                      the machine type and false otherwise (since 4.1)
344#
345# @deprecated: if true, the machine type is deprecated and may be removed
346#              in future versions of QEMU according to the QEMU deprecation
347#              policy (since 4.1.0)
348#
349# @default-cpu-type: default CPU model typename if none is requested via
350#                    the -cpu argument. (since 4.2)
351#
352# Since: 1.2.0
353##
354{ 'struct': 'MachineInfo',
355  'data': { 'name': 'str', '*alias': 'str',
356            '*is-default': 'bool', 'cpu-max': 'int',
357            'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
358            'deprecated': 'bool', '*default-cpu-type': 'str' } }
359
360##
361# @query-machines:
362#
363# Return a list of supported machines
364#
365# Returns: a list of MachineInfo
366#
367# Since: 1.2.0
368##
369{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
370
371##
372# @CurrentMachineParams:
373#
374# Information describing the running machine parameters.
375#
376# @wakeup-suspend-support: true if the machine supports wake up from
377#                          suspend
378#
379# Since: 4.0
380##
381{ 'struct': 'CurrentMachineParams',
382  'data': { 'wakeup-suspend-support': 'bool'} }
383
384##
385# @query-current-machine:
386#
387# Return information on the current virtual machine.
388#
389# Returns: CurrentMachineParams
390#
391# Since: 4.0
392##
393{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
394
395##
396# @TargetInfo:
397#
398# Information describing the QEMU target.
399#
400# @arch: the target architecture
401#
402# Since: 1.2.0
403##
404{ 'struct': 'TargetInfo',
405  'data': { 'arch': 'SysEmuTarget' } }
406
407##
408# @query-target:
409#
410# Return information about the target for this QEMU
411#
412# Returns: TargetInfo
413#
414# Since: 1.2.0
415##
416{ 'command': 'query-target', 'returns': 'TargetInfo' }
417
418##
419# @NumaOptionsType:
420#
421# @node: NUMA nodes configuration
422#
423# @dist: NUMA distance configuration (since 2.10)
424#
425# @cpu: property based CPU(s) to node mapping (Since: 2.10)
426#
427# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
428#
429# @hmat-cache: memory side cache information (Since: 5.0)
430#
431# Since: 2.1
432##
433{ 'enum': 'NumaOptionsType',
434  'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
435
436##
437# @NumaOptions:
438#
439# A discriminated record of NUMA options. (for OptsVisitor)
440#
441# Since: 2.1
442##
443{ 'union': 'NumaOptions',
444  'base': { 'type': 'NumaOptionsType' },
445  'discriminator': 'type',
446  'data': {
447    'node': 'NumaNodeOptions',
448    'dist': 'NumaDistOptions',
449    'cpu': 'NumaCpuOptions',
450    'hmat-lb': 'NumaHmatLBOptions',
451    'hmat-cache': 'NumaHmatCacheOptions' }}
452
453##
454# @NumaNodeOptions:
455#
456# Create a guest NUMA node. (for OptsVisitor)
457#
458# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
459#
460# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
461#         if omitted)
462#
463# @mem: memory size of this node; mutually exclusive with @memdev.
464#       Equally divide total memory among nodes if both @mem and @memdev are
465#       omitted.
466#
467# @memdev: memory backend object.  If specified for one node,
468#          it must be specified for all nodes.
469#
470# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
471#             points to the nodeid which has the memory controller
472#             responsible for this NUMA node. This field provides
473#             additional information as to the initiator node that
474#             is closest (as in directly attached) to this node, and
475#             therefore has the best performance (since 5.0)
476#
477# Since: 2.1
478##
479{ 'struct': 'NumaNodeOptions',
480  'data': {
481   '*nodeid': 'uint16',
482   '*cpus':   ['uint16'],
483   '*mem':    'size',
484   '*memdev': 'str',
485   '*initiator': 'uint16' }}
486
487##
488# @NumaDistOptions:
489#
490# Set the distance between 2 NUMA nodes.
491#
492# @src: source NUMA node.
493#
494# @dst: destination NUMA node.
495#
496# @val: NUMA distance from source node to destination node.
497#       When a node is unreachable from another node, set the distance
498#       between them to 255.
499#
500# Since: 2.10
501##
502{ 'struct': 'NumaDistOptions',
503  'data': {
504   'src': 'uint16',
505   'dst': 'uint16',
506   'val': 'uint8' }}
507
508##
509# @X86CPURegister32:
510#
511# A X86 32-bit register
512#
513# Since: 1.5
514##
515{ 'enum': 'X86CPURegister32',
516  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
517
518##
519# @X86CPUFeatureWordInfo:
520#
521# Information about a X86 CPU feature word
522#
523# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
524#
525# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
526#                   feature word
527#
528# @cpuid-register: Output register containing the feature bits
529#
530# @features: value of output register, containing the feature bits
531#
532# Since: 1.5
533##
534{ 'struct': 'X86CPUFeatureWordInfo',
535  'data': { 'cpuid-input-eax': 'int',
536            '*cpuid-input-ecx': 'int',
537            'cpuid-register': 'X86CPURegister32',
538            'features': 'int' } }
539
540##
541# @DummyForceArrays:
542#
543# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
544#
545# Since: 2.5
546##
547{ 'struct': 'DummyForceArrays',
548  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
549
550##
551# @NumaCpuOptions:
552#
553# Option "-numa cpu" overrides default cpu to node mapping.
554# It accepts the same set of cpu properties as returned by
555# query-hotpluggable-cpus[].props, where node-id could be used to
556# override default node mapping.
557#
558# Since: 2.10
559##
560{ 'struct': 'NumaCpuOptions',
561   'base': 'CpuInstanceProperties',
562   'data' : {} }
563
564##
565# @HmatLBMemoryHierarchy:
566#
567# The memory hierarchy in the System Locality Latency and Bandwidth
568# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
569#
570# For more information about @HmatLBMemoryHierarchy, see chapter
571# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
572#
573# @memory: the structure represents the memory performance
574#
575# @first-level: first level of memory side cache
576#
577# @second-level: second level of memory side cache
578#
579# @third-level: third level of memory side cache
580#
581# Since: 5.0
582##
583{ 'enum': 'HmatLBMemoryHierarchy',
584  'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
585
586##
587# @HmatLBDataType:
588#
589# Data type in the System Locality Latency and Bandwidth
590# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
591#
592# For more information about @HmatLBDataType, see chapter
593# 5.2.27.4: Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
594#
595# @access-latency: access latency (nanoseconds)
596#
597# @read-latency: read latency (nanoseconds)
598#
599# @write-latency: write latency (nanoseconds)
600#
601# @access-bandwidth: access bandwidth (Bytes per second)
602#
603# @read-bandwidth: read bandwidth (Bytes per second)
604#
605# @write-bandwidth: write bandwidth (Bytes per second)
606#
607# Since: 5.0
608##
609{ 'enum': 'HmatLBDataType',
610  'data': [ 'access-latency', 'read-latency', 'write-latency',
611            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
612
613##
614# @NumaHmatLBOptions:
615#
616# Set the system locality latency and bandwidth information
617# between Initiator and Target proximity Domains.
618#
619# For more information about @NumaHmatLBOptions, see chapter
620# 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
621#
622# @initiator: the Initiator Proximity Domain.
623#
624# @target: the Target Proximity Domain.
625#
626# @hierarchy: the Memory Hierarchy. Indicates the performance
627#             of memory or side cache.
628#
629# @data-type: presents the type of data, access/read/write
630#             latency or hit latency.
631#
632# @latency: the value of latency from @initiator to @target
633#           proximity domain, the latency unit is "ns(nanosecond)".
634#
635# @bandwidth: the value of bandwidth between @initiator and @target
636#             proximity domain, the bandwidth unit is
637#             "Bytes per second".
638#
639# Since: 5.0
640##
641{ 'struct': 'NumaHmatLBOptions',
642    'data': {
643    'initiator': 'uint16',
644    'target': 'uint16',
645    'hierarchy': 'HmatLBMemoryHierarchy',
646    'data-type': 'HmatLBDataType',
647    '*latency': 'uint64',
648    '*bandwidth': 'size' }}
649
650##
651# @HmatCacheAssociativity:
652#
653# Cache associativity in the Memory Side Cache Information Structure
654# of HMAT
655#
656# For more information of @HmatCacheAssociativity, see chapter
657# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
658#
659# @none: None (no memory side cache in this proximity domain,
660#              or cache associativity unknown)
661#
662# @direct: Direct Mapped
663#
664# @complex: Complex Cache Indexing (implementation specific)
665#
666# Since: 5.0
667##
668{ 'enum': 'HmatCacheAssociativity',
669  'data': [ 'none', 'direct', 'complex' ] }
670
671##
672# @HmatCacheWritePolicy:
673#
674# Cache write policy in the Memory Side Cache Information Structure
675# of HMAT
676#
677# For more information of @HmatCacheWritePolicy, see chapter
678# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
679#
680# @none: None (no memory side cache in this proximity domain,
681#        or cache write policy unknown)
682#
683# @write-back: Write Back (WB)
684#
685# @write-through: Write Through (WT)
686#
687# Since: 5.0
688##
689{ 'enum': 'HmatCacheWritePolicy',
690  'data': [ 'none', 'write-back', 'write-through' ] }
691
692##
693# @NumaHmatCacheOptions:
694#
695# Set the memory side cache information for a given memory domain.
696#
697# For more information of @NumaHmatCacheOptions, see chapter
698# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
699#
700# @node-id: the memory proximity domain to which the memory belongs.
701#
702# @size: the size of memory side cache in bytes.
703#
704# @level: the cache level described in this structure.
705#
706# @associativity: the cache associativity,
707#                 none/direct-mapped/complex(complex cache indexing).
708#
709# @policy: the write policy, none/write-back/write-through.
710#
711# @line: the cache Line size in bytes.
712#
713# Since: 5.0
714##
715{ 'struct': 'NumaHmatCacheOptions',
716  'data': {
717   'node-id': 'uint32',
718   'size': 'size',
719   'level': 'uint8',
720   'associativity': 'HmatCacheAssociativity',
721   'policy': 'HmatCacheWritePolicy',
722   'line': 'uint16' }}
723
724##
725# @HostMemPolicy:
726#
727# Host memory policy types
728#
729# @default: restore default policy, remove any nondefault policy
730#
731# @preferred: set the preferred host nodes for allocation
732#
733# @bind: a strict policy that restricts memory allocation to the
734#        host nodes specified
735#
736# @interleave: memory allocations are interleaved across the set
737#              of host nodes specified
738#
739# Since: 2.1
740##
741{ 'enum': 'HostMemPolicy',
742  'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
743
744##
745# @Memdev:
746#
747# Information about memory backend
748#
749# @id: backend's ID if backend has 'id' property (since 2.9)
750#
751# @size: memory backend size
752#
753# @merge: enables or disables memory merge support
754#
755# @dump: includes memory backend's memory in a core dump or not
756#
757# @prealloc: enables or disables memory preallocation
758#
759# @host-nodes: host nodes for its memory policy
760#
761# @policy: memory policy of memory backend
762#
763# Since: 2.1
764##
765{ 'struct': 'Memdev',
766  'data': {
767    '*id':        'str',
768    'size':       'size',
769    'merge':      'bool',
770    'dump':       'bool',
771    'prealloc':   'bool',
772    'host-nodes': ['uint16'],
773    'policy':     'HostMemPolicy' }}
774
775##
776# @query-memdev:
777#
778# Returns information for all memory backends.
779#
780# Returns: a list of @Memdev.
781#
782# Since: 2.1
783#
784# Example:
785#
786# -> { "execute": "query-memdev" }
787# <- { "return": [
788#        {
789#          "id": "mem1",
790#          "size": 536870912,
791#          "merge": false,
792#          "dump": true,
793#          "prealloc": false,
794#          "host-nodes": [0, 1],
795#          "policy": "bind"
796#        },
797#        {
798#          "size": 536870912,
799#          "merge": false,
800#          "dump": true,
801#          "prealloc": true,
802#          "host-nodes": [2, 3],
803#          "policy": "preferred"
804#        }
805#      ]
806#    }
807#
808##
809{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
810
811##
812# @CpuInstanceProperties:
813#
814# List of properties to be used for hotplugging a CPU instance,
815# it should be passed by management with device_add command when
816# a CPU is being hotplugged.
817#
818# @node-id: NUMA node ID the CPU belongs to
819# @socket-id: socket number within node/board the CPU belongs to
820# @die-id: die number within node/board the CPU belongs to (Since 4.1)
821# @core-id: core number within die the CPU belongs to# @thread-id: thread number within core the CPU belongs to
822#
823# Note: currently there are 5 properties that could be present
824#       but management should be prepared to pass through other
825#       properties with device_add command to allow for future
826#       interface extension. This also requires the filed names to be kept in
827#       sync with the properties passed to -device/device_add.
828#
829# Since: 2.7
830##
831{ 'struct': 'CpuInstanceProperties',
832  'data': { '*node-id': 'int',
833            '*socket-id': 'int',
834            '*die-id': 'int',
835            '*core-id': 'int',
836            '*thread-id': 'int'
837  }
838}
839
840##
841# @HotpluggableCPU:
842#
843# @type: CPU object type for usage with device_add command
844# @props: list of properties to be used for hotplugging CPU
845# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
846# @qom-path: link to existing CPU object if CPU is present or
847#            omitted if CPU is not present.
848#
849# Since: 2.7
850##
851{ 'struct': 'HotpluggableCPU',
852  'data': { 'type': 'str',
853            'vcpus-count': 'int',
854            'props': 'CpuInstanceProperties',
855            '*qom-path': 'str'
856          }
857}
858
859##
860# @query-hotpluggable-cpus:
861#
862# TODO: Better documentation; currently there is none.
863#
864# Returns: a list of HotpluggableCPU objects.
865#
866# Since: 2.7
867#
868# Example:
869#
870# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
871#
872# -> { "execute": "query-hotpluggable-cpus" }
873# <- {"return": [
874#      { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
875#        "vcpus-count": 1 },
876#      { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
877#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
878#    ]}'
879#
880# For pc machine type started with -smp 1,maxcpus=2:
881#
882# -> { "execute": "query-hotpluggable-cpus" }
883# <- {"return": [
884#      {
885#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
886#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
887#      },
888#      {
889#         "qom-path": "/machine/unattached/device[0]",
890#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
891#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
892#      }
893#    ]}
894#
895# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
896# (Since: 2.11):
897#
898# -> { "execute": "query-hotpluggable-cpus" }
899# <- {"return": [
900#      {
901#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
902#         "props": { "core-id": 1 }
903#      },
904#      {
905#         "qom-path": "/machine/unattached/device[0]",
906#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
907#         "props": { "core-id": 0 }
908#      }
909#    ]}
910#
911##
912{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
913             'allow-preconfig': true }
914
915##
916# @set-numa-node:
917#
918# Runtime equivalent of '-numa' CLI option, available at
919# preconfigure stage to configure numa mapping before initializing
920# machine.
921#
922# Since 3.0
923##
924{ 'command': 'set-numa-node', 'boxed': true,
925  'data': 'NumaOptions',
926  'allow-preconfig': true
927}
928