1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4# This work is licensed under the terms of the GNU GPL, version 2 or later. 5# See the COPYING file in the top-level directory. 6 7## 8# = Machines 9## 10 11{ 'include': 'common.json' } 12 13## 14# @SysEmuTarget: 15# 16# The comprehensive enumeration of QEMU system emulation ("softmmu") 17# targets. Run "./configure --help" in the project root directory, and 18# look for the \*-softmmu targets near the "--target-list" option. The 19# individual target constants are not documented here, for the time 20# being. 21# 22# @rx: since 5.0 23# @avr: since 5.1 24# 25# Notes: The resulting QMP strings can be appended to the "qemu-system-" 26# prefix to produce the corresponding QEMU executable name. This 27# is true even for "qemu-system-x86_64". 28# 29# Since: 3.0 30## 31{ 'enum' : 'SysEmuTarget', 32 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 33 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64', 34 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc', 35 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4', 36 'sh4eb', 'sparc', 'sparc64', 'tricore', 37 'x86_64', 'xtensa', 'xtensaeb' ] } 38 39## 40# @CpuS390State: 41# 42# An enumeration of cpu states that can be assumed by a virtual 43# S390 CPU 44# 45# Since: 2.12 46## 47{ 'enum': 'CpuS390State', 48 'prefix': 'S390_CPU_STATE', 49 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 50 51## 52# @CpuInfoS390: 53# 54# Additional information about a virtual S390 CPU 55# 56# @cpu-state: the virtual CPU's state 57# 58# Since: 2.12 59## 60{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } } 61 62## 63# @CpuInfoFast: 64# 65# Information about a virtual CPU 66# 67# @cpu-index: index of the virtual CPU 68# 69# @qom-path: path to the CPU object in the QOM tree 70# 71# @thread-id: ID of the underlying host thread 72# 73# @props: properties describing to which node/socket/core/thread 74# virtual CPU belongs to, provided if supported by board 75# 76# @target: the QEMU system emulation target, which determines which 77# additional fields will be listed (since 3.0) 78# 79# Since: 2.12 80# 81## 82{ 'union' : 'CpuInfoFast', 83 'base' : { 'cpu-index' : 'int', 84 'qom-path' : 'str', 85 'thread-id' : 'int', 86 '*props' : 'CpuInstanceProperties', 87 'target' : 'SysEmuTarget' }, 88 'discriminator' : 'target', 89 'data' : { 's390x' : 'CpuInfoS390' } } 90 91## 92# @query-cpus-fast: 93# 94# Returns information about all virtual CPUs. 95# 96# Returns: list of @CpuInfoFast 97# 98# Since: 2.12 99# 100# Example: 101# 102# -> { "execute": "query-cpus-fast" } 103# <- { "return": [ 104# { 105# "thread-id": 25627, 106# "props": { 107# "core-id": 0, 108# "thread-id": 0, 109# "socket-id": 0 110# }, 111# "qom-path": "/machine/unattached/device[0]", 112# "target":"x86_64", 113# "cpu-index": 0 114# }, 115# { 116# "thread-id": 25628, 117# "props": { 118# "core-id": 0, 119# "thread-id": 0, 120# "socket-id": 1 121# }, 122# "qom-path": "/machine/unattached/device[2]", 123# "target":"x86_64", 124# "cpu-index": 1 125# } 126# ] 127# } 128## 129{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 130 131## 132# @MachineInfo: 133# 134# Information describing a machine. 135# 136# @name: the name of the machine 137# 138# @alias: an alias for the machine name 139# 140# @is-default: whether the machine is default 141# 142# @cpu-max: maximum number of CPUs supported by the machine type 143# (since 1.5) 144# 145# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7) 146# 147# @numa-mem-supported: true if '-numa node,mem' option is supported by 148# the machine type and false otherwise (since 4.1) 149# 150# @deprecated: if true, the machine type is deprecated and may be removed 151# in future versions of QEMU according to the QEMU deprecation 152# policy (since 4.1) 153# 154# @default-cpu-type: default CPU model typename if none is requested via 155# the -cpu argument. (since 4.2) 156# 157# @default-ram-id: the default ID of initial RAM memory backend (since 5.2) 158# 159# Since: 1.2 160## 161{ 'struct': 'MachineInfo', 162 'data': { 'name': 'str', '*alias': 'str', 163 '*is-default': 'bool', 'cpu-max': 'int', 164 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool', 165 'deprecated': 'bool', '*default-cpu-type': 'str', 166 '*default-ram-id': 'str' } } 167 168## 169# @query-machines: 170# 171# Return a list of supported machines 172# 173# Returns: a list of MachineInfo 174# 175# Since: 1.2 176## 177{ 'command': 'query-machines', 'returns': ['MachineInfo'] } 178 179## 180# @CurrentMachineParams: 181# 182# Information describing the running machine parameters. 183# 184# @wakeup-suspend-support: true if the machine supports wake up from 185# suspend 186# 187# Since: 4.0 188## 189{ 'struct': 'CurrentMachineParams', 190 'data': { 'wakeup-suspend-support': 'bool'} } 191 192## 193# @query-current-machine: 194# 195# Return information on the current virtual machine. 196# 197# Returns: CurrentMachineParams 198# 199# Since: 4.0 200## 201{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' } 202 203## 204# @TargetInfo: 205# 206# Information describing the QEMU target. 207# 208# @arch: the target architecture 209# 210# Since: 1.2 211## 212{ 'struct': 'TargetInfo', 213 'data': { 'arch': 'SysEmuTarget' } } 214 215## 216# @query-target: 217# 218# Return information about the target for this QEMU 219# 220# Returns: TargetInfo 221# 222# Since: 1.2 223## 224{ 'command': 'query-target', 'returns': 'TargetInfo' } 225 226## 227# @UuidInfo: 228# 229# Guest UUID information (Universally Unique Identifier). 230# 231# @UUID: the UUID of the guest 232# 233# Since: 0.14 234# 235# Notes: If no UUID was specified for the guest, a null UUID is returned. 236## 237{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 238 239## 240# @query-uuid: 241# 242# Query the guest UUID information. 243# 244# Returns: The @UuidInfo for the guest 245# 246# Since: 0.14 247# 248# Example: 249# 250# -> { "execute": "query-uuid" } 251# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 252# 253## 254{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } 255 256## 257# @GuidInfo: 258# 259# GUID information. 260# 261# @guid: the globally unique identifier 262# 263# Since: 2.9 264## 265{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 266 267## 268# @query-vm-generation-id: 269# 270# Show Virtual Machine Generation ID 271# 272# Since: 2.9 273## 274{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 275 276## 277# @system_reset: 278# 279# Performs a hard reset of a guest. 280# 281# Since: 0.14 282# 283# Example: 284# 285# -> { "execute": "system_reset" } 286# <- { "return": {} } 287# 288## 289{ 'command': 'system_reset' } 290 291## 292# @system_powerdown: 293# 294# Requests that a guest perform a powerdown operation. 295# 296# Since: 0.14 297# 298# Notes: A guest may or may not respond to this command. This command 299# returning does not indicate that a guest has accepted the request or 300# that it has shut down. Many guests will respond to this command by 301# prompting the user in some way. 302# Example: 303# 304# -> { "execute": "system_powerdown" } 305# <- { "return": {} } 306# 307## 308{ 'command': 'system_powerdown' } 309 310## 311# @system_wakeup: 312# 313# Wake up guest from suspend. If the guest has wake-up from suspend 314# support enabled (wakeup-suspend-support flag from 315# query-current-machine), wake-up guest from suspend if the guest is 316# in SUSPENDED state. Return an error otherwise. 317# 318# Since: 1.1 319# 320# Returns: nothing. 321# 322# Note: prior to 4.0, this command does nothing in case the guest 323# isn't suspended. 324# 325# Example: 326# 327# -> { "execute": "system_wakeup" } 328# <- { "return": {} } 329# 330## 331{ 'command': 'system_wakeup' } 332 333## 334# @LostTickPolicy: 335# 336# Policy for handling lost ticks in timer devices. Ticks end up getting 337# lost when, for example, the guest is paused. 338# 339# @discard: throw away the missed ticks and continue with future injection 340# normally. The guest OS will see the timer jump ahead by a 341# potentially quite significant amount all at once, as if the 342# intervening chunk of time had simply not existed; needless to 343# say, such a sudden jump can easily confuse a guest OS which is 344# not specifically prepared to deal with it. Assuming the guest 345# OS can deal correctly with the time jump, the time in the guest 346# and in the host should now match. 347# 348# @delay: continue to deliver ticks at the normal rate. The guest OS will 349# not notice anything is amiss, as from its point of view time will 350# have continued to flow normally. The time in the guest should now 351# be behind the time in the host by exactly the amount of time during 352# which ticks have been missed. 353# 354# @slew: deliver ticks at a higher rate to catch up with the missed ticks. 355# The guest OS will not notice anything is amiss, as from its point 356# of view time will have continued to flow normally. Once the timer 357# has managed to catch up with all the missing ticks, the time in 358# the guest and in the host should match. 359# 360# Since: 2.0 361## 362{ 'enum': 'LostTickPolicy', 363 'data': ['discard', 'delay', 'slew' ] } 364 365## 366# @inject-nmi: 367# 368# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64). 369# The command fails when the guest doesn't support injecting. 370# 371# Returns: If successful, nothing 372# 373# Since: 0.14 374# 375# Note: prior to 2.1, this command was only supported for x86 and s390 VMs 376# 377# Example: 378# 379# -> { "execute": "inject-nmi" } 380# <- { "return": {} } 381# 382## 383{ 'command': 'inject-nmi' } 384 385## 386# @KvmInfo: 387# 388# Information about support for KVM acceleration 389# 390# @enabled: true if KVM acceleration is active 391# 392# @present: true if KVM acceleration is built into this executable 393# 394# Since: 0.14 395## 396{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 397 398## 399# @query-kvm: 400# 401# Returns information about KVM acceleration 402# 403# Returns: @KvmInfo 404# 405# Since: 0.14 406# 407# Example: 408# 409# -> { "execute": "query-kvm" } 410# <- { "return": { "enabled": true, "present": true } } 411# 412## 413{ 'command': 'query-kvm', 'returns': 'KvmInfo' } 414 415## 416# @NumaOptionsType: 417# 418# @node: NUMA nodes configuration 419# 420# @dist: NUMA distance configuration (since 2.10) 421# 422# @cpu: property based CPU(s) to node mapping (Since: 2.10) 423# 424# @hmat-lb: memory latency and bandwidth information (Since: 5.0) 425# 426# @hmat-cache: memory side cache information (Since: 5.0) 427# 428# Since: 2.1 429## 430{ 'enum': 'NumaOptionsType', 431 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] } 432 433## 434# @NumaOptions: 435# 436# A discriminated record of NUMA options. (for OptsVisitor) 437# 438# Since: 2.1 439## 440{ 'union': 'NumaOptions', 441 'base': { 'type': 'NumaOptionsType' }, 442 'discriminator': 'type', 443 'data': { 444 'node': 'NumaNodeOptions', 445 'dist': 'NumaDistOptions', 446 'cpu': 'NumaCpuOptions', 447 'hmat-lb': 'NumaHmatLBOptions', 448 'hmat-cache': 'NumaHmatCacheOptions' }} 449 450## 451# @NumaNodeOptions: 452# 453# Create a guest NUMA node. (for OptsVisitor) 454# 455# @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 456# 457# @cpus: VCPUs belonging to this node (assign VCPUS round-robin 458# if omitted) 459# 460# @mem: memory size of this node; mutually exclusive with @memdev. 461# Equally divide total memory among nodes if both @mem and @memdev are 462# omitted. 463# 464# @memdev: memory backend object. If specified for one node, 465# it must be specified for all nodes. 466# 467# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, 468# points to the nodeid which has the memory controller 469# responsible for this NUMA node. This field provides 470# additional information as to the initiator node that 471# is closest (as in directly attached) to this node, and 472# therefore has the best performance (since 5.0) 473# 474# Since: 2.1 475## 476{ 'struct': 'NumaNodeOptions', 477 'data': { 478 '*nodeid': 'uint16', 479 '*cpus': ['uint16'], 480 '*mem': 'size', 481 '*memdev': 'str', 482 '*initiator': 'uint16' }} 483 484## 485# @NumaDistOptions: 486# 487# Set the distance between 2 NUMA nodes. 488# 489# @src: source NUMA node. 490# 491# @dst: destination NUMA node. 492# 493# @val: NUMA distance from source node to destination node. 494# When a node is unreachable from another node, set the distance 495# between them to 255. 496# 497# Since: 2.10 498## 499{ 'struct': 'NumaDistOptions', 500 'data': { 501 'src': 'uint16', 502 'dst': 'uint16', 503 'val': 'uint8' }} 504 505## 506# @X86CPURegister32: 507# 508# A X86 32-bit register 509# 510# Since: 1.5 511## 512{ 'enum': 'X86CPURegister32', 513 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 514 515## 516# @X86CPUFeatureWordInfo: 517# 518# Information about a X86 CPU feature word 519# 520# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word 521# 522# @cpuid-input-ecx: Input ECX value for CPUID instruction for that 523# feature word 524# 525# @cpuid-register: Output register containing the feature bits 526# 527# @features: value of output register, containing the feature bits 528# 529# Since: 1.5 530## 531{ 'struct': 'X86CPUFeatureWordInfo', 532 'data': { 'cpuid-input-eax': 'int', 533 '*cpuid-input-ecx': 'int', 534 'cpuid-register': 'X86CPURegister32', 535 'features': 'int' } } 536 537## 538# @DummyForceArrays: 539# 540# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally 541# 542# Since: 2.5 543## 544{ 'struct': 'DummyForceArrays', 545 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 546 547## 548# @NumaCpuOptions: 549# 550# Option "-numa cpu" overrides default cpu to node mapping. 551# It accepts the same set of cpu properties as returned by 552# query-hotpluggable-cpus[].props, where node-id could be used to 553# override default node mapping. 554# 555# Since: 2.10 556## 557{ 'struct': 'NumaCpuOptions', 558 'base': 'CpuInstanceProperties', 559 'data' : {} } 560 561## 562# @HmatLBMemoryHierarchy: 563# 564# The memory hierarchy in the System Locality Latency and Bandwidth 565# Information Structure of HMAT (Heterogeneous Memory Attribute Table) 566# 567# For more information about @HmatLBMemoryHierarchy, see chapter 568# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. 569# 570# @memory: the structure represents the memory performance 571# 572# @first-level: first level of memory side cache 573# 574# @second-level: second level of memory side cache 575# 576# @third-level: third level of memory side cache 577# 578# Since: 5.0 579## 580{ 'enum': 'HmatLBMemoryHierarchy', 581 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } 582 583## 584# @HmatLBDataType: 585# 586# Data type in the System Locality Latency and Bandwidth 587# Information Structure of HMAT (Heterogeneous Memory Attribute Table) 588# 589# For more information about @HmatLBDataType, see chapter 590# 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec. 591# 592# @access-latency: access latency (nanoseconds) 593# 594# @read-latency: read latency (nanoseconds) 595# 596# @write-latency: write latency (nanoseconds) 597# 598# @access-bandwidth: access bandwidth (Bytes per second) 599# 600# @read-bandwidth: read bandwidth (Bytes per second) 601# 602# @write-bandwidth: write bandwidth (Bytes per second) 603# 604# Since: 5.0 605## 606{ 'enum': 'HmatLBDataType', 607 'data': [ 'access-latency', 'read-latency', 'write-latency', 608 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } 609 610## 611# @NumaHmatLBOptions: 612# 613# Set the system locality latency and bandwidth information 614# between Initiator and Target proximity Domains. 615# 616# For more information about @NumaHmatLBOptions, see chapter 617# 5.2.27.4: Table 5-146 of ACPI 6.3 spec. 618# 619# @initiator: the Initiator Proximity Domain. 620# 621# @target: the Target Proximity Domain. 622# 623# @hierarchy: the Memory Hierarchy. Indicates the performance 624# of memory or side cache. 625# 626# @data-type: presents the type of data, access/read/write 627# latency or hit latency. 628# 629# @latency: the value of latency from @initiator to @target 630# proximity domain, the latency unit is "ns(nanosecond)". 631# 632# @bandwidth: the value of bandwidth between @initiator and @target 633# proximity domain, the bandwidth unit is 634# "Bytes per second". 635# 636# Since: 5.0 637## 638{ 'struct': 'NumaHmatLBOptions', 639 'data': { 640 'initiator': 'uint16', 641 'target': 'uint16', 642 'hierarchy': 'HmatLBMemoryHierarchy', 643 'data-type': 'HmatLBDataType', 644 '*latency': 'uint64', 645 '*bandwidth': 'size' }} 646 647## 648# @HmatCacheAssociativity: 649# 650# Cache associativity in the Memory Side Cache Information Structure 651# of HMAT 652# 653# For more information of @HmatCacheAssociativity, see chapter 654# 5.2.27.5: Table 5-147 of ACPI 6.3 spec. 655# 656# @none: None (no memory side cache in this proximity domain, 657# or cache associativity unknown) 658# 659# @direct: Direct Mapped 660# 661# @complex: Complex Cache Indexing (implementation specific) 662# 663# Since: 5.0 664## 665{ 'enum': 'HmatCacheAssociativity', 666 'data': [ 'none', 'direct', 'complex' ] } 667 668## 669# @HmatCacheWritePolicy: 670# 671# Cache write policy in the Memory Side Cache Information Structure 672# of HMAT 673# 674# For more information of @HmatCacheWritePolicy, see chapter 675# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 676# 677# @none: None (no memory side cache in this proximity domain, 678# or cache write policy unknown) 679# 680# @write-back: Write Back (WB) 681# 682# @write-through: Write Through (WT) 683# 684# Since: 5.0 685## 686{ 'enum': 'HmatCacheWritePolicy', 687 'data': [ 'none', 'write-back', 'write-through' ] } 688 689## 690# @NumaHmatCacheOptions: 691# 692# Set the memory side cache information for a given memory domain. 693# 694# For more information of @NumaHmatCacheOptions, see chapter 695# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 696# 697# @node-id: the memory proximity domain to which the memory belongs. 698# 699# @size: the size of memory side cache in bytes. 700# 701# @level: the cache level described in this structure. 702# 703# @associativity: the cache associativity, 704# none/direct-mapped/complex(complex cache indexing). 705# 706# @policy: the write policy, none/write-back/write-through. 707# 708# @line: the cache Line size in bytes. 709# 710# Since: 5.0 711## 712{ 'struct': 'NumaHmatCacheOptions', 713 'data': { 714 'node-id': 'uint32', 715 'size': 'size', 716 'level': 'uint8', 717 'associativity': 'HmatCacheAssociativity', 718 'policy': 'HmatCacheWritePolicy', 719 'line': 'uint16' }} 720 721## 722# @memsave: 723# 724# Save a portion of guest memory to a file. 725# 726# @val: the virtual address of the guest to start from 727# 728# @size: the size of memory region to save 729# 730# @filename: the file to save the memory to as binary data 731# 732# @cpu-index: the index of the virtual CPU to use for translating the 733# virtual address (defaults to CPU 0) 734# 735# Returns: Nothing on success 736# 737# Since: 0.14 738# 739# Notes: Errors were not reliably returned until 1.1 740# 741# Example: 742# 743# -> { "execute": "memsave", 744# "arguments": { "val": 10, 745# "size": 100, 746# "filename": "/tmp/virtual-mem-dump" } } 747# <- { "return": {} } 748# 749## 750{ 'command': 'memsave', 751 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 752 753## 754# @pmemsave: 755# 756# Save a portion of guest physical memory to a file. 757# 758# @val: the physical address of the guest to start from 759# 760# @size: the size of memory region to save 761# 762# @filename: the file to save the memory to as binary data 763# 764# Returns: Nothing on success 765# 766# Since: 0.14 767# 768# Notes: Errors were not reliably returned until 1.1 769# 770# Example: 771# 772# -> { "execute": "pmemsave", 773# "arguments": { "val": 10, 774# "size": 100, 775# "filename": "/tmp/physical-mem-dump" } } 776# <- { "return": {} } 777# 778## 779{ 'command': 'pmemsave', 780 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 781 782## 783# @Memdev: 784# 785# Information about memory backend 786# 787# @id: backend's ID if backend has 'id' property (since 2.9) 788# 789# @size: memory backend size 790# 791# @merge: whether memory merge support is enabled 792# 793# @dump: whether memory backend's memory is included in a core dump 794# 795# @prealloc: whether memory was preallocated 796# 797# @share: whether memory is private to QEMU or shared (since 6.1) 798# 799# @reserve: whether swap space (or huge pages) was reserved if applicable. 800# This corresponds to the user configuration and not the actual 801# behavior implemented in the OS to perform the reservation. 802# For example, Linux will never reserve swap space for shared 803# file mappings. (since 6.1) 804# 805# @host-nodes: host nodes for its memory policy 806# 807# @policy: memory policy of memory backend 808# 809# Since: 2.1 810## 811{ 'struct': 'Memdev', 812 'data': { 813 '*id': 'str', 814 'size': 'size', 815 'merge': 'bool', 816 'dump': 'bool', 817 'prealloc': 'bool', 818 'share': 'bool', 819 '*reserve': 'bool', 820 'host-nodes': ['uint16'], 821 'policy': 'HostMemPolicy' }} 822 823## 824# @query-memdev: 825# 826# Returns information for all memory backends. 827# 828# Returns: a list of @Memdev. 829# 830# Since: 2.1 831# 832# Example: 833# 834# -> { "execute": "query-memdev" } 835# <- { "return": [ 836# { 837# "id": "mem1", 838# "size": 536870912, 839# "merge": false, 840# "dump": true, 841# "prealloc": false, 842# "share": false, 843# "host-nodes": [0, 1], 844# "policy": "bind" 845# }, 846# { 847# "size": 536870912, 848# "merge": false, 849# "dump": true, 850# "prealloc": true, 851# "share": false, 852# "host-nodes": [2, 3], 853# "policy": "preferred" 854# } 855# ] 856# } 857# 858## 859{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } 860 861## 862# @CpuInstanceProperties: 863# 864# List of properties to be used for hotplugging a CPU instance, 865# it should be passed by management with device_add command when 866# a CPU is being hotplugged. 867# 868# @node-id: NUMA node ID the CPU belongs to 869# @socket-id: socket number within node/board the CPU belongs to 870# @die-id: die number within socket the CPU belongs to (since 4.1) 871# @core-id: core number within die the CPU belongs to 872# @thread-id: thread number within core the CPU belongs to 873# 874# Note: currently there are 5 properties that could be present 875# but management should be prepared to pass through other 876# properties with device_add command to allow for future 877# interface extension. This also requires the filed names to be kept in 878# sync with the properties passed to -device/device_add. 879# 880# Since: 2.7 881## 882{ 'struct': 'CpuInstanceProperties', 883 'data': { '*node-id': 'int', 884 '*socket-id': 'int', 885 '*die-id': 'int', 886 '*core-id': 'int', 887 '*thread-id': 'int' 888 } 889} 890 891## 892# @HotpluggableCPU: 893# 894# @type: CPU object type for usage with device_add command 895# @props: list of properties to be used for hotplugging CPU 896# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides 897# @qom-path: link to existing CPU object if CPU is present or 898# omitted if CPU is not present. 899# 900# Since: 2.7 901## 902{ 'struct': 'HotpluggableCPU', 903 'data': { 'type': 'str', 904 'vcpus-count': 'int', 905 'props': 'CpuInstanceProperties', 906 '*qom-path': 'str' 907 } 908} 909 910## 911# @query-hotpluggable-cpus: 912# 913# TODO: Better documentation; currently there is none. 914# 915# Returns: a list of HotpluggableCPU objects. 916# 917# Since: 2.7 918# 919# Example: 920# 921# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8: 922# 923# -> { "execute": "query-hotpluggable-cpus" } 924# <- {"return": [ 925# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core", 926# "vcpus-count": 1 }, 927# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core", 928# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 929# ]}' 930# 931# For pc machine type started with -smp 1,maxcpus=2: 932# 933# -> { "execute": "query-hotpluggable-cpus" } 934# <- {"return": [ 935# { 936# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 937# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 938# }, 939# { 940# "qom-path": "/machine/unattached/device[0]", 941# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 942# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 943# } 944# ]} 945# 946# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu 947# (Since: 2.11): 948# 949# -> { "execute": "query-hotpluggable-cpus" } 950# <- {"return": [ 951# { 952# "type": "qemu-s390x-cpu", "vcpus-count": 1, 953# "props": { "core-id": 1 } 954# }, 955# { 956# "qom-path": "/machine/unattached/device[0]", 957# "type": "qemu-s390x-cpu", "vcpus-count": 1, 958# "props": { "core-id": 0 } 959# } 960# ]} 961# 962## 963{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 964 'allow-preconfig': true } 965 966## 967# @set-numa-node: 968# 969# Runtime equivalent of '-numa' CLI option, available at 970# preconfigure stage to configure numa mapping before initializing 971# machine. 972# 973# Since 3.0 974## 975{ 'command': 'set-numa-node', 'boxed': true, 976 'data': 'NumaOptions', 977 'allow-preconfig': true 978} 979 980## 981# @balloon: 982# 983# Request the balloon driver to change its balloon size. 984# 985# @value: the target logical size of the VM in bytes. 986# We can deduce the size of the balloon using this formula: 987# 988# logical_vm_size = vm_ram_size - balloon_size 989# 990# From it we have: balloon_size = vm_ram_size - @value 991# 992# Returns: - Nothing on success 993# - If the balloon driver is enabled but not functional because the KVM 994# kernel module cannot support it, KvmMissingCap 995# - If no balloon device is present, DeviceNotActive 996# 997# Notes: This command just issues a request to the guest. When it returns, 998# the balloon size may not have changed. A guest can change the balloon 999# size independent of this command. 1000# 1001# Since: 0.14 1002# 1003# Example: 1004# 1005# -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1006# <- { "return": {} } 1007# 1008# With a 2.5GiB guest this command inflated the ballon to 3GiB. 1009# 1010## 1011{ 'command': 'balloon', 'data': {'value': 'int'} } 1012 1013## 1014# @BalloonInfo: 1015# 1016# Information about the guest balloon device. 1017# 1018# @actual: the logical size of the VM in bytes 1019# Formula used: logical_vm_size = vm_ram_size - balloon_size 1020# 1021# Since: 0.14 1022# 1023## 1024{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 1025 1026## 1027# @query-balloon: 1028# 1029# Return information about the balloon device. 1030# 1031# Returns: - @BalloonInfo on success 1032# - If the balloon driver is enabled but not functional because the KVM 1033# kernel module cannot support it, KvmMissingCap 1034# - If no balloon device is present, DeviceNotActive 1035# 1036# Since: 0.14 1037# 1038# Example: 1039# 1040# -> { "execute": "query-balloon" } 1041# <- { "return": { 1042# "actual": 1073741824, 1043# } 1044# } 1045# 1046## 1047{ 'command': 'query-balloon', 'returns': 'BalloonInfo' } 1048 1049## 1050# @BALLOON_CHANGE: 1051# 1052# Emitted when the guest changes the actual BALLOON level. This value is 1053# equivalent to the @actual field return by the 'query-balloon' command 1054# 1055# @actual: the logical size of the VM in bytes 1056# Formula used: logical_vm_size = vm_ram_size - balloon_size 1057# 1058# Note: this event is rate-limited. 1059# 1060# Since: 1.2 1061# 1062# Example: 1063# 1064# <- { "event": "BALLOON_CHANGE", 1065# "data": { "actual": 944766976 }, 1066# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 1067# 1068## 1069{ 'event': 'BALLOON_CHANGE', 1070 'data': { 'actual': 'int' } } 1071 1072## 1073# @MemoryInfo: 1074# 1075# Actual memory information in bytes. 1076# 1077# @base-memory: size of "base" memory specified with command line 1078# option -m. 1079# 1080# @plugged-memory: size of memory that can be hot-unplugged. This field 1081# is omitted if target doesn't support memory hotplug 1082# (i.e. CONFIG_MEM_DEVICE not defined at build time). 1083# 1084# Since: 2.11 1085## 1086{ 'struct': 'MemoryInfo', 1087 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 1088 1089## 1090# @query-memory-size-summary: 1091# 1092# Return the amount of initially allocated and present hotpluggable (if 1093# enabled) memory in bytes. 1094# 1095# Example: 1096# 1097# -> { "execute": "query-memory-size-summary" } 1098# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 1099# 1100# Since: 2.11 1101## 1102{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 1103 1104## 1105# @PCDIMMDeviceInfo: 1106# 1107# PCDIMMDevice state information 1108# 1109# @id: device's ID 1110# 1111# @addr: physical address, where device is mapped 1112# 1113# @size: size of memory that the device provides 1114# 1115# @slot: slot number at which device is plugged in 1116# 1117# @node: NUMA node number where device is plugged in 1118# 1119# @memdev: memory backend linked with device 1120# 1121# @hotplugged: true if device was hotplugged 1122# 1123# @hotpluggable: true if device if could be added/removed while machine is running 1124# 1125# Since: 2.1 1126## 1127{ 'struct': 'PCDIMMDeviceInfo', 1128 'data': { '*id': 'str', 1129 'addr': 'int', 1130 'size': 'int', 1131 'slot': 'int', 1132 'node': 'int', 1133 'memdev': 'str', 1134 'hotplugged': 'bool', 1135 'hotpluggable': 'bool' 1136 } 1137} 1138 1139## 1140# @VirtioPMEMDeviceInfo: 1141# 1142# VirtioPMEM state information 1143# 1144# @id: device's ID 1145# 1146# @memaddr: physical address in memory, where device is mapped 1147# 1148# @size: size of memory that the device provides 1149# 1150# @memdev: memory backend linked with device 1151# 1152# Since: 4.1 1153## 1154{ 'struct': 'VirtioPMEMDeviceInfo', 1155 'data': { '*id': 'str', 1156 'memaddr': 'size', 1157 'size': 'size', 1158 'memdev': 'str' 1159 } 1160} 1161 1162## 1163# @VirtioMEMDeviceInfo: 1164# 1165# VirtioMEMDevice state information 1166# 1167# @id: device's ID 1168# 1169# @memaddr: physical address in memory, where device is mapped 1170# 1171# @requested-size: the user requested size of the device 1172# 1173# @size: the (current) size of memory that the device provides 1174# 1175# @max-size: the maximum size of memory that the device can provide 1176# 1177# @block-size: the block size of memory that the device provides 1178# 1179# @node: NUMA node number where device is assigned to 1180# 1181# @memdev: memory backend linked with the region 1182# 1183# Since: 5.1 1184## 1185{ 'struct': 'VirtioMEMDeviceInfo', 1186 'data': { '*id': 'str', 1187 'memaddr': 'size', 1188 'requested-size': 'size', 1189 'size': 'size', 1190 'max-size': 'size', 1191 'block-size': 'size', 1192 'node': 'int', 1193 'memdev': 'str' 1194 } 1195} 1196 1197## 1198# @SgxEPCDeviceInfo: 1199# 1200# Sgx EPC state information 1201# 1202# @id: device's ID 1203# 1204# @memaddr: physical address in memory, where device is mapped 1205# 1206# @size: size of memory that the device provides 1207# 1208# @memdev: memory backend linked with device 1209# 1210# @node: the numa node (Since: 7.0) 1211# 1212# Since: 6.2 1213## 1214{ 'struct': 'SgxEPCDeviceInfo', 1215 'data': { '*id': 'str', 1216 'memaddr': 'size', 1217 'size': 'size', 1218 'node': 'int', 1219 'memdev': 'str' 1220 } 1221} 1222 1223## 1224# @MemoryDeviceInfoKind: 1225# 1226# Since: 2.1 1227## 1228{ 'enum': 'MemoryDeviceInfoKind', 1229 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] } 1230 1231## 1232# @PCDIMMDeviceInfoWrapper: 1233# 1234# Since: 2.1 1235## 1236{ 'struct': 'PCDIMMDeviceInfoWrapper', 1237 'data': { 'data': 'PCDIMMDeviceInfo' } } 1238 1239## 1240# @VirtioPMEMDeviceInfoWrapper: 1241# 1242# Since: 2.1 1243## 1244{ 'struct': 'VirtioPMEMDeviceInfoWrapper', 1245 'data': { 'data': 'VirtioPMEMDeviceInfo' } } 1246 1247## 1248# @VirtioMEMDeviceInfoWrapper: 1249# 1250# Since: 2.1 1251## 1252{ 'struct': 'VirtioMEMDeviceInfoWrapper', 1253 'data': { 'data': 'VirtioMEMDeviceInfo' } } 1254 1255## 1256# @SgxEPCDeviceInfoWrapper: 1257# 1258# Since: 6.2 1259## 1260{ 'struct': 'SgxEPCDeviceInfoWrapper', 1261 'data': { 'data': 'SgxEPCDeviceInfo' } } 1262 1263## 1264# @MemoryDeviceInfo: 1265# 1266# Union containing information about a memory device 1267# 1268# nvdimm is included since 2.12. virtio-pmem is included since 4.1. 1269# virtio-mem is included since 5.1. sgx-epc is included since 6.2. 1270# 1271# Since: 2.1 1272## 1273{ 'union': 'MemoryDeviceInfo', 1274 'base': { 'type': 'MemoryDeviceInfoKind' }, 1275 'discriminator': 'type', 1276 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper', 1277 'nvdimm': 'PCDIMMDeviceInfoWrapper', 1278 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper', 1279 'virtio-mem': 'VirtioMEMDeviceInfoWrapper', 1280 'sgx-epc': 'SgxEPCDeviceInfoWrapper' 1281 } 1282} 1283 1284## 1285# @SgxEPC: 1286# 1287# Sgx EPC cmdline information 1288# 1289# @memdev: memory backend linked with device 1290# 1291# @node: the numa node (Since: 7.0) 1292# 1293# Since: 6.2 1294## 1295{ 'struct': 'SgxEPC', 1296 'data': { 'memdev': 'str', 1297 'node': 'int' 1298 } 1299} 1300 1301## 1302# @SgxEPCProperties: 1303# 1304# SGX properties of machine types. 1305# 1306# @sgx-epc: list of ids of memory-backend-epc objects. 1307# 1308# Since: 6.2 1309## 1310{ 'struct': 'SgxEPCProperties', 1311 'data': { 'sgx-epc': ['SgxEPC'] } 1312} 1313 1314## 1315# @query-memory-devices: 1316# 1317# Lists available memory devices and their state 1318# 1319# Since: 2.1 1320# 1321# Example: 1322# 1323# -> { "execute": "query-memory-devices" } 1324# <- { "return": [ { "data": 1325# { "addr": 5368709120, 1326# "hotpluggable": true, 1327# "hotplugged": true, 1328# "id": "d1", 1329# "memdev": "/objects/memX", 1330# "node": 0, 1331# "size": 1073741824, 1332# "slot": 0}, 1333# "type": "dimm" 1334# } ] } 1335# 1336## 1337{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 1338 1339## 1340# @MEMORY_DEVICE_SIZE_CHANGE: 1341# 1342# Emitted when the size of a memory device changes. Only emitted for memory 1343# devices that can actually change the size (e.g., virtio-mem due to guest 1344# action). 1345# 1346# @id: device's ID 1347# 1348# @size: the new size of memory that the device provides 1349# 1350# @qom-path: path to the device object in the QOM tree (since 6.2) 1351# 1352# Note: this event is rate-limited. 1353# 1354# Since: 5.1 1355# 1356# Example: 1357# 1358# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE", 1359# "data": { "id": "vm0", "size": 1073741824, 1360# "qom-path": "/machine/unattached/device[2]" }, 1361# "timestamp": { "seconds": 1588168529, "microseconds": 201316 } } 1362# 1363## 1364{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE', 1365 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} } 1366 1367 1368## 1369# @MEM_UNPLUG_ERROR: 1370# 1371# Emitted when memory hot unplug error occurs. 1372# 1373# @device: device name 1374# 1375# @msg: Informative message 1376# 1377# Features: 1378# @deprecated: This event is deprecated. Use @DEVICE_UNPLUG_GUEST_ERROR 1379# instead. 1380# 1381# Since: 2.4 1382# 1383# Example: 1384# 1385# <- { "event": "MEM_UNPLUG_ERROR" 1386# "data": { "device": "dimm1", 1387# "msg": "acpi: device unplug for unsupported device" 1388# }, 1389# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1390# 1391## 1392{ 'event': 'MEM_UNPLUG_ERROR', 1393 'data': { 'device': 'str', 'msg': 'str' }, 1394 'features': ['deprecated'] } 1395 1396## 1397# @SMPConfiguration: 1398# 1399# Schema for CPU topology configuration. A missing value lets 1400# QEMU figure out a suitable value based on the ones that are provided. 1401# 1402# @cpus: number of virtual CPUs in the virtual machine 1403# 1404# @sockets: number of sockets in the CPU topology 1405# 1406# @dies: number of dies per socket in the CPU topology 1407# 1408# @clusters: number of clusters per die in the CPU topology (since 7.0) 1409# 1410# @cores: number of cores per cluster in the CPU topology 1411# 1412# @threads: number of threads per core in the CPU topology 1413# 1414# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine 1415# 1416# Since: 6.1 1417## 1418{ 'struct': 'SMPConfiguration', 'data': { 1419 '*cpus': 'int', 1420 '*sockets': 'int', 1421 '*dies': 'int', 1422 '*clusters': 'int', 1423 '*cores': 'int', 1424 '*threads': 'int', 1425 '*maxcpus': 'int' } } 1426 1427## 1428# @x-query-irq: 1429# 1430# Query interrupt statistics 1431# 1432# Features: 1433# @unstable: This command is meant for debugging. 1434# 1435# Returns: interrupt statistics 1436# 1437# Since: 6.2 1438## 1439{ 'command': 'x-query-irq', 1440 'returns': 'HumanReadableText', 1441 'features': [ 'unstable' ] } 1442 1443## 1444# @x-query-jit: 1445# 1446# Query TCG compiler statistics 1447# 1448# Features: 1449# @unstable: This command is meant for debugging. 1450# 1451# Returns: TCG compiler statistics 1452# 1453# Since: 6.2 1454## 1455{ 'command': 'x-query-jit', 1456 'returns': 'HumanReadableText', 1457 'if': 'CONFIG_TCG', 1458 'features': [ 'unstable' ] } 1459 1460## 1461# @x-query-numa: 1462# 1463# Query NUMA topology information 1464# 1465# Features: 1466# @unstable: This command is meant for debugging. 1467# 1468# Returns: topology information 1469# 1470# Since: 6.2 1471## 1472{ 'command': 'x-query-numa', 1473 'returns': 'HumanReadableText', 1474 'features': [ 'unstable' ] } 1475 1476## 1477# @x-query-opcount: 1478# 1479# Query TCG opcode counters 1480# 1481# Features: 1482# @unstable: This command is meant for debugging. 1483# 1484# Returns: TCG opcode counters 1485# 1486# Since: 6.2 1487## 1488{ 'command': 'x-query-opcount', 1489 'returns': 'HumanReadableText', 1490 'if': 'CONFIG_TCG', 1491 'features': [ 'unstable' ] } 1492 1493## 1494# @x-query-profile: 1495# 1496# Query TCG profiling information 1497# 1498# Features: 1499# @unstable: This command is meant for debugging. 1500# 1501# Returns: profile information 1502# 1503# Since: 6.2 1504## 1505{ 'command': 'x-query-profile', 1506 'returns': 'HumanReadableText', 1507 'if': 'CONFIG_TCG', 1508 'features': [ 'unstable' ] } 1509 1510## 1511# @x-query-ramblock: 1512# 1513# Query system ramblock information 1514# 1515# Features: 1516# @unstable: This command is meant for debugging. 1517# 1518# Returns: system ramblock information 1519# 1520# Since: 6.2 1521## 1522{ 'command': 'x-query-ramblock', 1523 'returns': 'HumanReadableText', 1524 'features': [ 'unstable' ] } 1525 1526## 1527# @x-query-rdma: 1528# 1529# Query RDMA state 1530# 1531# Features: 1532# @unstable: This command is meant for debugging. 1533# 1534# Returns: RDMA state 1535# 1536# Since: 6.2 1537## 1538{ 'command': 'x-query-rdma', 1539 'returns': 'HumanReadableText', 1540 'features': [ 'unstable' ] } 1541 1542## 1543# @x-query-roms: 1544# 1545# Query information on the registered ROMS 1546# 1547# Features: 1548# @unstable: This command is meant for debugging. 1549# 1550# Returns: registered ROMs 1551# 1552# Since: 6.2 1553## 1554{ 'command': 'x-query-roms', 1555 'returns': 'HumanReadableText', 1556 'features': [ 'unstable' ] } 1557 1558## 1559# @x-query-usb: 1560# 1561# Query information on the USB devices 1562# 1563# Features: 1564# @unstable: This command is meant for debugging. 1565# 1566# Returns: USB device information 1567# 1568# Since: 6.2 1569## 1570{ 'command': 'x-query-usb', 1571 'returns': 'HumanReadableText', 1572 'features': [ 'unstable' ] } 1573 1574## 1575# @SmbiosEntryPointType: 1576# 1577# @32: SMBIOS version 2.1 (32-bit) Entry Point 1578# 1579# @64: SMBIOS version 3.0 (64-bit) Entry Point 1580# 1581# Since: 7.0 1582## 1583{ 'enum': 'SmbiosEntryPointType', 1584 'data': [ '32', '64' ] } 1585