1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4# This work is licensed under the terms of the GNU GPL, version 2 or later. 5# See the COPYING file in the top-level directory. 6 7## 8# = Machines 9## 10 11{ 'include': 'common.json' } 12{ 'include': 'machine-common.json' } 13 14## 15# @SysEmuTarget: 16# 17# The comprehensive enumeration of QEMU system emulation ("softmmu") 18# targets. Run "./configure --help" in the project root directory, 19# and look for the \*-softmmu targets near the "--target-list" option. 20# The individual target constants are not documented here, for the 21# time being. 22# 23# @rx: since 5.0 24# 25# @avr: since 5.1 26# 27# .. note:: The resulting QMP strings can be appended to the 28# "qemu-system-" prefix to produce the corresponding QEMU executable 29# name. This is true even for "qemu-system-x86_64". 30# 31# Since: 3.0 32## 33{ 'enum' : 'SysEmuTarget', 34 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 35 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64', 36 'mips64el', 'mipsel', 'or1k', 'ppc', 37 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4', 38 'sh4eb', 'sparc', 'sparc64', 'tricore', 39 'x86_64', 'xtensa', 'xtensaeb' ] } 40 41## 42# @CpuS390State: 43# 44# An enumeration of cpu states that can be assumed by a virtual S390 45# CPU 46# 47# Since: 2.12 48## 49{ 'enum': 'CpuS390State', 50 'prefix': 'S390_CPU_STATE', 51 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 52 53## 54# @CpuInfoS390: 55# 56# Additional information about a virtual S390 CPU 57# 58# @cpu-state: the virtual CPU's state 59# 60# @dedicated: the virtual CPU's dedication (since 8.2) 61# 62# @entitlement: the virtual CPU's entitlement (since 8.2) 63# 64# Since: 2.12 65## 66{ 'struct': 'CpuInfoS390', 67 'data': { 'cpu-state': 'CpuS390State', 68 '*dedicated': 'bool', 69 '*entitlement': 'CpuS390Entitlement' } } 70 71## 72# @CpuInfoFast: 73# 74# Information about a virtual CPU 75# 76# @cpu-index: index of the virtual CPU 77# 78# @qom-path: path to the CPU object in the QOM tree 79# 80# @thread-id: ID of the underlying host thread 81# 82# @props: properties associated with a virtual CPU, e.g. the socket id 83# 84# @target: the QEMU system emulation target, which determines which 85# additional fields will be listed (since 3.0) 86# 87# Since: 2.12 88## 89{ 'union' : 'CpuInfoFast', 90 'base' : { 'cpu-index' : 'int', 91 'qom-path' : 'str', 92 'thread-id' : 'int', 93 '*props' : 'CpuInstanceProperties', 94 'target' : 'SysEmuTarget' }, 95 'discriminator' : 'target', 96 'data' : { 's390x' : 'CpuInfoS390' } } 97 98## 99# @query-cpus-fast: 100# 101# Returns information about all virtual CPUs. 102# 103# Returns: list of @CpuInfoFast 104# 105# Since: 2.12 106# 107# Example: 108# 109# -> { "execute": "query-cpus-fast" } 110# <- { "return": [ 111# { 112# "thread-id": 25627, 113# "props": { 114# "core-id": 0, 115# "thread-id": 0, 116# "socket-id": 0 117# }, 118# "qom-path": "/machine/unattached/device[0]", 119# "target":"x86_64", 120# "cpu-index": 0 121# }, 122# { 123# "thread-id": 25628, 124# "props": { 125# "core-id": 0, 126# "thread-id": 0, 127# "socket-id": 1 128# }, 129# "qom-path": "/machine/unattached/device[2]", 130# "target":"x86_64", 131# "cpu-index": 1 132# } 133# ] 134# } 135## 136{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 137 138## 139# @CompatProperty: 140# 141# Property default values specific to a machine type, for use by 142# scripts/compare-machine-types. 143# 144# @qom-type: name of the QOM type to which the default applies 145# 146# @property: name of its property to which the default applies 147# 148# @value: the default value (machine-specific default can overwrite 149# the "default" default, to avoid this use -machine none) 150# 151# Since: 9.1 152## 153{ 'struct': 'CompatProperty', 154 'data': { 'qom-type': 'str', 155 'property': 'str', 156 'value': 'str' } } 157 158## 159# @MachineInfo: 160# 161# Information describing a machine. 162# 163# @name: the name of the machine 164# 165# @alias: an alias for the machine name 166# 167# @is-default: whether the machine is default 168# 169# @cpu-max: maximum number of CPUs supported by the machine type 170# (since 1.5) 171# 172# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7) 173# 174# @numa-mem-supported: true if '-numa node,mem' option is supported by 175# the machine type and false otherwise (since 4.1) 176# 177# @deprecated: if true, the machine type is deprecated and may be 178# removed in future versions of QEMU according to the QEMU 179# deprecation policy (since 4.1) 180# 181# @default-cpu-type: default CPU model typename if none is requested 182# via the -cpu argument. (since 4.2) 183# 184# @default-ram-id: the default ID of initial RAM memory backend (since 185# 5.2) 186# 187# @acpi: machine type supports ACPI (since 8.0) 188# 189# @compat-props: The machine type's compatibility properties. Only 190# present when query-machines argument @compat-props is true. 191# (since 9.1) 192# 193# Features: 194# 195# @unstable: Member @compat-props is experimental. 196# 197# Since: 1.2 198## 199{ 'struct': 'MachineInfo', 200 'data': { 'name': 'str', '*alias': 'str', 201 '*is-default': 'bool', 'cpu-max': 'int', 202 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool', 203 'deprecated': 'bool', '*default-cpu-type': 'str', 204 '*default-ram-id': 'str', 'acpi': 'bool', 205 '*compat-props': { 'type': ['CompatProperty'], 206 'features': ['unstable'] } } } 207 208## 209# @query-machines: 210# 211# Return a list of supported machines 212# 213# @compat-props: if true, also return compatibility properties. 214# (default: false) (since 9.1) 215# 216# Features: 217# 218# @unstable: Argument @compat-props is experimental. 219# 220# Returns: a list of MachineInfo 221# 222# Since: 1.2 223# 224# Example: 225# 226# -> { "execute": "query-machines", "arguments": { "compat-props": true } } 227# <- { "return": [ 228# { 229# "hotpluggable-cpus": true, 230# "name": "pc-q35-6.2", 231# "compat-props": [ 232# { 233# "qom-type": "virtio-mem", 234# "property": "unplugged-inaccessible", 235# "value": "off" 236# } 237# ], 238# "numa-mem-supported": false, 239# "default-cpu-type": "qemu64-x86_64-cpu", 240# "cpu-max": 288, 241# "deprecated": false, 242# "default-ram-id": "pc.ram" 243# }, 244# ... 245# } 246## 247{ 'command': 'query-machines', 248 'data': { '*compat-props': { 'type': 'bool', 249 'features': [ 'unstable' ] } }, 250 'returns': ['MachineInfo'] } 251 252## 253# @CurrentMachineParams: 254# 255# Information describing the running machine parameters. 256# 257# @wakeup-suspend-support: true if the machine supports wake up from 258# suspend 259# 260# Since: 4.0 261## 262{ 'struct': 'CurrentMachineParams', 263 'data': { 'wakeup-suspend-support': 'bool'} } 264 265## 266# @query-current-machine: 267# 268# Return information on the current virtual machine. 269# 270# Returns: CurrentMachineParams 271# 272# Since: 4.0 273## 274{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' } 275 276## 277# @TargetInfo: 278# 279# Information describing the QEMU target. 280# 281# @arch: the target architecture 282# 283# Since: 1.2 284## 285{ 'struct': 'TargetInfo', 286 'data': { 'arch': 'SysEmuTarget' } } 287 288## 289# @query-target: 290# 291# Return information about the target for this QEMU 292# 293# Returns: TargetInfo 294# 295# Since: 1.2 296## 297{ 'command': 'query-target', 'returns': 'TargetInfo' } 298 299## 300# @UuidInfo: 301# 302# Guest UUID information (Universally Unique Identifier). 303# 304# @UUID: the UUID of the guest 305# 306# Since: 0.14 307# 308# .. note:: If no UUID was specified for the guest, a null UUID is 309# returned. 310# 311## 312{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 313 314## 315# @query-uuid: 316# 317# Query the guest UUID information. 318# 319# Returns: The @UuidInfo for the guest 320# 321# Since: 0.14 322# 323# Example: 324# 325# -> { "execute": "query-uuid" } 326# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 327## 328{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } 329 330## 331# @GuidInfo: 332# 333# GUID information. 334# 335# @guid: the globally unique identifier 336# 337# Since: 2.9 338## 339{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 340 341## 342# @query-vm-generation-id: 343# 344# Show Virtual Machine Generation ID 345# 346# Since: 2.9 347## 348{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 349 350## 351# @system_reset: 352# 353# Performs a hard reset of a guest. 354# 355# Since: 0.14 356# 357# Example: 358# 359# -> { "execute": "system_reset" } 360# <- { "return": {} } 361## 362{ 'command': 'system_reset' } 363 364## 365# @system_powerdown: 366# 367# Requests that a guest perform a powerdown operation. 368# 369# Since: 0.14 370# 371# .. note:: A guest may or may not respond to this command. This 372# command returning does not indicate that a guest has accepted the 373# request or that it has shut down. Many guests will respond to this 374# command by prompting the user in some way. 375# 376# Example: 377# 378# -> { "execute": "system_powerdown" } 379# <- { "return": {} } 380## 381{ 'command': 'system_powerdown' } 382 383## 384# @system_wakeup: 385# 386# Wake up guest from suspend. If the guest has wake-up from suspend 387# support enabled (wakeup-suspend-support flag from 388# query-current-machine), wake-up guest from suspend if the guest is 389# in SUSPENDED state. Return an error otherwise. 390# 391# Since: 1.1 392# 393# .. note:: Prior to 4.0, this command does nothing in case the guest 394# isn't suspended. 395# 396# Example: 397# 398# -> { "execute": "system_wakeup" } 399# <- { "return": {} } 400## 401{ 'command': 'system_wakeup' } 402 403## 404# @LostTickPolicy: 405# 406# Policy for handling lost ticks in timer devices. Ticks end up 407# getting lost when, for example, the guest is paused. 408# 409# @discard: throw away the missed ticks and continue with future 410# injection normally. The guest OS will see the timer jump ahead 411# by a potentially quite significant amount all at once, as if the 412# intervening chunk of time had simply not existed; needless to 413# say, such a sudden jump can easily confuse a guest OS which is 414# not specifically prepared to deal with it. Assuming the guest 415# OS can deal correctly with the time jump, the time in the guest 416# and in the host should now match. 417# 418# @delay: continue to deliver ticks at the normal rate. The guest OS 419# will not notice anything is amiss, as from its point of view 420# time will have continued to flow normally. The time in the 421# guest should now be behind the time in the host by exactly the 422# amount of time during which ticks have been missed. 423# 424# @slew: deliver ticks at a higher rate to catch up with the missed 425# ticks. The guest OS will not notice anything is amiss, as from 426# its point of view time will have continued to flow normally. 427# Once the timer has managed to catch up with all the missing 428# ticks, the time in the guest and in the host should match. 429# 430# Since: 2.0 431## 432{ 'enum': 'LostTickPolicy', 433 'data': ['discard', 'delay', 'slew' ] } 434 435## 436# @inject-nmi: 437# 438# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or 439# all CPUs (ppc64). The command fails when the guest doesn't support 440# injecting. 441# 442# Since: 0.14 443# 444# .. note:: Prior to 2.1, this command was only supported for x86 and 445# s390 VMs. 446# 447# Example: 448# 449# -> { "execute": "inject-nmi" } 450# <- { "return": {} } 451## 452{ 'command': 'inject-nmi' } 453 454## 455# @KvmInfo: 456# 457# Information about support for KVM acceleration 458# 459# @enabled: true if KVM acceleration is active 460# 461# @present: true if KVM acceleration is built into this executable 462# 463# Since: 0.14 464## 465{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 466 467## 468# @query-kvm: 469# 470# Returns information about KVM acceleration 471# 472# Returns: @KvmInfo 473# 474# Since: 0.14 475# 476# Example: 477# 478# -> { "execute": "query-kvm" } 479# <- { "return": { "enabled": true, "present": true } } 480## 481{ 'command': 'query-kvm', 'returns': 'KvmInfo' } 482 483## 484# @NumaOptionsType: 485# 486# @node: NUMA nodes configuration 487# 488# @dist: NUMA distance configuration (since 2.10) 489# 490# @cpu: property based CPU(s) to node mapping (Since: 2.10) 491# 492# @hmat-lb: memory latency and bandwidth information (Since: 5.0) 493# 494# @hmat-cache: memory side cache information (Since: 5.0) 495# 496# Since: 2.1 497## 498{ 'enum': 'NumaOptionsType', 499 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] } 500 501## 502# @NumaOptions: 503# 504# A discriminated record of NUMA options. (for OptsVisitor) 505# 506# @type: NUMA option type 507# 508# Since: 2.1 509## 510{ 'union': 'NumaOptions', 511 'base': { 'type': 'NumaOptionsType' }, 512 'discriminator': 'type', 513 'data': { 514 'node': 'NumaNodeOptions', 515 'dist': 'NumaDistOptions', 516 'cpu': 'NumaCpuOptions', 517 'hmat-lb': 'NumaHmatLBOptions', 518 'hmat-cache': 'NumaHmatCacheOptions' }} 519 520## 521# @NumaNodeOptions: 522# 523# Create a guest NUMA node. (for OptsVisitor) 524# 525# @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 526# 527# @cpus: VCPUs belonging to this node (assign VCPUS round-robin if 528# omitted) 529# 530# @mem: memory size of this node; mutually exclusive with @memdev. 531# Equally divide total memory among nodes if both @mem and @memdev 532# are omitted. 533# 534# @memdev: memory backend object. If specified for one node, it must 535# be specified for all nodes. 536# 537# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points 538# to the nodeid which has the memory controller responsible for 539# this NUMA node. This field provides additional information as 540# to the initiator node that is closest (as in directly attached) 541# to this node, and therefore has the best performance (since 5.0) 542# 543# Since: 2.1 544## 545{ 'struct': 'NumaNodeOptions', 546 'data': { 547 '*nodeid': 'uint16', 548 '*cpus': ['uint16'], 549 '*mem': 'size', 550 '*memdev': 'str', 551 '*initiator': 'uint16' }} 552 553## 554# @NumaDistOptions: 555# 556# Set the distance between 2 NUMA nodes. 557# 558# @src: source NUMA node. 559# 560# @dst: destination NUMA node. 561# 562# @val: NUMA distance from source node to destination node. When a 563# node is unreachable from another node, set the distance between 564# them to 255. 565# 566# Since: 2.10 567## 568{ 'struct': 'NumaDistOptions', 569 'data': { 570 'src': 'uint16', 571 'dst': 'uint16', 572 'val': 'uint8' }} 573 574## 575# @CXLFixedMemoryWindowOptions: 576# 577# Create a CXL Fixed Memory Window 578# 579# @size: Size of the Fixed Memory Window in bytes. Must be a multiple 580# of 256MiB. 581# 582# @interleave-granularity: Number of contiguous bytes for which 583# accesses will go to a given interleave target. Accepted values 584# [256, 512, 1k, 2k, 4k, 8k, 16k] 585# 586# @targets: Target root bridge IDs from -device ...,id=<ID> for each 587# root bridge. 588# 589# Since: 7.1 590## 591{ 'struct': 'CXLFixedMemoryWindowOptions', 592 'data': { 593 'size': 'size', 594 '*interleave-granularity': 'size', 595 'targets': ['str'] }} 596 597## 598# @CXLFMWProperties: 599# 600# List of CXL Fixed Memory Windows. 601# 602# @cxl-fmw: List of CXLFixedMemoryWindowOptions 603# 604# Since: 7.1 605## 606{ 'struct' : 'CXLFMWProperties', 607 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] } 608} 609 610## 611# @X86CPURegister32: 612# 613# A X86 32-bit register 614# 615# Since: 1.5 616## 617{ 'enum': 'X86CPURegister32', 618 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 619 620## 621# @X86CPUFeatureWordInfo: 622# 623# Information about a X86 CPU feature word 624# 625# @cpuid-input-eax: Input EAX value for CPUID instruction for that 626# feature word 627# 628# @cpuid-input-ecx: Input ECX value for CPUID instruction for that 629# feature word 630# 631# @cpuid-register: Output register containing the feature bits 632# 633# @features: value of output register, containing the feature bits 634# 635# Since: 1.5 636## 637{ 'struct': 'X86CPUFeatureWordInfo', 638 'data': { 'cpuid-input-eax': 'int', 639 '*cpuid-input-ecx': 'int', 640 'cpuid-register': 'X86CPURegister32', 641 'features': 'int' } } 642 643## 644# @DummyForceArrays: 645# 646# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList 647# internally 648# 649# Since: 2.5 650## 651{ 'struct': 'DummyForceArrays', 652 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 653 654## 655# @NumaCpuOptions: 656# 657# Option "-numa cpu" overrides default cpu to node mapping. It 658# accepts the same set of cpu properties as returned by 659# query-hotpluggable-cpus[].props, where node-id could be used to 660# override default node mapping. 661# 662# Since: 2.10 663## 664{ 'struct': 'NumaCpuOptions', 665 'base': 'CpuInstanceProperties', 666 'data' : {} } 667 668## 669# @HmatLBMemoryHierarchy: 670# 671# The memory hierarchy in the System Locality Latency and Bandwidth 672# Information Structure of HMAT (Heterogeneous Memory Attribute Table) 673# 674# For more information about @HmatLBMemoryHierarchy, see chapter 675# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. 676# 677# @memory: the structure represents the memory performance 678# 679# @first-level: first level of memory side cache 680# 681# @second-level: second level of memory side cache 682# 683# @third-level: third level of memory side cache 684# 685# Since: 5.0 686## 687{ 'enum': 'HmatLBMemoryHierarchy', 688 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } 689 690## 691# @HmatLBDataType: 692# 693# Data type in the System Locality Latency and Bandwidth Information 694# Structure of HMAT (Heterogeneous Memory Attribute Table) 695# 696# For more information about @HmatLBDataType, see chapter 5.2.27.4: 697# Table 5-146: Field "Data Type" of ACPI 6.3 spec. 698# 699# @access-latency: access latency (nanoseconds) 700# 701# @read-latency: read latency (nanoseconds) 702# 703# @write-latency: write latency (nanoseconds) 704# 705# @access-bandwidth: access bandwidth (Bytes per second) 706# 707# @read-bandwidth: read bandwidth (Bytes per second) 708# 709# @write-bandwidth: write bandwidth (Bytes per second) 710# 711# Since: 5.0 712## 713{ 'enum': 'HmatLBDataType', 714 'data': [ 'access-latency', 'read-latency', 'write-latency', 715 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } 716 717## 718# @NumaHmatLBOptions: 719# 720# Set the system locality latency and bandwidth information between 721# Initiator and Target proximity Domains. 722# 723# For more information about @NumaHmatLBOptions, see chapter 5.2.27.4: 724# Table 5-146 of ACPI 6.3 spec. 725# 726# @initiator: the Initiator Proximity Domain. 727# 728# @target: the Target Proximity Domain. 729# 730# @hierarchy: the Memory Hierarchy. Indicates the performance of 731# memory or side cache. 732# 733# @data-type: presents the type of data, access/read/write latency or 734# hit latency. 735# 736# @latency: the value of latency from @initiator to @target proximity 737# domain, the latency unit is "ns(nanosecond)". 738# 739# @bandwidth: the value of bandwidth between @initiator and @target 740# proximity domain, the bandwidth unit is "Bytes per second". 741# 742# Since: 5.0 743## 744{ 'struct': 'NumaHmatLBOptions', 745 'data': { 746 'initiator': 'uint16', 747 'target': 'uint16', 748 'hierarchy': 'HmatLBMemoryHierarchy', 749 'data-type': 'HmatLBDataType', 750 '*latency': 'uint64', 751 '*bandwidth': 'size' }} 752 753## 754# @HmatCacheAssociativity: 755# 756# Cache associativity in the Memory Side Cache Information Structure 757# of HMAT 758# 759# For more information of @HmatCacheAssociativity, see chapter 760# 5.2.27.5: Table 5-147 of ACPI 6.3 spec. 761# 762# @none: None (no memory side cache in this proximity domain, or cache 763# associativity unknown) 764# 765# @direct: Direct Mapped 766# 767# @complex: Complex Cache Indexing (implementation specific) 768# 769# Since: 5.0 770## 771{ 'enum': 'HmatCacheAssociativity', 772 'data': [ 'none', 'direct', 'complex' ] } 773 774## 775# @HmatCacheWritePolicy: 776# 777# Cache write policy in the Memory Side Cache Information Structure of 778# HMAT 779# 780# For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5: 781# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 782# 783# @none: None (no memory side cache in this proximity domain, or cache 784# write policy unknown) 785# 786# @write-back: Write Back (WB) 787# 788# @write-through: Write Through (WT) 789# 790# Since: 5.0 791## 792{ 'enum': 'HmatCacheWritePolicy', 793 'data': [ 'none', 'write-back', 'write-through' ] } 794 795## 796# @NumaHmatCacheOptions: 797# 798# Set the memory side cache information for a given memory domain. 799# 800# For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5: 801# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. 802# 803# @node-id: the memory proximity domain to which the memory belongs. 804# 805# @size: the size of memory side cache in bytes. 806# 807# @level: the cache level described in this structure. 808# 809# @associativity: the cache associativity, 810# none/direct-mapped/complex(complex cache indexing). 811# 812# @policy: the write policy, none/write-back/write-through. 813# 814# @line: the cache Line size in bytes. 815# 816# Since: 5.0 817## 818{ 'struct': 'NumaHmatCacheOptions', 819 'data': { 820 'node-id': 'uint32', 821 'size': 'size', 822 'level': 'uint8', 823 'associativity': 'HmatCacheAssociativity', 824 'policy': 'HmatCacheWritePolicy', 825 'line': 'uint16' }} 826 827## 828# @memsave: 829# 830# Save a portion of guest memory to a file. 831# 832# @val: the virtual address of the guest to start from 833# 834# @size: the size of memory region to save 835# 836# @filename: the file to save the memory to as binary data 837# 838# @cpu-index: the index of the virtual CPU to use for translating the 839# virtual address (defaults to CPU 0) 840# 841# Since: 0.14 842# 843# .. caution:: Errors were not reliably returned until 1.1. 844# 845# Example: 846# 847# -> { "execute": "memsave", 848# "arguments": { "val": 10, 849# "size": 100, 850# "filename": "/tmp/virtual-mem-dump" } } 851# <- { "return": {} } 852## 853{ 'command': 'memsave', 854 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 855 856## 857# @pmemsave: 858# 859# Save a portion of guest physical memory to a file. 860# 861# @val: the physical address of the guest to start from 862# 863# @size: the size of memory region to save 864# 865# @filename: the file to save the memory to as binary data 866# 867# Since: 0.14 868# 869# .. caution:: Errors were not reliably returned until 1.1. 870# 871# Example: 872# 873# -> { "execute": "pmemsave", 874# "arguments": { "val": 10, 875# "size": 100, 876# "filename": "/tmp/physical-mem-dump" } } 877# <- { "return": {} } 878## 879{ 'command': 'pmemsave', 880 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 881 882## 883# @Memdev: 884# 885# Information about memory backend 886# 887# @id: backend's ID if backend has 'id' property (since 2.9) 888# 889# @size: memory backend size 890# 891# @merge: whether memory merge support is enabled 892# 893# @dump: whether memory backend's memory is included in a core dump 894# 895# @prealloc: whether memory was preallocated 896# 897# @share: whether memory is private to QEMU or shared (since 6.1) 898# 899# @reserve: whether swap space (or huge pages) was reserved if 900# applicable. This corresponds to the user configuration and not 901# the actual behavior implemented in the OS to perform the 902# reservation. For example, Linux will never reserve swap space 903# for shared file mappings. (since 6.1) 904# 905# @host-nodes: host nodes for its memory policy 906# 907# @policy: memory policy of memory backend 908# 909# Since: 2.1 910## 911{ 'struct': 'Memdev', 912 'data': { 913 '*id': 'str', 914 'size': 'size', 915 'merge': 'bool', 916 'dump': 'bool', 917 'prealloc': 'bool', 918 'share': 'bool', 919 '*reserve': 'bool', 920 'host-nodes': ['uint16'], 921 'policy': 'HostMemPolicy' }} 922 923## 924# @query-memdev: 925# 926# Returns information for all memory backends. 927# 928# Returns: a list of @Memdev. 929# 930# Since: 2.1 931# 932# Example: 933# 934# -> { "execute": "query-memdev" } 935# <- { "return": [ 936# { 937# "id": "mem1", 938# "size": 536870912, 939# "merge": false, 940# "dump": true, 941# "prealloc": false, 942# "share": false, 943# "host-nodes": [0, 1], 944# "policy": "bind" 945# }, 946# { 947# "size": 536870912, 948# "merge": false, 949# "dump": true, 950# "prealloc": true, 951# "share": false, 952# "host-nodes": [2, 3], 953# "policy": "preferred" 954# } 955# ] 956# } 957## 958{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } 959 960## 961# @CpuInstanceProperties: 962# 963# List of properties to be used for hotplugging a CPU instance, it 964# should be passed by management with device_add command when a CPU is 965# being hotplugged. 966# 967# Which members are optional and which mandatory depends on the 968# architecture and board. 969# 970# For s390x see :ref:`cpu-topology-s390x`. 971# 972# The ids other than the node-id specify the position of the CPU 973# within the CPU topology (as defined by the machine property "smp", 974# thus see also type @SMPConfiguration) 975# 976# @node-id: NUMA node ID the CPU belongs to 977# 978# @drawer-id: drawer number within CPU topology the CPU belongs to 979# (since 8.2) 980# 981# @book-id: book number within parent container the CPU belongs to 982# (since 8.2) 983# 984# @socket-id: socket number within parent container the CPU belongs to 985# 986# @die-id: die number within the parent container the CPU belongs to 987# (since 4.1) 988# 989# @cluster-id: cluster number within the parent container the CPU 990# belongs to (since 7.1) 991# 992# @module-id: module number within the parent container the CPU belongs 993# to (since 9.1) 994# 995# @core-id: core number within the parent container the CPU belongs to 996# 997# @thread-id: thread number within the core the CPU belongs to 998# 999# .. note:: Management should be prepared to pass through additional 1000# properties with device_add. 1001# 1002# Since: 2.7 1003## 1004{ 'struct': 'CpuInstanceProperties', 1005 # Keep these in sync with the properties device_add accepts 1006 'data': { '*node-id': 'int', 1007 '*drawer-id': 'int', 1008 '*book-id': 'int', 1009 '*socket-id': 'int', 1010 '*die-id': 'int', 1011 '*cluster-id': 'int', 1012 '*module-id': 'int', 1013 '*core-id': 'int', 1014 '*thread-id': 'int' 1015 } 1016} 1017 1018## 1019# @HotpluggableCPU: 1020# 1021# @type: CPU object type for usage with device_add command 1022# 1023# @props: list of properties to be used for hotplugging CPU 1024# 1025# @vcpus-count: number of logical VCPU threads @HotpluggableCPU 1026# provides 1027# 1028# @qom-path: link to existing CPU object if CPU is present or omitted 1029# if CPU is not present. 1030# 1031# Since: 2.7 1032## 1033{ 'struct': 'HotpluggableCPU', 1034 'data': { 'type': 'str', 1035 'vcpus-count': 'int', 1036 'props': 'CpuInstanceProperties', 1037 '*qom-path': 'str' 1038 } 1039} 1040 1041## 1042# @query-hotpluggable-cpus: 1043# 1044# TODO: Better documentation; currently there is none. 1045# 1046# Returns: a list of HotpluggableCPU objects. 1047# 1048# Since: 2.7 1049# 1050# Examples: 1051# 1052# For pseries machine type started with -smp 2,cores=2,maxcpus=4 1053# -cpu POWER8: 1054# 1055# -> { "execute": "query-hotpluggable-cpus" } 1056# <- {"return": [ 1057# { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core", 1058# "vcpus-count": 1 }, 1059# { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core", 1060# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 1061# ]} 1062# 1063# For pc machine type started with -smp 1,maxcpus=2: 1064# 1065# -> { "execute": "query-hotpluggable-cpus" } 1066# <- {"return": [ 1067# { 1068# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 1069# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 1070# }, 1071# { 1072# "qom-path": "/machine/unattached/device[0]", 1073# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 1074# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 1075# } 1076# ]} 1077# 1078# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 1079# -cpu qemu (Since: 2.11): 1080# 1081# -> { "execute": "query-hotpluggable-cpus" } 1082# <- {"return": [ 1083# { 1084# "type": "qemu-s390x-cpu", "vcpus-count": 1, 1085# "props": { "core-id": 1 } 1086# }, 1087# { 1088# "qom-path": "/machine/unattached/device[0]", 1089# "type": "qemu-s390x-cpu", "vcpus-count": 1, 1090# "props": { "core-id": 0 } 1091# } 1092# ]} 1093## 1094{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 1095 'allow-preconfig': true } 1096 1097## 1098# @set-numa-node: 1099# 1100# Runtime equivalent of '-numa' CLI option, available at preconfigure 1101# stage to configure numa mapping before initializing machine. 1102# 1103# Since: 3.0 1104## 1105{ 'command': 'set-numa-node', 'boxed': true, 1106 'data': 'NumaOptions', 1107 'allow-preconfig': true 1108} 1109 1110## 1111# @balloon: 1112# 1113# Request the balloon driver to change its balloon size. 1114# 1115# @value: the target logical size of the VM in bytes. We can deduce 1116# the size of the balloon using this formula: 1117# 1118# logical_vm_size = vm_ram_size - balloon_size 1119# 1120# From it we have: balloon_size = vm_ram_size - @value 1121# 1122# Errors: 1123# - If the balloon driver is enabled but not functional because 1124# the KVM kernel module cannot support it, KVMMissingCap 1125# - If no balloon device is present, DeviceNotActive 1126# 1127# .. note:: This command just issues a request to the guest. When it 1128# returns, the balloon size may not have changed. A guest can change 1129# the balloon size independent of this command. 1130# 1131# Since: 0.14 1132# 1133# Example: 1134# 1135# -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1136# <- { "return": {} } 1137# 1138# With a 2.5GiB guest this command inflated the ballon to 3GiB. 1139## 1140{ 'command': 'balloon', 'data': {'value': 'int'} } 1141 1142## 1143# @BalloonInfo: 1144# 1145# Information about the guest balloon device. 1146# 1147# @actual: the logical size of the VM in bytes Formula used: 1148# logical_vm_size = vm_ram_size - balloon_size 1149# 1150# Since: 0.14 1151## 1152{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 1153 1154## 1155# @query-balloon: 1156# 1157# Return information about the balloon device. 1158# 1159# Returns: 1160# @BalloonInfo 1161# 1162# Errors: 1163# - If the balloon driver is enabled but not functional because 1164# the KVM kernel module cannot support it, KVMMissingCap 1165# - If no balloon device is present, DeviceNotActive 1166# 1167# Since: 0.14 1168# 1169# Example: 1170# 1171# -> { "execute": "query-balloon" } 1172# <- { "return": { 1173# "actual": 1073741824 1174# } 1175# } 1176## 1177{ 'command': 'query-balloon', 'returns': 'BalloonInfo' } 1178 1179## 1180# @BALLOON_CHANGE: 1181# 1182# Emitted when the guest changes the actual BALLOON level. This value 1183# is equivalent to the @actual field return by the 'query-balloon' 1184# command 1185# 1186# @actual: the logical size of the VM in bytes Formula used: 1187# logical_vm_size = vm_ram_size - balloon_size 1188# 1189# .. note:: This event is rate-limited. 1190# 1191# Since: 1.2 1192# 1193# Example: 1194# 1195# <- { "event": "BALLOON_CHANGE", 1196# "data": { "actual": 944766976 }, 1197# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 1198## 1199{ 'event': 'BALLOON_CHANGE', 1200 'data': { 'actual': 'int' } } 1201 1202## 1203# @HvBalloonInfo: 1204# 1205# hv-balloon guest-provided memory status information. 1206# 1207# @committed: the amount of memory in use inside the guest plus the 1208# amount of the memory unusable inside the guest (ballooned out, 1209# offline, etc.) 1210# 1211# @available: the amount of the memory inside the guest available for 1212# new allocations ("free") 1213# 1214# Since: 8.2 1215## 1216{ 'struct': 'HvBalloonInfo', 1217 'data': { 'committed': 'size', 'available': 'size' } } 1218 1219## 1220# @query-hv-balloon-status-report: 1221# 1222# Returns the hv-balloon driver data contained in the last received 1223# "STATUS" message from the guest. 1224# 1225# Returns: 1226# @HvBalloonInfo 1227# 1228# Errors: 1229# - If no hv-balloon device is present, guest memory status 1230# reporting is not enabled or no guest memory status report 1231# received yet, GenericError 1232# 1233# Since: 8.2 1234# 1235# Example: 1236# 1237# -> { "execute": "query-hv-balloon-status-report" } 1238# <- { "return": { 1239# "committed": 816640000, 1240# "available": 3333054464 1241# } 1242# } 1243## 1244{ 'command': 'query-hv-balloon-status-report', 'returns': 'HvBalloonInfo' } 1245 1246## 1247# @HV_BALLOON_STATUS_REPORT: 1248# 1249# Emitted when the hv-balloon driver receives a "STATUS" message from 1250# the guest. 1251# 1252# .. note:: This event is rate-limited. 1253# 1254# Since: 8.2 1255# 1256# Example: 1257# 1258# <- { "event": "HV_BALLOON_STATUS_REPORT", 1259# "data": { "committed": 816640000, "available": 3333054464 }, 1260# "timestamp": { "seconds": 1600295492, "microseconds": 661044 } } 1261## 1262{ 'event': 'HV_BALLOON_STATUS_REPORT', 1263 'data': 'HvBalloonInfo' } 1264 1265## 1266# @MemoryInfo: 1267# 1268# Actual memory information in bytes. 1269# 1270# @base-memory: size of "base" memory specified with command line 1271# option -m. 1272# 1273# @plugged-memory: size of memory that can be hot-unplugged. This 1274# field is omitted if target doesn't support memory hotplug (i.e. 1275# CONFIG_MEM_DEVICE not defined at build time). 1276# 1277# Since: 2.11 1278## 1279{ 'struct': 'MemoryInfo', 1280 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 1281 1282## 1283# @query-memory-size-summary: 1284# 1285# Return the amount of initially allocated and present hotpluggable 1286# (if enabled) memory in bytes. 1287# 1288# Example: 1289# 1290# -> { "execute": "query-memory-size-summary" } 1291# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 1292# 1293# Since: 2.11 1294## 1295{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 1296 1297## 1298# @PCDIMMDeviceInfo: 1299# 1300# PCDIMMDevice state information 1301# 1302# @id: device's ID 1303# 1304# @addr: physical address, where device is mapped 1305# 1306# @size: size of memory that the device provides 1307# 1308# @slot: slot number at which device is plugged in 1309# 1310# @node: NUMA node number where device is plugged in 1311# 1312# @memdev: memory backend linked with device 1313# 1314# @hotplugged: true if device was hotplugged 1315# 1316# @hotpluggable: true if device if could be added/removed while 1317# machine is running 1318# 1319# Since: 2.1 1320## 1321{ 'struct': 'PCDIMMDeviceInfo', 1322 'data': { '*id': 'str', 1323 'addr': 'int', 1324 'size': 'int', 1325 'slot': 'int', 1326 'node': 'int', 1327 'memdev': 'str', 1328 'hotplugged': 'bool', 1329 'hotpluggable': 'bool' 1330 } 1331} 1332 1333## 1334# @VirtioPMEMDeviceInfo: 1335# 1336# VirtioPMEM state information 1337# 1338# @id: device's ID 1339# 1340# @memaddr: physical address in memory, where device is mapped 1341# 1342# @size: size of memory that the device provides 1343# 1344# @memdev: memory backend linked with device 1345# 1346# Since: 4.1 1347## 1348{ 'struct': 'VirtioPMEMDeviceInfo', 1349 'data': { '*id': 'str', 1350 'memaddr': 'size', 1351 'size': 'size', 1352 'memdev': 'str' 1353 } 1354} 1355 1356## 1357# @VirtioMEMDeviceInfo: 1358# 1359# VirtioMEMDevice state information 1360# 1361# @id: device's ID 1362# 1363# @memaddr: physical address in memory, where device is mapped 1364# 1365# @requested-size: the user requested size of the device 1366# 1367# @size: the (current) size of memory that the device provides 1368# 1369# @max-size: the maximum size of memory that the device can provide 1370# 1371# @block-size: the block size of memory that the device provides 1372# 1373# @node: NUMA node number where device is assigned to 1374# 1375# @memdev: memory backend linked with the region 1376# 1377# Since: 5.1 1378## 1379{ 'struct': 'VirtioMEMDeviceInfo', 1380 'data': { '*id': 'str', 1381 'memaddr': 'size', 1382 'requested-size': 'size', 1383 'size': 'size', 1384 'max-size': 'size', 1385 'block-size': 'size', 1386 'node': 'int', 1387 'memdev': 'str' 1388 } 1389} 1390 1391## 1392# @SgxEPCDeviceInfo: 1393# 1394# Sgx EPC state information 1395# 1396# @id: device's ID 1397# 1398# @memaddr: physical address in memory, where device is mapped 1399# 1400# @size: size of memory that the device provides 1401# 1402# @memdev: memory backend linked with device 1403# 1404# @node: the numa node (Since: 7.0) 1405# 1406# Since: 6.2 1407## 1408{ 'struct': 'SgxEPCDeviceInfo', 1409 'data': { '*id': 'str', 1410 'memaddr': 'size', 1411 'size': 'size', 1412 'node': 'int', 1413 'memdev': 'str' 1414 } 1415} 1416 1417## 1418# @HvBalloonDeviceInfo: 1419# 1420# hv-balloon provided memory state information 1421# 1422# @id: device's ID 1423# 1424# @memaddr: physical address in memory, where device is mapped 1425# 1426# @max-size: the maximum size of memory that the device can provide 1427# 1428# @memdev: memory backend linked with device 1429# 1430# Since: 8.2 1431## 1432{ 'struct': 'HvBalloonDeviceInfo', 1433 'data': { '*id': 'str', 1434 '*memaddr': 'size', 1435 'max-size': 'size', 1436 '*memdev': 'str' 1437 } 1438} 1439 1440## 1441# @MemoryDeviceInfoKind: 1442# 1443# @nvdimm: since 2.12 1444# 1445# @virtio-pmem: since 4.1 1446# 1447# @virtio-mem: since 5.1 1448# 1449# @sgx-epc: since 6.2. 1450# 1451# @hv-balloon: since 8.2. 1452# 1453# Since: 2.1 1454## 1455{ 'enum': 'MemoryDeviceInfoKind', 1456 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc', 1457 'hv-balloon' ] } 1458 1459## 1460# @PCDIMMDeviceInfoWrapper: 1461# 1462# @data: PCDIMMDevice state information 1463# 1464# Since: 2.1 1465## 1466{ 'struct': 'PCDIMMDeviceInfoWrapper', 1467 'data': { 'data': 'PCDIMMDeviceInfo' } } 1468 1469## 1470# @VirtioPMEMDeviceInfoWrapper: 1471# 1472# @data: VirtioPMEM state information 1473# 1474# Since: 2.1 1475## 1476{ 'struct': 'VirtioPMEMDeviceInfoWrapper', 1477 'data': { 'data': 'VirtioPMEMDeviceInfo' } } 1478 1479## 1480# @VirtioMEMDeviceInfoWrapper: 1481# 1482# @data: VirtioMEMDevice state information 1483# 1484# Since: 2.1 1485## 1486{ 'struct': 'VirtioMEMDeviceInfoWrapper', 1487 'data': { 'data': 'VirtioMEMDeviceInfo' } } 1488 1489## 1490# @SgxEPCDeviceInfoWrapper: 1491# 1492# @data: Sgx EPC state information 1493# 1494# Since: 6.2 1495## 1496{ 'struct': 'SgxEPCDeviceInfoWrapper', 1497 'data': { 'data': 'SgxEPCDeviceInfo' } } 1498 1499## 1500# @HvBalloonDeviceInfoWrapper: 1501# 1502# @data: hv-balloon provided memory state information 1503# 1504# Since: 8.2 1505## 1506{ 'struct': 'HvBalloonDeviceInfoWrapper', 1507 'data': { 'data': 'HvBalloonDeviceInfo' } } 1508 1509## 1510# @MemoryDeviceInfo: 1511# 1512# Union containing information about a memory device 1513# 1514# @type: memory device type 1515# 1516# Since: 2.1 1517## 1518{ 'union': 'MemoryDeviceInfo', 1519 'base': { 'type': 'MemoryDeviceInfoKind' }, 1520 'discriminator': 'type', 1521 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper', 1522 'nvdimm': 'PCDIMMDeviceInfoWrapper', 1523 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper', 1524 'virtio-mem': 'VirtioMEMDeviceInfoWrapper', 1525 'sgx-epc': 'SgxEPCDeviceInfoWrapper', 1526 'hv-balloon': 'HvBalloonDeviceInfoWrapper' 1527 } 1528} 1529 1530## 1531# @SgxEPC: 1532# 1533# Sgx EPC cmdline information 1534# 1535# @memdev: memory backend linked with device 1536# 1537# @node: the numa node (Since: 7.0) 1538# 1539# Since: 6.2 1540## 1541{ 'struct': 'SgxEPC', 1542 'data': { 'memdev': 'str', 1543 'node': 'int' 1544 } 1545} 1546 1547## 1548# @SgxEPCProperties: 1549# 1550# SGX properties of machine types. 1551# 1552# @sgx-epc: list of ids of memory-backend-epc objects. 1553# 1554# Since: 6.2 1555## 1556{ 'struct': 'SgxEPCProperties', 1557 'data': { 'sgx-epc': ['SgxEPC'] } 1558} 1559 1560## 1561# @query-memory-devices: 1562# 1563# Lists available memory devices and their state 1564# 1565# Since: 2.1 1566# 1567# Example: 1568# 1569# -> { "execute": "query-memory-devices" } 1570# <- { "return": [ { "data": 1571# { "addr": 5368709120, 1572# "hotpluggable": true, 1573# "hotplugged": true, 1574# "id": "d1", 1575# "memdev": "/objects/memX", 1576# "node": 0, 1577# "size": 1073741824, 1578# "slot": 0}, 1579# "type": "dimm" 1580# } ] } 1581## 1582{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 1583 1584## 1585# @MEMORY_DEVICE_SIZE_CHANGE: 1586# 1587# Emitted when the size of a memory device changes. Only emitted for 1588# memory devices that can actually change the size (e.g., virtio-mem 1589# due to guest action). 1590# 1591# @id: device's ID 1592# 1593# @size: the new size of memory that the device provides 1594# 1595# @qom-path: path to the device object in the QOM tree (since 6.2) 1596# 1597# .. note:: This event is rate-limited. 1598# 1599# Since: 5.1 1600# 1601# Example: 1602# 1603# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE", 1604# "data": { "id": "vm0", "size": 1073741824, 1605# "qom-path": "/machine/unattached/device[2]" }, 1606# "timestamp": { "seconds": 1588168529, "microseconds": 201316 } } 1607## 1608{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE', 1609 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} } 1610 1611## 1612# @BootConfiguration: 1613# 1614# Schema for virtual machine boot configuration. 1615# 1616# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network) 1617# 1618# @once: Boot order to apply on first boot 1619# 1620# @menu: Whether to show a boot menu 1621# 1622# @splash: The name of the file to be passed to the firmware as logo 1623# picture, if @menu is true. 1624# 1625# @splash-time: How long to show the logo picture, in milliseconds 1626# 1627# @reboot-timeout: Timeout before guest reboots after boot fails 1628# 1629# @strict: Whether to attempt booting from devices not included in the 1630# boot order 1631# 1632# Since: 7.1 1633## 1634{ 'struct': 'BootConfiguration', 'data': { 1635 '*order': 'str', 1636 '*once': 'str', 1637 '*menu': 'bool', 1638 '*splash': 'str', 1639 '*splash-time': 'int', 1640 '*reboot-timeout': 'int', 1641 '*strict': 'bool' } } 1642 1643## 1644# @SMPConfiguration: 1645# 1646# Schema for CPU topology configuration. A missing value lets QEMU 1647# figure out a suitable value based on the ones that are provided. 1648# 1649# The members other than @cpus and @maxcpus define a topology of 1650# containers. 1651# 1652# The ordering from highest/coarsest to lowest/finest is: 1653# @drawers, @books, @sockets, @dies, @clusters, @cores, @threads. 1654# 1655# Different architectures support different subsets of topology 1656# containers. 1657# 1658# For example, s390x does not have clusters and dies, and the socket 1659# is the parent container of cores. 1660# 1661# @cpus: number of virtual CPUs in the virtual machine 1662# 1663# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual 1664# machine 1665# 1666# @drawers: number of drawers in the CPU topology (since 8.2) 1667# 1668# @books: number of books in the CPU topology (since 8.2) 1669# 1670# @sockets: number of sockets per parent container 1671# 1672# @dies: number of dies per parent container 1673# 1674# @clusters: number of clusters per parent container (since 7.0) 1675# 1676# @modules: number of modules per parent container (since 9.1) 1677# 1678# @cores: number of cores per parent container 1679# 1680# @threads: number of threads per core 1681# 1682# Since: 6.1 1683## 1684{ 'struct': 'SMPConfiguration', 'data': { 1685 '*cpus': 'int', 1686 '*drawers': 'int', 1687 '*books': 'int', 1688 '*sockets': 'int', 1689 '*dies': 'int', 1690 '*clusters': 'int', 1691 '*modules': 'int', 1692 '*cores': 'int', 1693 '*threads': 'int', 1694 '*maxcpus': 'int' } } 1695 1696## 1697# @x-query-irq: 1698# 1699# Query interrupt statistics 1700# 1701# Features: 1702# 1703# @unstable: This command is meant for debugging. 1704# 1705# Returns: interrupt statistics 1706# 1707# Since: 6.2 1708## 1709{ 'command': 'x-query-irq', 1710 'returns': 'HumanReadableText', 1711 'features': [ 'unstable' ] } 1712 1713## 1714# @x-query-jit: 1715# 1716# Query TCG compiler statistics 1717# 1718# Features: 1719# 1720# @unstable: This command is meant for debugging. 1721# 1722# Returns: TCG compiler statistics 1723# 1724# Since: 6.2 1725## 1726{ 'command': 'x-query-jit', 1727 'returns': 'HumanReadableText', 1728 'if': 'CONFIG_TCG', 1729 'features': [ 'unstable' ] } 1730 1731## 1732# @x-query-numa: 1733# 1734# Query NUMA topology information 1735# 1736# Features: 1737# 1738# @unstable: This command is meant for debugging. 1739# 1740# Returns: topology information 1741# 1742# Since: 6.2 1743## 1744{ 'command': 'x-query-numa', 1745 'returns': 'HumanReadableText', 1746 'features': [ 'unstable' ] } 1747 1748## 1749# @x-query-opcount: 1750# 1751# Query TCG opcode counters 1752# 1753# Features: 1754# 1755# @unstable: This command is meant for debugging. 1756# 1757# Returns: TCG opcode counters 1758# 1759# Since: 6.2 1760## 1761{ 'command': 'x-query-opcount', 1762 'returns': 'HumanReadableText', 1763 'if': 'CONFIG_TCG', 1764 'features': [ 'unstable' ] } 1765 1766## 1767# @x-query-ramblock: 1768# 1769# Query system ramblock information 1770# 1771# Features: 1772# 1773# @unstable: This command is meant for debugging. 1774# 1775# Returns: system ramblock information 1776# 1777# Since: 6.2 1778## 1779{ 'command': 'x-query-ramblock', 1780 'returns': 'HumanReadableText', 1781 'features': [ 'unstable' ] } 1782 1783## 1784# @x-query-roms: 1785# 1786# Query information on the registered ROMS 1787# 1788# Features: 1789# 1790# @unstable: This command is meant for debugging. 1791# 1792# Returns: registered ROMs 1793# 1794# Since: 6.2 1795## 1796{ 'command': 'x-query-roms', 1797 'returns': 'HumanReadableText', 1798 'features': [ 'unstable' ] } 1799 1800## 1801# @x-query-usb: 1802# 1803# Query information on the USB devices 1804# 1805# Features: 1806# 1807# @unstable: This command is meant for debugging. 1808# 1809# Returns: USB device information 1810# 1811# Since: 6.2 1812## 1813{ 'command': 'x-query-usb', 1814 'returns': 'HumanReadableText', 1815 'features': [ 'unstable' ] } 1816 1817## 1818# @SmbiosEntryPointType: 1819# 1820# @32: SMBIOS version 2.1 (32-bit) Entry Point 1821# 1822# @64: SMBIOS version 3.0 (64-bit) Entry Point 1823# 1824# @auto: Either 2.x or 3.x SMBIOS version, 2.x if configuration can be 1825# described by it and 3.x otherwise (since: 9.0) 1826# 1827# Since: 7.0 1828## 1829{ 'enum': 'SmbiosEntryPointType', 1830 'data': [ '32', '64', 'auto' ] } 1831 1832## 1833# @MemorySizeConfiguration: 1834# 1835# Schema for memory size configuration. 1836# 1837# @size: memory size in bytes 1838# 1839# @max-size: maximum hotpluggable memory size in bytes 1840# 1841# @slots: number of available memory slots for hotplug 1842# 1843# Since: 7.1 1844## 1845{ 'struct': 'MemorySizeConfiguration', 'data': { 1846 '*size': 'size', 1847 '*max-size': 'size', 1848 '*slots': 'uint64' } } 1849 1850## 1851# @dumpdtb: 1852# 1853# Save the FDT in dtb format. 1854# 1855# @filename: name of the dtb file to be created 1856# 1857# Since: 7.2 1858# 1859# Example: 1860# 1861# -> { "execute": "dumpdtb" } 1862# "arguments": { "filename": "fdt.dtb" } } 1863# <- { "return": {} } 1864## 1865{ 'command': 'dumpdtb', 1866 'data': { 'filename': 'str' }, 1867 'if': 'CONFIG_FDT' } 1868 1869## 1870# @x-query-interrupt-controllers: 1871# 1872# Query information on interrupt controller devices 1873# 1874# Features: 1875# 1876# @unstable: This command is meant for debugging. 1877# 1878# Returns: Interrupt controller devices information 1879# 1880# Since: 9.1 1881## 1882{ 'command': 'x-query-interrupt-controllers', 1883 'returns': 'HumanReadableText', 1884 'features': [ 'unstable' ]} 1885