xref: /openbmc/qemu/plugins/api.c (revision e763953a)
1 /*
2  * QEMU Plugin API
3  *
4  * This provides the API that is available to the plugins to interact
5  * with QEMU. We have to be careful not to expose internal details of
6  * how QEMU works so we abstract out things like translation and
7  * instructions to anonymous data types:
8  *
9  *  qemu_plugin_tb
10  *  qemu_plugin_insn
11  *  qemu_plugin_register
12  *
13  * Which can then be passed back into the API to do additional things.
14  * As such all the public functions in here are exported in
15  * qemu-plugin.h.
16  *
17  * The general life-cycle of a plugin is:
18  *
19  *  - plugin is loaded, public qemu_plugin_install called
20  *    - the install func registers callbacks for events
21  *    - usually an atexit_cb is registered to dump info at the end
22  *  - when a registered event occurs the plugin is called
23  *     - some events pass additional info
24  *     - during translation the plugin can decide to instrument any
25  *       instruction
26  *  - when QEMU exits all the registered atexit callbacks are called
27  *
28  * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
29  * Copyright (C) 2019, Linaro
30  *
31  * License: GNU GPL, version 2 or later.
32  *   See the COPYING file in the top-level directory.
33  *
34  * SPDX-License-Identifier: GPL-2.0-or-later
35  *
36  */
37 
38 #include "qemu/osdep.h"
39 #include "qemu/main-loop.h"
40 #include "qemu/plugin.h"
41 #include "qemu/log.h"
42 #include "tcg/tcg.h"
43 #include "exec/exec-all.h"
44 #include "exec/gdbstub.h"
45 #include "exec/translator.h"
46 #include "disas/disas.h"
47 #include "plugin.h"
48 #ifndef CONFIG_USER_ONLY
49 #include "exec/ram_addr.h"
50 #include "qemu/plugin-memory.h"
51 #include "hw/boards.h"
52 #else
53 #include "qemu.h"
54 #ifdef CONFIG_LINUX
55 #include "loader.h"
56 #endif
57 #endif
58 
59 /* Uninstall and Reset handlers */
60 
61 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
62 {
63     plugin_reset_uninstall(id, cb, false);
64 }
65 
66 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
67 {
68     plugin_reset_uninstall(id, cb, true);
69 }
70 
71 /*
72  * Plugin Register Functions
73  *
74  * This allows the plugin to register callbacks for various events
75  * during the translation.
76  */
77 
78 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
79                                        qemu_plugin_vcpu_simple_cb_t cb)
80 {
81     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
82 }
83 
84 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
85                                        qemu_plugin_vcpu_simple_cb_t cb)
86 {
87     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
88 }
89 
90 static bool tb_is_mem_only(void)
91 {
92     return tb_cflags(tcg_ctx->gen_tb) & CF_MEMI_ONLY;
93 }
94 
95 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
96                                           qemu_plugin_vcpu_udata_cb_t cb,
97                                           enum qemu_plugin_cb_flags flags,
98                                           void *udata)
99 {
100     if (!tb_is_mem_only()) {
101         plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata);
102     }
103 }
104 
105 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
106     struct qemu_plugin_tb *tb,
107     enum qemu_plugin_op op,
108     qemu_plugin_u64 entry,
109     uint64_t imm)
110 {
111     if (!tb_is_mem_only()) {
112         plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm);
113     }
114 }
115 
116 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
117                                             qemu_plugin_vcpu_udata_cb_t cb,
118                                             enum qemu_plugin_cb_flags flags,
119                                             void *udata)
120 {
121     if (!tb_is_mem_only()) {
122         plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata);
123     }
124 }
125 
126 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(
127     struct qemu_plugin_insn *insn,
128     enum qemu_plugin_op op,
129     qemu_plugin_u64 entry,
130     uint64_t imm)
131 {
132     if (!tb_is_mem_only()) {
133         plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm);
134     }
135 }
136 
137 
138 /*
139  * We always plant memory instrumentation because they don't finalise until
140  * after the operation has complete.
141  */
142 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
143                                       qemu_plugin_vcpu_mem_cb_t cb,
144                                       enum qemu_plugin_cb_flags flags,
145                                       enum qemu_plugin_mem_rw rw,
146                                       void *udata)
147 {
148     plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata);
149 }
150 
151 void qemu_plugin_register_vcpu_mem_inline_per_vcpu(
152     struct qemu_plugin_insn *insn,
153     enum qemu_plugin_mem_rw rw,
154     enum qemu_plugin_op op,
155     qemu_plugin_u64 entry,
156     uint64_t imm)
157 {
158     plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm);
159 }
160 
161 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
162                                            qemu_plugin_vcpu_tb_trans_cb_t cb)
163 {
164     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
165 }
166 
167 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
168                                           qemu_plugin_vcpu_syscall_cb_t cb)
169 {
170     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
171 }
172 
173 void
174 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
175                                          qemu_plugin_vcpu_syscall_ret_cb_t cb)
176 {
177     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
178 }
179 
180 /*
181  * Plugin Queries
182  *
183  * These are queries that the plugin can make to gauge information
184  * from our opaque data types. We do not want to leak internal details
185  * here just information useful to the plugin.
186  */
187 
188 /*
189  * Translation block information:
190  *
191  * A plugin can query the virtual address of the start of the block
192  * and the number of instructions in it. It can also get access to
193  * each translated instruction.
194  */
195 
196 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
197 {
198     return tb->n;
199 }
200 
201 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
202 {
203     const DisasContextBase *db = tcg_ctx->plugin_db;
204     return db->pc_first;
205 }
206 
207 struct qemu_plugin_insn *
208 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
209 {
210     struct qemu_plugin_insn *insn;
211     if (unlikely(idx >= tb->n)) {
212         return NULL;
213     }
214     insn = g_ptr_array_index(tb->insns, idx);
215     return insn;
216 }
217 
218 /*
219  * Instruction information
220  *
221  * These queries allow the plugin to retrieve information about each
222  * instruction being translated.
223  */
224 
225 size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn,
226                              void *dest, size_t len)
227 {
228     const DisasContextBase *db = tcg_ctx->plugin_db;
229 
230     len = MIN(len, insn->len);
231     return translator_st(db, dest, insn->vaddr, len) ? len : 0;
232 }
233 
234 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
235 {
236     return insn->len;
237 }
238 
239 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
240 {
241     return insn->vaddr;
242 }
243 
244 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
245 {
246     const DisasContextBase *db = tcg_ctx->plugin_db;
247     vaddr page0_last = db->pc_first | ~TARGET_PAGE_MASK;
248 
249     if (db->fake_insn) {
250         return NULL;
251     }
252 
253     /*
254      * ??? The return value is not intended for use of host memory,
255      * but as a proxy for address space and physical address.
256      * Thus we are only interested in the first byte and do not
257      * care about spanning pages.
258      */
259     if (insn->vaddr <= page0_last) {
260         if (db->host_addr[0] == NULL) {
261             return NULL;
262         }
263         return db->host_addr[0] + insn->vaddr - db->pc_first;
264     } else {
265         if (db->host_addr[1] == NULL) {
266             return NULL;
267         }
268         return db->host_addr[1] + insn->vaddr - (page0_last + 1);
269     }
270 }
271 
272 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
273 {
274     CPUState *cpu = current_cpu;
275     return plugin_disas(cpu, insn->vaddr, insn->len);
276 }
277 
278 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
279 {
280     const char *sym = lookup_symbol(insn->vaddr);
281     return sym[0] != 0 ? sym : NULL;
282 }
283 
284 /*
285  * The memory queries allow the plugin to query information about a
286  * memory access.
287  */
288 
289 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
290 {
291     MemOp op = get_memop(info);
292     return op & MO_SIZE;
293 }
294 
295 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
296 {
297     MemOp op = get_memop(info);
298     return op & MO_SIGN;
299 }
300 
301 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
302 {
303     MemOp op = get_memop(info);
304     return (op & MO_BSWAP) == MO_BE;
305 }
306 
307 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
308 {
309     return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
310 }
311 
312 /*
313  * Virtual Memory queries
314  */
315 
316 #ifdef CONFIG_SOFTMMU
317 static __thread struct qemu_plugin_hwaddr hwaddr_info;
318 #endif
319 
320 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
321                                                   uint64_t vaddr)
322 {
323 #ifdef CONFIG_SOFTMMU
324     CPUState *cpu = current_cpu;
325     unsigned int mmu_idx = get_mmuidx(info);
326     enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
327     hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
328 
329     assert(mmu_idx < NB_MMU_MODES);
330 
331     if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
332                            hwaddr_info.is_store, &hwaddr_info)) {
333         error_report("invalid use of qemu_plugin_get_hwaddr");
334         return NULL;
335     }
336 
337     return &hwaddr_info;
338 #else
339     return NULL;
340 #endif
341 }
342 
343 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
344 {
345 #ifdef CONFIG_SOFTMMU
346     return haddr->is_io;
347 #else
348     return false;
349 #endif
350 }
351 
352 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
353 {
354 #ifdef CONFIG_SOFTMMU
355     if (haddr) {
356         return haddr->phys_addr;
357     }
358 #endif
359     return 0;
360 }
361 
362 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
363 {
364 #ifdef CONFIG_SOFTMMU
365     if (h && h->is_io) {
366         MemoryRegion *mr = h->mr;
367         if (!mr->name) {
368             unsigned maddr = (uintptr_t)mr;
369             g_autofree char *temp = g_strdup_printf("anon%08x", maddr);
370             return g_intern_string(temp);
371         } else {
372             return g_intern_string(mr->name);
373         }
374     } else {
375         return g_intern_static_string("RAM");
376     }
377 #else
378     return g_intern_static_string("Invalid");
379 #endif
380 }
381 
382 int qemu_plugin_num_vcpus(void)
383 {
384     return plugin_num_vcpus();
385 }
386 
387 /*
388  * Plugin output
389  */
390 void qemu_plugin_outs(const char *string)
391 {
392     qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
393 }
394 
395 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
396 {
397     return name && value && qapi_bool_parse(name, value, ret, NULL);
398 }
399 
400 /*
401  * Binary path, start and end locations
402  */
403 const char *qemu_plugin_path_to_binary(void)
404 {
405     char *path = NULL;
406 #ifdef CONFIG_USER_ONLY
407     TaskState *ts = get_task_state(current_cpu);
408     path = g_strdup(ts->bprm->filename);
409 #endif
410     return path;
411 }
412 
413 uint64_t qemu_plugin_start_code(void)
414 {
415     uint64_t start = 0;
416 #ifdef CONFIG_USER_ONLY
417     TaskState *ts = get_task_state(current_cpu);
418     start = ts->info->start_code;
419 #endif
420     return start;
421 }
422 
423 uint64_t qemu_plugin_end_code(void)
424 {
425     uint64_t end = 0;
426 #ifdef CONFIG_USER_ONLY
427     TaskState *ts = get_task_state(current_cpu);
428     end = ts->info->end_code;
429 #endif
430     return end;
431 }
432 
433 uint64_t qemu_plugin_entry_code(void)
434 {
435     uint64_t entry = 0;
436 #ifdef CONFIG_USER_ONLY
437     TaskState *ts = get_task_state(current_cpu);
438     entry = ts->info->entry;
439 #endif
440     return entry;
441 }
442 
443 /*
444  * Create register handles.
445  *
446  * We need to create a handle for each register so the plugin
447  * infrastructure can call gdbstub to read a register. They are
448  * currently just a pointer encapsulation of the gdb_reg but in
449  * future may hold internal plugin state so its important plugin
450  * authors are not tempted to treat them as numbers.
451  *
452  * We also construct a result array with those handles and some
453  * ancillary data the plugin might find useful.
454  */
455 
456 static GArray *create_register_handles(GArray *gdbstub_regs)
457 {
458     GArray *find_data = g_array_new(true, true,
459                                     sizeof(qemu_plugin_reg_descriptor));
460 
461     for (int i = 0; i < gdbstub_regs->len; i++) {
462         GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i);
463         qemu_plugin_reg_descriptor desc;
464 
465         /* skip "un-named" regs */
466         if (!grd->name) {
467             continue;
468         }
469 
470         /* Create a record for the plugin */
471         desc.handle = GINT_TO_POINTER(grd->gdb_reg);
472         desc.name = g_intern_string(grd->name);
473         desc.feature = g_intern_string(grd->feature_name);
474         g_array_append_val(find_data, desc);
475     }
476 
477     return find_data;
478 }
479 
480 GArray *qemu_plugin_get_registers(void)
481 {
482     g_assert(current_cpu);
483 
484     g_autoptr(GArray) regs = gdb_get_register_list(current_cpu);
485     return create_register_handles(regs);
486 }
487 
488 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf)
489 {
490     g_assert(current_cpu);
491 
492     return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg));
493 }
494 
495 struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size)
496 {
497     return plugin_scoreboard_new(element_size);
498 }
499 
500 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score)
501 {
502     plugin_scoreboard_free(score);
503 }
504 
505 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score,
506                                   unsigned int vcpu_index)
507 {
508     g_assert(vcpu_index < qemu_plugin_num_vcpus());
509     /* we can't use g_array_index since entry size is not statically known */
510     char *base_ptr = score->data->data;
511     return base_ptr + vcpu_index * g_array_get_element_size(score->data);
512 }
513 
514 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry,
515                                     unsigned int vcpu_index)
516 {
517     char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index);
518     return (uint64_t *)(ptr + entry.offset);
519 }
520 
521 void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index,
522                          uint64_t added)
523 {
524     *plugin_u64_address(entry, vcpu_index) += added;
525 }
526 
527 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry,
528                              unsigned int vcpu_index)
529 {
530     return *plugin_u64_address(entry, vcpu_index);
531 }
532 
533 void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index,
534                          uint64_t val)
535 {
536     *plugin_u64_address(entry, vcpu_index) = val;
537 }
538 
539 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry)
540 {
541     uint64_t total = 0;
542     for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) {
543         total += qemu_plugin_u64_get(entry, i);
544     }
545     return total;
546 }
547