1 /* 2 * QEMU Plugin API 3 * 4 * This provides the API that is available to the plugins to interact 5 * with QEMU. We have to be careful not to expose internal details of 6 * how QEMU works so we abstract out things like translation and 7 * instructions to anonymous data types: 8 * 9 * qemu_plugin_tb 10 * qemu_plugin_insn 11 * 12 * Which can then be passed back into the API to do additional things. 13 * As such all the public functions in here are exported in 14 * qemu-plugin.h. 15 * 16 * The general life-cycle of a plugin is: 17 * 18 * - plugin is loaded, public qemu_plugin_install called 19 * - the install func registers callbacks for events 20 * - usually an atexit_cb is registered to dump info at the end 21 * - when a registered event occurs the plugin is called 22 * - some events pass additional info 23 * - during translation the plugin can decide to instrument any 24 * instruction 25 * - when QEMU exits all the registered atexit callbacks are called 26 * 27 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org> 28 * Copyright (C) 2019, Linaro 29 * 30 * License: GNU GPL, version 2 or later. 31 * See the COPYING file in the top-level directory. 32 * 33 * SPDX-License-Identifier: GPL-2.0-or-later 34 * 35 */ 36 37 #include "qemu/osdep.h" 38 #include "qemu/plugin.h" 39 #include "qemu/log.h" 40 #include "tcg/tcg.h" 41 #include "exec/exec-all.h" 42 #include "exec/ram_addr.h" 43 #include "disas/disas.h" 44 #include "plugin.h" 45 #ifndef CONFIG_USER_ONLY 46 #include "qemu/plugin-memory.h" 47 #include "hw/boards.h" 48 #else 49 #include "qemu.h" 50 #ifdef CONFIG_LINUX 51 #include "loader.h" 52 #endif 53 #endif 54 55 /* Uninstall and Reset handlers */ 56 57 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 58 { 59 plugin_reset_uninstall(id, cb, false); 60 } 61 62 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 63 { 64 plugin_reset_uninstall(id, cb, true); 65 } 66 67 /* 68 * Plugin Register Functions 69 * 70 * This allows the plugin to register callbacks for various events 71 * during the translation. 72 */ 73 74 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, 75 qemu_plugin_vcpu_simple_cb_t cb) 76 { 77 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); 78 } 79 80 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, 81 qemu_plugin_vcpu_simple_cb_t cb) 82 { 83 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); 84 } 85 86 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, 87 qemu_plugin_vcpu_udata_cb_t cb, 88 enum qemu_plugin_cb_flags flags, 89 void *udata) 90 { 91 if (!tb->mem_only) { 92 int index = flags == QEMU_PLUGIN_CB_R_REGS || 93 flags == QEMU_PLUGIN_CB_RW_REGS ? 94 PLUGIN_CB_REGULAR_R : PLUGIN_CB_REGULAR; 95 96 plugin_register_dyn_cb__udata(&tb->cbs[index], 97 cb, flags, udata); 98 } 99 } 100 101 void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb, 102 enum qemu_plugin_op op, 103 void *ptr, uint64_t imm) 104 { 105 if (!tb->mem_only) { 106 plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm); 107 } 108 } 109 110 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, 111 qemu_plugin_vcpu_udata_cb_t cb, 112 enum qemu_plugin_cb_flags flags, 113 void *udata) 114 { 115 if (!insn->mem_only) { 116 int index = flags == QEMU_PLUGIN_CB_R_REGS || 117 flags == QEMU_PLUGIN_CB_RW_REGS ? 118 PLUGIN_CB_REGULAR_R : PLUGIN_CB_REGULAR; 119 120 plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][index], 121 cb, flags, udata); 122 } 123 } 124 125 void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn, 126 enum qemu_plugin_op op, 127 void *ptr, uint64_t imm) 128 { 129 if (!insn->mem_only) { 130 plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE], 131 0, op, ptr, imm); 132 } 133 } 134 135 136 /* 137 * We always plant memory instrumentation because they don't finalise until 138 * after the operation has complete. 139 */ 140 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, 141 qemu_plugin_vcpu_mem_cb_t cb, 142 enum qemu_plugin_cb_flags flags, 143 enum qemu_plugin_mem_rw rw, 144 void *udata) 145 { 146 plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR], 147 cb, flags, rw, udata); 148 } 149 150 void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn, 151 enum qemu_plugin_mem_rw rw, 152 enum qemu_plugin_op op, void *ptr, 153 uint64_t imm) 154 { 155 plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE], 156 rw, op, ptr, imm); 157 } 158 159 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, 160 qemu_plugin_vcpu_tb_trans_cb_t cb) 161 { 162 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); 163 } 164 165 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, 166 qemu_plugin_vcpu_syscall_cb_t cb) 167 { 168 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); 169 } 170 171 void 172 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, 173 qemu_plugin_vcpu_syscall_ret_cb_t cb) 174 { 175 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); 176 } 177 178 /* 179 * Plugin Queries 180 * 181 * These are queries that the plugin can make to gauge information 182 * from our opaque data types. We do not want to leak internal details 183 * here just information useful to the plugin. 184 */ 185 186 /* 187 * Translation block information: 188 * 189 * A plugin can query the virtual address of the start of the block 190 * and the number of instructions in it. It can also get access to 191 * each translated instruction. 192 */ 193 194 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) 195 { 196 return tb->n; 197 } 198 199 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) 200 { 201 return tb->vaddr; 202 } 203 204 struct qemu_plugin_insn * 205 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) 206 { 207 struct qemu_plugin_insn *insn; 208 if (unlikely(idx >= tb->n)) { 209 return NULL; 210 } 211 insn = g_ptr_array_index(tb->insns, idx); 212 insn->mem_only = tb->mem_only; 213 return insn; 214 } 215 216 /* 217 * Instruction information 218 * 219 * These queries allow the plugin to retrieve information about each 220 * instruction being translated. 221 */ 222 223 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn) 224 { 225 return insn->data->data; 226 } 227 228 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) 229 { 230 return insn->data->len; 231 } 232 233 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) 234 { 235 return insn->vaddr; 236 } 237 238 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) 239 { 240 return insn->haddr; 241 } 242 243 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) 244 { 245 CPUState *cpu = current_cpu; 246 return plugin_disas(cpu, insn->vaddr, insn->data->len); 247 } 248 249 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn) 250 { 251 const char *sym = lookup_symbol(insn->vaddr); 252 return sym[0] != 0 ? sym : NULL; 253 } 254 255 /* 256 * The memory queries allow the plugin to query information about a 257 * memory access. 258 */ 259 260 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) 261 { 262 MemOp op = get_memop(info); 263 return op & MO_SIZE; 264 } 265 266 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) 267 { 268 MemOp op = get_memop(info); 269 return op & MO_SIGN; 270 } 271 272 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) 273 { 274 MemOp op = get_memop(info); 275 return (op & MO_BSWAP) == MO_BE; 276 } 277 278 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) 279 { 280 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W; 281 } 282 283 /* 284 * Virtual Memory queries 285 */ 286 287 #ifdef CONFIG_SOFTMMU 288 static __thread struct qemu_plugin_hwaddr hwaddr_info; 289 #endif 290 291 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info, 292 uint64_t vaddr) 293 { 294 #ifdef CONFIG_SOFTMMU 295 CPUState *cpu = current_cpu; 296 unsigned int mmu_idx = get_mmuidx(info); 297 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); 298 hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0; 299 300 assert(mmu_idx < NB_MMU_MODES); 301 302 if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx, 303 hwaddr_info.is_store, &hwaddr_info)) { 304 error_report("invalid use of qemu_plugin_get_hwaddr"); 305 return NULL; 306 } 307 308 return &hwaddr_info; 309 #else 310 return NULL; 311 #endif 312 } 313 314 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr) 315 { 316 #ifdef CONFIG_SOFTMMU 317 return haddr->is_io; 318 #else 319 return false; 320 #endif 321 } 322 323 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr) 324 { 325 #ifdef CONFIG_SOFTMMU 326 if (haddr) { 327 return haddr->phys_addr; 328 } 329 #endif 330 return 0; 331 } 332 333 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h) 334 { 335 #ifdef CONFIG_SOFTMMU 336 if (h && h->is_io) { 337 MemoryRegion *mr = h->mr; 338 if (!mr->name) { 339 unsigned maddr = (uintptr_t)mr; 340 g_autofree char *temp = g_strdup_printf("anon%08x", maddr); 341 return g_intern_string(temp); 342 } else { 343 return g_intern_string(mr->name); 344 } 345 } else { 346 return g_intern_static_string("RAM"); 347 } 348 #else 349 return g_intern_static_string("Invalid"); 350 #endif 351 } 352 353 int qemu_plugin_num_vcpus(void) 354 { 355 return plugin_num_vcpus(); 356 } 357 358 /* 359 * Plugin output 360 */ 361 void qemu_plugin_outs(const char *string) 362 { 363 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); 364 } 365 366 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret) 367 { 368 return name && value && qapi_bool_parse(name, value, ret, NULL); 369 } 370 371 /* 372 * Binary path, start and end locations 373 */ 374 const char *qemu_plugin_path_to_binary(void) 375 { 376 char *path = NULL; 377 #ifdef CONFIG_USER_ONLY 378 TaskState *ts = (TaskState *) current_cpu->opaque; 379 path = g_strdup(ts->bprm->filename); 380 #endif 381 return path; 382 } 383 384 uint64_t qemu_plugin_start_code(void) 385 { 386 uint64_t start = 0; 387 #ifdef CONFIG_USER_ONLY 388 TaskState *ts = (TaskState *) current_cpu->opaque; 389 start = ts->info->start_code; 390 #endif 391 return start; 392 } 393 394 uint64_t qemu_plugin_end_code(void) 395 { 396 uint64_t end = 0; 397 #ifdef CONFIG_USER_ONLY 398 TaskState *ts = (TaskState *) current_cpu->opaque; 399 end = ts->info->end_code; 400 #endif 401 return end; 402 } 403 404 uint64_t qemu_plugin_entry_code(void) 405 { 406 uint64_t entry = 0; 407 #ifdef CONFIG_USER_ONLY 408 TaskState *ts = (TaskState *) current_cpu->opaque; 409 entry = ts->info->entry; 410 #endif 411 return entry; 412 } 413