1 /* 2 * QEMU Plugin API 3 * 4 * This provides the API that is available to the plugins to interact 5 * with QEMU. We have to be careful not to expose internal details of 6 * how QEMU works so we abstract out things like translation and 7 * instructions to anonymous data types: 8 * 9 * qemu_plugin_tb 10 * qemu_plugin_insn 11 * 12 * Which can then be passed back into the API to do additional things. 13 * As such all the public functions in here are exported in 14 * qemu-plugin.h. 15 * 16 * The general life-cycle of a plugin is: 17 * 18 * - plugin is loaded, public qemu_plugin_install called 19 * - the install func registers callbacks for events 20 * - usually an atexit_cb is registered to dump info at the end 21 * - when a registered event occurs the plugin is called 22 * - some events pass additional info 23 * - during translation the plugin can decide to instrument any 24 * instruction 25 * - when QEMU exits all the registered atexit callbacks are called 26 * 27 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org> 28 * Copyright (C) 2019, Linaro 29 * 30 * License: GNU GPL, version 2 or later. 31 * See the COPYING file in the top-level directory. 32 * 33 * SPDX-License-Identifier: GPL-2.0-or-later 34 * 35 */ 36 37 #include "qemu/osdep.h" 38 #include "qemu/plugin.h" 39 #include "tcg/tcg.h" 40 #include "exec/exec-all.h" 41 #include "exec/ram_addr.h" 42 #include "disas/disas.h" 43 #include "plugin.h" 44 #ifndef CONFIG_USER_ONLY 45 #include "qemu/plugin-memory.h" 46 #include "hw/boards.h" 47 #endif 48 #include "trace/mem.h" 49 50 /* Uninstall and Reset handlers */ 51 52 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 53 { 54 plugin_reset_uninstall(id, cb, false); 55 } 56 57 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 58 { 59 plugin_reset_uninstall(id, cb, true); 60 } 61 62 /* 63 * Plugin Register Functions 64 * 65 * This allows the plugin to register callbacks for various events 66 * during the translation. 67 */ 68 69 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, 70 qemu_plugin_vcpu_simple_cb_t cb) 71 { 72 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); 73 } 74 75 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, 76 qemu_plugin_vcpu_simple_cb_t cb) 77 { 78 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); 79 } 80 81 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, 82 qemu_plugin_vcpu_udata_cb_t cb, 83 enum qemu_plugin_cb_flags flags, 84 void *udata) 85 { 86 if (!tb->mem_only) { 87 plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR], 88 cb, flags, udata); 89 } 90 } 91 92 void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb, 93 enum qemu_plugin_op op, 94 void *ptr, uint64_t imm) 95 { 96 if (!tb->mem_only) { 97 plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm); 98 } 99 } 100 101 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, 102 qemu_plugin_vcpu_udata_cb_t cb, 103 enum qemu_plugin_cb_flags flags, 104 void *udata) 105 { 106 if (!insn->mem_only) { 107 plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR], 108 cb, flags, udata); 109 } 110 } 111 112 void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn, 113 enum qemu_plugin_op op, 114 void *ptr, uint64_t imm) 115 { 116 if (!insn->mem_only) { 117 plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE], 118 0, op, ptr, imm); 119 } 120 } 121 122 123 /* 124 * We always plant memory instrumentation because they don't finalise until 125 * after the operation has complete. 126 */ 127 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, 128 qemu_plugin_vcpu_mem_cb_t cb, 129 enum qemu_plugin_cb_flags flags, 130 enum qemu_plugin_mem_rw rw, 131 void *udata) 132 { 133 plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR], 134 cb, flags, rw, udata); 135 } 136 137 void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn, 138 enum qemu_plugin_mem_rw rw, 139 enum qemu_plugin_op op, void *ptr, 140 uint64_t imm) 141 { 142 plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE], 143 rw, op, ptr, imm); 144 } 145 146 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, 147 qemu_plugin_vcpu_tb_trans_cb_t cb) 148 { 149 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); 150 } 151 152 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, 153 qemu_plugin_vcpu_syscall_cb_t cb) 154 { 155 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); 156 } 157 158 void 159 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, 160 qemu_plugin_vcpu_syscall_ret_cb_t cb) 161 { 162 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); 163 } 164 165 /* 166 * Plugin Queries 167 * 168 * These are queries that the plugin can make to gauge information 169 * from our opaque data types. We do not want to leak internal details 170 * here just information useful to the plugin. 171 */ 172 173 /* 174 * Translation block information: 175 * 176 * A plugin can query the virtual address of the start of the block 177 * and the number of instructions in it. It can also get access to 178 * each translated instruction. 179 */ 180 181 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) 182 { 183 return tb->n; 184 } 185 186 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) 187 { 188 return tb->vaddr; 189 } 190 191 struct qemu_plugin_insn * 192 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) 193 { 194 struct qemu_plugin_insn *insn; 195 if (unlikely(idx >= tb->n)) { 196 return NULL; 197 } 198 insn = g_ptr_array_index(tb->insns, idx); 199 insn->mem_only = tb->mem_only; 200 return insn; 201 } 202 203 /* 204 * Instruction information 205 * 206 * These queries allow the plugin to retrieve information about each 207 * instruction being translated. 208 */ 209 210 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn) 211 { 212 return insn->data->data; 213 } 214 215 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) 216 { 217 return insn->data->len; 218 } 219 220 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) 221 { 222 return insn->vaddr; 223 } 224 225 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) 226 { 227 return insn->haddr; 228 } 229 230 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) 231 { 232 CPUState *cpu = current_cpu; 233 return plugin_disas(cpu, insn->vaddr, insn->data->len); 234 } 235 236 /* 237 * The memory queries allow the plugin to query information about a 238 * memory access. 239 */ 240 241 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) 242 { 243 return info & TRACE_MEM_SZ_SHIFT_MASK; 244 } 245 246 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) 247 { 248 return !!(info & TRACE_MEM_SE); 249 } 250 251 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) 252 { 253 return !!(info & TRACE_MEM_BE); 254 } 255 256 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) 257 { 258 return !!(info & TRACE_MEM_ST); 259 } 260 261 /* 262 * Virtual Memory queries 263 */ 264 265 #ifdef CONFIG_SOFTMMU 266 static __thread struct qemu_plugin_hwaddr hwaddr_info; 267 #endif 268 269 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info, 270 uint64_t vaddr) 271 { 272 #ifdef CONFIG_SOFTMMU 273 CPUState *cpu = current_cpu; 274 unsigned int mmu_idx = info >> TRACE_MEM_MMU_SHIFT; 275 hwaddr_info.is_store = info & TRACE_MEM_ST; 276 277 if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx, 278 info & TRACE_MEM_ST, &hwaddr_info)) { 279 error_report("invalid use of qemu_plugin_get_hwaddr"); 280 return NULL; 281 } 282 283 return &hwaddr_info; 284 #else 285 return NULL; 286 #endif 287 } 288 289 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr) 290 { 291 #ifdef CONFIG_SOFTMMU 292 return haddr->is_io; 293 #else 294 return false; 295 #endif 296 } 297 298 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr) 299 { 300 #ifdef CONFIG_SOFTMMU 301 if (haddr) { 302 if (!haddr->is_io) { 303 RAMBlock *block; 304 ram_addr_t offset; 305 void *hostaddr = (void *) haddr->v.ram.hostaddr; 306 307 block = qemu_ram_block_from_host(hostaddr, false, &offset); 308 if (!block) { 309 error_report("Bad ram pointer %"PRIx64"", haddr->v.ram.hostaddr); 310 abort(); 311 } 312 313 return block->offset + offset + block->mr->addr; 314 } else { 315 MemoryRegionSection *mrs = haddr->v.io.section; 316 return haddr->v.io.offset + mrs->mr->addr; 317 } 318 } 319 #endif 320 return 0; 321 } 322 323 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h) 324 { 325 #ifdef CONFIG_SOFTMMU 326 if (h && h->is_io) { 327 MemoryRegionSection *mrs = h->v.io.section; 328 if (!mrs->mr->name) { 329 unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr; 330 g_autofree char *temp = g_strdup_printf("anon%08lx", maddr); 331 return g_intern_string(temp); 332 } else { 333 return g_intern_string(mrs->mr->name); 334 } 335 } else { 336 return g_intern_static_string("RAM"); 337 } 338 #else 339 return g_intern_static_string("Invalid"); 340 #endif 341 } 342 343 /* 344 * Queries to the number and potential maximum number of vCPUs there 345 * will be. This helps the plugin dimension per-vcpu arrays. 346 */ 347 348 #ifndef CONFIG_USER_ONLY 349 static MachineState * get_ms(void) 350 { 351 return MACHINE(qdev_get_machine()); 352 } 353 #endif 354 355 int qemu_plugin_n_vcpus(void) 356 { 357 #ifdef CONFIG_USER_ONLY 358 return -1; 359 #else 360 return get_ms()->smp.cpus; 361 #endif 362 } 363 364 int qemu_plugin_n_max_vcpus(void) 365 { 366 #ifdef CONFIG_USER_ONLY 367 return -1; 368 #else 369 return get_ms()->smp.max_cpus; 370 #endif 371 } 372 373 /* 374 * Plugin output 375 */ 376 void qemu_plugin_outs(const char *string) 377 { 378 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); 379 } 380