xref: /openbmc/qemu/plugins/api.c (revision bf5dcf8f)
1 /*
2  * QEMU Plugin API
3  *
4  * This provides the API that is available to the plugins to interact
5  * with QEMU. We have to be careful not to expose internal details of
6  * how QEMU works so we abstract out things like translation and
7  * instructions to anonymous data types:
8  *
9  *  qemu_plugin_tb
10  *  qemu_plugin_insn
11  *
12  * Which can then be passed back into the API to do additional things.
13  * As such all the public functions in here are exported in
14  * qemu-plugin.h.
15  *
16  * The general life-cycle of a plugin is:
17  *
18  *  - plugin is loaded, public qemu_plugin_install called
19  *    - the install func registers callbacks for events
20  *    - usually an atexit_cb is registered to dump info at the end
21  *  - when a registered event occurs the plugin is called
22  *     - some events pass additional info
23  *     - during translation the plugin can decide to instrument any
24  *       instruction
25  *  - when QEMU exits all the registered atexit callbacks are called
26  *
27  * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
28  * Copyright (C) 2019, Linaro
29  *
30  * License: GNU GPL, version 2 or later.
31  *   See the COPYING file in the top-level directory.
32  *
33  * SPDX-License-Identifier: GPL-2.0-or-later
34  *
35  */
36 
37 #include "qemu/osdep.h"
38 #include "qemu/plugin.h"
39 #include "tcg/tcg.h"
40 #include "exec/exec-all.h"
41 #include "exec/ram_addr.h"
42 #include "disas/disas.h"
43 #include "plugin.h"
44 #ifndef CONFIG_USER_ONLY
45 #include "qemu/plugin-memory.h"
46 #include "hw/boards.h"
47 #endif
48 #include "trace/mem.h"
49 
50 /* Uninstall and Reset handlers */
51 
52 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
53 {
54     plugin_reset_uninstall(id, cb, false);
55 }
56 
57 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
58 {
59     plugin_reset_uninstall(id, cb, true);
60 }
61 
62 /*
63  * Plugin Register Functions
64  *
65  * This allows the plugin to register callbacks for various events
66  * during the translation.
67  */
68 
69 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
70                                        qemu_plugin_vcpu_simple_cb_t cb)
71 {
72     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
73 }
74 
75 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
76                                        qemu_plugin_vcpu_simple_cb_t cb)
77 {
78     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
79 }
80 
81 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
82                                           qemu_plugin_vcpu_udata_cb_t cb,
83                                           enum qemu_plugin_cb_flags flags,
84                                           void *udata)
85 {
86     if (!tb->mem_only) {
87         plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR],
88                                       cb, flags, udata);
89     }
90 }
91 
92 void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb,
93                                               enum qemu_plugin_op op,
94                                               void *ptr, uint64_t imm)
95 {
96     if (!tb->mem_only) {
97         plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm);
98     }
99 }
100 
101 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
102                                             qemu_plugin_vcpu_udata_cb_t cb,
103                                             enum qemu_plugin_cb_flags flags,
104                                             void *udata)
105 {
106     if (!insn->mem_only) {
107         plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR],
108                                       cb, flags, udata);
109     }
110 }
111 
112 void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn,
113                                                 enum qemu_plugin_op op,
114                                                 void *ptr, uint64_t imm)
115 {
116     if (!insn->mem_only) {
117         plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
118                                   0, op, ptr, imm);
119     }
120 }
121 
122 
123 /*
124  * We always plant memory instrumentation because they don't finalise until
125  * after the operation has complete.
126  */
127 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
128                                       qemu_plugin_vcpu_mem_cb_t cb,
129                                       enum qemu_plugin_cb_flags flags,
130                                       enum qemu_plugin_mem_rw rw,
131                                       void *udata)
132 {
133     plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
134                                     cb, flags, rw, udata);
135 }
136 
137 void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn,
138                                           enum qemu_plugin_mem_rw rw,
139                                           enum qemu_plugin_op op, void *ptr,
140                                           uint64_t imm)
141 {
142     plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE],
143                               rw, op, ptr, imm);
144 }
145 
146 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
147                                            qemu_plugin_vcpu_tb_trans_cb_t cb)
148 {
149     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
150 }
151 
152 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
153                                           qemu_plugin_vcpu_syscall_cb_t cb)
154 {
155     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
156 }
157 
158 void
159 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
160                                          qemu_plugin_vcpu_syscall_ret_cb_t cb)
161 {
162     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
163 }
164 
165 /*
166  * Plugin Queries
167  *
168  * These are queries that the plugin can make to gauge information
169  * from our opaque data types. We do not want to leak internal details
170  * here just information useful to the plugin.
171  */
172 
173 /*
174  * Translation block information:
175  *
176  * A plugin can query the virtual address of the start of the block
177  * and the number of instructions in it. It can also get access to
178  * each translated instruction.
179  */
180 
181 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
182 {
183     return tb->n;
184 }
185 
186 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
187 {
188     return tb->vaddr;
189 }
190 
191 struct qemu_plugin_insn *
192 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
193 {
194     struct qemu_plugin_insn *insn;
195     if (unlikely(idx >= tb->n)) {
196         return NULL;
197     }
198     insn = g_ptr_array_index(tb->insns, idx);
199     insn->mem_only = tb->mem_only;
200     return insn;
201 }
202 
203 /*
204  * Instruction information
205  *
206  * These queries allow the plugin to retrieve information about each
207  * instruction being translated.
208  */
209 
210 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
211 {
212     return insn->data->data;
213 }
214 
215 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
216 {
217     return insn->data->len;
218 }
219 
220 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
221 {
222     return insn->vaddr;
223 }
224 
225 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
226 {
227     return insn->haddr;
228 }
229 
230 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
231 {
232     CPUState *cpu = current_cpu;
233     return plugin_disas(cpu, insn->vaddr, insn->data->len);
234 }
235 
236 /*
237  * The memory queries allow the plugin to query information about a
238  * memory access.
239  */
240 
241 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
242 {
243     return info & TRACE_MEM_SZ_SHIFT_MASK;
244 }
245 
246 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
247 {
248     return !!(info & TRACE_MEM_SE);
249 }
250 
251 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
252 {
253     return !!(info & TRACE_MEM_BE);
254 }
255 
256 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
257 {
258     return !!(info & TRACE_MEM_ST);
259 }
260 
261 /*
262  * Virtual Memory queries
263  */
264 
265 #ifdef CONFIG_SOFTMMU
266 static __thread struct qemu_plugin_hwaddr hwaddr_info;
267 #endif
268 
269 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
270                                                   uint64_t vaddr)
271 {
272 #ifdef CONFIG_SOFTMMU
273     CPUState *cpu = current_cpu;
274     unsigned int mmu_idx = info >> TRACE_MEM_MMU_SHIFT;
275     hwaddr_info.is_store = info & TRACE_MEM_ST;
276 
277     if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
278                            info & TRACE_MEM_ST, &hwaddr_info)) {
279         error_report("invalid use of qemu_plugin_get_hwaddr");
280         return NULL;
281     }
282 
283     return &hwaddr_info;
284 #else
285     return NULL;
286 #endif
287 }
288 
289 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
290 {
291 #ifdef CONFIG_SOFTMMU
292     return haddr->is_io;
293 #else
294     return false;
295 #endif
296 }
297 
298 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
299 {
300 #ifdef CONFIG_SOFTMMU
301     if (haddr) {
302         if (!haddr->is_io) {
303             RAMBlock *block;
304             ram_addr_t offset;
305             void *hostaddr = (void *) haddr->v.ram.hostaddr;
306 
307             block = qemu_ram_block_from_host(hostaddr, false, &offset);
308             if (!block) {
309                 error_report("Bad ram pointer %"PRIx64"", haddr->v.ram.hostaddr);
310                 abort();
311             }
312 
313             return block->offset + offset + block->mr->addr;
314         } else {
315             MemoryRegionSection *mrs = haddr->v.io.section;
316             return haddr->v.io.offset + mrs->mr->addr;
317         }
318     }
319 #endif
320     return 0;
321 }
322 
323 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
324 {
325 #ifdef CONFIG_SOFTMMU
326     if (h && h->is_io) {
327         MemoryRegionSection *mrs = h->v.io.section;
328         if (!mrs->mr->name) {
329             unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr;
330             g_autofree char *temp = g_strdup_printf("anon%08lx", maddr);
331             return g_intern_string(temp);
332         } else {
333             return g_intern_string(mrs->mr->name);
334         }
335     } else {
336         return g_intern_static_string("RAM");
337     }
338 #else
339     return g_intern_static_string("Invalid");
340 #endif
341 }
342 
343 /*
344  * Queries to the number and potential maximum number of vCPUs there
345  * will be. This helps the plugin dimension per-vcpu arrays.
346  */
347 
348 #ifndef CONFIG_USER_ONLY
349 static MachineState * get_ms(void)
350 {
351     return MACHINE(qdev_get_machine());
352 }
353 #endif
354 
355 int qemu_plugin_n_vcpus(void)
356 {
357 #ifdef CONFIG_USER_ONLY
358     return -1;
359 #else
360     return get_ms()->smp.cpus;
361 #endif
362 }
363 
364 int qemu_plugin_n_max_vcpus(void)
365 {
366 #ifdef CONFIG_USER_ONLY
367     return -1;
368 #else
369     return get_ms()->smp.max_cpus;
370 #endif
371 }
372 
373 /*
374  * Plugin output
375  */
376 void qemu_plugin_outs(const char *string)
377 {
378     qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
379 }
380