1 /* 2 * QEMU Plugin API 3 * 4 * This provides the API that is available to the plugins to interact 5 * with QEMU. We have to be careful not to expose internal details of 6 * how QEMU works so we abstract out things like translation and 7 * instructions to anonymous data types: 8 * 9 * qemu_plugin_tb 10 * qemu_plugin_insn 11 * 12 * Which can then be passed back into the API to do additional things. 13 * As such all the public functions in here are exported in 14 * qemu-plugin.h. 15 * 16 * The general life-cycle of a plugin is: 17 * 18 * - plugin is loaded, public qemu_plugin_install called 19 * - the install func registers callbacks for events 20 * - usually an atexit_cb is registered to dump info at the end 21 * - when a registered event occurs the plugin is called 22 * - some events pass additional info 23 * - during translation the plugin can decide to instrument any 24 * instruction 25 * - when QEMU exits all the registered atexit callbacks are called 26 * 27 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org> 28 * Copyright (C) 2019, Linaro 29 * 30 * License: GNU GPL, version 2 or later. 31 * See the COPYING file in the top-level directory. 32 * 33 * SPDX-License-Identifier: GPL-2.0-or-later 34 * 35 */ 36 37 #include "qemu/osdep.h" 38 #include "qemu/plugin.h" 39 #include "qemu/log.h" 40 #include "tcg/tcg.h" 41 #include "exec/exec-all.h" 42 #include "exec/ram_addr.h" 43 #include "disas/disas.h" 44 #include "plugin.h" 45 #ifndef CONFIG_USER_ONLY 46 #include "qemu/plugin-memory.h" 47 #include "hw/boards.h" 48 #else 49 #include "qemu.h" 50 #ifdef CONFIG_LINUX 51 #include "loader.h" 52 #endif 53 #endif 54 55 /* Uninstall and Reset handlers */ 56 57 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 58 { 59 plugin_reset_uninstall(id, cb, false); 60 } 61 62 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 63 { 64 plugin_reset_uninstall(id, cb, true); 65 } 66 67 /* 68 * Plugin Register Functions 69 * 70 * This allows the plugin to register callbacks for various events 71 * during the translation. 72 */ 73 74 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, 75 qemu_plugin_vcpu_simple_cb_t cb) 76 { 77 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); 78 } 79 80 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, 81 qemu_plugin_vcpu_simple_cb_t cb) 82 { 83 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); 84 } 85 86 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, 87 qemu_plugin_vcpu_udata_cb_t cb, 88 enum qemu_plugin_cb_flags flags, 89 void *udata) 90 { 91 if (!tb->mem_only) { 92 plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR], 93 cb, flags, udata); 94 } 95 } 96 97 void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb, 98 enum qemu_plugin_op op, 99 void *ptr, uint64_t imm) 100 { 101 if (!tb->mem_only) { 102 plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm); 103 } 104 } 105 106 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, 107 qemu_plugin_vcpu_udata_cb_t cb, 108 enum qemu_plugin_cb_flags flags, 109 void *udata) 110 { 111 if (!insn->mem_only) { 112 plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR], 113 cb, flags, udata); 114 } 115 } 116 117 void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn, 118 enum qemu_plugin_op op, 119 void *ptr, uint64_t imm) 120 { 121 if (!insn->mem_only) { 122 plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE], 123 0, op, ptr, imm); 124 } 125 } 126 127 128 /* 129 * We always plant memory instrumentation because they don't finalise until 130 * after the operation has complete. 131 */ 132 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, 133 qemu_plugin_vcpu_mem_cb_t cb, 134 enum qemu_plugin_cb_flags flags, 135 enum qemu_plugin_mem_rw rw, 136 void *udata) 137 { 138 plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR], 139 cb, flags, rw, udata); 140 } 141 142 void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn, 143 enum qemu_plugin_mem_rw rw, 144 enum qemu_plugin_op op, void *ptr, 145 uint64_t imm) 146 { 147 plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE], 148 rw, op, ptr, imm); 149 } 150 151 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, 152 qemu_plugin_vcpu_tb_trans_cb_t cb) 153 { 154 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); 155 } 156 157 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, 158 qemu_plugin_vcpu_syscall_cb_t cb) 159 { 160 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); 161 } 162 163 void 164 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, 165 qemu_plugin_vcpu_syscall_ret_cb_t cb) 166 { 167 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); 168 } 169 170 /* 171 * Plugin Queries 172 * 173 * These are queries that the plugin can make to gauge information 174 * from our opaque data types. We do not want to leak internal details 175 * here just information useful to the plugin. 176 */ 177 178 /* 179 * Translation block information: 180 * 181 * A plugin can query the virtual address of the start of the block 182 * and the number of instructions in it. It can also get access to 183 * each translated instruction. 184 */ 185 186 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) 187 { 188 return tb->n; 189 } 190 191 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) 192 { 193 return tb->vaddr; 194 } 195 196 struct qemu_plugin_insn * 197 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) 198 { 199 struct qemu_plugin_insn *insn; 200 if (unlikely(idx >= tb->n)) { 201 return NULL; 202 } 203 insn = g_ptr_array_index(tb->insns, idx); 204 insn->mem_only = tb->mem_only; 205 return insn; 206 } 207 208 /* 209 * Instruction information 210 * 211 * These queries allow the plugin to retrieve information about each 212 * instruction being translated. 213 */ 214 215 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn) 216 { 217 return insn->data->data; 218 } 219 220 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) 221 { 222 return insn->data->len; 223 } 224 225 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) 226 { 227 return insn->vaddr; 228 } 229 230 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) 231 { 232 return insn->haddr; 233 } 234 235 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) 236 { 237 CPUState *cpu = current_cpu; 238 return plugin_disas(cpu, insn->vaddr, insn->data->len); 239 } 240 241 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn) 242 { 243 const char *sym = lookup_symbol(insn->vaddr); 244 return sym[0] != 0 ? sym : NULL; 245 } 246 247 /* 248 * The memory queries allow the plugin to query information about a 249 * memory access. 250 */ 251 252 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) 253 { 254 MemOp op = get_memop(info); 255 return op & MO_SIZE; 256 } 257 258 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) 259 { 260 MemOp op = get_memop(info); 261 return op & MO_SIGN; 262 } 263 264 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) 265 { 266 MemOp op = get_memop(info); 267 return (op & MO_BSWAP) == MO_BE; 268 } 269 270 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) 271 { 272 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W; 273 } 274 275 /* 276 * Virtual Memory queries 277 */ 278 279 #ifdef CONFIG_SOFTMMU 280 static __thread struct qemu_plugin_hwaddr hwaddr_info; 281 #endif 282 283 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info, 284 uint64_t vaddr) 285 { 286 #ifdef CONFIG_SOFTMMU 287 CPUState *cpu = current_cpu; 288 unsigned int mmu_idx = get_mmuidx(info); 289 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); 290 hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0; 291 292 assert(mmu_idx < NB_MMU_MODES); 293 294 if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx, 295 hwaddr_info.is_store, &hwaddr_info)) { 296 error_report("invalid use of qemu_plugin_get_hwaddr"); 297 return NULL; 298 } 299 300 return &hwaddr_info; 301 #else 302 return NULL; 303 #endif 304 } 305 306 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr) 307 { 308 #ifdef CONFIG_SOFTMMU 309 return haddr->is_io; 310 #else 311 return false; 312 #endif 313 } 314 315 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr) 316 { 317 #ifdef CONFIG_SOFTMMU 318 if (haddr) { 319 if (!haddr->is_io) { 320 RAMBlock *block; 321 ram_addr_t offset; 322 void *hostaddr = haddr->v.ram.hostaddr; 323 324 block = qemu_ram_block_from_host(hostaddr, false, &offset); 325 if (!block) { 326 error_report("Bad host ram pointer %p", haddr->v.ram.hostaddr); 327 abort(); 328 } 329 330 return block->offset + offset + block->mr->addr; 331 } else { 332 MemoryRegionSection *mrs = haddr->v.io.section; 333 return mrs->offset_within_address_space + haddr->v.io.offset; 334 } 335 } 336 #endif 337 return 0; 338 } 339 340 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h) 341 { 342 #ifdef CONFIG_SOFTMMU 343 if (h && h->is_io) { 344 MemoryRegionSection *mrs = h->v.io.section; 345 if (!mrs->mr->name) { 346 unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr; 347 g_autofree char *temp = g_strdup_printf("anon%08lx", maddr); 348 return g_intern_string(temp); 349 } else { 350 return g_intern_string(mrs->mr->name); 351 } 352 } else { 353 return g_intern_static_string("RAM"); 354 } 355 #else 356 return g_intern_static_string("Invalid"); 357 #endif 358 } 359 360 /* 361 * Queries to the number and potential maximum number of vCPUs there 362 * will be. This helps the plugin dimension per-vcpu arrays. 363 */ 364 365 #ifndef CONFIG_USER_ONLY 366 static MachineState * get_ms(void) 367 { 368 return MACHINE(qdev_get_machine()); 369 } 370 #endif 371 372 int qemu_plugin_n_vcpus(void) 373 { 374 #ifdef CONFIG_USER_ONLY 375 return -1; 376 #else 377 return get_ms()->smp.cpus; 378 #endif 379 } 380 381 int qemu_plugin_n_max_vcpus(void) 382 { 383 #ifdef CONFIG_USER_ONLY 384 return -1; 385 #else 386 return get_ms()->smp.max_cpus; 387 #endif 388 } 389 390 /* 391 * Plugin output 392 */ 393 void qemu_plugin_outs(const char *string) 394 { 395 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); 396 } 397 398 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret) 399 { 400 return name && value && qapi_bool_parse(name, value, ret, NULL); 401 } 402 403 /* 404 * Binary path, start and end locations 405 */ 406 const char *qemu_plugin_path_to_binary(void) 407 { 408 char *path = NULL; 409 #ifdef CONFIG_USER_ONLY 410 TaskState *ts = (TaskState *) current_cpu->opaque; 411 path = g_strdup(ts->bprm->filename); 412 #endif 413 return path; 414 } 415 416 uint64_t qemu_plugin_start_code(void) 417 { 418 uint64_t start = 0; 419 #ifdef CONFIG_USER_ONLY 420 TaskState *ts = (TaskState *) current_cpu->opaque; 421 start = ts->info->start_code; 422 #endif 423 return start; 424 } 425 426 uint64_t qemu_plugin_end_code(void) 427 { 428 uint64_t end = 0; 429 #ifdef CONFIG_USER_ONLY 430 TaskState *ts = (TaskState *) current_cpu->opaque; 431 end = ts->info->end_code; 432 #endif 433 return end; 434 } 435 436 uint64_t qemu_plugin_entry_code(void) 437 { 438 uint64_t entry = 0; 439 #ifdef CONFIG_USER_ONLY 440 TaskState *ts = (TaskState *) current_cpu->opaque; 441 entry = ts->info->entry; 442 #endif 443 return entry; 444 } 445