1 /* 2 * QEMU Plugin API 3 * 4 * This provides the API that is available to the plugins to interact 5 * with QEMU. We have to be careful not to expose internal details of 6 * how QEMU works so we abstract out things like translation and 7 * instructions to anonymous data types: 8 * 9 * qemu_plugin_tb 10 * qemu_plugin_insn 11 * qemu_plugin_register 12 * 13 * Which can then be passed back into the API to do additional things. 14 * As such all the public functions in here are exported in 15 * qemu-plugin.h. 16 * 17 * The general life-cycle of a plugin is: 18 * 19 * - plugin is loaded, public qemu_plugin_install called 20 * - the install func registers callbacks for events 21 * - usually an atexit_cb is registered to dump info at the end 22 * - when a registered event occurs the plugin is called 23 * - some events pass additional info 24 * - during translation the plugin can decide to instrument any 25 * instruction 26 * - when QEMU exits all the registered atexit callbacks are called 27 * 28 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org> 29 * Copyright (C) 2019, Linaro 30 * 31 * License: GNU GPL, version 2 or later. 32 * See the COPYING file in the top-level directory. 33 * 34 * SPDX-License-Identifier: GPL-2.0-or-later 35 * 36 */ 37 38 #include "qemu/osdep.h" 39 #include "qemu/main-loop.h" 40 #include "qemu/plugin.h" 41 #include "qemu/log.h" 42 #include "tcg/tcg.h" 43 #include "exec/exec-all.h" 44 #include "exec/gdbstub.h" 45 #include "disas/disas.h" 46 #include "plugin.h" 47 #ifndef CONFIG_USER_ONLY 48 #include "exec/ram_addr.h" 49 #include "qemu/plugin-memory.h" 50 #include "hw/boards.h" 51 #else 52 #include "qemu.h" 53 #ifdef CONFIG_LINUX 54 #include "loader.h" 55 #endif 56 #endif 57 58 /* Uninstall and Reset handlers */ 59 60 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 61 { 62 plugin_reset_uninstall(id, cb, false); 63 } 64 65 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 66 { 67 plugin_reset_uninstall(id, cb, true); 68 } 69 70 /* 71 * Plugin Register Functions 72 * 73 * This allows the plugin to register callbacks for various events 74 * during the translation. 75 */ 76 77 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, 78 qemu_plugin_vcpu_simple_cb_t cb) 79 { 80 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); 81 } 82 83 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, 84 qemu_plugin_vcpu_simple_cb_t cb) 85 { 86 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); 87 } 88 89 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, 90 qemu_plugin_vcpu_udata_cb_t cb, 91 enum qemu_plugin_cb_flags flags, 92 void *udata) 93 { 94 if (!tb->mem_only) { 95 plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata); 96 } 97 } 98 99 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu( 100 struct qemu_plugin_tb *tb, 101 enum qemu_plugin_op op, 102 qemu_plugin_u64 entry, 103 uint64_t imm) 104 { 105 if (!tb->mem_only) { 106 plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm); 107 } 108 } 109 110 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, 111 qemu_plugin_vcpu_udata_cb_t cb, 112 enum qemu_plugin_cb_flags flags, 113 void *udata) 114 { 115 if (!insn->mem_only) { 116 plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata); 117 } 118 } 119 120 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu( 121 struct qemu_plugin_insn *insn, 122 enum qemu_plugin_op op, 123 qemu_plugin_u64 entry, 124 uint64_t imm) 125 { 126 if (!insn->mem_only) { 127 plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm); 128 } 129 } 130 131 132 /* 133 * We always plant memory instrumentation because they don't finalise until 134 * after the operation has complete. 135 */ 136 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, 137 qemu_plugin_vcpu_mem_cb_t cb, 138 enum qemu_plugin_cb_flags flags, 139 enum qemu_plugin_mem_rw rw, 140 void *udata) 141 { 142 plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata); 143 } 144 145 void qemu_plugin_register_vcpu_mem_inline_per_vcpu( 146 struct qemu_plugin_insn *insn, 147 enum qemu_plugin_mem_rw rw, 148 enum qemu_plugin_op op, 149 qemu_plugin_u64 entry, 150 uint64_t imm) 151 { 152 plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm); 153 } 154 155 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, 156 qemu_plugin_vcpu_tb_trans_cb_t cb) 157 { 158 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); 159 } 160 161 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, 162 qemu_plugin_vcpu_syscall_cb_t cb) 163 { 164 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); 165 } 166 167 void 168 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, 169 qemu_plugin_vcpu_syscall_ret_cb_t cb) 170 { 171 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); 172 } 173 174 /* 175 * Plugin Queries 176 * 177 * These are queries that the plugin can make to gauge information 178 * from our opaque data types. We do not want to leak internal details 179 * here just information useful to the plugin. 180 */ 181 182 /* 183 * Translation block information: 184 * 185 * A plugin can query the virtual address of the start of the block 186 * and the number of instructions in it. It can also get access to 187 * each translated instruction. 188 */ 189 190 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) 191 { 192 return tb->n; 193 } 194 195 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) 196 { 197 return tb->vaddr; 198 } 199 200 struct qemu_plugin_insn * 201 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) 202 { 203 struct qemu_plugin_insn *insn; 204 if (unlikely(idx >= tb->n)) { 205 return NULL; 206 } 207 insn = g_ptr_array_index(tb->insns, idx); 208 insn->mem_only = tb->mem_only; 209 return insn; 210 } 211 212 /* 213 * Instruction information 214 * 215 * These queries allow the plugin to retrieve information about each 216 * instruction being translated. 217 */ 218 219 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn) 220 { 221 return insn->data->data; 222 } 223 224 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) 225 { 226 return insn->data->len; 227 } 228 229 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) 230 { 231 return insn->vaddr; 232 } 233 234 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) 235 { 236 return insn->haddr; 237 } 238 239 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) 240 { 241 CPUState *cpu = current_cpu; 242 return plugin_disas(cpu, insn->vaddr, insn->data->len); 243 } 244 245 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn) 246 { 247 const char *sym = lookup_symbol(insn->vaddr); 248 return sym[0] != 0 ? sym : NULL; 249 } 250 251 /* 252 * The memory queries allow the plugin to query information about a 253 * memory access. 254 */ 255 256 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) 257 { 258 MemOp op = get_memop(info); 259 return op & MO_SIZE; 260 } 261 262 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) 263 { 264 MemOp op = get_memop(info); 265 return op & MO_SIGN; 266 } 267 268 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) 269 { 270 MemOp op = get_memop(info); 271 return (op & MO_BSWAP) == MO_BE; 272 } 273 274 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) 275 { 276 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W; 277 } 278 279 /* 280 * Virtual Memory queries 281 */ 282 283 #ifdef CONFIG_SOFTMMU 284 static __thread struct qemu_plugin_hwaddr hwaddr_info; 285 #endif 286 287 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info, 288 uint64_t vaddr) 289 { 290 #ifdef CONFIG_SOFTMMU 291 CPUState *cpu = current_cpu; 292 unsigned int mmu_idx = get_mmuidx(info); 293 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); 294 hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0; 295 296 assert(mmu_idx < NB_MMU_MODES); 297 298 if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx, 299 hwaddr_info.is_store, &hwaddr_info)) { 300 error_report("invalid use of qemu_plugin_get_hwaddr"); 301 return NULL; 302 } 303 304 return &hwaddr_info; 305 #else 306 return NULL; 307 #endif 308 } 309 310 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr) 311 { 312 #ifdef CONFIG_SOFTMMU 313 return haddr->is_io; 314 #else 315 return false; 316 #endif 317 } 318 319 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr) 320 { 321 #ifdef CONFIG_SOFTMMU 322 if (haddr) { 323 return haddr->phys_addr; 324 } 325 #endif 326 return 0; 327 } 328 329 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h) 330 { 331 #ifdef CONFIG_SOFTMMU 332 if (h && h->is_io) { 333 MemoryRegion *mr = h->mr; 334 if (!mr->name) { 335 unsigned maddr = (uintptr_t)mr; 336 g_autofree char *temp = g_strdup_printf("anon%08x", maddr); 337 return g_intern_string(temp); 338 } else { 339 return g_intern_string(mr->name); 340 } 341 } else { 342 return g_intern_static_string("RAM"); 343 } 344 #else 345 return g_intern_static_string("Invalid"); 346 #endif 347 } 348 349 int qemu_plugin_num_vcpus(void) 350 { 351 return plugin_num_vcpus(); 352 } 353 354 /* 355 * Plugin output 356 */ 357 void qemu_plugin_outs(const char *string) 358 { 359 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); 360 } 361 362 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret) 363 { 364 return name && value && qapi_bool_parse(name, value, ret, NULL); 365 } 366 367 /* 368 * Binary path, start and end locations 369 */ 370 const char *qemu_plugin_path_to_binary(void) 371 { 372 char *path = NULL; 373 #ifdef CONFIG_USER_ONLY 374 TaskState *ts = get_task_state(current_cpu); 375 path = g_strdup(ts->bprm->filename); 376 #endif 377 return path; 378 } 379 380 uint64_t qemu_plugin_start_code(void) 381 { 382 uint64_t start = 0; 383 #ifdef CONFIG_USER_ONLY 384 TaskState *ts = get_task_state(current_cpu); 385 start = ts->info->start_code; 386 #endif 387 return start; 388 } 389 390 uint64_t qemu_plugin_end_code(void) 391 { 392 uint64_t end = 0; 393 #ifdef CONFIG_USER_ONLY 394 TaskState *ts = get_task_state(current_cpu); 395 end = ts->info->end_code; 396 #endif 397 return end; 398 } 399 400 uint64_t qemu_plugin_entry_code(void) 401 { 402 uint64_t entry = 0; 403 #ifdef CONFIG_USER_ONLY 404 TaskState *ts = get_task_state(current_cpu); 405 entry = ts->info->entry; 406 #endif 407 return entry; 408 } 409 410 /* 411 * Create register handles. 412 * 413 * We need to create a handle for each register so the plugin 414 * infrastructure can call gdbstub to read a register. They are 415 * currently just a pointer encapsulation of the gdb_reg but in 416 * future may hold internal plugin state so its important plugin 417 * authors are not tempted to treat them as numbers. 418 * 419 * We also construct a result array with those handles and some 420 * ancillary data the plugin might find useful. 421 */ 422 423 static GArray *create_register_handles(GArray *gdbstub_regs) 424 { 425 GArray *find_data = g_array_new(true, true, 426 sizeof(qemu_plugin_reg_descriptor)); 427 428 for (int i = 0; i < gdbstub_regs->len; i++) { 429 GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i); 430 qemu_plugin_reg_descriptor desc; 431 432 /* skip "un-named" regs */ 433 if (!grd->name) { 434 continue; 435 } 436 437 /* Create a record for the plugin */ 438 desc.handle = GINT_TO_POINTER(grd->gdb_reg); 439 desc.name = g_intern_string(grd->name); 440 desc.feature = g_intern_string(grd->feature_name); 441 g_array_append_val(find_data, desc); 442 } 443 444 return find_data; 445 } 446 447 GArray *qemu_plugin_get_registers(void) 448 { 449 g_assert(current_cpu); 450 451 g_autoptr(GArray) regs = gdb_get_register_list(current_cpu); 452 return create_register_handles(regs); 453 } 454 455 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf) 456 { 457 g_assert(current_cpu); 458 459 return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg)); 460 } 461 462 struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size) 463 { 464 return plugin_scoreboard_new(element_size); 465 } 466 467 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score) 468 { 469 plugin_scoreboard_free(score); 470 } 471 472 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score, 473 unsigned int vcpu_index) 474 { 475 g_assert(vcpu_index < qemu_plugin_num_vcpus()); 476 /* we can't use g_array_index since entry size is not statically known */ 477 char *base_ptr = score->data->data; 478 return base_ptr + vcpu_index * g_array_get_element_size(score->data); 479 } 480 481 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry, 482 unsigned int vcpu_index) 483 { 484 char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index); 485 return (uint64_t *)(ptr + entry.offset); 486 } 487 488 void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index, 489 uint64_t added) 490 { 491 *plugin_u64_address(entry, vcpu_index) += added; 492 } 493 494 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry, 495 unsigned int vcpu_index) 496 { 497 return *plugin_u64_address(entry, vcpu_index); 498 } 499 500 void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index, 501 uint64_t val) 502 { 503 *plugin_u64_address(entry, vcpu_index) = val; 504 } 505 506 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry) 507 { 508 uint64_t total = 0; 509 for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) { 510 total += qemu_plugin_u64_get(entry, i); 511 } 512 return total; 513 } 514