xref: /openbmc/qemu/plugins/api.c (revision 835fde4a)
1 /*
2  * QEMU Plugin API
3  *
4  * This provides the API that is available to the plugins to interact
5  * with QEMU. We have to be careful not to expose internal details of
6  * how QEMU works so we abstract out things like translation and
7  * instructions to anonymous data types:
8  *
9  *  qemu_plugin_tb
10  *  qemu_plugin_insn
11  *
12  * Which can then be passed back into the API to do additional things.
13  * As such all the public functions in here are exported in
14  * qemu-plugin.h.
15  *
16  * The general life-cycle of a plugin is:
17  *
18  *  - plugin is loaded, public qemu_plugin_install called
19  *    - the install func registers callbacks for events
20  *    - usually an atexit_cb is registered to dump info at the end
21  *  - when a registered event occurs the plugin is called
22  *     - some events pass additional info
23  *     - during translation the plugin can decide to instrument any
24  *       instruction
25  *  - when QEMU exits all the registered atexit callbacks are called
26  *
27  * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
28  * Copyright (C) 2019, Linaro
29  *
30  * License: GNU GPL, version 2 or later.
31  *   See the COPYING file in the top-level directory.
32  *
33  * SPDX-License-Identifier: GPL-2.0-or-later
34  *
35  */
36 
37 #include "qemu/osdep.h"
38 #include "qemu/plugin.h"
39 #include "cpu.h"
40 #include "sysemu/sysemu.h"
41 #include "tcg/tcg.h"
42 #include "exec/exec-all.h"
43 #include "exec/ram_addr.h"
44 #include "disas/disas.h"
45 #include "plugin.h"
46 #ifndef CONFIG_USER_ONLY
47 #include "qemu/plugin-memory.h"
48 #include "hw/boards.h"
49 #endif
50 #include "trace/mem.h"
51 
52 /* Uninstall and Reset handlers */
53 
54 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
55 {
56     plugin_reset_uninstall(id, cb, false);
57 }
58 
59 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
60 {
61     plugin_reset_uninstall(id, cb, true);
62 }
63 
64 /*
65  * Plugin Register Functions
66  *
67  * This allows the plugin to register callbacks for various events
68  * during the translation.
69  */
70 
71 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
72                                        qemu_plugin_vcpu_simple_cb_t cb)
73 {
74     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
75 }
76 
77 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
78                                        qemu_plugin_vcpu_simple_cb_t cb)
79 {
80     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
81 }
82 
83 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
84                                           qemu_plugin_vcpu_udata_cb_t cb,
85                                           enum qemu_plugin_cb_flags flags,
86                                           void *udata)
87 {
88     if (!tb->mem_only) {
89         plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR],
90                                       cb, flags, udata);
91     }
92 }
93 
94 void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb,
95                                               enum qemu_plugin_op op,
96                                               void *ptr, uint64_t imm)
97 {
98     if (!tb->mem_only) {
99         plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm);
100     }
101 }
102 
103 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
104                                             qemu_plugin_vcpu_udata_cb_t cb,
105                                             enum qemu_plugin_cb_flags flags,
106                                             void *udata)
107 {
108     if (!insn->mem_only) {
109         plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR],
110                                       cb, flags, udata);
111     }
112 }
113 
114 void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn,
115                                                 enum qemu_plugin_op op,
116                                                 void *ptr, uint64_t imm)
117 {
118     if (!insn->mem_only) {
119         plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
120                                   0, op, ptr, imm);
121     }
122 }
123 
124 
125 /*
126  * We always plant memory instrumentation because they don't finalise until
127  * after the operation has complete.
128  */
129 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
130                                       qemu_plugin_vcpu_mem_cb_t cb,
131                                       enum qemu_plugin_cb_flags flags,
132                                       enum qemu_plugin_mem_rw rw,
133                                       void *udata)
134 {
135     plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
136                                     cb, flags, rw, udata);
137 }
138 
139 void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn,
140                                           enum qemu_plugin_mem_rw rw,
141                                           enum qemu_plugin_op op, void *ptr,
142                                           uint64_t imm)
143 {
144     plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE],
145                               rw, op, ptr, imm);
146 }
147 
148 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
149                                            qemu_plugin_vcpu_tb_trans_cb_t cb)
150 {
151     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
152 }
153 
154 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
155                                           qemu_plugin_vcpu_syscall_cb_t cb)
156 {
157     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
158 }
159 
160 void
161 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
162                                          qemu_plugin_vcpu_syscall_ret_cb_t cb)
163 {
164     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
165 }
166 
167 /*
168  * Plugin Queries
169  *
170  * These are queries that the plugin can make to gauge information
171  * from our opaque data types. We do not want to leak internal details
172  * here just information useful to the plugin.
173  */
174 
175 /*
176  * Translation block information:
177  *
178  * A plugin can query the virtual address of the start of the block
179  * and the number of instructions in it. It can also get access to
180  * each translated instruction.
181  */
182 
183 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
184 {
185     return tb->n;
186 }
187 
188 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
189 {
190     return tb->vaddr;
191 }
192 
193 struct qemu_plugin_insn *
194 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
195 {
196     struct qemu_plugin_insn *insn;
197     if (unlikely(idx >= tb->n)) {
198         return NULL;
199     }
200     insn = g_ptr_array_index(tb->insns, idx);
201     insn->mem_only = tb->mem_only;
202     return insn;
203 }
204 
205 /*
206  * Instruction information
207  *
208  * These queries allow the plugin to retrieve information about each
209  * instruction being translated.
210  */
211 
212 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
213 {
214     return insn->data->data;
215 }
216 
217 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
218 {
219     return insn->data->len;
220 }
221 
222 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
223 {
224     return insn->vaddr;
225 }
226 
227 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
228 {
229     return insn->haddr;
230 }
231 
232 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
233 {
234     CPUState *cpu = current_cpu;
235     return plugin_disas(cpu, insn->vaddr, insn->data->len);
236 }
237 
238 /*
239  * The memory queries allow the plugin to query information about a
240  * memory access.
241  */
242 
243 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
244 {
245     return info & TRACE_MEM_SZ_SHIFT_MASK;
246 }
247 
248 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
249 {
250     return !!(info & TRACE_MEM_SE);
251 }
252 
253 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
254 {
255     return !!(info & TRACE_MEM_BE);
256 }
257 
258 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
259 {
260     return !!(info & TRACE_MEM_ST);
261 }
262 
263 /*
264  * Virtual Memory queries
265  */
266 
267 #ifdef CONFIG_SOFTMMU
268 static __thread struct qemu_plugin_hwaddr hwaddr_info;
269 #endif
270 
271 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
272                                                   uint64_t vaddr)
273 {
274 #ifdef CONFIG_SOFTMMU
275     CPUState *cpu = current_cpu;
276     unsigned int mmu_idx = info >> TRACE_MEM_MMU_SHIFT;
277     hwaddr_info.is_store = info & TRACE_MEM_ST;
278 
279     if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
280                            info & TRACE_MEM_ST, &hwaddr_info)) {
281         error_report("invalid use of qemu_plugin_get_hwaddr");
282         return NULL;
283     }
284 
285     return &hwaddr_info;
286 #else
287     return NULL;
288 #endif
289 }
290 
291 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
292 {
293 #ifdef CONFIG_SOFTMMU
294     return haddr->is_io;
295 #else
296     return false;
297 #endif
298 }
299 
300 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
301 {
302 #ifdef CONFIG_SOFTMMU
303     if (haddr) {
304         if (!haddr->is_io) {
305             RAMBlock *block;
306             ram_addr_t offset;
307             void *hostaddr = (void *) haddr->v.ram.hostaddr;
308 
309             block = qemu_ram_block_from_host(hostaddr, false, &offset);
310             if (!block) {
311                 error_report("Bad ram pointer %"PRIx64"", haddr->v.ram.hostaddr);
312                 abort();
313             }
314 
315             return block->offset + offset + block->mr->addr;
316         } else {
317             MemoryRegionSection *mrs = haddr->v.io.section;
318             return haddr->v.io.offset + mrs->mr->addr;
319         }
320     }
321 #endif
322     return 0;
323 }
324 
325 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
326 {
327 #ifdef CONFIG_SOFTMMU
328     if (h && h->is_io) {
329         MemoryRegionSection *mrs = h->v.io.section;
330         if (!mrs->mr->name) {
331             unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr;
332             g_autofree char *temp = g_strdup_printf("anon%08lx", maddr);
333             return g_intern_string(temp);
334         } else {
335             return g_intern_string(mrs->mr->name);
336         }
337     } else {
338         return g_intern_static_string("RAM");
339     }
340 #else
341     return g_intern_static_string("Invalid");
342 #endif
343 }
344 
345 /*
346  * Queries to the number and potential maximum number of vCPUs there
347  * will be. This helps the plugin dimension per-vcpu arrays.
348  */
349 
350 #ifndef CONFIG_USER_ONLY
351 static MachineState * get_ms(void)
352 {
353     return MACHINE(qdev_get_machine());
354 }
355 #endif
356 
357 int qemu_plugin_n_vcpus(void)
358 {
359 #ifdef CONFIG_USER_ONLY
360     return -1;
361 #else
362     return get_ms()->smp.cpus;
363 #endif
364 }
365 
366 int qemu_plugin_n_max_vcpus(void)
367 {
368 #ifdef CONFIG_USER_ONLY
369     return -1;
370 #else
371     return get_ms()->smp.max_cpus;
372 #endif
373 }
374 
375 /*
376  * Plugin output
377  */
378 void qemu_plugin_outs(const char *string)
379 {
380     qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
381 }
382