1 /* 2 * QEMU Plugin API 3 * 4 * This provides the API that is available to the plugins to interact 5 * with QEMU. We have to be careful not to expose internal details of 6 * how QEMU works so we abstract out things like translation and 7 * instructions to anonymous data types: 8 * 9 * qemu_plugin_tb 10 * qemu_plugin_insn 11 * qemu_plugin_register 12 * 13 * Which can then be passed back into the API to do additional things. 14 * As such all the public functions in here are exported in 15 * qemu-plugin.h. 16 * 17 * The general life-cycle of a plugin is: 18 * 19 * - plugin is loaded, public qemu_plugin_install called 20 * - the install func registers callbacks for events 21 * - usually an atexit_cb is registered to dump info at the end 22 * - when a registered event occurs the plugin is called 23 * - some events pass additional info 24 * - during translation the plugin can decide to instrument any 25 * instruction 26 * - when QEMU exits all the registered atexit callbacks are called 27 * 28 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org> 29 * Copyright (C) 2019, Linaro 30 * 31 * License: GNU GPL, version 2 or later. 32 * See the COPYING file in the top-level directory. 33 * 34 * SPDX-License-Identifier: GPL-2.0-or-later 35 * 36 */ 37 38 #include "qemu/osdep.h" 39 #include "qemu/main-loop.h" 40 #include "qemu/plugin.h" 41 #include "qemu/log.h" 42 #include "tcg/tcg.h" 43 #include "exec/exec-all.h" 44 #include "exec/gdbstub.h" 45 #include "disas/disas.h" 46 #include "plugin.h" 47 #ifndef CONFIG_USER_ONLY 48 #include "exec/ram_addr.h" 49 #include "qemu/plugin-memory.h" 50 #include "hw/boards.h" 51 #else 52 #include "qemu.h" 53 #ifdef CONFIG_LINUX 54 #include "loader.h" 55 #endif 56 #endif 57 58 /* Uninstall and Reset handlers */ 59 60 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 61 { 62 plugin_reset_uninstall(id, cb, false); 63 } 64 65 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 66 { 67 plugin_reset_uninstall(id, cb, true); 68 } 69 70 /* 71 * Plugin Register Functions 72 * 73 * This allows the plugin to register callbacks for various events 74 * during the translation. 75 */ 76 77 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, 78 qemu_plugin_vcpu_simple_cb_t cb) 79 { 80 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); 81 } 82 83 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, 84 qemu_plugin_vcpu_simple_cb_t cb) 85 { 86 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); 87 } 88 89 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, 90 qemu_plugin_vcpu_udata_cb_t cb, 91 enum qemu_plugin_cb_flags flags, 92 void *udata) 93 { 94 if (!tb->mem_only) { 95 plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata); 96 } 97 } 98 99 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu( 100 struct qemu_plugin_tb *tb, 101 enum qemu_plugin_op op, 102 qemu_plugin_u64 entry, 103 uint64_t imm) 104 { 105 if (!tb->mem_only) { 106 plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm); 107 } 108 } 109 110 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, 111 qemu_plugin_vcpu_udata_cb_t cb, 112 enum qemu_plugin_cb_flags flags, 113 void *udata) 114 { 115 if (!insn->mem_only) { 116 plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata); 117 } 118 } 119 120 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu( 121 struct qemu_plugin_insn *insn, 122 enum qemu_plugin_op op, 123 qemu_plugin_u64 entry, 124 uint64_t imm) 125 { 126 if (!insn->mem_only) { 127 plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm); 128 } 129 } 130 131 132 /* 133 * We always plant memory instrumentation because they don't finalise until 134 * after the operation has complete. 135 */ 136 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, 137 qemu_plugin_vcpu_mem_cb_t cb, 138 enum qemu_plugin_cb_flags flags, 139 enum qemu_plugin_mem_rw rw, 140 void *udata) 141 { 142 plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata); 143 } 144 145 void qemu_plugin_register_vcpu_mem_inline_per_vcpu( 146 struct qemu_plugin_insn *insn, 147 enum qemu_plugin_mem_rw rw, 148 enum qemu_plugin_op op, 149 qemu_plugin_u64 entry, 150 uint64_t imm) 151 { 152 plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm); 153 } 154 155 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, 156 qemu_plugin_vcpu_tb_trans_cb_t cb) 157 { 158 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); 159 } 160 161 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, 162 qemu_plugin_vcpu_syscall_cb_t cb) 163 { 164 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); 165 } 166 167 void 168 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, 169 qemu_plugin_vcpu_syscall_ret_cb_t cb) 170 { 171 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); 172 } 173 174 /* 175 * Plugin Queries 176 * 177 * These are queries that the plugin can make to gauge information 178 * from our opaque data types. We do not want to leak internal details 179 * here just information useful to the plugin. 180 */ 181 182 /* 183 * Translation block information: 184 * 185 * A plugin can query the virtual address of the start of the block 186 * and the number of instructions in it. It can also get access to 187 * each translated instruction. 188 */ 189 190 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) 191 { 192 return tb->n; 193 } 194 195 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) 196 { 197 return tb->vaddr; 198 } 199 200 struct qemu_plugin_insn * 201 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) 202 { 203 struct qemu_plugin_insn *insn; 204 if (unlikely(idx >= tb->n)) { 205 return NULL; 206 } 207 insn = g_ptr_array_index(tb->insns, idx); 208 insn->mem_only = tb->mem_only; 209 return insn; 210 } 211 212 /* 213 * Instruction information 214 * 215 * These queries allow the plugin to retrieve information about each 216 * instruction being translated. 217 */ 218 219 size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn, 220 void *dest, size_t len) 221 { 222 len = MIN(len, insn->data->len); 223 memcpy(dest, insn->data->data, len); 224 return len; 225 } 226 227 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) 228 { 229 return insn->data->len; 230 } 231 232 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) 233 { 234 return insn->vaddr; 235 } 236 237 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) 238 { 239 return insn->haddr; 240 } 241 242 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) 243 { 244 CPUState *cpu = current_cpu; 245 return plugin_disas(cpu, insn->vaddr, insn->data->len); 246 } 247 248 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn) 249 { 250 const char *sym = lookup_symbol(insn->vaddr); 251 return sym[0] != 0 ? sym : NULL; 252 } 253 254 /* 255 * The memory queries allow the plugin to query information about a 256 * memory access. 257 */ 258 259 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) 260 { 261 MemOp op = get_memop(info); 262 return op & MO_SIZE; 263 } 264 265 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) 266 { 267 MemOp op = get_memop(info); 268 return op & MO_SIGN; 269 } 270 271 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) 272 { 273 MemOp op = get_memop(info); 274 return (op & MO_BSWAP) == MO_BE; 275 } 276 277 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) 278 { 279 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W; 280 } 281 282 /* 283 * Virtual Memory queries 284 */ 285 286 #ifdef CONFIG_SOFTMMU 287 static __thread struct qemu_plugin_hwaddr hwaddr_info; 288 #endif 289 290 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info, 291 uint64_t vaddr) 292 { 293 #ifdef CONFIG_SOFTMMU 294 CPUState *cpu = current_cpu; 295 unsigned int mmu_idx = get_mmuidx(info); 296 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); 297 hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0; 298 299 assert(mmu_idx < NB_MMU_MODES); 300 301 if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx, 302 hwaddr_info.is_store, &hwaddr_info)) { 303 error_report("invalid use of qemu_plugin_get_hwaddr"); 304 return NULL; 305 } 306 307 return &hwaddr_info; 308 #else 309 return NULL; 310 #endif 311 } 312 313 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr) 314 { 315 #ifdef CONFIG_SOFTMMU 316 return haddr->is_io; 317 #else 318 return false; 319 #endif 320 } 321 322 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr) 323 { 324 #ifdef CONFIG_SOFTMMU 325 if (haddr) { 326 return haddr->phys_addr; 327 } 328 #endif 329 return 0; 330 } 331 332 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h) 333 { 334 #ifdef CONFIG_SOFTMMU 335 if (h && h->is_io) { 336 MemoryRegion *mr = h->mr; 337 if (!mr->name) { 338 unsigned maddr = (uintptr_t)mr; 339 g_autofree char *temp = g_strdup_printf("anon%08x", maddr); 340 return g_intern_string(temp); 341 } else { 342 return g_intern_string(mr->name); 343 } 344 } else { 345 return g_intern_static_string("RAM"); 346 } 347 #else 348 return g_intern_static_string("Invalid"); 349 #endif 350 } 351 352 int qemu_plugin_num_vcpus(void) 353 { 354 return plugin_num_vcpus(); 355 } 356 357 /* 358 * Plugin output 359 */ 360 void qemu_plugin_outs(const char *string) 361 { 362 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); 363 } 364 365 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret) 366 { 367 return name && value && qapi_bool_parse(name, value, ret, NULL); 368 } 369 370 /* 371 * Binary path, start and end locations 372 */ 373 const char *qemu_plugin_path_to_binary(void) 374 { 375 char *path = NULL; 376 #ifdef CONFIG_USER_ONLY 377 TaskState *ts = get_task_state(current_cpu); 378 path = g_strdup(ts->bprm->filename); 379 #endif 380 return path; 381 } 382 383 uint64_t qemu_plugin_start_code(void) 384 { 385 uint64_t start = 0; 386 #ifdef CONFIG_USER_ONLY 387 TaskState *ts = get_task_state(current_cpu); 388 start = ts->info->start_code; 389 #endif 390 return start; 391 } 392 393 uint64_t qemu_plugin_end_code(void) 394 { 395 uint64_t end = 0; 396 #ifdef CONFIG_USER_ONLY 397 TaskState *ts = get_task_state(current_cpu); 398 end = ts->info->end_code; 399 #endif 400 return end; 401 } 402 403 uint64_t qemu_plugin_entry_code(void) 404 { 405 uint64_t entry = 0; 406 #ifdef CONFIG_USER_ONLY 407 TaskState *ts = get_task_state(current_cpu); 408 entry = ts->info->entry; 409 #endif 410 return entry; 411 } 412 413 /* 414 * Create register handles. 415 * 416 * We need to create a handle for each register so the plugin 417 * infrastructure can call gdbstub to read a register. They are 418 * currently just a pointer encapsulation of the gdb_reg but in 419 * future may hold internal plugin state so its important plugin 420 * authors are not tempted to treat them as numbers. 421 * 422 * We also construct a result array with those handles and some 423 * ancillary data the plugin might find useful. 424 */ 425 426 static GArray *create_register_handles(GArray *gdbstub_regs) 427 { 428 GArray *find_data = g_array_new(true, true, 429 sizeof(qemu_plugin_reg_descriptor)); 430 431 for (int i = 0; i < gdbstub_regs->len; i++) { 432 GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i); 433 qemu_plugin_reg_descriptor desc; 434 435 /* skip "un-named" regs */ 436 if (!grd->name) { 437 continue; 438 } 439 440 /* Create a record for the plugin */ 441 desc.handle = GINT_TO_POINTER(grd->gdb_reg); 442 desc.name = g_intern_string(grd->name); 443 desc.feature = g_intern_string(grd->feature_name); 444 g_array_append_val(find_data, desc); 445 } 446 447 return find_data; 448 } 449 450 GArray *qemu_plugin_get_registers(void) 451 { 452 g_assert(current_cpu); 453 454 g_autoptr(GArray) regs = gdb_get_register_list(current_cpu); 455 return create_register_handles(regs); 456 } 457 458 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf) 459 { 460 g_assert(current_cpu); 461 462 return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg)); 463 } 464 465 struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size) 466 { 467 return plugin_scoreboard_new(element_size); 468 } 469 470 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score) 471 { 472 plugin_scoreboard_free(score); 473 } 474 475 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score, 476 unsigned int vcpu_index) 477 { 478 g_assert(vcpu_index < qemu_plugin_num_vcpus()); 479 /* we can't use g_array_index since entry size is not statically known */ 480 char *base_ptr = score->data->data; 481 return base_ptr + vcpu_index * g_array_get_element_size(score->data); 482 } 483 484 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry, 485 unsigned int vcpu_index) 486 { 487 char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index); 488 return (uint64_t *)(ptr + entry.offset); 489 } 490 491 void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index, 492 uint64_t added) 493 { 494 *plugin_u64_address(entry, vcpu_index) += added; 495 } 496 497 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry, 498 unsigned int vcpu_index) 499 { 500 return *plugin_u64_address(entry, vcpu_index); 501 } 502 503 void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index, 504 uint64_t val) 505 { 506 *plugin_u64_address(entry, vcpu_index) = val; 507 } 508 509 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry) 510 { 511 uint64_t total = 0; 512 for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) { 513 total += qemu_plugin_u64_get(entry, i); 514 } 515 return total; 516 } 517