xref: /openbmc/qemu/plugins/api.c (revision 3dba0a33)
1 /*
2  * QEMU Plugin API
3  *
4  * This provides the API that is available to the plugins to interact
5  * with QEMU. We have to be careful not to expose internal details of
6  * how QEMU works so we abstract out things like translation and
7  * instructions to anonymous data types:
8  *
9  *  qemu_plugin_tb
10  *  qemu_plugin_insn
11  *
12  * Which can then be passed back into the API to do additional things.
13  * As such all the public functions in here are exported in
14  * qemu-plugin.h.
15  *
16  * The general life-cycle of a plugin is:
17  *
18  *  - plugin is loaded, public qemu_plugin_install called
19  *    - the install func registers callbacks for events
20  *    - usually an atexit_cb is registered to dump info at the end
21  *  - when a registered event occurs the plugin is called
22  *     - some events pass additional info
23  *     - during translation the plugin can decide to instrument any
24  *       instruction
25  *  - when QEMU exits all the registered atexit callbacks are called
26  *
27  * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
28  * Copyright (C) 2019, Linaro
29  *
30  * License: GNU GPL, version 2 or later.
31  *   See the COPYING file in the top-level directory.
32  *
33  * SPDX-License-Identifier: GPL-2.0-or-later
34  *
35  */
36 
37 #include "qemu/osdep.h"
38 #include "qemu/plugin.h"
39 #include "qemu/log.h"
40 #include "tcg/tcg.h"
41 #include "exec/exec-all.h"
42 #include "exec/ram_addr.h"
43 #include "disas/disas.h"
44 #include "plugin.h"
45 #ifndef CONFIG_USER_ONLY
46 #include "qemu/plugin-memory.h"
47 #include "hw/boards.h"
48 #else
49 #include "qemu.h"
50 #ifdef CONFIG_LINUX
51 #include "loader.h"
52 #endif
53 #endif
54 
55 /* Uninstall and Reset handlers */
56 
57 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
58 {
59     plugin_reset_uninstall(id, cb, false);
60 }
61 
62 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
63 {
64     plugin_reset_uninstall(id, cb, true);
65 }
66 
67 /*
68  * Plugin Register Functions
69  *
70  * This allows the plugin to register callbacks for various events
71  * during the translation.
72  */
73 
74 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
75                                        qemu_plugin_vcpu_simple_cb_t cb)
76 {
77     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
78 }
79 
80 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
81                                        qemu_plugin_vcpu_simple_cb_t cb)
82 {
83     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
84 }
85 
86 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
87                                           qemu_plugin_vcpu_udata_cb_t cb,
88                                           enum qemu_plugin_cb_flags flags,
89                                           void *udata)
90 {
91     if (!tb->mem_only) {
92         plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR],
93                                       cb, flags, udata);
94     }
95 }
96 
97 void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb,
98                                               enum qemu_plugin_op op,
99                                               void *ptr, uint64_t imm)
100 {
101     if (!tb->mem_only) {
102         plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm);
103     }
104 }
105 
106 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
107                                             qemu_plugin_vcpu_udata_cb_t cb,
108                                             enum qemu_plugin_cb_flags flags,
109                                             void *udata)
110 {
111     if (!insn->mem_only) {
112         plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR],
113                                       cb, flags, udata);
114     }
115 }
116 
117 void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn,
118                                                 enum qemu_plugin_op op,
119                                                 void *ptr, uint64_t imm)
120 {
121     if (!insn->mem_only) {
122         plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
123                                   0, op, ptr, imm);
124     }
125 }
126 
127 
128 /*
129  * We always plant memory instrumentation because they don't finalise until
130  * after the operation has complete.
131  */
132 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
133                                       qemu_plugin_vcpu_mem_cb_t cb,
134                                       enum qemu_plugin_cb_flags flags,
135                                       enum qemu_plugin_mem_rw rw,
136                                       void *udata)
137 {
138     plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
139                                     cb, flags, rw, udata);
140 }
141 
142 void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn,
143                                           enum qemu_plugin_mem_rw rw,
144                                           enum qemu_plugin_op op, void *ptr,
145                                           uint64_t imm)
146 {
147     plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE],
148                               rw, op, ptr, imm);
149 }
150 
151 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
152                                            qemu_plugin_vcpu_tb_trans_cb_t cb)
153 {
154     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
155 }
156 
157 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
158                                           qemu_plugin_vcpu_syscall_cb_t cb)
159 {
160     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
161 }
162 
163 void
164 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
165                                          qemu_plugin_vcpu_syscall_ret_cb_t cb)
166 {
167     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
168 }
169 
170 /*
171  * Plugin Queries
172  *
173  * These are queries that the plugin can make to gauge information
174  * from our opaque data types. We do not want to leak internal details
175  * here just information useful to the plugin.
176  */
177 
178 /*
179  * Translation block information:
180  *
181  * A plugin can query the virtual address of the start of the block
182  * and the number of instructions in it. It can also get access to
183  * each translated instruction.
184  */
185 
186 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
187 {
188     return tb->n;
189 }
190 
191 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
192 {
193     return tb->vaddr;
194 }
195 
196 struct qemu_plugin_insn *
197 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
198 {
199     struct qemu_plugin_insn *insn;
200     if (unlikely(idx >= tb->n)) {
201         return NULL;
202     }
203     insn = g_ptr_array_index(tb->insns, idx);
204     insn->mem_only = tb->mem_only;
205     return insn;
206 }
207 
208 /*
209  * Instruction information
210  *
211  * These queries allow the plugin to retrieve information about each
212  * instruction being translated.
213  */
214 
215 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
216 {
217     return insn->data->data;
218 }
219 
220 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
221 {
222     return insn->data->len;
223 }
224 
225 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
226 {
227     return insn->vaddr;
228 }
229 
230 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
231 {
232     return insn->haddr;
233 }
234 
235 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
236 {
237     CPUState *cpu = current_cpu;
238     return plugin_disas(cpu, insn->vaddr, insn->data->len);
239 }
240 
241 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
242 {
243     const char *sym = lookup_symbol(insn->vaddr);
244     return sym[0] != 0 ? sym : NULL;
245 }
246 
247 /*
248  * The memory queries allow the plugin to query information about a
249  * memory access.
250  */
251 
252 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
253 {
254     MemOp op = get_memop(info);
255     return op & MO_SIZE;
256 }
257 
258 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
259 {
260     MemOp op = get_memop(info);
261     return op & MO_SIGN;
262 }
263 
264 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
265 {
266     MemOp op = get_memop(info);
267     return (op & MO_BSWAP) == MO_BE;
268 }
269 
270 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
271 {
272     return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
273 }
274 
275 /*
276  * Virtual Memory queries
277  */
278 
279 #ifdef CONFIG_SOFTMMU
280 static __thread struct qemu_plugin_hwaddr hwaddr_info;
281 #endif
282 
283 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
284                                                   uint64_t vaddr)
285 {
286 #ifdef CONFIG_SOFTMMU
287     CPUState *cpu = current_cpu;
288     unsigned int mmu_idx = get_mmuidx(info);
289     enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
290     hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
291 
292     assert(mmu_idx < NB_MMU_MODES);
293 
294     if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
295                            hwaddr_info.is_store, &hwaddr_info)) {
296         error_report("invalid use of qemu_plugin_get_hwaddr");
297         return NULL;
298     }
299 
300     return &hwaddr_info;
301 #else
302     return NULL;
303 #endif
304 }
305 
306 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
307 {
308 #ifdef CONFIG_SOFTMMU
309     return haddr->is_io;
310 #else
311     return false;
312 #endif
313 }
314 
315 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
316 {
317 #ifdef CONFIG_SOFTMMU
318     if (haddr) {
319         if (!haddr->is_io) {
320             RAMBlock *block;
321             ram_addr_t offset;
322             void *hostaddr = haddr->v.ram.hostaddr;
323 
324             block = qemu_ram_block_from_host(hostaddr, false, &offset);
325             if (!block) {
326                 error_report("Bad host ram pointer %p", haddr->v.ram.hostaddr);
327                 abort();
328             }
329 
330             return block->offset + offset + block->mr->addr;
331         } else {
332             MemoryRegionSection *mrs = haddr->v.io.section;
333             return mrs->offset_within_address_space + haddr->v.io.offset;
334         }
335     }
336 #endif
337     return 0;
338 }
339 
340 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
341 {
342 #ifdef CONFIG_SOFTMMU
343     if (h && h->is_io) {
344         MemoryRegionSection *mrs = h->v.io.section;
345         if (!mrs->mr->name) {
346             unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr;
347             g_autofree char *temp = g_strdup_printf("anon%08lx", maddr);
348             return g_intern_string(temp);
349         } else {
350             return g_intern_string(mrs->mr->name);
351         }
352     } else {
353         return g_intern_static_string("RAM");
354     }
355 #else
356     return g_intern_static_string("Invalid");
357 #endif
358 }
359 
360 /*
361  * Queries to the number and potential maximum number of vCPUs there
362  * will be. This helps the plugin dimension per-vcpu arrays.
363  */
364 
365 #ifndef CONFIG_USER_ONLY
366 static MachineState * get_ms(void)
367 {
368     return MACHINE(qdev_get_machine());
369 }
370 #endif
371 
372 int qemu_plugin_n_vcpus(void)
373 {
374 #ifdef CONFIG_USER_ONLY
375     return -1;
376 #else
377     return get_ms()->smp.cpus;
378 #endif
379 }
380 
381 int qemu_plugin_n_max_vcpus(void)
382 {
383 #ifdef CONFIG_USER_ONLY
384     return -1;
385 #else
386     return get_ms()->smp.max_cpus;
387 #endif
388 }
389 
390 /*
391  * Plugin output
392  */
393 void qemu_plugin_outs(const char *string)
394 {
395     qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
396 }
397 
398 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
399 {
400     return name && value && qapi_bool_parse(name, value, ret, NULL);
401 }
402 
403 /*
404  * Binary path, start and end locations
405  */
406 const char *qemu_plugin_path_to_binary(void)
407 {
408     char *path = NULL;
409 #ifdef CONFIG_USER_ONLY
410     TaskState *ts = (TaskState *) current_cpu->opaque;
411     path = g_strdup(ts->bprm->filename);
412 #endif
413     return path;
414 }
415 
416 uint64_t qemu_plugin_start_code(void)
417 {
418     uint64_t start = 0;
419 #ifdef CONFIG_USER_ONLY
420     TaskState *ts = (TaskState *) current_cpu->opaque;
421     start = ts->info->start_code;
422 #endif
423     return start;
424 }
425 
426 uint64_t qemu_plugin_end_code(void)
427 {
428     uint64_t end = 0;
429 #ifdef CONFIG_USER_ONLY
430     TaskState *ts = (TaskState *) current_cpu->opaque;
431     end = ts->info->end_code;
432 #endif
433     return end;
434 }
435 
436 uint64_t qemu_plugin_entry_code(void)
437 {
438     uint64_t entry = 0;
439 #ifdef CONFIG_USER_ONLY
440     TaskState *ts = (TaskState *) current_cpu->opaque;
441     entry = ts->info->entry;
442 #endif
443     return entry;
444 }
445