xref: /openbmc/qemu/plugins/api.c (revision 36bc99bc)
1 /*
2  * QEMU Plugin API
3  *
4  * This provides the API that is available to the plugins to interact
5  * with QEMU. We have to be careful not to expose internal details of
6  * how QEMU works so we abstract out things like translation and
7  * instructions to anonymous data types:
8  *
9  *  qemu_plugin_tb
10  *  qemu_plugin_insn
11  *  qemu_plugin_register
12  *
13  * Which can then be passed back into the API to do additional things.
14  * As such all the public functions in here are exported in
15  * qemu-plugin.h.
16  *
17  * The general life-cycle of a plugin is:
18  *
19  *  - plugin is loaded, public qemu_plugin_install called
20  *    - the install func registers callbacks for events
21  *    - usually an atexit_cb is registered to dump info at the end
22  *  - when a registered event occurs the plugin is called
23  *     - some events pass additional info
24  *     - during translation the plugin can decide to instrument any
25  *       instruction
26  *  - when QEMU exits all the registered atexit callbacks are called
27  *
28  * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
29  * Copyright (C) 2019, Linaro
30  *
31  * License: GNU GPL, version 2 or later.
32  *   See the COPYING file in the top-level directory.
33  *
34  * SPDX-License-Identifier: GPL-2.0-or-later
35  *
36  */
37 
38 #include "qemu/osdep.h"
39 #include "qemu/main-loop.h"
40 #include "qemu/plugin.h"
41 #include "qemu/log.h"
42 #include "tcg/tcg.h"
43 #include "exec/exec-all.h"
44 #include "exec/gdbstub.h"
45 #include "exec/translator.h"
46 #include "disas/disas.h"
47 #include "plugin.h"
48 #ifndef CONFIG_USER_ONLY
49 #include "exec/ram_addr.h"
50 #include "qemu/plugin-memory.h"
51 #include "hw/boards.h"
52 #else
53 #include "qemu.h"
54 #ifdef CONFIG_LINUX
55 #include "loader.h"
56 #endif
57 #endif
58 
59 /* Uninstall and Reset handlers */
60 
61 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
62 {
63     plugin_reset_uninstall(id, cb, false);
64 }
65 
66 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
67 {
68     plugin_reset_uninstall(id, cb, true);
69 }
70 
71 /*
72  * Plugin Register Functions
73  *
74  * This allows the plugin to register callbacks for various events
75  * during the translation.
76  */
77 
78 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
79                                        qemu_plugin_vcpu_simple_cb_t cb)
80 {
81     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
82 }
83 
84 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
85                                        qemu_plugin_vcpu_simple_cb_t cb)
86 {
87     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
88 }
89 
90 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
91                                           qemu_plugin_vcpu_udata_cb_t cb,
92                                           enum qemu_plugin_cb_flags flags,
93                                           void *udata)
94 {
95     if (!tb->mem_only) {
96         plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata);
97     }
98 }
99 
100 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
101     struct qemu_plugin_tb *tb,
102     enum qemu_plugin_op op,
103     qemu_plugin_u64 entry,
104     uint64_t imm)
105 {
106     if (!tb->mem_only) {
107         plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm);
108     }
109 }
110 
111 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
112                                             qemu_plugin_vcpu_udata_cb_t cb,
113                                             enum qemu_plugin_cb_flags flags,
114                                             void *udata)
115 {
116     if (!insn->mem_only) {
117         plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata);
118     }
119 }
120 
121 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(
122     struct qemu_plugin_insn *insn,
123     enum qemu_plugin_op op,
124     qemu_plugin_u64 entry,
125     uint64_t imm)
126 {
127     if (!insn->mem_only) {
128         plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm);
129     }
130 }
131 
132 
133 /*
134  * We always plant memory instrumentation because they don't finalise until
135  * after the operation has complete.
136  */
137 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
138                                       qemu_plugin_vcpu_mem_cb_t cb,
139                                       enum qemu_plugin_cb_flags flags,
140                                       enum qemu_plugin_mem_rw rw,
141                                       void *udata)
142 {
143     plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata);
144 }
145 
146 void qemu_plugin_register_vcpu_mem_inline_per_vcpu(
147     struct qemu_plugin_insn *insn,
148     enum qemu_plugin_mem_rw rw,
149     enum qemu_plugin_op op,
150     qemu_plugin_u64 entry,
151     uint64_t imm)
152 {
153     plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm);
154 }
155 
156 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
157                                            qemu_plugin_vcpu_tb_trans_cb_t cb)
158 {
159     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
160 }
161 
162 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
163                                           qemu_plugin_vcpu_syscall_cb_t cb)
164 {
165     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
166 }
167 
168 void
169 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
170                                          qemu_plugin_vcpu_syscall_ret_cb_t cb)
171 {
172     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
173 }
174 
175 /*
176  * Plugin Queries
177  *
178  * These are queries that the plugin can make to gauge information
179  * from our opaque data types. We do not want to leak internal details
180  * here just information useful to the plugin.
181  */
182 
183 /*
184  * Translation block information:
185  *
186  * A plugin can query the virtual address of the start of the block
187  * and the number of instructions in it. It can also get access to
188  * each translated instruction.
189  */
190 
191 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
192 {
193     return tb->n;
194 }
195 
196 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
197 {
198     return tb->vaddr;
199 }
200 
201 struct qemu_plugin_insn *
202 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
203 {
204     struct qemu_plugin_insn *insn;
205     if (unlikely(idx >= tb->n)) {
206         return NULL;
207     }
208     insn = g_ptr_array_index(tb->insns, idx);
209     insn->mem_only = tb->mem_only;
210     return insn;
211 }
212 
213 /*
214  * Instruction information
215  *
216  * These queries allow the plugin to retrieve information about each
217  * instruction being translated.
218  */
219 
220 size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn,
221                              void *dest, size_t len)
222 {
223     const DisasContextBase *db = tcg_ctx->plugin_db;
224 
225     len = MIN(len, insn->len);
226     return translator_st(db, dest, insn->vaddr, len) ? len : 0;
227 }
228 
229 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
230 {
231     return insn->len;
232 }
233 
234 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
235 {
236     return insn->vaddr;
237 }
238 
239 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
240 {
241     return insn->haddr;
242 }
243 
244 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
245 {
246     CPUState *cpu = current_cpu;
247     return plugin_disas(cpu, insn->vaddr, insn->len);
248 }
249 
250 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
251 {
252     const char *sym = lookup_symbol(insn->vaddr);
253     return sym[0] != 0 ? sym : NULL;
254 }
255 
256 /*
257  * The memory queries allow the plugin to query information about a
258  * memory access.
259  */
260 
261 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
262 {
263     MemOp op = get_memop(info);
264     return op & MO_SIZE;
265 }
266 
267 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
268 {
269     MemOp op = get_memop(info);
270     return op & MO_SIGN;
271 }
272 
273 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
274 {
275     MemOp op = get_memop(info);
276     return (op & MO_BSWAP) == MO_BE;
277 }
278 
279 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
280 {
281     return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
282 }
283 
284 /*
285  * Virtual Memory queries
286  */
287 
288 #ifdef CONFIG_SOFTMMU
289 static __thread struct qemu_plugin_hwaddr hwaddr_info;
290 #endif
291 
292 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
293                                                   uint64_t vaddr)
294 {
295 #ifdef CONFIG_SOFTMMU
296     CPUState *cpu = current_cpu;
297     unsigned int mmu_idx = get_mmuidx(info);
298     enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
299     hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
300 
301     assert(mmu_idx < NB_MMU_MODES);
302 
303     if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
304                            hwaddr_info.is_store, &hwaddr_info)) {
305         error_report("invalid use of qemu_plugin_get_hwaddr");
306         return NULL;
307     }
308 
309     return &hwaddr_info;
310 #else
311     return NULL;
312 #endif
313 }
314 
315 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
316 {
317 #ifdef CONFIG_SOFTMMU
318     return haddr->is_io;
319 #else
320     return false;
321 #endif
322 }
323 
324 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
325 {
326 #ifdef CONFIG_SOFTMMU
327     if (haddr) {
328         return haddr->phys_addr;
329     }
330 #endif
331     return 0;
332 }
333 
334 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
335 {
336 #ifdef CONFIG_SOFTMMU
337     if (h && h->is_io) {
338         MemoryRegion *mr = h->mr;
339         if (!mr->name) {
340             unsigned maddr = (uintptr_t)mr;
341             g_autofree char *temp = g_strdup_printf("anon%08x", maddr);
342             return g_intern_string(temp);
343         } else {
344             return g_intern_string(mr->name);
345         }
346     } else {
347         return g_intern_static_string("RAM");
348     }
349 #else
350     return g_intern_static_string("Invalid");
351 #endif
352 }
353 
354 int qemu_plugin_num_vcpus(void)
355 {
356     return plugin_num_vcpus();
357 }
358 
359 /*
360  * Plugin output
361  */
362 void qemu_plugin_outs(const char *string)
363 {
364     qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
365 }
366 
367 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
368 {
369     return name && value && qapi_bool_parse(name, value, ret, NULL);
370 }
371 
372 /*
373  * Binary path, start and end locations
374  */
375 const char *qemu_plugin_path_to_binary(void)
376 {
377     char *path = NULL;
378 #ifdef CONFIG_USER_ONLY
379     TaskState *ts = get_task_state(current_cpu);
380     path = g_strdup(ts->bprm->filename);
381 #endif
382     return path;
383 }
384 
385 uint64_t qemu_plugin_start_code(void)
386 {
387     uint64_t start = 0;
388 #ifdef CONFIG_USER_ONLY
389     TaskState *ts = get_task_state(current_cpu);
390     start = ts->info->start_code;
391 #endif
392     return start;
393 }
394 
395 uint64_t qemu_plugin_end_code(void)
396 {
397     uint64_t end = 0;
398 #ifdef CONFIG_USER_ONLY
399     TaskState *ts = get_task_state(current_cpu);
400     end = ts->info->end_code;
401 #endif
402     return end;
403 }
404 
405 uint64_t qemu_plugin_entry_code(void)
406 {
407     uint64_t entry = 0;
408 #ifdef CONFIG_USER_ONLY
409     TaskState *ts = get_task_state(current_cpu);
410     entry = ts->info->entry;
411 #endif
412     return entry;
413 }
414 
415 /*
416  * Create register handles.
417  *
418  * We need to create a handle for each register so the plugin
419  * infrastructure can call gdbstub to read a register. They are
420  * currently just a pointer encapsulation of the gdb_reg but in
421  * future may hold internal plugin state so its important plugin
422  * authors are not tempted to treat them as numbers.
423  *
424  * We also construct a result array with those handles and some
425  * ancillary data the plugin might find useful.
426  */
427 
428 static GArray *create_register_handles(GArray *gdbstub_regs)
429 {
430     GArray *find_data = g_array_new(true, true,
431                                     sizeof(qemu_plugin_reg_descriptor));
432 
433     for (int i = 0; i < gdbstub_regs->len; i++) {
434         GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i);
435         qemu_plugin_reg_descriptor desc;
436 
437         /* skip "un-named" regs */
438         if (!grd->name) {
439             continue;
440         }
441 
442         /* Create a record for the plugin */
443         desc.handle = GINT_TO_POINTER(grd->gdb_reg);
444         desc.name = g_intern_string(grd->name);
445         desc.feature = g_intern_string(grd->feature_name);
446         g_array_append_val(find_data, desc);
447     }
448 
449     return find_data;
450 }
451 
452 GArray *qemu_plugin_get_registers(void)
453 {
454     g_assert(current_cpu);
455 
456     g_autoptr(GArray) regs = gdb_get_register_list(current_cpu);
457     return create_register_handles(regs);
458 }
459 
460 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf)
461 {
462     g_assert(current_cpu);
463 
464     return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg));
465 }
466 
467 struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size)
468 {
469     return plugin_scoreboard_new(element_size);
470 }
471 
472 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score)
473 {
474     plugin_scoreboard_free(score);
475 }
476 
477 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score,
478                                   unsigned int vcpu_index)
479 {
480     g_assert(vcpu_index < qemu_plugin_num_vcpus());
481     /* we can't use g_array_index since entry size is not statically known */
482     char *base_ptr = score->data->data;
483     return base_ptr + vcpu_index * g_array_get_element_size(score->data);
484 }
485 
486 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry,
487                                     unsigned int vcpu_index)
488 {
489     char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index);
490     return (uint64_t *)(ptr + entry.offset);
491 }
492 
493 void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index,
494                          uint64_t added)
495 {
496     *plugin_u64_address(entry, vcpu_index) += added;
497 }
498 
499 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry,
500                              unsigned int vcpu_index)
501 {
502     return *plugin_u64_address(entry, vcpu_index);
503 }
504 
505 void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index,
506                          uint64_t val)
507 {
508     *plugin_u64_address(entry, vcpu_index) = val;
509 }
510 
511 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry)
512 {
513     uint64_t total = 0;
514     for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) {
515         total += qemu_plugin_u64_get(entry, i);
516     }
517     return total;
518 }
519