1 /* 2 * vhost-vdpa.c 3 * 4 * Copyright(c) 2017-2018 Intel Corporation. 5 * Copyright(c) 2020 Red Hat, Inc. 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "clients.h" 14 #include "hw/virtio/virtio-net.h" 15 #include "net/vhost_net.h" 16 #include "net/vhost-vdpa.h" 17 #include "hw/virtio/vhost-vdpa.h" 18 #include "qemu/config-file.h" 19 #include "qemu/error-report.h" 20 #include "qemu/log.h" 21 #include "qemu/memalign.h" 22 #include "qemu/option.h" 23 #include "qapi/error.h" 24 #include <linux/vhost.h> 25 #include <sys/ioctl.h> 26 #include <err.h> 27 #include "standard-headers/linux/virtio_net.h" 28 #include "monitor/monitor.h" 29 #include "migration/migration.h" 30 #include "migration/misc.h" 31 #include "hw/virtio/vhost.h" 32 33 /* Todo:need to add the multiqueue support here */ 34 typedef struct VhostVDPAState { 35 NetClientState nc; 36 struct vhost_vdpa vhost_vdpa; 37 Notifier migration_state; 38 VHostNetState *vhost_net; 39 40 /* Control commands shadow buffers */ 41 void *cvq_cmd_out_buffer; 42 virtio_net_ctrl_ack *status; 43 44 /* The device always have SVQ enabled */ 45 bool always_svq; 46 47 /* The device can isolate CVQ in its own ASID */ 48 bool cvq_isolated; 49 50 bool started; 51 } VhostVDPAState; 52 53 /* 54 * The array is sorted alphabetically in ascending order, 55 * with the exception of VHOST_INVALID_FEATURE_BIT, 56 * which should always be the last entry. 57 */ 58 const int vdpa_feature_bits[] = { 59 VIRTIO_F_ANY_LAYOUT, 60 VIRTIO_F_IOMMU_PLATFORM, 61 VIRTIO_F_NOTIFY_ON_EMPTY, 62 VIRTIO_F_RING_PACKED, 63 VIRTIO_F_RING_RESET, 64 VIRTIO_F_VERSION_1, 65 VIRTIO_NET_F_CSUM, 66 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, 67 VIRTIO_NET_F_CTRL_MAC_ADDR, 68 VIRTIO_NET_F_CTRL_RX, 69 VIRTIO_NET_F_CTRL_RX_EXTRA, 70 VIRTIO_NET_F_CTRL_VLAN, 71 VIRTIO_NET_F_CTRL_VQ, 72 VIRTIO_NET_F_GSO, 73 VIRTIO_NET_F_GUEST_CSUM, 74 VIRTIO_NET_F_GUEST_ECN, 75 VIRTIO_NET_F_GUEST_TSO4, 76 VIRTIO_NET_F_GUEST_TSO6, 77 VIRTIO_NET_F_GUEST_UFO, 78 VIRTIO_NET_F_GUEST_USO4, 79 VIRTIO_NET_F_GUEST_USO6, 80 VIRTIO_NET_F_HASH_REPORT, 81 VIRTIO_NET_F_HOST_ECN, 82 VIRTIO_NET_F_HOST_TSO4, 83 VIRTIO_NET_F_HOST_TSO6, 84 VIRTIO_NET_F_HOST_UFO, 85 VIRTIO_NET_F_HOST_USO, 86 VIRTIO_NET_F_MQ, 87 VIRTIO_NET_F_MRG_RXBUF, 88 VIRTIO_NET_F_MTU, 89 VIRTIO_NET_F_RSS, 90 VIRTIO_NET_F_STATUS, 91 VIRTIO_RING_F_EVENT_IDX, 92 VIRTIO_RING_F_INDIRECT_DESC, 93 94 /* VHOST_INVALID_FEATURE_BIT should always be the last entry */ 95 VHOST_INVALID_FEATURE_BIT 96 }; 97 98 /** Supported device specific feature bits with SVQ */ 99 static const uint64_t vdpa_svq_device_features = 100 BIT_ULL(VIRTIO_NET_F_CSUM) | 101 BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) | 102 BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) | 103 BIT_ULL(VIRTIO_NET_F_MTU) | 104 BIT_ULL(VIRTIO_NET_F_MAC) | 105 BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) | 106 BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) | 107 BIT_ULL(VIRTIO_NET_F_GUEST_ECN) | 108 BIT_ULL(VIRTIO_NET_F_GUEST_UFO) | 109 BIT_ULL(VIRTIO_NET_F_HOST_TSO4) | 110 BIT_ULL(VIRTIO_NET_F_HOST_TSO6) | 111 BIT_ULL(VIRTIO_NET_F_HOST_ECN) | 112 BIT_ULL(VIRTIO_NET_F_HOST_UFO) | 113 BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) | 114 BIT_ULL(VIRTIO_NET_F_STATUS) | 115 BIT_ULL(VIRTIO_NET_F_CTRL_VQ) | 116 BIT_ULL(VIRTIO_NET_F_CTRL_RX) | 117 BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) | 118 BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) | 119 BIT_ULL(VIRTIO_NET_F_MQ) | 120 BIT_ULL(VIRTIO_F_ANY_LAYOUT) | 121 BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) | 122 /* VHOST_F_LOG_ALL is exposed by SVQ */ 123 BIT_ULL(VHOST_F_LOG_ALL) | 124 BIT_ULL(VIRTIO_NET_F_RSC_EXT) | 125 BIT_ULL(VIRTIO_NET_F_STANDBY) | 126 BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX); 127 128 #define VHOST_VDPA_NET_CVQ_ASID 1 129 130 VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc) 131 { 132 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 133 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 134 return s->vhost_net; 135 } 136 137 static size_t vhost_vdpa_net_cvq_cmd_len(void) 138 { 139 /* 140 * MAC_TABLE_SET is the ctrl command that produces the longer out buffer. 141 * In buffer is always 1 byte, so it should fit here 142 */ 143 return sizeof(struct virtio_net_ctrl_hdr) + 144 2 * sizeof(struct virtio_net_ctrl_mac) + 145 MAC_TABLE_ENTRIES * ETH_ALEN; 146 } 147 148 static size_t vhost_vdpa_net_cvq_cmd_page_len(void) 149 { 150 return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size()); 151 } 152 153 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp) 154 { 155 uint64_t invalid_dev_features = 156 features & ~vdpa_svq_device_features & 157 /* Transport are all accepted at this point */ 158 ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START, 159 VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START); 160 161 if (invalid_dev_features) { 162 error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64, 163 invalid_dev_features); 164 return false; 165 } 166 167 return vhost_svq_valid_features(features, errp); 168 } 169 170 static int vhost_vdpa_net_check_device_id(struct vhost_net *net) 171 { 172 uint32_t device_id; 173 int ret; 174 struct vhost_dev *hdev; 175 176 hdev = (struct vhost_dev *)&net->dev; 177 ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id); 178 if (device_id != VIRTIO_ID_NET) { 179 return -ENOTSUP; 180 } 181 return ret; 182 } 183 184 static int vhost_vdpa_add(NetClientState *ncs, void *be, 185 int queue_pair_index, int nvqs) 186 { 187 VhostNetOptions options; 188 struct vhost_net *net = NULL; 189 VhostVDPAState *s; 190 int ret; 191 192 options.backend_type = VHOST_BACKEND_TYPE_VDPA; 193 assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 194 s = DO_UPCAST(VhostVDPAState, nc, ncs); 195 options.net_backend = ncs; 196 options.opaque = be; 197 options.busyloop_timeout = 0; 198 options.nvqs = nvqs; 199 200 net = vhost_net_init(&options); 201 if (!net) { 202 error_report("failed to init vhost_net for queue"); 203 goto err_init; 204 } 205 s->vhost_net = net; 206 ret = vhost_vdpa_net_check_device_id(net); 207 if (ret) { 208 goto err_check; 209 } 210 return 0; 211 err_check: 212 vhost_net_cleanup(net); 213 g_free(net); 214 err_init: 215 return -1; 216 } 217 218 static void vhost_vdpa_cleanup(NetClientState *nc) 219 { 220 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 221 222 /* 223 * If a peer NIC is attached, do not cleanup anything. 224 * Cleanup will happen as a part of qemu_cleanup() -> net_cleanup() 225 * when the guest is shutting down. 226 */ 227 if (nc->peer && nc->peer->info->type == NET_CLIENT_DRIVER_NIC) { 228 return; 229 } 230 munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len()); 231 munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len()); 232 if (s->vhost_net) { 233 vhost_net_cleanup(s->vhost_net); 234 g_free(s->vhost_net); 235 s->vhost_net = NULL; 236 } 237 if (s->vhost_vdpa.device_fd >= 0) { 238 qemu_close(s->vhost_vdpa.device_fd); 239 s->vhost_vdpa.device_fd = -1; 240 } 241 } 242 243 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc) 244 { 245 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 246 247 return true; 248 } 249 250 static bool vhost_vdpa_has_ufo(NetClientState *nc) 251 { 252 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 253 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 254 uint64_t features = 0; 255 features |= (1ULL << VIRTIO_NET_F_HOST_UFO); 256 features = vhost_net_get_features(s->vhost_net, features); 257 return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO)); 258 259 } 260 261 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc, 262 Error **errp) 263 { 264 const char *driver = object_class_get_name(oc); 265 266 if (!g_str_has_prefix(driver, "virtio-net-")) { 267 error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*"); 268 return false; 269 } 270 271 return true; 272 } 273 274 /** Dummy receive in case qemu falls back to userland tap networking */ 275 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf, 276 size_t size) 277 { 278 return size; 279 } 280 281 /** From any vdpa net client, get the netclient of the first queue pair */ 282 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s) 283 { 284 NICState *nic = qemu_get_nic(s->nc.peer); 285 NetClientState *nc0 = qemu_get_peer(nic->ncs, 0); 286 287 return DO_UPCAST(VhostVDPAState, nc, nc0); 288 } 289 290 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable) 291 { 292 struct vhost_vdpa *v = &s->vhost_vdpa; 293 VirtIONet *n; 294 VirtIODevice *vdev; 295 int data_queue_pairs, cvq, r; 296 297 /* We are only called on the first data vqs and only if x-svq is not set */ 298 if (s->vhost_vdpa.shadow_vqs_enabled == enable) { 299 return; 300 } 301 302 vdev = v->dev->vdev; 303 n = VIRTIO_NET(vdev); 304 if (!n->vhost_started) { 305 return; 306 } 307 308 data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1; 309 cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ? 310 n->max_ncs - n->max_queue_pairs : 0; 311 /* 312 * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter 313 * in the future and resume the device if read-only operations between 314 * suspend and reset goes wrong. 315 */ 316 vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq); 317 318 /* Start will check migration setup_or_active to configure or not SVQ */ 319 r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq); 320 if (unlikely(r < 0)) { 321 error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r); 322 } 323 } 324 325 static void vdpa_net_migration_state_notifier(Notifier *notifier, void *data) 326 { 327 MigrationState *migration = data; 328 VhostVDPAState *s = container_of(notifier, VhostVDPAState, 329 migration_state); 330 331 if (migration_in_setup(migration)) { 332 vhost_vdpa_net_log_global_enable(s, true); 333 } else if (migration_has_failed(migration)) { 334 vhost_vdpa_net_log_global_enable(s, false); 335 } 336 } 337 338 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s) 339 { 340 struct vhost_vdpa *v = &s->vhost_vdpa; 341 342 add_migration_state_change_notifier(&s->migration_state); 343 if (v->shadow_vqs_enabled) { 344 v->iova_tree = vhost_iova_tree_new(v->iova_range.first, 345 v->iova_range.last); 346 } 347 } 348 349 static int vhost_vdpa_net_data_start(NetClientState *nc) 350 { 351 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 352 struct vhost_vdpa *v = &s->vhost_vdpa; 353 354 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 355 356 if (s->always_svq || 357 migration_is_setup_or_active(migrate_get_current()->state)) { 358 v->shadow_vqs_enabled = true; 359 v->shadow_data = true; 360 } else { 361 v->shadow_vqs_enabled = false; 362 v->shadow_data = false; 363 } 364 365 if (v->index == 0) { 366 vhost_vdpa_net_data_start_first(s); 367 return 0; 368 } 369 370 if (v->shadow_vqs_enabled) { 371 VhostVDPAState *s0 = vhost_vdpa_net_first_nc_vdpa(s); 372 v->iova_tree = s0->vhost_vdpa.iova_tree; 373 } 374 375 return 0; 376 } 377 378 static int vhost_vdpa_net_data_load(NetClientState *nc) 379 { 380 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 381 struct vhost_vdpa *v = &s->vhost_vdpa; 382 bool has_cvq = v->dev->vq_index_end % 2; 383 384 if (has_cvq) { 385 return 0; 386 } 387 388 for (int i = 0; i < v->dev->nvqs; ++i) { 389 vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index); 390 } 391 return 0; 392 } 393 394 static void vhost_vdpa_net_client_stop(NetClientState *nc) 395 { 396 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 397 struct vhost_dev *dev; 398 399 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 400 401 if (s->vhost_vdpa.index == 0) { 402 remove_migration_state_change_notifier(&s->migration_state); 403 } 404 405 dev = s->vhost_vdpa.dev; 406 if (dev->vq_index + dev->nvqs == dev->vq_index_end) { 407 g_clear_pointer(&s->vhost_vdpa.iova_tree, vhost_iova_tree_delete); 408 } else { 409 s->vhost_vdpa.iova_tree = NULL; 410 } 411 } 412 413 static NetClientInfo net_vhost_vdpa_info = { 414 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 415 .size = sizeof(VhostVDPAState), 416 .receive = vhost_vdpa_receive, 417 .start = vhost_vdpa_net_data_start, 418 .load = vhost_vdpa_net_data_load, 419 .stop = vhost_vdpa_net_client_stop, 420 .cleanup = vhost_vdpa_cleanup, 421 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 422 .has_ufo = vhost_vdpa_has_ufo, 423 .check_peer_type = vhost_vdpa_check_peer_type, 424 }; 425 426 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index, 427 Error **errp) 428 { 429 struct vhost_vring_state state = { 430 .index = vq_index, 431 }; 432 int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state); 433 434 if (unlikely(r < 0)) { 435 r = -errno; 436 error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index); 437 return r; 438 } 439 440 return state.num; 441 } 442 443 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v, 444 unsigned vq_group, 445 unsigned asid_num) 446 { 447 struct vhost_vring_state asid = { 448 .index = vq_group, 449 .num = asid_num, 450 }; 451 int r; 452 453 r = ioctl(v->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid); 454 if (unlikely(r < 0)) { 455 error_report("Can't set vq group %u asid %u, errno=%d (%s)", 456 asid.index, asid.num, errno, g_strerror(errno)); 457 } 458 return r; 459 } 460 461 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr) 462 { 463 VhostIOVATree *tree = v->iova_tree; 464 DMAMap needle = { 465 /* 466 * No need to specify size or to look for more translations since 467 * this contiguous chunk was allocated by us. 468 */ 469 .translated_addr = (hwaddr)(uintptr_t)addr, 470 }; 471 const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle); 472 int r; 473 474 if (unlikely(!map)) { 475 error_report("Cannot locate expected map"); 476 return; 477 } 478 479 r = vhost_vdpa_dma_unmap(v, v->address_space_id, map->iova, map->size + 1); 480 if (unlikely(r != 0)) { 481 error_report("Device cannot unmap: %s(%d)", g_strerror(r), r); 482 } 483 484 vhost_iova_tree_remove(tree, *map); 485 } 486 487 /** Map CVQ buffer. */ 488 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size, 489 bool write) 490 { 491 DMAMap map = {}; 492 int r; 493 494 map.translated_addr = (hwaddr)(uintptr_t)buf; 495 map.size = size - 1; 496 map.perm = write ? IOMMU_RW : IOMMU_RO, 497 r = vhost_iova_tree_map_alloc(v->iova_tree, &map); 498 if (unlikely(r != IOVA_OK)) { 499 error_report("Cannot map injected element"); 500 return r; 501 } 502 503 r = vhost_vdpa_dma_map(v, v->address_space_id, map.iova, 504 vhost_vdpa_net_cvq_cmd_page_len(), buf, !write); 505 if (unlikely(r < 0)) { 506 goto dma_map_err; 507 } 508 509 return 0; 510 511 dma_map_err: 512 vhost_iova_tree_remove(v->iova_tree, map); 513 return r; 514 } 515 516 static int vhost_vdpa_net_cvq_start(NetClientState *nc) 517 { 518 VhostVDPAState *s, *s0; 519 struct vhost_vdpa *v; 520 int64_t cvq_group; 521 int r; 522 Error *err = NULL; 523 524 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 525 526 s = DO_UPCAST(VhostVDPAState, nc, nc); 527 v = &s->vhost_vdpa; 528 529 s0 = vhost_vdpa_net_first_nc_vdpa(s); 530 v->shadow_data = s0->vhost_vdpa.shadow_vqs_enabled; 531 v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled; 532 s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID; 533 534 if (s->vhost_vdpa.shadow_data) { 535 /* SVQ is already configured for all virtqueues */ 536 goto out; 537 } 538 539 /* 540 * If we early return in these cases SVQ will not be enabled. The migration 541 * will be blocked as long as vhost-vdpa backends will not offer _F_LOG. 542 */ 543 if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) { 544 return 0; 545 } 546 547 if (!s->cvq_isolated) { 548 return 0; 549 } 550 551 cvq_group = vhost_vdpa_get_vring_group(v->device_fd, 552 v->dev->vq_index_end - 1, 553 &err); 554 if (unlikely(cvq_group < 0)) { 555 error_report_err(err); 556 return cvq_group; 557 } 558 559 r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID); 560 if (unlikely(r < 0)) { 561 return r; 562 } 563 564 v->shadow_vqs_enabled = true; 565 s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID; 566 567 out: 568 if (!s->vhost_vdpa.shadow_vqs_enabled) { 569 return 0; 570 } 571 572 if (s0->vhost_vdpa.iova_tree) { 573 /* 574 * SVQ is already configured for all virtqueues. Reuse IOVA tree for 575 * simplicity, whether CVQ shares ASID with guest or not, because: 576 * - Memory listener need access to guest's memory addresses allocated 577 * in the IOVA tree. 578 * - There should be plenty of IOVA address space for both ASID not to 579 * worry about collisions between them. Guest's translations are 580 * still validated with virtio virtqueue_pop so there is no risk for 581 * the guest to access memory that it shouldn't. 582 * 583 * To allocate a iova tree per ASID is doable but it complicates the 584 * code and it is not worth it for the moment. 585 */ 586 v->iova_tree = s0->vhost_vdpa.iova_tree; 587 } else { 588 v->iova_tree = vhost_iova_tree_new(v->iova_range.first, 589 v->iova_range.last); 590 } 591 592 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer, 593 vhost_vdpa_net_cvq_cmd_page_len(), false); 594 if (unlikely(r < 0)) { 595 return r; 596 } 597 598 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status, 599 vhost_vdpa_net_cvq_cmd_page_len(), true); 600 if (unlikely(r < 0)) { 601 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 602 } 603 604 return r; 605 } 606 607 static void vhost_vdpa_net_cvq_stop(NetClientState *nc) 608 { 609 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 610 611 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 612 613 if (s->vhost_vdpa.shadow_vqs_enabled) { 614 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 615 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status); 616 } 617 618 vhost_vdpa_net_client_stop(nc); 619 } 620 621 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s, size_t out_len, 622 size_t in_len) 623 { 624 /* Buffers for the device */ 625 const struct iovec out = { 626 .iov_base = s->cvq_cmd_out_buffer, 627 .iov_len = out_len, 628 }; 629 const struct iovec in = { 630 .iov_base = s->status, 631 .iov_len = sizeof(virtio_net_ctrl_ack), 632 }; 633 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 634 int r; 635 636 r = vhost_svq_add(svq, &out, 1, &in, 1, NULL); 637 if (unlikely(r != 0)) { 638 if (unlikely(r == -ENOSPC)) { 639 qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n", 640 __func__); 641 } 642 return r; 643 } 644 645 /* 646 * We can poll here since we've had BQL from the time we sent the 647 * descriptor. Also, we need to take the answer before SVQ pulls by itself, 648 * when BQL is released 649 */ 650 return vhost_svq_poll(svq, 1); 651 } 652 653 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s, uint8_t class, 654 uint8_t cmd, const struct iovec *data_sg, 655 size_t data_num) 656 { 657 const struct virtio_net_ctrl_hdr ctrl = { 658 .class = class, 659 .cmd = cmd, 660 }; 661 size_t data_size = iov_size(data_sg, data_num); 662 663 assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl)); 664 665 /* pack the CVQ command header */ 666 memcpy(s->cvq_cmd_out_buffer, &ctrl, sizeof(ctrl)); 667 668 /* pack the CVQ command command-specific-data */ 669 iov_to_buf(data_sg, data_num, 0, 670 s->cvq_cmd_out_buffer + sizeof(ctrl), data_size); 671 672 return vhost_vdpa_net_cvq_add(s, data_size + sizeof(ctrl), 673 sizeof(virtio_net_ctrl_ack)); 674 } 675 676 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n) 677 { 678 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) { 679 const struct iovec data = { 680 .iov_base = (void *)n->mac, 681 .iov_len = sizeof(n->mac), 682 }; 683 ssize_t dev_written = vhost_vdpa_net_load_cmd(s, VIRTIO_NET_CTRL_MAC, 684 VIRTIO_NET_CTRL_MAC_ADDR_SET, 685 &data, 1); 686 if (unlikely(dev_written < 0)) { 687 return dev_written; 688 } 689 if (*s->status != VIRTIO_NET_OK) { 690 return -EIO; 691 } 692 } 693 694 /* 695 * According to VirtIO standard, "The device MUST have an 696 * empty MAC filtering table on reset.". 697 * 698 * Therefore, there is no need to send this CVQ command if the 699 * driver also sets an empty MAC filter table, which aligns with 700 * the device's defaults. 701 * 702 * Note that the device's defaults can mismatch the driver's 703 * configuration only at live migration. 704 */ 705 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) || 706 n->mac_table.in_use == 0) { 707 return 0; 708 } 709 710 uint32_t uni_entries = n->mac_table.first_multi, 711 uni_macs_size = uni_entries * ETH_ALEN, 712 mul_entries = n->mac_table.in_use - uni_entries, 713 mul_macs_size = mul_entries * ETH_ALEN; 714 struct virtio_net_ctrl_mac uni = { 715 .entries = cpu_to_le32(uni_entries), 716 }; 717 struct virtio_net_ctrl_mac mul = { 718 .entries = cpu_to_le32(mul_entries), 719 }; 720 const struct iovec data[] = { 721 { 722 .iov_base = &uni, 723 .iov_len = sizeof(uni), 724 }, { 725 .iov_base = n->mac_table.macs, 726 .iov_len = uni_macs_size, 727 }, { 728 .iov_base = &mul, 729 .iov_len = sizeof(mul), 730 }, { 731 .iov_base = &n->mac_table.macs[uni_macs_size], 732 .iov_len = mul_macs_size, 733 }, 734 }; 735 ssize_t dev_written = vhost_vdpa_net_load_cmd(s, 736 VIRTIO_NET_CTRL_MAC, 737 VIRTIO_NET_CTRL_MAC_TABLE_SET, 738 data, ARRAY_SIZE(data)); 739 if (unlikely(dev_written < 0)) { 740 return dev_written; 741 } 742 if (*s->status != VIRTIO_NET_OK) { 743 return -EIO; 744 } 745 746 return 0; 747 } 748 749 static int vhost_vdpa_net_load_mq(VhostVDPAState *s, 750 const VirtIONet *n) 751 { 752 struct virtio_net_ctrl_mq mq; 753 ssize_t dev_written; 754 755 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) { 756 return 0; 757 } 758 759 mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs); 760 const struct iovec data = { 761 .iov_base = &mq, 762 .iov_len = sizeof(mq), 763 }; 764 dev_written = vhost_vdpa_net_load_cmd(s, VIRTIO_NET_CTRL_MQ, 765 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET, 766 &data, 1); 767 if (unlikely(dev_written < 0)) { 768 return dev_written; 769 } 770 if (*s->status != VIRTIO_NET_OK) { 771 return -EIO; 772 } 773 774 return 0; 775 } 776 777 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s, 778 const VirtIONet *n) 779 { 780 uint64_t offloads; 781 ssize_t dev_written; 782 783 if (!virtio_vdev_has_feature(&n->parent_obj, 784 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) { 785 return 0; 786 } 787 788 if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) { 789 /* 790 * According to VirtIO standard, "Upon feature negotiation 791 * corresponding offload gets enabled to preserve 792 * backward compatibility.". 793 * 794 * Therefore, there is no need to send this CVQ command if the 795 * driver also enables all supported offloads, which aligns with 796 * the device's defaults. 797 * 798 * Note that the device's defaults can mismatch the driver's 799 * configuration only at live migration. 800 */ 801 return 0; 802 } 803 804 offloads = cpu_to_le64(n->curr_guest_offloads); 805 const struct iovec data = { 806 .iov_base = &offloads, 807 .iov_len = sizeof(offloads), 808 }; 809 dev_written = vhost_vdpa_net_load_cmd(s, VIRTIO_NET_CTRL_GUEST_OFFLOADS, 810 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET, 811 &data, 1); 812 if (unlikely(dev_written < 0)) { 813 return dev_written; 814 } 815 if (*s->status != VIRTIO_NET_OK) { 816 return -EIO; 817 } 818 819 return 0; 820 } 821 822 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s, 823 uint8_t cmd, 824 uint8_t on) 825 { 826 const struct iovec data = { 827 .iov_base = &on, 828 .iov_len = sizeof(on), 829 }; 830 return vhost_vdpa_net_load_cmd(s, VIRTIO_NET_CTRL_RX, 831 cmd, &data, 1); 832 } 833 834 static int vhost_vdpa_net_load_rx(VhostVDPAState *s, 835 const VirtIONet *n) 836 { 837 ssize_t dev_written; 838 839 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) { 840 return 0; 841 } 842 843 /* 844 * According to virtio_net_reset(), device turns promiscuous mode 845 * on by default. 846 * 847 * Additionally, according to VirtIO standard, "Since there are 848 * no guarantees, it can use a hash filter or silently switch to 849 * allmulti or promiscuous mode if it is given too many addresses.". 850 * QEMU marks `n->mac_table.uni_overflow` if guest sets too many 851 * non-multicast MAC addresses, indicating that promiscuous mode 852 * should be enabled. 853 * 854 * Therefore, QEMU should only send this CVQ command if the 855 * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off, 856 * which sets promiscuous mode on, different from the device's defaults. 857 * 858 * Note that the device's defaults can mismatch the driver's 859 * configuration only at live migration. 860 */ 861 if (!n->mac_table.uni_overflow && !n->promisc) { 862 dev_written = vhost_vdpa_net_load_rx_mode(s, 863 VIRTIO_NET_CTRL_RX_PROMISC, 0); 864 if (unlikely(dev_written < 0)) { 865 return dev_written; 866 } 867 if (*s->status != VIRTIO_NET_OK) { 868 return -EIO; 869 } 870 } 871 872 /* 873 * According to virtio_net_reset(), device turns all-multicast mode 874 * off by default. 875 * 876 * According to VirtIO standard, "Since there are no guarantees, 877 * it can use a hash filter or silently switch to allmulti or 878 * promiscuous mode if it is given too many addresses.". QEMU marks 879 * `n->mac_table.multi_overflow` if guest sets too many 880 * non-multicast MAC addresses. 881 * 882 * Therefore, QEMU should only send this CVQ command if the 883 * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on, 884 * which sets all-multicast mode on, different from the device's defaults. 885 * 886 * Note that the device's defaults can mismatch the driver's 887 * configuration only at live migration. 888 */ 889 if (n->mac_table.multi_overflow || n->allmulti) { 890 dev_written = vhost_vdpa_net_load_rx_mode(s, 891 VIRTIO_NET_CTRL_RX_ALLMULTI, 1); 892 if (unlikely(dev_written < 0)) { 893 return dev_written; 894 } 895 if (*s->status != VIRTIO_NET_OK) { 896 return -EIO; 897 } 898 } 899 900 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) { 901 return 0; 902 } 903 904 /* 905 * According to virtio_net_reset(), device turns all-unicast mode 906 * off by default. 907 * 908 * Therefore, QEMU should only send this CVQ command if the driver 909 * sets all-unicast mode on, different from the device's defaults. 910 * 911 * Note that the device's defaults can mismatch the driver's 912 * configuration only at live migration. 913 */ 914 if (n->alluni) { 915 dev_written = vhost_vdpa_net_load_rx_mode(s, 916 VIRTIO_NET_CTRL_RX_ALLUNI, 1); 917 if (dev_written < 0) { 918 return dev_written; 919 } 920 if (*s->status != VIRTIO_NET_OK) { 921 return -EIO; 922 } 923 } 924 925 /* 926 * According to virtio_net_reset(), device turns non-multicast mode 927 * off by default. 928 * 929 * Therefore, QEMU should only send this CVQ command if the driver 930 * sets non-multicast mode on, different from the device's defaults. 931 * 932 * Note that the device's defaults can mismatch the driver's 933 * configuration only at live migration. 934 */ 935 if (n->nomulti) { 936 dev_written = vhost_vdpa_net_load_rx_mode(s, 937 VIRTIO_NET_CTRL_RX_NOMULTI, 1); 938 if (dev_written < 0) { 939 return dev_written; 940 } 941 if (*s->status != VIRTIO_NET_OK) { 942 return -EIO; 943 } 944 } 945 946 /* 947 * According to virtio_net_reset(), device turns non-unicast mode 948 * off by default. 949 * 950 * Therefore, QEMU should only send this CVQ command if the driver 951 * sets non-unicast mode on, different from the device's defaults. 952 * 953 * Note that the device's defaults can mismatch the driver's 954 * configuration only at live migration. 955 */ 956 if (n->nouni) { 957 dev_written = vhost_vdpa_net_load_rx_mode(s, 958 VIRTIO_NET_CTRL_RX_NOUNI, 1); 959 if (dev_written < 0) { 960 return dev_written; 961 } 962 if (*s->status != VIRTIO_NET_OK) { 963 return -EIO; 964 } 965 } 966 967 /* 968 * According to virtio_net_reset(), device turns non-broadcast mode 969 * off by default. 970 * 971 * Therefore, QEMU should only send this CVQ command if the driver 972 * sets non-broadcast mode on, different from the device's defaults. 973 * 974 * Note that the device's defaults can mismatch the driver's 975 * configuration only at live migration. 976 */ 977 if (n->nobcast) { 978 dev_written = vhost_vdpa_net_load_rx_mode(s, 979 VIRTIO_NET_CTRL_RX_NOBCAST, 1); 980 if (dev_written < 0) { 981 return dev_written; 982 } 983 if (*s->status != VIRTIO_NET_OK) { 984 return -EIO; 985 } 986 } 987 988 return 0; 989 } 990 991 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s, 992 const VirtIONet *n, 993 uint16_t vid) 994 { 995 const struct iovec data = { 996 .iov_base = &vid, 997 .iov_len = sizeof(vid), 998 }; 999 ssize_t dev_written = vhost_vdpa_net_load_cmd(s, VIRTIO_NET_CTRL_VLAN, 1000 VIRTIO_NET_CTRL_VLAN_ADD, 1001 &data, 1); 1002 if (unlikely(dev_written < 0)) { 1003 return dev_written; 1004 } 1005 if (unlikely(*s->status != VIRTIO_NET_OK)) { 1006 return -EIO; 1007 } 1008 1009 return 0; 1010 } 1011 1012 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s, 1013 const VirtIONet *n) 1014 { 1015 int r; 1016 1017 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) { 1018 return 0; 1019 } 1020 1021 for (int i = 0; i < MAX_VLAN >> 5; i++) { 1022 for (int j = 0; n->vlans[i] && j <= 0x1f; j++) { 1023 if (n->vlans[i] & (1U << j)) { 1024 r = vhost_vdpa_net_load_single_vlan(s, n, (i << 5) + j); 1025 if (unlikely(r != 0)) { 1026 return r; 1027 } 1028 } 1029 } 1030 } 1031 1032 return 0; 1033 } 1034 1035 static int vhost_vdpa_net_cvq_load(NetClientState *nc) 1036 { 1037 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 1038 struct vhost_vdpa *v = &s->vhost_vdpa; 1039 const VirtIONet *n; 1040 int r; 1041 1042 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1043 1044 vhost_vdpa_set_vring_ready(v, v->dev->vq_index); 1045 1046 if (v->shadow_vqs_enabled) { 1047 n = VIRTIO_NET(v->dev->vdev); 1048 r = vhost_vdpa_net_load_mac(s, n); 1049 if (unlikely(r < 0)) { 1050 return r; 1051 } 1052 r = vhost_vdpa_net_load_mq(s, n); 1053 if (unlikely(r)) { 1054 return r; 1055 } 1056 r = vhost_vdpa_net_load_offloads(s, n); 1057 if (unlikely(r)) { 1058 return r; 1059 } 1060 r = vhost_vdpa_net_load_rx(s, n); 1061 if (unlikely(r)) { 1062 return r; 1063 } 1064 r = vhost_vdpa_net_load_vlan(s, n); 1065 if (unlikely(r)) { 1066 return r; 1067 } 1068 } 1069 1070 for (int i = 0; i < v->dev->vq_index; ++i) { 1071 vhost_vdpa_set_vring_ready(v, i); 1072 } 1073 1074 return 0; 1075 } 1076 1077 static NetClientInfo net_vhost_vdpa_cvq_info = { 1078 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 1079 .size = sizeof(VhostVDPAState), 1080 .receive = vhost_vdpa_receive, 1081 .start = vhost_vdpa_net_cvq_start, 1082 .load = vhost_vdpa_net_cvq_load, 1083 .stop = vhost_vdpa_net_cvq_stop, 1084 .cleanup = vhost_vdpa_cleanup, 1085 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 1086 .has_ufo = vhost_vdpa_has_ufo, 1087 .check_peer_type = vhost_vdpa_check_peer_type, 1088 }; 1089 1090 /* 1091 * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to 1092 * vdpa device. 1093 * 1094 * Considering that QEMU cannot send the entire filter table to the 1095 * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ 1096 * command to enable promiscuous mode to receive all packets, 1097 * according to VirtIO standard, "Since there are no guarantees, 1098 * it can use a hash filter or silently switch to allmulti or 1099 * promiscuous mode if it is given too many addresses.". 1100 * 1101 * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and 1102 * marks `n->mac_table.x_overflow` accordingly, it should have 1103 * the same effect on the device model to receive 1104 * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses. 1105 * The same applies to multicast MAC addresses. 1106 * 1107 * Therefore, QEMU can provide the device model with a fake 1108 * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1) 1109 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast 1110 * MAC addresses. This ensures that the device model marks 1111 * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`, 1112 * allowing all packets to be received, which aligns with the 1113 * state of the vdpa device. 1114 */ 1115 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s, 1116 VirtQueueElement *elem, 1117 struct iovec *out) 1118 { 1119 struct virtio_net_ctrl_mac mac_data, *mac_ptr; 1120 struct virtio_net_ctrl_hdr *hdr_ptr; 1121 uint32_t cursor; 1122 ssize_t r; 1123 1124 /* parse the non-multicast MAC address entries from CVQ command */ 1125 cursor = sizeof(*hdr_ptr); 1126 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1127 &mac_data, sizeof(mac_data)); 1128 if (unlikely(r != sizeof(mac_data))) { 1129 /* 1130 * If the CVQ command is invalid, we should simulate the vdpa device 1131 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1132 */ 1133 *s->status = VIRTIO_NET_ERR; 1134 return sizeof(*s->status); 1135 } 1136 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1137 1138 /* parse the multicast MAC address entries from CVQ command */ 1139 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1140 &mac_data, sizeof(mac_data)); 1141 if (r != sizeof(mac_data)) { 1142 /* 1143 * If the CVQ command is invalid, we should simulate the vdpa device 1144 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1145 */ 1146 *s->status = VIRTIO_NET_ERR; 1147 return sizeof(*s->status); 1148 } 1149 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1150 1151 /* validate the CVQ command */ 1152 if (iov_size(elem->out_sg, elem->out_num) != cursor) { 1153 /* 1154 * If the CVQ command is invalid, we should simulate the vdpa device 1155 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1156 */ 1157 *s->status = VIRTIO_NET_ERR; 1158 return sizeof(*s->status); 1159 } 1160 1161 /* 1162 * According to VirtIO standard, "Since there are no guarantees, 1163 * it can use a hash filter or silently switch to allmulti or 1164 * promiscuous mode if it is given too many addresses.". 1165 * 1166 * Therefore, considering that QEMU is unable to send the entire 1167 * filter table to the vdpa device, it should send the 1168 * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode 1169 */ 1170 r = vhost_vdpa_net_load_rx_mode(s, VIRTIO_NET_CTRL_RX_PROMISC, 1); 1171 if (unlikely(r < 0)) { 1172 return r; 1173 } 1174 if (*s->status != VIRTIO_NET_OK) { 1175 return sizeof(*s->status); 1176 } 1177 1178 /* 1179 * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ 1180 * command to the device model, including (`MAC_TABLE_ENTRIES` + 1) 1181 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) 1182 * multicast MAC addresses. 1183 * 1184 * By doing so, the device model can mark `n->mac_table.uni_overflow` 1185 * and `n->mac_table.multi_overflow`, enabling all packets to be 1186 * received, which aligns with the state of the vdpa device. 1187 */ 1188 cursor = 0; 1189 uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1, 1190 fake_mul_entries = MAC_TABLE_ENTRIES + 1, 1191 fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) + 1192 sizeof(mac_data) + fake_uni_entries * ETH_ALEN + 1193 sizeof(mac_data) + fake_mul_entries * ETH_ALEN; 1194 1195 assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len()); 1196 out->iov_len = fake_cvq_size; 1197 1198 /* pack the header for fake CVQ command */ 1199 hdr_ptr = out->iov_base + cursor; 1200 hdr_ptr->class = VIRTIO_NET_CTRL_MAC; 1201 hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 1202 cursor += sizeof(*hdr_ptr); 1203 1204 /* 1205 * Pack the non-multicast MAC addresses part for fake CVQ command. 1206 * 1207 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1208 * addresses provided in CVQ command. Therefore, only the entries 1209 * field need to be prepared in the CVQ command. 1210 */ 1211 mac_ptr = out->iov_base + cursor; 1212 mac_ptr->entries = cpu_to_le32(fake_uni_entries); 1213 cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN; 1214 1215 /* 1216 * Pack the multicast MAC addresses part for fake CVQ command. 1217 * 1218 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1219 * addresses provided in CVQ command. Therefore, only the entries 1220 * field need to be prepared in the CVQ command. 1221 */ 1222 mac_ptr = out->iov_base + cursor; 1223 mac_ptr->entries = cpu_to_le32(fake_mul_entries); 1224 1225 /* 1226 * Simulating QEMU poll a vdpa device used buffer 1227 * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1228 */ 1229 return sizeof(*s->status); 1230 } 1231 1232 /** 1233 * Validate and copy control virtqueue commands. 1234 * 1235 * Following QEMU guidelines, we offer a copy of the buffers to the device to 1236 * prevent TOCTOU bugs. 1237 */ 1238 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq, 1239 VirtQueueElement *elem, 1240 void *opaque) 1241 { 1242 VhostVDPAState *s = opaque; 1243 size_t in_len; 1244 const struct virtio_net_ctrl_hdr *ctrl; 1245 virtio_net_ctrl_ack status = VIRTIO_NET_ERR; 1246 /* Out buffer sent to both the vdpa device and the device model */ 1247 struct iovec out = { 1248 .iov_base = s->cvq_cmd_out_buffer, 1249 }; 1250 /* in buffer used for device model */ 1251 const struct iovec in = { 1252 .iov_base = &status, 1253 .iov_len = sizeof(status), 1254 }; 1255 ssize_t dev_written = -EINVAL; 1256 1257 out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0, 1258 s->cvq_cmd_out_buffer, 1259 vhost_vdpa_net_cvq_cmd_page_len()); 1260 1261 ctrl = s->cvq_cmd_out_buffer; 1262 if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) { 1263 /* 1264 * Guest announce capability is emulated by qemu, so don't forward to 1265 * the device. 1266 */ 1267 dev_written = sizeof(status); 1268 *s->status = VIRTIO_NET_OK; 1269 } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC && 1270 ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET && 1271 iov_size(elem->out_sg, elem->out_num) > out.iov_len)) { 1272 /* 1273 * Due to the size limitation of the out buffer sent to the vdpa device, 1274 * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive 1275 * MAC addresses set by the driver for the filter table can cause 1276 * truncation of the CVQ command in QEMU. As a result, the vdpa device 1277 * rejects the flawed CVQ command. 1278 * 1279 * Therefore, QEMU must handle this situation instead of sending 1280 * the CVQ command directly. 1281 */ 1282 dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem, 1283 &out); 1284 if (unlikely(dev_written < 0)) { 1285 goto out; 1286 } 1287 } else { 1288 dev_written = vhost_vdpa_net_cvq_add(s, out.iov_len, sizeof(status)); 1289 if (unlikely(dev_written < 0)) { 1290 goto out; 1291 } 1292 } 1293 1294 if (unlikely(dev_written < sizeof(status))) { 1295 error_report("Insufficient written data (%zu)", dev_written); 1296 goto out; 1297 } 1298 1299 if (*s->status != VIRTIO_NET_OK) { 1300 goto out; 1301 } 1302 1303 status = VIRTIO_NET_ERR; 1304 virtio_net_handle_ctrl_iov(svq->vdev, &in, 1, &out, 1); 1305 if (status != VIRTIO_NET_OK) { 1306 error_report("Bad CVQ processing in model"); 1307 } 1308 1309 out: 1310 in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status, 1311 sizeof(status)); 1312 if (unlikely(in_len < sizeof(status))) { 1313 error_report("Bad device CVQ written length"); 1314 } 1315 vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status))); 1316 /* 1317 * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when 1318 * the function successfully forwards the CVQ command, indicated 1319 * by a non-negative value of `dev_written`. Otherwise, it still 1320 * belongs to SVQ. 1321 * This function should only free the `elem` when it owns. 1322 */ 1323 if (dev_written >= 0) { 1324 g_free(elem); 1325 } 1326 return dev_written < 0 ? dev_written : 0; 1327 } 1328 1329 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = { 1330 .avail_handler = vhost_vdpa_net_handle_ctrl_avail, 1331 }; 1332 1333 /** 1334 * Probe if CVQ is isolated 1335 * 1336 * @device_fd The vdpa device fd 1337 * @features Features offered by the device. 1338 * @cvq_index The control vq pair index 1339 * 1340 * Returns <0 in case of failure, 0 if false and 1 if true. 1341 */ 1342 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features, 1343 int cvq_index, Error **errp) 1344 { 1345 uint64_t backend_features; 1346 int64_t cvq_group; 1347 uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE | 1348 VIRTIO_CONFIG_S_DRIVER; 1349 int r; 1350 1351 ERRP_GUARD(); 1352 1353 r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features); 1354 if (unlikely(r < 0)) { 1355 error_setg_errno(errp, errno, "Cannot get vdpa backend_features"); 1356 return r; 1357 } 1358 1359 if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) { 1360 return 0; 1361 } 1362 1363 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1364 if (unlikely(r)) { 1365 error_setg_errno(errp, -r, "Cannot set device status"); 1366 goto out; 1367 } 1368 1369 r = ioctl(device_fd, VHOST_SET_FEATURES, &features); 1370 if (unlikely(r)) { 1371 error_setg_errno(errp, -r, "Cannot set features"); 1372 goto out; 1373 } 1374 1375 status |= VIRTIO_CONFIG_S_FEATURES_OK; 1376 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1377 if (unlikely(r)) { 1378 error_setg_errno(errp, -r, "Cannot set device status"); 1379 goto out; 1380 } 1381 1382 cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp); 1383 if (unlikely(cvq_group < 0)) { 1384 if (cvq_group != -ENOTSUP) { 1385 r = cvq_group; 1386 goto out; 1387 } 1388 1389 /* 1390 * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend 1391 * support ASID even if the parent driver does not. The CVQ cannot be 1392 * isolated in this case. 1393 */ 1394 error_free(*errp); 1395 *errp = NULL; 1396 r = 0; 1397 goto out; 1398 } 1399 1400 for (int i = 0; i < cvq_index; ++i) { 1401 int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp); 1402 if (unlikely(group < 0)) { 1403 r = group; 1404 goto out; 1405 } 1406 1407 if (group == (int64_t)cvq_group) { 1408 r = 0; 1409 goto out; 1410 } 1411 } 1412 1413 r = 1; 1414 1415 out: 1416 status = 0; 1417 ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1418 return r; 1419 } 1420 1421 static NetClientState *net_vhost_vdpa_init(NetClientState *peer, 1422 const char *device, 1423 const char *name, 1424 int vdpa_device_fd, 1425 int queue_pair_index, 1426 int nvqs, 1427 bool is_datapath, 1428 bool svq, 1429 struct vhost_vdpa_iova_range iova_range, 1430 uint64_t features, 1431 Error **errp) 1432 { 1433 NetClientState *nc = NULL; 1434 VhostVDPAState *s; 1435 int ret = 0; 1436 assert(name); 1437 int cvq_isolated = 0; 1438 1439 if (is_datapath) { 1440 nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device, 1441 name); 1442 } else { 1443 cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features, 1444 queue_pair_index * 2, 1445 errp); 1446 if (unlikely(cvq_isolated < 0)) { 1447 return NULL; 1448 } 1449 1450 nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer, 1451 device, name); 1452 } 1453 qemu_set_info_str(nc, TYPE_VHOST_VDPA); 1454 s = DO_UPCAST(VhostVDPAState, nc, nc); 1455 1456 s->vhost_vdpa.device_fd = vdpa_device_fd; 1457 s->vhost_vdpa.index = queue_pair_index; 1458 s->always_svq = svq; 1459 s->migration_state.notify = vdpa_net_migration_state_notifier; 1460 s->vhost_vdpa.shadow_vqs_enabled = svq; 1461 s->vhost_vdpa.iova_range = iova_range; 1462 s->vhost_vdpa.shadow_data = svq; 1463 if (queue_pair_index == 0) { 1464 vhost_vdpa_net_valid_svq_features(features, 1465 &s->vhost_vdpa.migration_blocker); 1466 } else if (!is_datapath) { 1467 s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1468 PROT_READ | PROT_WRITE, 1469 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1470 s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1471 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 1472 -1, 0); 1473 1474 s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops; 1475 s->vhost_vdpa.shadow_vq_ops_opaque = s; 1476 s->cvq_isolated = cvq_isolated; 1477 } 1478 ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs); 1479 if (ret) { 1480 qemu_del_net_client(nc); 1481 return NULL; 1482 } 1483 return nc; 1484 } 1485 1486 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp) 1487 { 1488 int ret = ioctl(fd, VHOST_GET_FEATURES, features); 1489 if (unlikely(ret < 0)) { 1490 error_setg_errno(errp, errno, 1491 "Fail to query features from vhost-vDPA device"); 1492 } 1493 return ret; 1494 } 1495 1496 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features, 1497 int *has_cvq, Error **errp) 1498 { 1499 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 1500 g_autofree struct vhost_vdpa_config *config = NULL; 1501 __virtio16 *max_queue_pairs; 1502 int ret; 1503 1504 if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) { 1505 *has_cvq = 1; 1506 } else { 1507 *has_cvq = 0; 1508 } 1509 1510 if (features & (1 << VIRTIO_NET_F_MQ)) { 1511 config = g_malloc0(config_size + sizeof(*max_queue_pairs)); 1512 config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs); 1513 config->len = sizeof(*max_queue_pairs); 1514 1515 ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config); 1516 if (ret) { 1517 error_setg(errp, "Fail to get config from vhost-vDPA device"); 1518 return -ret; 1519 } 1520 1521 max_queue_pairs = (__virtio16 *)&config->buf; 1522 1523 return lduw_le_p(max_queue_pairs); 1524 } 1525 1526 return 1; 1527 } 1528 1529 int net_init_vhost_vdpa(const Netdev *netdev, const char *name, 1530 NetClientState *peer, Error **errp) 1531 { 1532 const NetdevVhostVDPAOptions *opts; 1533 uint64_t features; 1534 int vdpa_device_fd; 1535 g_autofree NetClientState **ncs = NULL; 1536 struct vhost_vdpa_iova_range iova_range; 1537 NetClientState *nc; 1538 int queue_pairs, r, i = 0, has_cvq = 0; 1539 1540 assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1541 opts = &netdev->u.vhost_vdpa; 1542 if (!opts->vhostdev && !opts->vhostfd) { 1543 error_setg(errp, 1544 "vhost-vdpa: neither vhostdev= nor vhostfd= was specified"); 1545 return -1; 1546 } 1547 1548 if (opts->vhostdev && opts->vhostfd) { 1549 error_setg(errp, 1550 "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive"); 1551 return -1; 1552 } 1553 1554 if (opts->vhostdev) { 1555 vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp); 1556 if (vdpa_device_fd == -1) { 1557 return -errno; 1558 } 1559 } else { 1560 /* has_vhostfd */ 1561 vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp); 1562 if (vdpa_device_fd == -1) { 1563 error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: "); 1564 return -1; 1565 } 1566 } 1567 1568 r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp); 1569 if (unlikely(r < 0)) { 1570 goto err; 1571 } 1572 1573 queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features, 1574 &has_cvq, errp); 1575 if (queue_pairs < 0) { 1576 qemu_close(vdpa_device_fd); 1577 return queue_pairs; 1578 } 1579 1580 r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range); 1581 if (unlikely(r < 0)) { 1582 error_setg(errp, "vhost-vdpa: get iova range failed: %s", 1583 strerror(-r)); 1584 goto err; 1585 } 1586 1587 if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) { 1588 goto err; 1589 } 1590 1591 ncs = g_malloc0(sizeof(*ncs) * queue_pairs); 1592 1593 for (i = 0; i < queue_pairs; i++) { 1594 ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1595 vdpa_device_fd, i, 2, true, opts->x_svq, 1596 iova_range, features, errp); 1597 if (!ncs[i]) 1598 goto err; 1599 } 1600 1601 if (has_cvq) { 1602 nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1603 vdpa_device_fd, i, 1, false, 1604 opts->x_svq, iova_range, features, errp); 1605 if (!nc) 1606 goto err; 1607 } 1608 1609 return 0; 1610 1611 err: 1612 if (i) { 1613 for (i--; i >= 0; i--) { 1614 qemu_del_net_client(ncs[i]); 1615 } 1616 } 1617 1618 qemu_close(vdpa_device_fd); 1619 1620 return -1; 1621 } 1622