1 /* 2 * vhost-vdpa.c 3 * 4 * Copyright(c) 2017-2018 Intel Corporation. 5 * Copyright(c) 2020 Red Hat, Inc. 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "clients.h" 14 #include "hw/virtio/virtio-net.h" 15 #include "net/vhost_net.h" 16 #include "net/vhost-vdpa.h" 17 #include "hw/virtio/vhost-vdpa.h" 18 #include "qemu/config-file.h" 19 #include "qemu/error-report.h" 20 #include "qemu/log.h" 21 #include "qemu/memalign.h" 22 #include "qemu/option.h" 23 #include "qapi/error.h" 24 #include <linux/vhost.h> 25 #include <sys/ioctl.h> 26 #include <err.h> 27 #include "standard-headers/linux/virtio_net.h" 28 #include "monitor/monitor.h" 29 #include "migration/misc.h" 30 #include "hw/virtio/vhost.h" 31 #include "trace.h" 32 33 /* Todo:need to add the multiqueue support here */ 34 typedef struct VhostVDPAState { 35 NetClientState nc; 36 struct vhost_vdpa vhost_vdpa; 37 NotifierWithReturn migration_state; 38 VHostNetState *vhost_net; 39 40 /* Control commands shadow buffers */ 41 void *cvq_cmd_out_buffer; 42 virtio_net_ctrl_ack *status; 43 44 /* The device always have SVQ enabled */ 45 bool always_svq; 46 47 /* The device can isolate CVQ in its own ASID */ 48 bool cvq_isolated; 49 50 bool started; 51 } VhostVDPAState; 52 53 /* 54 * The array is sorted alphabetically in ascending order, 55 * with the exception of VHOST_INVALID_FEATURE_BIT, 56 * which should always be the last entry. 57 */ 58 static const int vdpa_feature_bits[] = { 59 VIRTIO_F_ANY_LAYOUT, 60 VIRTIO_F_IOMMU_PLATFORM, 61 VIRTIO_F_NOTIFY_ON_EMPTY, 62 VIRTIO_F_RING_PACKED, 63 VIRTIO_F_RING_RESET, 64 VIRTIO_F_VERSION_1, 65 VIRTIO_F_IN_ORDER, 66 VIRTIO_F_NOTIFICATION_DATA, 67 VIRTIO_NET_F_CSUM, 68 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, 69 VIRTIO_NET_F_CTRL_MAC_ADDR, 70 VIRTIO_NET_F_CTRL_RX, 71 VIRTIO_NET_F_CTRL_RX_EXTRA, 72 VIRTIO_NET_F_CTRL_VLAN, 73 VIRTIO_NET_F_CTRL_VQ, 74 VIRTIO_NET_F_GSO, 75 VIRTIO_NET_F_GUEST_CSUM, 76 VIRTIO_NET_F_GUEST_ECN, 77 VIRTIO_NET_F_GUEST_TSO4, 78 VIRTIO_NET_F_GUEST_TSO6, 79 VIRTIO_NET_F_GUEST_UFO, 80 VIRTIO_NET_F_GUEST_USO4, 81 VIRTIO_NET_F_GUEST_USO6, 82 VIRTIO_NET_F_HASH_REPORT, 83 VIRTIO_NET_F_HOST_ECN, 84 VIRTIO_NET_F_HOST_TSO4, 85 VIRTIO_NET_F_HOST_TSO6, 86 VIRTIO_NET_F_HOST_UFO, 87 VIRTIO_NET_F_HOST_USO, 88 VIRTIO_NET_F_MQ, 89 VIRTIO_NET_F_MRG_RXBUF, 90 VIRTIO_NET_F_MTU, 91 VIRTIO_NET_F_RSC_EXT, 92 VIRTIO_NET_F_RSS, 93 VIRTIO_NET_F_STATUS, 94 VIRTIO_RING_F_EVENT_IDX, 95 VIRTIO_RING_F_INDIRECT_DESC, 96 97 /* VHOST_INVALID_FEATURE_BIT should always be the last entry */ 98 VHOST_INVALID_FEATURE_BIT 99 }; 100 101 /** Supported device specific feature bits with SVQ */ 102 static const uint64_t vdpa_svq_device_features = 103 BIT_ULL(VIRTIO_NET_F_CSUM) | 104 BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) | 105 BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) | 106 BIT_ULL(VIRTIO_NET_F_MTU) | 107 BIT_ULL(VIRTIO_NET_F_MAC) | 108 BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) | 109 BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) | 110 BIT_ULL(VIRTIO_NET_F_GUEST_ECN) | 111 BIT_ULL(VIRTIO_NET_F_GUEST_UFO) | 112 BIT_ULL(VIRTIO_NET_F_HOST_TSO4) | 113 BIT_ULL(VIRTIO_NET_F_HOST_TSO6) | 114 BIT_ULL(VIRTIO_NET_F_HOST_ECN) | 115 BIT_ULL(VIRTIO_NET_F_HOST_UFO) | 116 BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) | 117 BIT_ULL(VIRTIO_NET_F_STATUS) | 118 BIT_ULL(VIRTIO_NET_F_CTRL_VQ) | 119 BIT_ULL(VIRTIO_NET_F_CTRL_RX) | 120 BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) | 121 BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) | 122 BIT_ULL(VIRTIO_NET_F_MQ) | 123 BIT_ULL(VIRTIO_F_ANY_LAYOUT) | 124 BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) | 125 /* VHOST_F_LOG_ALL is exposed by SVQ */ 126 BIT_ULL(VHOST_F_LOG_ALL) | 127 BIT_ULL(VIRTIO_NET_F_HASH_REPORT) | 128 BIT_ULL(VIRTIO_NET_F_RSS) | 129 BIT_ULL(VIRTIO_NET_F_RSC_EXT) | 130 BIT_ULL(VIRTIO_NET_F_STANDBY) | 131 BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX); 132 133 #define VHOST_VDPA_NET_CVQ_ASID 1 134 135 static struct vhost_net *vhost_vdpa_get_vhost_net(NetClientState *nc) 136 { 137 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 138 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 139 return s->vhost_net; 140 } 141 142 static size_t vhost_vdpa_net_cvq_cmd_len(void) 143 { 144 /* 145 * MAC_TABLE_SET is the ctrl command that produces the longer out buffer. 146 * In buffer is always 1 byte, so it should fit here 147 */ 148 return sizeof(struct virtio_net_ctrl_hdr) + 149 2 * sizeof(struct virtio_net_ctrl_mac) + 150 MAC_TABLE_ENTRIES * ETH_ALEN; 151 } 152 153 static size_t vhost_vdpa_net_cvq_cmd_page_len(void) 154 { 155 return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size()); 156 } 157 158 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp) 159 { 160 uint64_t invalid_dev_features = 161 features & ~vdpa_svq_device_features & 162 /* Transport are all accepted at this point */ 163 ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START, 164 VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START); 165 166 if (invalid_dev_features) { 167 error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64, 168 invalid_dev_features); 169 return false; 170 } 171 172 return vhost_svq_valid_features(features, errp); 173 } 174 175 static int vhost_vdpa_net_check_device_id(struct vhost_net *net) 176 { 177 uint32_t device_id; 178 int ret; 179 struct vhost_dev *hdev; 180 181 hdev = (struct vhost_dev *)&net->dev; 182 ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id); 183 if (device_id != VIRTIO_ID_NET) { 184 return -ENOTSUP; 185 } 186 return ret; 187 } 188 189 static int vhost_vdpa_add(NetClientState *ncs, void *be, 190 int queue_pair_index, int nvqs) 191 { 192 VhostNetOptions options; 193 struct vhost_net *net = NULL; 194 VhostVDPAState *s; 195 int ret; 196 197 options.backend_type = VHOST_BACKEND_TYPE_VDPA; 198 assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 199 s = DO_UPCAST(VhostVDPAState, nc, ncs); 200 options.net_backend = ncs; 201 options.opaque = be; 202 options.busyloop_timeout = 0; 203 options.nvqs = nvqs; 204 options.feature_bits = vdpa_feature_bits; 205 206 net = vhost_net_init(&options); 207 if (!net) { 208 error_report("failed to init vhost_net for queue"); 209 goto err_init; 210 } 211 s->vhost_net = net; 212 ret = vhost_vdpa_net_check_device_id(net); 213 if (ret) { 214 goto err_check; 215 } 216 return 0; 217 err_check: 218 vhost_net_cleanup(net); 219 g_free(net); 220 err_init: 221 return -1; 222 } 223 224 static void vhost_vdpa_cleanup(NetClientState *nc) 225 { 226 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 227 228 munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len()); 229 munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len()); 230 if (s->vhost_net) { 231 vhost_net_cleanup(s->vhost_net); 232 g_free(s->vhost_net); 233 s->vhost_net = NULL; 234 } 235 if (s->vhost_vdpa.index != 0) { 236 return; 237 } 238 qemu_close(s->vhost_vdpa.shared->device_fd); 239 g_clear_pointer(&s->vhost_vdpa.shared->iova_tree, vhost_iova_tree_delete); 240 g_free(s->vhost_vdpa.shared); 241 } 242 243 /** Dummy SetSteeringEBPF to support RSS for vhost-vdpa backend */ 244 static bool vhost_vdpa_set_steering_ebpf(NetClientState *nc, int prog_fd) 245 { 246 return true; 247 } 248 249 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc) 250 { 251 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 252 253 return true; 254 } 255 256 static bool vhost_vdpa_has_ufo(NetClientState *nc) 257 { 258 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 259 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 260 uint64_t features = 0; 261 features |= (1ULL << VIRTIO_NET_F_HOST_UFO); 262 features = vhost_net_get_features(s->vhost_net, features); 263 return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO)); 264 265 } 266 267 /* 268 * FIXME: vhost_vdpa doesn't have an API to "set h/w endianness". But it's 269 * reasonable to assume that h/w is LE by default, because LE is what 270 * virtio 1.0 and later ask for. So, this function just says "yes, the h/w is 271 * LE". Otherwise, on a BE machine, higher-level code would mistakely think 272 * the h/w is BE and can't support VDPA for a virtio 1.0 client. 273 */ 274 static int vhost_vdpa_set_vnet_le(NetClientState *nc, bool enable) 275 { 276 return 0; 277 } 278 279 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc, 280 Error **errp) 281 { 282 const char *driver = object_class_get_name(oc); 283 284 if (!g_str_has_prefix(driver, "virtio-net-")) { 285 error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*"); 286 return false; 287 } 288 289 return true; 290 } 291 292 /** Dummy receive in case qemu falls back to userland tap networking */ 293 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf, 294 size_t size) 295 { 296 return size; 297 } 298 299 300 /** From any vdpa net client, get the netclient of the i-th queue pair */ 301 static VhostVDPAState *vhost_vdpa_net_get_nc_vdpa(VhostVDPAState *s, int i) 302 { 303 NICState *nic = qemu_get_nic(s->nc.peer); 304 NetClientState *nc_i = qemu_get_peer(nic->ncs, i); 305 306 return DO_UPCAST(VhostVDPAState, nc, nc_i); 307 } 308 309 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s) 310 { 311 return vhost_vdpa_net_get_nc_vdpa(s, 0); 312 } 313 314 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable) 315 { 316 struct vhost_vdpa *v = &s->vhost_vdpa; 317 VirtIONet *n; 318 VirtIODevice *vdev; 319 int data_queue_pairs, cvq, r; 320 321 /* We are only called on the first data vqs and only if x-svq is not set */ 322 if (s->vhost_vdpa.shadow_vqs_enabled == enable) { 323 return; 324 } 325 326 vdev = v->dev->vdev; 327 n = VIRTIO_NET(vdev); 328 if (!n->vhost_started) { 329 return; 330 } 331 332 data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1; 333 cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ? 334 n->max_ncs - n->max_queue_pairs : 0; 335 v->shared->svq_switching = enable ? 336 SVQ_TSTATE_ENABLING : SVQ_TSTATE_DISABLING; 337 /* 338 * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter 339 * in the future and resume the device if read-only operations between 340 * suspend and reset goes wrong. 341 */ 342 vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq); 343 344 /* Start will check migration setup_or_active to configure or not SVQ */ 345 r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq); 346 if (unlikely(r < 0)) { 347 error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r); 348 } 349 v->shared->svq_switching = SVQ_TSTATE_DONE; 350 } 351 352 static int vdpa_net_migration_state_notifier(NotifierWithReturn *notifier, 353 MigrationEvent *e, Error **errp) 354 { 355 VhostVDPAState *s = container_of(notifier, VhostVDPAState, migration_state); 356 357 if (e->type == MIG_EVENT_PRECOPY_SETUP) { 358 vhost_vdpa_net_log_global_enable(s, true); 359 } else if (e->type == MIG_EVENT_PRECOPY_FAILED) { 360 vhost_vdpa_net_log_global_enable(s, false); 361 } 362 return 0; 363 } 364 365 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s) 366 { 367 migration_add_notifier(&s->migration_state, 368 vdpa_net_migration_state_notifier); 369 } 370 371 static int vhost_vdpa_net_data_start(NetClientState *nc) 372 { 373 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 374 struct vhost_vdpa *v = &s->vhost_vdpa; 375 376 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 377 378 if (s->always_svq || migration_is_running()) { 379 v->shadow_vqs_enabled = true; 380 } else { 381 v->shadow_vqs_enabled = false; 382 } 383 384 if (v->index == 0) { 385 v->shared->shadow_data = v->shadow_vqs_enabled; 386 vhost_vdpa_net_data_start_first(s); 387 return 0; 388 } 389 390 return 0; 391 } 392 393 static int vhost_vdpa_net_data_load(NetClientState *nc) 394 { 395 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 396 struct vhost_vdpa *v = &s->vhost_vdpa; 397 bool has_cvq = v->dev->vq_index_end % 2; 398 399 if (has_cvq) { 400 return 0; 401 } 402 403 for (int i = 0; i < v->dev->nvqs; ++i) { 404 int ret = vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index); 405 if (ret < 0) { 406 return ret; 407 } 408 } 409 return 0; 410 } 411 412 static void vhost_vdpa_net_client_stop(NetClientState *nc) 413 { 414 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 415 416 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 417 418 if (s->vhost_vdpa.index == 0) { 419 migration_remove_notifier(&s->migration_state); 420 } 421 } 422 423 static NetClientInfo net_vhost_vdpa_info = { 424 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 425 .size = sizeof(VhostVDPAState), 426 .receive = vhost_vdpa_receive, 427 .start = vhost_vdpa_net_data_start, 428 .load = vhost_vdpa_net_data_load, 429 .stop = vhost_vdpa_net_client_stop, 430 .cleanup = vhost_vdpa_cleanup, 431 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 432 .has_ufo = vhost_vdpa_has_ufo, 433 .set_vnet_le = vhost_vdpa_set_vnet_le, 434 .check_peer_type = vhost_vdpa_check_peer_type, 435 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 436 .get_vhost_net = vhost_vdpa_get_vhost_net, 437 }; 438 439 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index, 440 Error **errp) 441 { 442 struct vhost_vring_state state = { 443 .index = vq_index, 444 }; 445 int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state); 446 447 if (unlikely(r < 0)) { 448 r = -errno; 449 error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index); 450 return r; 451 } 452 453 return state.num; 454 } 455 456 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v, 457 unsigned vq_group, 458 unsigned asid_num) 459 { 460 struct vhost_vring_state asid = { 461 .index = vq_group, 462 .num = asid_num, 463 }; 464 int r; 465 466 trace_vhost_vdpa_set_address_space_id(v, vq_group, asid_num); 467 468 r = ioctl(v->shared->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid); 469 if (unlikely(r < 0)) { 470 error_report("Can't set vq group %u asid %u, errno=%d (%s)", 471 asid.index, asid.num, errno, g_strerror(errno)); 472 } 473 return r; 474 } 475 476 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr) 477 { 478 VhostIOVATree *tree = v->shared->iova_tree; 479 DMAMap needle = { 480 /* 481 * No need to specify size or to look for more translations since 482 * this contiguous chunk was allocated by us. 483 */ 484 .translated_addr = (hwaddr)(uintptr_t)addr, 485 }; 486 const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle); 487 int r; 488 489 if (unlikely(!map)) { 490 error_report("Cannot locate expected map"); 491 return; 492 } 493 494 r = vhost_vdpa_dma_unmap(v->shared, v->address_space_id, map->iova, 495 map->size + 1); 496 if (unlikely(r != 0)) { 497 error_report("Device cannot unmap: %s(%d)", g_strerror(r), r); 498 } 499 500 vhost_iova_tree_remove(tree, *map); 501 } 502 503 /** Map CVQ buffer. */ 504 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size, 505 bool write) 506 { 507 DMAMap map = {}; 508 hwaddr taddr = (hwaddr)(uintptr_t)buf; 509 int r; 510 511 map.size = size - 1; 512 map.perm = write ? IOMMU_RW : IOMMU_RO, 513 r = vhost_iova_tree_map_alloc(v->shared->iova_tree, &map, taddr); 514 if (unlikely(r != IOVA_OK)) { 515 error_report("Cannot map injected element"); 516 517 if (map.translated_addr == taddr) { 518 error_report("Insertion to IOVA->HVA tree failed"); 519 /* Remove the mapping from the IOVA-only tree */ 520 goto dma_map_err; 521 } 522 return r; 523 } 524 525 r = vhost_vdpa_dma_map(v->shared, v->address_space_id, map.iova, 526 vhost_vdpa_net_cvq_cmd_page_len(), buf, !write); 527 if (unlikely(r < 0)) { 528 goto dma_map_err; 529 } 530 531 return 0; 532 533 dma_map_err: 534 vhost_iova_tree_remove(v->shared->iova_tree, map); 535 return r; 536 } 537 538 static int vhost_vdpa_net_cvq_start(NetClientState *nc) 539 { 540 VhostVDPAState *s, *s0; 541 struct vhost_vdpa *v; 542 int64_t cvq_group; 543 int r; 544 Error *err = NULL; 545 546 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 547 548 s = DO_UPCAST(VhostVDPAState, nc, nc); 549 v = &s->vhost_vdpa; 550 551 s0 = vhost_vdpa_net_first_nc_vdpa(s); 552 v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled; 553 s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID; 554 555 if (v->shared->shadow_data) { 556 /* SVQ is already configured for all virtqueues */ 557 goto out; 558 } 559 560 /* 561 * If we early return in these cases SVQ will not be enabled. The migration 562 * will be blocked as long as vhost-vdpa backends will not offer _F_LOG. 563 */ 564 if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) { 565 return 0; 566 } 567 568 if (!s->cvq_isolated) { 569 return 0; 570 } 571 572 cvq_group = vhost_vdpa_get_vring_group(v->shared->device_fd, 573 v->dev->vq_index_end - 1, 574 &err); 575 if (unlikely(cvq_group < 0)) { 576 error_report_err(err); 577 return cvq_group; 578 } 579 580 r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID); 581 if (unlikely(r < 0)) { 582 return r; 583 } 584 585 v->shadow_vqs_enabled = true; 586 s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID; 587 588 out: 589 if (!s->vhost_vdpa.shadow_vqs_enabled) { 590 return 0; 591 } 592 593 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer, 594 vhost_vdpa_net_cvq_cmd_page_len(), false); 595 if (unlikely(r < 0)) { 596 return r; 597 } 598 599 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status, 600 vhost_vdpa_net_cvq_cmd_page_len(), true); 601 if (unlikely(r < 0)) { 602 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 603 } 604 605 return r; 606 } 607 608 static void vhost_vdpa_net_cvq_stop(NetClientState *nc) 609 { 610 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 611 612 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 613 614 if (s->vhost_vdpa.shadow_vqs_enabled) { 615 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 616 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status); 617 } 618 619 vhost_vdpa_net_client_stop(nc); 620 } 621 622 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s, 623 const struct iovec *out_sg, size_t out_num, 624 const struct iovec *in_sg, size_t in_num) 625 { 626 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 627 int r; 628 629 r = vhost_svq_add(svq, out_sg, out_num, NULL, in_sg, in_num, NULL, NULL); 630 if (unlikely(r != 0)) { 631 if (unlikely(r == -ENOSPC)) { 632 qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n", 633 __func__); 634 } 635 } 636 637 return r; 638 } 639 640 /* 641 * Convenience wrapper to poll SVQ for multiple control commands. 642 * 643 * Caller should hold the BQL when invoking this function, and should take 644 * the answer before SVQ pulls by itself when BQL is released. 645 */ 646 static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight) 647 { 648 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 649 return vhost_svq_poll(svq, cmds_in_flight); 650 } 651 652 static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s, 653 struct iovec *out_cursor, 654 struct iovec *in_cursor) 655 { 656 /* reset the cursor of the output buffer for the device */ 657 out_cursor->iov_base = s->cvq_cmd_out_buffer; 658 out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 659 660 /* reset the cursor of the in buffer for the device */ 661 in_cursor->iov_base = s->status; 662 in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 663 } 664 665 /* 666 * Poll SVQ for multiple pending control commands and check the device's ack. 667 * 668 * Caller should hold the BQL when invoking this function. 669 * 670 * @s: The VhostVDPAState 671 * @len: The length of the pending status shadow buffer 672 */ 673 static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len) 674 { 675 /* device uses a one-byte length ack for each control command */ 676 ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len); 677 if (unlikely(dev_written != len)) { 678 return -EIO; 679 } 680 681 /* check the device's ack */ 682 for (int i = 0; i < len; ++i) { 683 if (s->status[i] != VIRTIO_NET_OK) { 684 return -EIO; 685 } 686 } 687 return 0; 688 } 689 690 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s, 691 struct iovec *out_cursor, 692 struct iovec *in_cursor, uint8_t class, 693 uint8_t cmd, const struct iovec *data_sg, 694 size_t data_num) 695 { 696 const struct virtio_net_ctrl_hdr ctrl = { 697 .class = class, 698 .cmd = cmd, 699 }; 700 size_t data_size = iov_size(data_sg, data_num), cmd_size; 701 struct iovec out, in; 702 ssize_t r; 703 unsigned dummy_cursor_iov_cnt; 704 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 705 706 assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl)); 707 cmd_size = sizeof(ctrl) + data_size; 708 trace_vhost_vdpa_net_load_cmd(s, class, cmd, data_num, data_size); 709 if (vhost_svq_available_slots(svq) < 2 || 710 iov_size(out_cursor, 1) < cmd_size) { 711 /* 712 * It is time to flush all pending control commands if SVQ is full 713 * or control commands shadow buffers are full. 714 * 715 * We can poll here since we've had BQL from the time 716 * we sent the descriptor. 717 */ 718 r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base - 719 (void *)s->status); 720 if (unlikely(r < 0)) { 721 return r; 722 } 723 724 vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor); 725 } 726 727 /* pack the CVQ command header */ 728 iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl)); 729 /* pack the CVQ command command-specific-data */ 730 iov_to_buf(data_sg, data_num, 0, 731 out_cursor->iov_base + sizeof(ctrl), data_size); 732 733 /* extract the required buffer from the cursor for output */ 734 iov_copy(&out, 1, out_cursor, 1, 0, cmd_size); 735 /* extract the required buffer from the cursor for input */ 736 iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status)); 737 738 r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1); 739 if (unlikely(r < 0)) { 740 trace_vhost_vdpa_net_load_cmd_retval(s, class, cmd, r); 741 return r; 742 } 743 744 /* iterate the cursors */ 745 dummy_cursor_iov_cnt = 1; 746 iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size); 747 dummy_cursor_iov_cnt = 1; 748 iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status)); 749 750 return 0; 751 } 752 753 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n, 754 struct iovec *out_cursor, 755 struct iovec *in_cursor) 756 { 757 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) { 758 const struct iovec data = { 759 .iov_base = (void *)n->mac, 760 .iov_len = sizeof(n->mac), 761 }; 762 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 763 VIRTIO_NET_CTRL_MAC, 764 VIRTIO_NET_CTRL_MAC_ADDR_SET, 765 &data, 1); 766 if (unlikely(r < 0)) { 767 return r; 768 } 769 } 770 771 /* 772 * According to VirtIO standard, "The device MUST have an 773 * empty MAC filtering table on reset.". 774 * 775 * Therefore, there is no need to send this CVQ command if the 776 * driver also sets an empty MAC filter table, which aligns with 777 * the device's defaults. 778 * 779 * Note that the device's defaults can mismatch the driver's 780 * configuration only at live migration. 781 */ 782 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) || 783 n->mac_table.in_use == 0) { 784 return 0; 785 } 786 787 uint32_t uni_entries = n->mac_table.first_multi, 788 uni_macs_size = uni_entries * ETH_ALEN, 789 mul_entries = n->mac_table.in_use - uni_entries, 790 mul_macs_size = mul_entries * ETH_ALEN; 791 struct virtio_net_ctrl_mac uni = { 792 .entries = cpu_to_le32(uni_entries), 793 }; 794 struct virtio_net_ctrl_mac mul = { 795 .entries = cpu_to_le32(mul_entries), 796 }; 797 const struct iovec data[] = { 798 { 799 .iov_base = &uni, 800 .iov_len = sizeof(uni), 801 }, { 802 .iov_base = n->mac_table.macs, 803 .iov_len = uni_macs_size, 804 }, { 805 .iov_base = &mul, 806 .iov_len = sizeof(mul), 807 }, { 808 .iov_base = &n->mac_table.macs[uni_macs_size], 809 .iov_len = mul_macs_size, 810 }, 811 }; 812 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 813 VIRTIO_NET_CTRL_MAC, 814 VIRTIO_NET_CTRL_MAC_TABLE_SET, 815 data, ARRAY_SIZE(data)); 816 if (unlikely(r < 0)) { 817 return r; 818 } 819 820 return 0; 821 } 822 823 static int vhost_vdpa_net_load_rss(VhostVDPAState *s, const VirtIONet *n, 824 struct iovec *out_cursor, 825 struct iovec *in_cursor, bool do_rss) 826 { 827 struct virtio_net_rss_config cfg = {}; 828 ssize_t r; 829 g_autofree uint16_t *table = NULL; 830 831 /* 832 * According to VirtIO standard, "Initially the device has all hash 833 * types disabled and reports only VIRTIO_NET_HASH_REPORT_NONE.". 834 * 835 * Therefore, there is no need to send this CVQ command if the 836 * driver disables the all hash types, which aligns with 837 * the device's defaults. 838 * 839 * Note that the device's defaults can mismatch the driver's 840 * configuration only at live migration. 841 */ 842 if (!n->rss_data.enabled || 843 n->rss_data.hash_types == VIRTIO_NET_HASH_REPORT_NONE) { 844 return 0; 845 } 846 847 table = g_malloc_n(n->rss_data.indirections_len, 848 sizeof(n->rss_data.indirections_table[0])); 849 cfg.hash_types = cpu_to_le32(n->rss_data.hash_types); 850 851 if (do_rss) { 852 /* 853 * According to VirtIO standard, "Number of entries in indirection_table 854 * is (indirection_table_mask + 1)". 855 */ 856 cfg.indirection_table_mask = cpu_to_le16(n->rss_data.indirections_len - 857 1); 858 cfg.unclassified_queue = cpu_to_le16(n->rss_data.default_queue); 859 for (int i = 0; i < n->rss_data.indirections_len; ++i) { 860 table[i] = cpu_to_le16(n->rss_data.indirections_table[i]); 861 } 862 cfg.max_tx_vq = cpu_to_le16(n->curr_queue_pairs); 863 } else { 864 /* 865 * According to VirtIO standard, "Field reserved MUST contain zeroes. 866 * It is defined to make the structure to match the layout of 867 * virtio_net_rss_config structure, defined in 5.1.6.5.7.". 868 * 869 * Therefore, we need to zero the fields in 870 * struct virtio_net_rss_config, which corresponds to the 871 * `reserved` field in struct virtio_net_hash_config. 872 * 873 * Note that all other fields are zeroed at their definitions, 874 * except for the `indirection_table` field, where the actual data 875 * is stored in the `table` variable to ensure compatibility 876 * with RSS case. Therefore, we need to zero the `table` variable here. 877 */ 878 table[0] = 0; 879 } 880 881 /* 882 * Considering that virtio_net_handle_rss() currently does not restore 883 * the hash key length parsed from the CVQ command sent from the guest 884 * into n->rss_data and uses the maximum key length in other code, so 885 * we also employ the maximum key length here. 886 */ 887 cfg.hash_key_length = sizeof(n->rss_data.key); 888 889 const struct iovec data[] = { 890 { 891 .iov_base = &cfg, 892 .iov_len = offsetof(struct virtio_net_rss_config, 893 indirection_table), 894 }, { 895 .iov_base = table, 896 .iov_len = n->rss_data.indirections_len * 897 sizeof(n->rss_data.indirections_table[0]), 898 }, { 899 .iov_base = &cfg.max_tx_vq, 900 .iov_len = offsetof(struct virtio_net_rss_config, hash_key_data) - 901 offsetof(struct virtio_net_rss_config, max_tx_vq), 902 }, { 903 .iov_base = (void *)n->rss_data.key, 904 .iov_len = sizeof(n->rss_data.key), 905 } 906 }; 907 908 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 909 VIRTIO_NET_CTRL_MQ, 910 do_rss ? VIRTIO_NET_CTRL_MQ_RSS_CONFIG : 911 VIRTIO_NET_CTRL_MQ_HASH_CONFIG, 912 data, ARRAY_SIZE(data)); 913 if (unlikely(r < 0)) { 914 return r; 915 } 916 917 return 0; 918 } 919 920 static int vhost_vdpa_net_load_mq(VhostVDPAState *s, 921 const VirtIONet *n, 922 struct iovec *out_cursor, 923 struct iovec *in_cursor) 924 { 925 struct virtio_net_ctrl_mq mq; 926 ssize_t r; 927 928 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) { 929 return 0; 930 } 931 932 trace_vhost_vdpa_net_load_mq(s, n->curr_queue_pairs); 933 934 mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs); 935 const struct iovec data = { 936 .iov_base = &mq, 937 .iov_len = sizeof(mq), 938 }; 939 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 940 VIRTIO_NET_CTRL_MQ, 941 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET, 942 &data, 1); 943 if (unlikely(r < 0)) { 944 return r; 945 } 946 947 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_RSS)) { 948 /* load the receive-side scaling state */ 949 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, true); 950 if (unlikely(r < 0)) { 951 return r; 952 } 953 } else if (virtio_vdev_has_feature(&n->parent_obj, 954 VIRTIO_NET_F_HASH_REPORT)) { 955 /* load the hash calculation state */ 956 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, false); 957 if (unlikely(r < 0)) { 958 return r; 959 } 960 } 961 962 return 0; 963 } 964 965 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s, 966 const VirtIONet *n, 967 struct iovec *out_cursor, 968 struct iovec *in_cursor) 969 { 970 uint64_t offloads; 971 ssize_t r; 972 973 if (!virtio_vdev_has_feature(&n->parent_obj, 974 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) { 975 return 0; 976 } 977 978 if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) { 979 /* 980 * According to VirtIO standard, "Upon feature negotiation 981 * corresponding offload gets enabled to preserve 982 * backward compatibility.". 983 * 984 * Therefore, there is no need to send this CVQ command if the 985 * driver also enables all supported offloads, which aligns with 986 * the device's defaults. 987 * 988 * Note that the device's defaults can mismatch the driver's 989 * configuration only at live migration. 990 */ 991 return 0; 992 } 993 994 offloads = cpu_to_le64(n->curr_guest_offloads); 995 const struct iovec data = { 996 .iov_base = &offloads, 997 .iov_len = sizeof(offloads), 998 }; 999 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1000 VIRTIO_NET_CTRL_GUEST_OFFLOADS, 1001 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET, 1002 &data, 1); 1003 if (unlikely(r < 0)) { 1004 return r; 1005 } 1006 1007 return 0; 1008 } 1009 1010 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s, 1011 struct iovec *out_cursor, 1012 struct iovec *in_cursor, 1013 uint8_t cmd, 1014 uint8_t on) 1015 { 1016 const struct iovec data = { 1017 .iov_base = &on, 1018 .iov_len = sizeof(on), 1019 }; 1020 ssize_t r; 1021 1022 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1023 VIRTIO_NET_CTRL_RX, cmd, &data, 1); 1024 if (unlikely(r < 0)) { 1025 return r; 1026 } 1027 1028 return 0; 1029 } 1030 1031 static int vhost_vdpa_net_load_rx(VhostVDPAState *s, 1032 const VirtIONet *n, 1033 struct iovec *out_cursor, 1034 struct iovec *in_cursor) 1035 { 1036 ssize_t r; 1037 1038 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) { 1039 return 0; 1040 } 1041 1042 /* 1043 * According to virtio_net_reset(), device turns promiscuous mode 1044 * on by default. 1045 * 1046 * Additionally, according to VirtIO standard, "Since there are 1047 * no guarantees, it can use a hash filter or silently switch to 1048 * allmulti or promiscuous mode if it is given too many addresses.". 1049 * QEMU marks `n->mac_table.uni_overflow` if guest sets too many 1050 * non-multicast MAC addresses, indicating that promiscuous mode 1051 * should be enabled. 1052 * 1053 * Therefore, QEMU should only send this CVQ command if the 1054 * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off, 1055 * which sets promiscuous mode on, different from the device's defaults. 1056 * 1057 * Note that the device's defaults can mismatch the driver's 1058 * configuration only at live migration. 1059 */ 1060 if (!n->mac_table.uni_overflow && !n->promisc) { 1061 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1062 VIRTIO_NET_CTRL_RX_PROMISC, 0); 1063 if (unlikely(r < 0)) { 1064 return r; 1065 } 1066 } 1067 1068 /* 1069 * According to virtio_net_reset(), device turns all-multicast mode 1070 * off by default. 1071 * 1072 * According to VirtIO standard, "Since there are no guarantees, 1073 * it can use a hash filter or silently switch to allmulti or 1074 * promiscuous mode if it is given too many addresses.". QEMU marks 1075 * `n->mac_table.multi_overflow` if guest sets too many 1076 * non-multicast MAC addresses. 1077 * 1078 * Therefore, QEMU should only send this CVQ command if the 1079 * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on, 1080 * which sets all-multicast mode on, different from the device's defaults. 1081 * 1082 * Note that the device's defaults can mismatch the driver's 1083 * configuration only at live migration. 1084 */ 1085 if (n->mac_table.multi_overflow || n->allmulti) { 1086 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1087 VIRTIO_NET_CTRL_RX_ALLMULTI, 1); 1088 if (unlikely(r < 0)) { 1089 return r; 1090 } 1091 } 1092 1093 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) { 1094 return 0; 1095 } 1096 1097 /* 1098 * According to virtio_net_reset(), device turns all-unicast mode 1099 * off by default. 1100 * 1101 * Therefore, QEMU should only send this CVQ command if the driver 1102 * sets all-unicast mode on, different from the device's defaults. 1103 * 1104 * Note that the device's defaults can mismatch the driver's 1105 * configuration only at live migration. 1106 */ 1107 if (n->alluni) { 1108 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1109 VIRTIO_NET_CTRL_RX_ALLUNI, 1); 1110 if (r < 0) { 1111 return r; 1112 } 1113 } 1114 1115 /* 1116 * According to virtio_net_reset(), device turns non-multicast mode 1117 * off by default. 1118 * 1119 * Therefore, QEMU should only send this CVQ command if the driver 1120 * sets non-multicast mode on, different from the device's defaults. 1121 * 1122 * Note that the device's defaults can mismatch the driver's 1123 * configuration only at live migration. 1124 */ 1125 if (n->nomulti) { 1126 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1127 VIRTIO_NET_CTRL_RX_NOMULTI, 1); 1128 if (r < 0) { 1129 return r; 1130 } 1131 } 1132 1133 /* 1134 * According to virtio_net_reset(), device turns non-unicast mode 1135 * off by default. 1136 * 1137 * Therefore, QEMU should only send this CVQ command if the driver 1138 * sets non-unicast mode on, different from the device's defaults. 1139 * 1140 * Note that the device's defaults can mismatch the driver's 1141 * configuration only at live migration. 1142 */ 1143 if (n->nouni) { 1144 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1145 VIRTIO_NET_CTRL_RX_NOUNI, 1); 1146 if (r < 0) { 1147 return r; 1148 } 1149 } 1150 1151 /* 1152 * According to virtio_net_reset(), device turns non-broadcast mode 1153 * off by default. 1154 * 1155 * Therefore, QEMU should only send this CVQ command if the driver 1156 * sets non-broadcast mode on, different from the device's defaults. 1157 * 1158 * Note that the device's defaults can mismatch the driver's 1159 * configuration only at live migration. 1160 */ 1161 if (n->nobcast) { 1162 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1163 VIRTIO_NET_CTRL_RX_NOBCAST, 1); 1164 if (r < 0) { 1165 return r; 1166 } 1167 } 1168 1169 return 0; 1170 } 1171 1172 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s, 1173 const VirtIONet *n, 1174 struct iovec *out_cursor, 1175 struct iovec *in_cursor, 1176 uint16_t vid) 1177 { 1178 const struct iovec data = { 1179 .iov_base = &vid, 1180 .iov_len = sizeof(vid), 1181 }; 1182 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1183 VIRTIO_NET_CTRL_VLAN, 1184 VIRTIO_NET_CTRL_VLAN_ADD, 1185 &data, 1); 1186 if (unlikely(r < 0)) { 1187 return r; 1188 } 1189 1190 return 0; 1191 } 1192 1193 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s, 1194 const VirtIONet *n, 1195 struct iovec *out_cursor, 1196 struct iovec *in_cursor) 1197 { 1198 int r; 1199 1200 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) { 1201 return 0; 1202 } 1203 1204 for (int i = 0; i < MAX_VLAN >> 5; i++) { 1205 for (int j = 0; n->vlans[i] && j <= 0x1f; j++) { 1206 if (n->vlans[i] & (1U << j)) { 1207 r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor, 1208 in_cursor, (i << 5) + j); 1209 if (unlikely(r != 0)) { 1210 return r; 1211 } 1212 } 1213 } 1214 } 1215 1216 return 0; 1217 } 1218 1219 static int vhost_vdpa_net_cvq_load(NetClientState *nc) 1220 { 1221 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 1222 struct vhost_vdpa *v = &s->vhost_vdpa; 1223 const VirtIONet *n; 1224 int r; 1225 struct iovec out_cursor, in_cursor; 1226 1227 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1228 1229 r = vhost_vdpa_set_vring_ready(v, v->dev->vq_index); 1230 if (unlikely(r < 0)) { 1231 return r; 1232 } 1233 1234 if (v->shadow_vqs_enabled) { 1235 n = VIRTIO_NET(v->dev->vdev); 1236 vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor); 1237 r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor); 1238 if (unlikely(r < 0)) { 1239 return r; 1240 } 1241 r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor); 1242 if (unlikely(r)) { 1243 return r; 1244 } 1245 r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor); 1246 if (unlikely(r)) { 1247 return r; 1248 } 1249 r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor); 1250 if (unlikely(r)) { 1251 return r; 1252 } 1253 r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor); 1254 if (unlikely(r)) { 1255 return r; 1256 } 1257 1258 /* 1259 * We need to poll and check all pending device's used buffers. 1260 * 1261 * We can poll here since we've had BQL from the time 1262 * we sent the descriptor. 1263 */ 1264 r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status); 1265 if (unlikely(r)) { 1266 return r; 1267 } 1268 } 1269 1270 for (int i = 0; i < v->dev->vq_index; ++i) { 1271 r = vhost_vdpa_set_vring_ready(v, i); 1272 if (unlikely(r < 0)) { 1273 return r; 1274 } 1275 } 1276 1277 return 0; 1278 } 1279 1280 static NetClientInfo net_vhost_vdpa_cvq_info = { 1281 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 1282 .size = sizeof(VhostVDPAState), 1283 .receive = vhost_vdpa_receive, 1284 .start = vhost_vdpa_net_cvq_start, 1285 .load = vhost_vdpa_net_cvq_load, 1286 .stop = vhost_vdpa_net_cvq_stop, 1287 .cleanup = vhost_vdpa_cleanup, 1288 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 1289 .has_ufo = vhost_vdpa_has_ufo, 1290 .check_peer_type = vhost_vdpa_check_peer_type, 1291 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 1292 .get_vhost_net = vhost_vdpa_get_vhost_net, 1293 }; 1294 1295 /* 1296 * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to 1297 * vdpa device. 1298 * 1299 * Considering that QEMU cannot send the entire filter table to the 1300 * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ 1301 * command to enable promiscuous mode to receive all packets, 1302 * according to VirtIO standard, "Since there are no guarantees, 1303 * it can use a hash filter or silently switch to allmulti or 1304 * promiscuous mode if it is given too many addresses.". 1305 * 1306 * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and 1307 * marks `n->mac_table.x_overflow` accordingly, it should have 1308 * the same effect on the device model to receive 1309 * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses. 1310 * The same applies to multicast MAC addresses. 1311 * 1312 * Therefore, QEMU can provide the device model with a fake 1313 * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1) 1314 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast 1315 * MAC addresses. This ensures that the device model marks 1316 * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`, 1317 * allowing all packets to be received, which aligns with the 1318 * state of the vdpa device. 1319 */ 1320 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s, 1321 VirtQueueElement *elem, 1322 struct iovec *out, 1323 const struct iovec *in) 1324 { 1325 struct virtio_net_ctrl_mac mac_data, *mac_ptr; 1326 struct virtio_net_ctrl_hdr *hdr_ptr; 1327 uint32_t cursor; 1328 ssize_t r; 1329 uint8_t on = 1; 1330 1331 /* parse the non-multicast MAC address entries from CVQ command */ 1332 cursor = sizeof(*hdr_ptr); 1333 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1334 &mac_data, sizeof(mac_data)); 1335 if (unlikely(r != sizeof(mac_data))) { 1336 /* 1337 * If the CVQ command is invalid, we should simulate the vdpa device 1338 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1339 */ 1340 *s->status = VIRTIO_NET_ERR; 1341 return sizeof(*s->status); 1342 } 1343 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1344 1345 /* parse the multicast MAC address entries from CVQ command */ 1346 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1347 &mac_data, sizeof(mac_data)); 1348 if (r != sizeof(mac_data)) { 1349 /* 1350 * If the CVQ command is invalid, we should simulate the vdpa device 1351 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1352 */ 1353 *s->status = VIRTIO_NET_ERR; 1354 return sizeof(*s->status); 1355 } 1356 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1357 1358 /* validate the CVQ command */ 1359 if (iov_size(elem->out_sg, elem->out_num) != cursor) { 1360 /* 1361 * If the CVQ command is invalid, we should simulate the vdpa device 1362 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1363 */ 1364 *s->status = VIRTIO_NET_ERR; 1365 return sizeof(*s->status); 1366 } 1367 1368 /* 1369 * According to VirtIO standard, "Since there are no guarantees, 1370 * it can use a hash filter or silently switch to allmulti or 1371 * promiscuous mode if it is given too many addresses.". 1372 * 1373 * Therefore, considering that QEMU is unable to send the entire 1374 * filter table to the vdpa device, it should send the 1375 * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode 1376 */ 1377 hdr_ptr = out->iov_base; 1378 out->iov_len = sizeof(*hdr_ptr) + sizeof(on); 1379 1380 hdr_ptr->class = VIRTIO_NET_CTRL_RX; 1381 hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC; 1382 iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on)); 1383 r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1); 1384 if (unlikely(r < 0)) { 1385 return r; 1386 } 1387 1388 /* 1389 * We can poll here since we've had BQL from the time 1390 * we sent the descriptor. 1391 */ 1392 r = vhost_vdpa_net_svq_poll(s, 1); 1393 if (unlikely(r < sizeof(*s->status))) { 1394 return r; 1395 } 1396 if (*s->status != VIRTIO_NET_OK) { 1397 return sizeof(*s->status); 1398 } 1399 1400 /* 1401 * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ 1402 * command to the device model, including (`MAC_TABLE_ENTRIES` + 1) 1403 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) 1404 * multicast MAC addresses. 1405 * 1406 * By doing so, the device model can mark `n->mac_table.uni_overflow` 1407 * and `n->mac_table.multi_overflow`, enabling all packets to be 1408 * received, which aligns with the state of the vdpa device. 1409 */ 1410 cursor = 0; 1411 uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1, 1412 fake_mul_entries = MAC_TABLE_ENTRIES + 1, 1413 fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) + 1414 sizeof(mac_data) + fake_uni_entries * ETH_ALEN + 1415 sizeof(mac_data) + fake_mul_entries * ETH_ALEN; 1416 1417 assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len()); 1418 out->iov_len = fake_cvq_size; 1419 1420 /* pack the header for fake CVQ command */ 1421 hdr_ptr = out->iov_base + cursor; 1422 hdr_ptr->class = VIRTIO_NET_CTRL_MAC; 1423 hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 1424 cursor += sizeof(*hdr_ptr); 1425 1426 /* 1427 * Pack the non-multicast MAC addresses part for fake CVQ command. 1428 * 1429 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1430 * addresses provided in CVQ command. Therefore, only the entries 1431 * field need to be prepared in the CVQ command. 1432 */ 1433 mac_ptr = out->iov_base + cursor; 1434 mac_ptr->entries = cpu_to_le32(fake_uni_entries); 1435 cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN; 1436 1437 /* 1438 * Pack the multicast MAC addresses part for fake CVQ command. 1439 * 1440 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1441 * addresses provided in CVQ command. Therefore, only the entries 1442 * field need to be prepared in the CVQ command. 1443 */ 1444 mac_ptr = out->iov_base + cursor; 1445 mac_ptr->entries = cpu_to_le32(fake_mul_entries); 1446 1447 /* 1448 * Simulating QEMU poll a vdpa device used buffer 1449 * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1450 */ 1451 return sizeof(*s->status); 1452 } 1453 1454 /** 1455 * Validate and copy control virtqueue commands. 1456 * 1457 * Following QEMU guidelines, we offer a copy of the buffers to the device to 1458 * prevent TOCTOU bugs. 1459 */ 1460 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq, 1461 VirtQueueElement *elem, 1462 void *opaque) 1463 { 1464 VhostVDPAState *s = opaque; 1465 size_t in_len; 1466 const struct virtio_net_ctrl_hdr *ctrl; 1467 virtio_net_ctrl_ack status = VIRTIO_NET_ERR; 1468 /* Out buffer sent to both the vdpa device and the device model */ 1469 struct iovec out = { 1470 .iov_base = s->cvq_cmd_out_buffer, 1471 }; 1472 /* in buffer used for device model */ 1473 const struct iovec model_in = { 1474 .iov_base = &status, 1475 .iov_len = sizeof(status), 1476 }; 1477 /* in buffer used for vdpa device */ 1478 const struct iovec vdpa_in = { 1479 .iov_base = s->status, 1480 .iov_len = sizeof(*s->status), 1481 }; 1482 ssize_t dev_written = -EINVAL; 1483 1484 out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0, 1485 s->cvq_cmd_out_buffer, 1486 vhost_vdpa_net_cvq_cmd_page_len()); 1487 1488 ctrl = s->cvq_cmd_out_buffer; 1489 if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) { 1490 /* 1491 * Guest announce capability is emulated by qemu, so don't forward to 1492 * the device. 1493 */ 1494 dev_written = sizeof(status); 1495 *s->status = VIRTIO_NET_OK; 1496 } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC && 1497 ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET && 1498 iov_size(elem->out_sg, elem->out_num) > out.iov_len)) { 1499 /* 1500 * Due to the size limitation of the out buffer sent to the vdpa device, 1501 * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive 1502 * MAC addresses set by the driver for the filter table can cause 1503 * truncation of the CVQ command in QEMU. As a result, the vdpa device 1504 * rejects the flawed CVQ command. 1505 * 1506 * Therefore, QEMU must handle this situation instead of sending 1507 * the CVQ command directly. 1508 */ 1509 dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem, 1510 &out, &vdpa_in); 1511 if (unlikely(dev_written < 0)) { 1512 goto out; 1513 } 1514 } else { 1515 ssize_t r; 1516 r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1); 1517 if (unlikely(r < 0)) { 1518 dev_written = r; 1519 goto out; 1520 } 1521 1522 /* 1523 * We can poll here since we've had BQL from the time 1524 * we sent the descriptor. 1525 */ 1526 dev_written = vhost_vdpa_net_svq_poll(s, 1); 1527 } 1528 1529 if (unlikely(dev_written < sizeof(status))) { 1530 error_report("Insufficient written data (%zu)", dev_written); 1531 goto out; 1532 } 1533 1534 if (*s->status != VIRTIO_NET_OK) { 1535 goto out; 1536 } 1537 1538 status = VIRTIO_NET_ERR; 1539 virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1); 1540 if (status != VIRTIO_NET_OK) { 1541 error_report("Bad CVQ processing in model"); 1542 } 1543 1544 out: 1545 in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status, 1546 sizeof(status)); 1547 if (unlikely(in_len < sizeof(status))) { 1548 error_report("Bad device CVQ written length"); 1549 } 1550 vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status))); 1551 /* 1552 * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when 1553 * the function successfully forwards the CVQ command, indicated 1554 * by a non-negative value of `dev_written`. Otherwise, it still 1555 * belongs to SVQ. 1556 * This function should only free the `elem` when it owns. 1557 */ 1558 if (dev_written >= 0) { 1559 g_free(elem); 1560 } 1561 return dev_written < 0 ? dev_written : 0; 1562 } 1563 1564 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = { 1565 .avail_handler = vhost_vdpa_net_handle_ctrl_avail, 1566 }; 1567 1568 /** 1569 * Probe if CVQ is isolated 1570 * 1571 * @device_fd The vdpa device fd 1572 * @features Features offered by the device. 1573 * @cvq_index The control vq pair index 1574 * 1575 * Returns <0 in case of failure, 0 if false and 1 if true. 1576 */ 1577 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features, 1578 int cvq_index, Error **errp) 1579 { 1580 ERRP_GUARD(); 1581 uint64_t backend_features; 1582 int64_t cvq_group; 1583 uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE | 1584 VIRTIO_CONFIG_S_DRIVER; 1585 int r; 1586 1587 r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features); 1588 if (unlikely(r < 0)) { 1589 error_setg_errno(errp, errno, "Cannot get vdpa backend_features"); 1590 return r; 1591 } 1592 1593 if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) { 1594 return 0; 1595 } 1596 1597 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1598 if (unlikely(r)) { 1599 error_setg_errno(errp, -r, "Cannot set device status"); 1600 goto out; 1601 } 1602 1603 r = ioctl(device_fd, VHOST_SET_FEATURES, &features); 1604 if (unlikely(r)) { 1605 error_setg_errno(errp, -r, "Cannot set features"); 1606 goto out; 1607 } 1608 1609 status |= VIRTIO_CONFIG_S_FEATURES_OK; 1610 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1611 if (unlikely(r)) { 1612 error_setg_errno(errp, -r, "Cannot set device status"); 1613 goto out; 1614 } 1615 1616 cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp); 1617 if (unlikely(cvq_group < 0)) { 1618 if (cvq_group != -ENOTSUP) { 1619 r = cvq_group; 1620 goto out; 1621 } 1622 1623 /* 1624 * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend 1625 * support ASID even if the parent driver does not. The CVQ cannot be 1626 * isolated in this case. 1627 */ 1628 error_free(*errp); 1629 *errp = NULL; 1630 r = 0; 1631 goto out; 1632 } 1633 1634 for (int i = 0; i < cvq_index; ++i) { 1635 int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp); 1636 if (unlikely(group < 0)) { 1637 r = group; 1638 goto out; 1639 } 1640 1641 if (group == (int64_t)cvq_group) { 1642 r = 0; 1643 goto out; 1644 } 1645 } 1646 1647 r = 1; 1648 1649 out: 1650 status = 0; 1651 ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1652 return r; 1653 } 1654 1655 static NetClientState *net_vhost_vdpa_init(NetClientState *peer, 1656 const char *device, 1657 const char *name, 1658 int vdpa_device_fd, 1659 int queue_pair_index, 1660 int nvqs, 1661 bool is_datapath, 1662 bool svq, 1663 struct vhost_vdpa_iova_range iova_range, 1664 uint64_t features, 1665 VhostVDPAShared *shared, 1666 Error **errp) 1667 { 1668 NetClientState *nc = NULL; 1669 VhostVDPAState *s; 1670 int ret = 0; 1671 assert(name); 1672 int cvq_isolated = 0; 1673 1674 if (is_datapath) { 1675 nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device, 1676 name); 1677 } else { 1678 cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features, 1679 queue_pair_index * 2, 1680 errp); 1681 if (unlikely(cvq_isolated < 0)) { 1682 return NULL; 1683 } 1684 1685 nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer, 1686 device, name); 1687 } 1688 qemu_set_info_str(nc, TYPE_VHOST_VDPA); 1689 s = DO_UPCAST(VhostVDPAState, nc, nc); 1690 1691 s->vhost_vdpa.index = queue_pair_index; 1692 s->always_svq = svq; 1693 s->migration_state.notify = NULL; 1694 s->vhost_vdpa.shadow_vqs_enabled = svq; 1695 if (queue_pair_index == 0) { 1696 vhost_vdpa_net_valid_svq_features(features, 1697 &s->vhost_vdpa.migration_blocker); 1698 s->vhost_vdpa.shared = g_new0(VhostVDPAShared, 1); 1699 s->vhost_vdpa.shared->device_fd = vdpa_device_fd; 1700 s->vhost_vdpa.shared->iova_range = iova_range; 1701 s->vhost_vdpa.shared->shadow_data = svq; 1702 s->vhost_vdpa.shared->iova_tree = vhost_iova_tree_new(iova_range.first, 1703 iova_range.last); 1704 } else if (!is_datapath) { 1705 s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1706 PROT_READ | PROT_WRITE, 1707 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1708 s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1709 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 1710 -1, 0); 1711 1712 s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops; 1713 s->vhost_vdpa.shadow_vq_ops_opaque = s; 1714 s->cvq_isolated = cvq_isolated; 1715 } 1716 if (queue_pair_index != 0) { 1717 s->vhost_vdpa.shared = shared; 1718 } 1719 1720 ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs); 1721 if (ret) { 1722 qemu_del_net_client(nc); 1723 return NULL; 1724 } 1725 1726 return nc; 1727 } 1728 1729 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp) 1730 { 1731 int ret = ioctl(fd, VHOST_GET_FEATURES, features); 1732 if (unlikely(ret < 0)) { 1733 error_setg_errno(errp, errno, 1734 "Fail to query features from vhost-vDPA device"); 1735 } 1736 return ret; 1737 } 1738 1739 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features, 1740 int *has_cvq, Error **errp) 1741 { 1742 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 1743 g_autofree struct vhost_vdpa_config *config = NULL; 1744 __virtio16 *max_queue_pairs; 1745 int ret; 1746 1747 if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) { 1748 *has_cvq = 1; 1749 } else { 1750 *has_cvq = 0; 1751 } 1752 1753 if (features & (1 << VIRTIO_NET_F_MQ)) { 1754 config = g_malloc0(config_size + sizeof(*max_queue_pairs)); 1755 config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs); 1756 config->len = sizeof(*max_queue_pairs); 1757 1758 ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config); 1759 if (ret) { 1760 error_setg(errp, "Fail to get config from vhost-vDPA device"); 1761 return -ret; 1762 } 1763 1764 max_queue_pairs = (__virtio16 *)&config->buf; 1765 1766 return lduw_le_p(max_queue_pairs); 1767 } 1768 1769 return 1; 1770 } 1771 1772 int net_init_vhost_vdpa(const Netdev *netdev, const char *name, 1773 NetClientState *peer, Error **errp) 1774 { 1775 ERRP_GUARD(); 1776 const NetdevVhostVDPAOptions *opts; 1777 uint64_t features; 1778 int vdpa_device_fd; 1779 g_autofree NetClientState **ncs = NULL; 1780 struct vhost_vdpa_iova_range iova_range; 1781 NetClientState *nc; 1782 int queue_pairs, r, i = 0, has_cvq = 0; 1783 1784 assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1785 opts = &netdev->u.vhost_vdpa; 1786 if (!opts->vhostdev && !opts->vhostfd) { 1787 error_setg(errp, 1788 "vhost-vdpa: neither vhostdev= nor vhostfd= was specified"); 1789 return -1; 1790 } 1791 1792 if (opts->vhostdev && opts->vhostfd) { 1793 error_setg(errp, 1794 "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive"); 1795 return -1; 1796 } 1797 1798 if (opts->vhostdev) { 1799 vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp); 1800 if (vdpa_device_fd == -1) { 1801 return -errno; 1802 } 1803 } else { 1804 /* has_vhostfd */ 1805 vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp); 1806 if (vdpa_device_fd == -1) { 1807 error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: "); 1808 return -1; 1809 } 1810 } 1811 1812 r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp); 1813 if (unlikely(r < 0)) { 1814 goto err; 1815 } 1816 1817 queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features, 1818 &has_cvq, errp); 1819 if (queue_pairs < 0) { 1820 qemu_close(vdpa_device_fd); 1821 return queue_pairs; 1822 } 1823 1824 r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range); 1825 if (unlikely(r < 0)) { 1826 error_setg(errp, "vhost-vdpa: get iova range failed: %s", 1827 strerror(-r)); 1828 goto err; 1829 } 1830 1831 if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) { 1832 goto err; 1833 } 1834 1835 ncs = g_malloc0(sizeof(*ncs) * queue_pairs); 1836 1837 for (i = 0; i < queue_pairs; i++) { 1838 VhostVDPAShared *shared = NULL; 1839 1840 if (i) { 1841 shared = DO_UPCAST(VhostVDPAState, nc, ncs[0])->vhost_vdpa.shared; 1842 } 1843 ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1844 vdpa_device_fd, i, 2, true, opts->x_svq, 1845 iova_range, features, shared, errp); 1846 if (!ncs[i]) 1847 goto err; 1848 } 1849 1850 if (has_cvq) { 1851 VhostVDPAState *s0 = DO_UPCAST(VhostVDPAState, nc, ncs[0]); 1852 VhostVDPAShared *shared = s0->vhost_vdpa.shared; 1853 1854 nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1855 vdpa_device_fd, i, 1, false, 1856 opts->x_svq, iova_range, features, shared, 1857 errp); 1858 if (!nc) 1859 goto err; 1860 } 1861 1862 return 0; 1863 1864 err: 1865 if (i) { 1866 for (i--; i >= 0; i--) { 1867 qemu_del_net_client(ncs[i]); 1868 } 1869 } 1870 1871 qemu_close(vdpa_device_fd); 1872 1873 return -1; 1874 } 1875