1 /* 2 * vhost-vdpa.c 3 * 4 * Copyright(c) 2017-2018 Intel Corporation. 5 * Copyright(c) 2020 Red Hat, Inc. 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "clients.h" 14 #include "hw/virtio/virtio-net.h" 15 #include "net/vhost_net.h" 16 #include "net/vhost-vdpa.h" 17 #include "hw/virtio/vhost-vdpa.h" 18 #include "qemu/config-file.h" 19 #include "qemu/error-report.h" 20 #include "qemu/log.h" 21 #include "qemu/memalign.h" 22 #include "qemu/option.h" 23 #include "qapi/error.h" 24 #include <linux/vhost.h> 25 #include <sys/ioctl.h> 26 #include <err.h> 27 #include "standard-headers/linux/virtio_net.h" 28 #include "monitor/monitor.h" 29 #include "migration/misc.h" 30 #include "hw/virtio/vhost.h" 31 #include "trace.h" 32 33 /* Todo:need to add the multiqueue support here */ 34 typedef struct VhostVDPAState { 35 NetClientState nc; 36 struct vhost_vdpa vhost_vdpa; 37 NotifierWithReturn migration_state; 38 VHostNetState *vhost_net; 39 40 /* Control commands shadow buffers */ 41 void *cvq_cmd_out_buffer; 42 virtio_net_ctrl_ack *status; 43 44 /* The device always have SVQ enabled */ 45 bool always_svq; 46 47 /* The device can isolate CVQ in its own ASID */ 48 bool cvq_isolated; 49 50 bool started; 51 } VhostVDPAState; 52 53 /* 54 * The array is sorted alphabetically in ascending order, 55 * with the exception of VHOST_INVALID_FEATURE_BIT, 56 * which should always be the last entry. 57 */ 58 const int vdpa_feature_bits[] = { 59 VIRTIO_F_ANY_LAYOUT, 60 VIRTIO_F_IOMMU_PLATFORM, 61 VIRTIO_F_NOTIFY_ON_EMPTY, 62 VIRTIO_F_RING_PACKED, 63 VIRTIO_F_RING_RESET, 64 VIRTIO_F_VERSION_1, 65 VIRTIO_F_NOTIFICATION_DATA, 66 VIRTIO_NET_F_CSUM, 67 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, 68 VIRTIO_NET_F_CTRL_MAC_ADDR, 69 VIRTIO_NET_F_CTRL_RX, 70 VIRTIO_NET_F_CTRL_RX_EXTRA, 71 VIRTIO_NET_F_CTRL_VLAN, 72 VIRTIO_NET_F_CTRL_VQ, 73 VIRTIO_NET_F_GSO, 74 VIRTIO_NET_F_GUEST_CSUM, 75 VIRTIO_NET_F_GUEST_ECN, 76 VIRTIO_NET_F_GUEST_TSO4, 77 VIRTIO_NET_F_GUEST_TSO6, 78 VIRTIO_NET_F_GUEST_UFO, 79 VIRTIO_NET_F_GUEST_USO4, 80 VIRTIO_NET_F_GUEST_USO6, 81 VIRTIO_NET_F_HASH_REPORT, 82 VIRTIO_NET_F_HOST_ECN, 83 VIRTIO_NET_F_HOST_TSO4, 84 VIRTIO_NET_F_HOST_TSO6, 85 VIRTIO_NET_F_HOST_UFO, 86 VIRTIO_NET_F_HOST_USO, 87 VIRTIO_NET_F_MQ, 88 VIRTIO_NET_F_MRG_RXBUF, 89 VIRTIO_NET_F_MTU, 90 VIRTIO_NET_F_RSS, 91 VIRTIO_NET_F_STATUS, 92 VIRTIO_RING_F_EVENT_IDX, 93 VIRTIO_RING_F_INDIRECT_DESC, 94 95 /* VHOST_INVALID_FEATURE_BIT should always be the last entry */ 96 VHOST_INVALID_FEATURE_BIT 97 }; 98 99 /** Supported device specific feature bits with SVQ */ 100 static const uint64_t vdpa_svq_device_features = 101 BIT_ULL(VIRTIO_NET_F_CSUM) | 102 BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) | 103 BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) | 104 BIT_ULL(VIRTIO_NET_F_MTU) | 105 BIT_ULL(VIRTIO_NET_F_MAC) | 106 BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) | 107 BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) | 108 BIT_ULL(VIRTIO_NET_F_GUEST_ECN) | 109 BIT_ULL(VIRTIO_NET_F_GUEST_UFO) | 110 BIT_ULL(VIRTIO_NET_F_HOST_TSO4) | 111 BIT_ULL(VIRTIO_NET_F_HOST_TSO6) | 112 BIT_ULL(VIRTIO_NET_F_HOST_ECN) | 113 BIT_ULL(VIRTIO_NET_F_HOST_UFO) | 114 BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) | 115 BIT_ULL(VIRTIO_NET_F_STATUS) | 116 BIT_ULL(VIRTIO_NET_F_CTRL_VQ) | 117 BIT_ULL(VIRTIO_NET_F_CTRL_RX) | 118 BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) | 119 BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) | 120 BIT_ULL(VIRTIO_NET_F_MQ) | 121 BIT_ULL(VIRTIO_F_ANY_LAYOUT) | 122 BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) | 123 /* VHOST_F_LOG_ALL is exposed by SVQ */ 124 BIT_ULL(VHOST_F_LOG_ALL) | 125 BIT_ULL(VIRTIO_NET_F_HASH_REPORT) | 126 BIT_ULL(VIRTIO_NET_F_RSS) | 127 BIT_ULL(VIRTIO_NET_F_RSC_EXT) | 128 BIT_ULL(VIRTIO_NET_F_STANDBY) | 129 BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX); 130 131 #define VHOST_VDPA_NET_CVQ_ASID 1 132 133 VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc) 134 { 135 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 136 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 137 return s->vhost_net; 138 } 139 140 static size_t vhost_vdpa_net_cvq_cmd_len(void) 141 { 142 /* 143 * MAC_TABLE_SET is the ctrl command that produces the longer out buffer. 144 * In buffer is always 1 byte, so it should fit here 145 */ 146 return sizeof(struct virtio_net_ctrl_hdr) + 147 2 * sizeof(struct virtio_net_ctrl_mac) + 148 MAC_TABLE_ENTRIES * ETH_ALEN; 149 } 150 151 static size_t vhost_vdpa_net_cvq_cmd_page_len(void) 152 { 153 return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size()); 154 } 155 156 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp) 157 { 158 uint64_t invalid_dev_features = 159 features & ~vdpa_svq_device_features & 160 /* Transport are all accepted at this point */ 161 ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START, 162 VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START); 163 164 if (invalid_dev_features) { 165 error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64, 166 invalid_dev_features); 167 return false; 168 } 169 170 return vhost_svq_valid_features(features, errp); 171 } 172 173 static int vhost_vdpa_net_check_device_id(struct vhost_net *net) 174 { 175 uint32_t device_id; 176 int ret; 177 struct vhost_dev *hdev; 178 179 hdev = (struct vhost_dev *)&net->dev; 180 ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id); 181 if (device_id != VIRTIO_ID_NET) { 182 return -ENOTSUP; 183 } 184 return ret; 185 } 186 187 static int vhost_vdpa_add(NetClientState *ncs, void *be, 188 int queue_pair_index, int nvqs) 189 { 190 VhostNetOptions options; 191 struct vhost_net *net = NULL; 192 VhostVDPAState *s; 193 int ret; 194 195 options.backend_type = VHOST_BACKEND_TYPE_VDPA; 196 assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 197 s = DO_UPCAST(VhostVDPAState, nc, ncs); 198 options.net_backend = ncs; 199 options.opaque = be; 200 options.busyloop_timeout = 0; 201 options.nvqs = nvqs; 202 203 net = vhost_net_init(&options); 204 if (!net) { 205 error_report("failed to init vhost_net for queue"); 206 goto err_init; 207 } 208 s->vhost_net = net; 209 ret = vhost_vdpa_net_check_device_id(net); 210 if (ret) { 211 goto err_check; 212 } 213 return 0; 214 err_check: 215 vhost_net_cleanup(net); 216 g_free(net); 217 err_init: 218 return -1; 219 } 220 221 static void vhost_vdpa_cleanup(NetClientState *nc) 222 { 223 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 224 225 /* 226 * If a peer NIC is attached, do not cleanup anything. 227 * Cleanup will happen as a part of qemu_cleanup() -> net_cleanup() 228 * when the guest is shutting down. 229 */ 230 if (nc->peer && nc->peer->info->type == NET_CLIENT_DRIVER_NIC) { 231 return; 232 } 233 munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len()); 234 munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len()); 235 if (s->vhost_net) { 236 vhost_net_cleanup(s->vhost_net); 237 g_free(s->vhost_net); 238 s->vhost_net = NULL; 239 } 240 if (s->vhost_vdpa.index != 0) { 241 return; 242 } 243 qemu_close(s->vhost_vdpa.shared->device_fd); 244 g_free(s->vhost_vdpa.shared); 245 } 246 247 /** Dummy SetSteeringEBPF to support RSS for vhost-vdpa backend */ 248 static bool vhost_vdpa_set_steering_ebpf(NetClientState *nc, int prog_fd) 249 { 250 return true; 251 } 252 253 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc) 254 { 255 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 256 257 return true; 258 } 259 260 static bool vhost_vdpa_has_ufo(NetClientState *nc) 261 { 262 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 263 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 264 uint64_t features = 0; 265 features |= (1ULL << VIRTIO_NET_F_HOST_UFO); 266 features = vhost_net_get_features(s->vhost_net, features); 267 return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO)); 268 269 } 270 271 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc, 272 Error **errp) 273 { 274 const char *driver = object_class_get_name(oc); 275 276 if (!g_str_has_prefix(driver, "virtio-net-")) { 277 error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*"); 278 return false; 279 } 280 281 return true; 282 } 283 284 /** Dummy receive in case qemu falls back to userland tap networking */ 285 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf, 286 size_t size) 287 { 288 return size; 289 } 290 291 292 /** From any vdpa net client, get the netclient of the i-th queue pair */ 293 static VhostVDPAState *vhost_vdpa_net_get_nc_vdpa(VhostVDPAState *s, int i) 294 { 295 NICState *nic = qemu_get_nic(s->nc.peer); 296 NetClientState *nc_i = qemu_get_peer(nic->ncs, i); 297 298 return DO_UPCAST(VhostVDPAState, nc, nc_i); 299 } 300 301 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s) 302 { 303 return vhost_vdpa_net_get_nc_vdpa(s, 0); 304 } 305 306 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable) 307 { 308 struct vhost_vdpa *v = &s->vhost_vdpa; 309 VirtIONet *n; 310 VirtIODevice *vdev; 311 int data_queue_pairs, cvq, r; 312 313 /* We are only called on the first data vqs and only if x-svq is not set */ 314 if (s->vhost_vdpa.shadow_vqs_enabled == enable) { 315 return; 316 } 317 318 vdev = v->dev->vdev; 319 n = VIRTIO_NET(vdev); 320 if (!n->vhost_started) { 321 return; 322 } 323 324 data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1; 325 cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ? 326 n->max_ncs - n->max_queue_pairs : 0; 327 v->shared->svq_switching = enable ? 328 SVQ_TSTATE_ENABLING : SVQ_TSTATE_DISABLING; 329 /* 330 * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter 331 * in the future and resume the device if read-only operations between 332 * suspend and reset goes wrong. 333 */ 334 vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq); 335 336 /* Start will check migration setup_or_active to configure or not SVQ */ 337 r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq); 338 if (unlikely(r < 0)) { 339 error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r); 340 } 341 v->shared->svq_switching = SVQ_TSTATE_DONE; 342 } 343 344 static int vdpa_net_migration_state_notifier(NotifierWithReturn *notifier, 345 MigrationEvent *e, Error **errp) 346 { 347 VhostVDPAState *s = container_of(notifier, VhostVDPAState, migration_state); 348 349 if (e->type == MIG_EVENT_PRECOPY_SETUP) { 350 vhost_vdpa_net_log_global_enable(s, true); 351 } else if (e->type == MIG_EVENT_PRECOPY_FAILED) { 352 vhost_vdpa_net_log_global_enable(s, false); 353 } 354 return 0; 355 } 356 357 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s) 358 { 359 struct vhost_vdpa *v = &s->vhost_vdpa; 360 361 migration_add_notifier(&s->migration_state, 362 vdpa_net_migration_state_notifier); 363 if (v->shadow_vqs_enabled) { 364 v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first, 365 v->shared->iova_range.last); 366 } 367 } 368 369 static int vhost_vdpa_net_data_start(NetClientState *nc) 370 { 371 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 372 struct vhost_vdpa *v = &s->vhost_vdpa; 373 374 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 375 376 if (s->always_svq || 377 migration_is_setup_or_active()) { 378 v->shadow_vqs_enabled = true; 379 } else { 380 v->shadow_vqs_enabled = false; 381 } 382 383 if (v->index == 0) { 384 v->shared->shadow_data = v->shadow_vqs_enabled; 385 vhost_vdpa_net_data_start_first(s); 386 return 0; 387 } 388 389 return 0; 390 } 391 392 static int vhost_vdpa_net_data_load(NetClientState *nc) 393 { 394 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 395 struct vhost_vdpa *v = &s->vhost_vdpa; 396 bool has_cvq = v->dev->vq_index_end % 2; 397 398 if (has_cvq) { 399 return 0; 400 } 401 402 for (int i = 0; i < v->dev->nvqs; ++i) { 403 int ret = vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index); 404 if (ret < 0) { 405 return ret; 406 } 407 } 408 return 0; 409 } 410 411 static void vhost_vdpa_net_client_stop(NetClientState *nc) 412 { 413 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 414 struct vhost_dev *dev; 415 416 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 417 418 if (s->vhost_vdpa.index == 0) { 419 migration_remove_notifier(&s->migration_state); 420 } 421 422 dev = s->vhost_vdpa.dev; 423 if (dev->vq_index + dev->nvqs == dev->vq_index_end) { 424 g_clear_pointer(&s->vhost_vdpa.shared->iova_tree, 425 vhost_iova_tree_delete); 426 } 427 } 428 429 static NetClientInfo net_vhost_vdpa_info = { 430 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 431 .size = sizeof(VhostVDPAState), 432 .receive = vhost_vdpa_receive, 433 .start = vhost_vdpa_net_data_start, 434 .load = vhost_vdpa_net_data_load, 435 .stop = vhost_vdpa_net_client_stop, 436 .cleanup = vhost_vdpa_cleanup, 437 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 438 .has_ufo = vhost_vdpa_has_ufo, 439 .check_peer_type = vhost_vdpa_check_peer_type, 440 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 441 }; 442 443 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index, 444 Error **errp) 445 { 446 struct vhost_vring_state state = { 447 .index = vq_index, 448 }; 449 int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state); 450 451 if (unlikely(r < 0)) { 452 r = -errno; 453 error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index); 454 return r; 455 } 456 457 return state.num; 458 } 459 460 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v, 461 unsigned vq_group, 462 unsigned asid_num) 463 { 464 struct vhost_vring_state asid = { 465 .index = vq_group, 466 .num = asid_num, 467 }; 468 int r; 469 470 trace_vhost_vdpa_set_address_space_id(v, vq_group, asid_num); 471 472 r = ioctl(v->shared->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid); 473 if (unlikely(r < 0)) { 474 error_report("Can't set vq group %u asid %u, errno=%d (%s)", 475 asid.index, asid.num, errno, g_strerror(errno)); 476 } 477 return r; 478 } 479 480 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr) 481 { 482 VhostIOVATree *tree = v->shared->iova_tree; 483 DMAMap needle = { 484 /* 485 * No need to specify size or to look for more translations since 486 * this contiguous chunk was allocated by us. 487 */ 488 .translated_addr = (hwaddr)(uintptr_t)addr, 489 }; 490 const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle); 491 int r; 492 493 if (unlikely(!map)) { 494 error_report("Cannot locate expected map"); 495 return; 496 } 497 498 r = vhost_vdpa_dma_unmap(v->shared, v->address_space_id, map->iova, 499 map->size + 1); 500 if (unlikely(r != 0)) { 501 error_report("Device cannot unmap: %s(%d)", g_strerror(r), r); 502 } 503 504 vhost_iova_tree_remove(tree, *map); 505 } 506 507 /** Map CVQ buffer. */ 508 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size, 509 bool write) 510 { 511 DMAMap map = {}; 512 int r; 513 514 map.translated_addr = (hwaddr)(uintptr_t)buf; 515 map.size = size - 1; 516 map.perm = write ? IOMMU_RW : IOMMU_RO, 517 r = vhost_iova_tree_map_alloc(v->shared->iova_tree, &map); 518 if (unlikely(r != IOVA_OK)) { 519 error_report("Cannot map injected element"); 520 return r; 521 } 522 523 r = vhost_vdpa_dma_map(v->shared, v->address_space_id, map.iova, 524 vhost_vdpa_net_cvq_cmd_page_len(), buf, !write); 525 if (unlikely(r < 0)) { 526 goto dma_map_err; 527 } 528 529 return 0; 530 531 dma_map_err: 532 vhost_iova_tree_remove(v->shared->iova_tree, map); 533 return r; 534 } 535 536 static int vhost_vdpa_net_cvq_start(NetClientState *nc) 537 { 538 VhostVDPAState *s, *s0; 539 struct vhost_vdpa *v; 540 int64_t cvq_group; 541 int r; 542 Error *err = NULL; 543 544 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 545 546 s = DO_UPCAST(VhostVDPAState, nc, nc); 547 v = &s->vhost_vdpa; 548 549 s0 = vhost_vdpa_net_first_nc_vdpa(s); 550 v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled; 551 s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID; 552 553 if (v->shared->shadow_data) { 554 /* SVQ is already configured for all virtqueues */ 555 goto out; 556 } 557 558 /* 559 * If we early return in these cases SVQ will not be enabled. The migration 560 * will be blocked as long as vhost-vdpa backends will not offer _F_LOG. 561 */ 562 if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) { 563 return 0; 564 } 565 566 if (!s->cvq_isolated) { 567 return 0; 568 } 569 570 cvq_group = vhost_vdpa_get_vring_group(v->shared->device_fd, 571 v->dev->vq_index_end - 1, 572 &err); 573 if (unlikely(cvq_group < 0)) { 574 error_report_err(err); 575 return cvq_group; 576 } 577 578 r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID); 579 if (unlikely(r < 0)) { 580 return r; 581 } 582 583 v->shadow_vqs_enabled = true; 584 s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID; 585 586 out: 587 if (!s->vhost_vdpa.shadow_vqs_enabled) { 588 return 0; 589 } 590 591 /* 592 * If other vhost_vdpa already have an iova_tree, reuse it for simplicity, 593 * whether CVQ shares ASID with guest or not, because: 594 * - Memory listener need access to guest's memory addresses allocated in 595 * the IOVA tree. 596 * - There should be plenty of IOVA address space for both ASID not to 597 * worry about collisions between them. Guest's translations are still 598 * validated with virtio virtqueue_pop so there is no risk for the guest 599 * to access memory that it shouldn't. 600 * 601 * To allocate a iova tree per ASID is doable but it complicates the code 602 * and it is not worth it for the moment. 603 */ 604 if (!v->shared->iova_tree) { 605 v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first, 606 v->shared->iova_range.last); 607 } 608 609 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer, 610 vhost_vdpa_net_cvq_cmd_page_len(), false); 611 if (unlikely(r < 0)) { 612 return r; 613 } 614 615 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status, 616 vhost_vdpa_net_cvq_cmd_page_len(), true); 617 if (unlikely(r < 0)) { 618 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 619 } 620 621 return r; 622 } 623 624 static void vhost_vdpa_net_cvq_stop(NetClientState *nc) 625 { 626 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 627 628 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 629 630 if (s->vhost_vdpa.shadow_vqs_enabled) { 631 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 632 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status); 633 } 634 635 vhost_vdpa_net_client_stop(nc); 636 } 637 638 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s, 639 const struct iovec *out_sg, size_t out_num, 640 const struct iovec *in_sg, size_t in_num) 641 { 642 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 643 int r; 644 645 r = vhost_svq_add(svq, out_sg, out_num, in_sg, in_num, NULL); 646 if (unlikely(r != 0)) { 647 if (unlikely(r == -ENOSPC)) { 648 qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n", 649 __func__); 650 } 651 } 652 653 return r; 654 } 655 656 /* 657 * Convenience wrapper to poll SVQ for multiple control commands. 658 * 659 * Caller should hold the BQL when invoking this function, and should take 660 * the answer before SVQ pulls by itself when BQL is released. 661 */ 662 static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight) 663 { 664 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 665 return vhost_svq_poll(svq, cmds_in_flight); 666 } 667 668 static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s, 669 struct iovec *out_cursor, 670 struct iovec *in_cursor) 671 { 672 /* reset the cursor of the output buffer for the device */ 673 out_cursor->iov_base = s->cvq_cmd_out_buffer; 674 out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 675 676 /* reset the cursor of the in buffer for the device */ 677 in_cursor->iov_base = s->status; 678 in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 679 } 680 681 /* 682 * Poll SVQ for multiple pending control commands and check the device's ack. 683 * 684 * Caller should hold the BQL when invoking this function. 685 * 686 * @s: The VhostVDPAState 687 * @len: The length of the pending status shadow buffer 688 */ 689 static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len) 690 { 691 /* device uses a one-byte length ack for each control command */ 692 ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len); 693 if (unlikely(dev_written != len)) { 694 return -EIO; 695 } 696 697 /* check the device's ack */ 698 for (int i = 0; i < len; ++i) { 699 if (s->status[i] != VIRTIO_NET_OK) { 700 return -EIO; 701 } 702 } 703 return 0; 704 } 705 706 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s, 707 struct iovec *out_cursor, 708 struct iovec *in_cursor, uint8_t class, 709 uint8_t cmd, const struct iovec *data_sg, 710 size_t data_num) 711 { 712 const struct virtio_net_ctrl_hdr ctrl = { 713 .class = class, 714 .cmd = cmd, 715 }; 716 size_t data_size = iov_size(data_sg, data_num), cmd_size; 717 struct iovec out, in; 718 ssize_t r; 719 unsigned dummy_cursor_iov_cnt; 720 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 721 722 assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl)); 723 cmd_size = sizeof(ctrl) + data_size; 724 trace_vhost_vdpa_net_load_cmd(s, class, cmd, data_num, data_size); 725 if (vhost_svq_available_slots(svq) < 2 || 726 iov_size(out_cursor, 1) < cmd_size) { 727 /* 728 * It is time to flush all pending control commands if SVQ is full 729 * or control commands shadow buffers are full. 730 * 731 * We can poll here since we've had BQL from the time 732 * we sent the descriptor. 733 */ 734 r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base - 735 (void *)s->status); 736 if (unlikely(r < 0)) { 737 return r; 738 } 739 740 vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor); 741 } 742 743 /* pack the CVQ command header */ 744 iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl)); 745 /* pack the CVQ command command-specific-data */ 746 iov_to_buf(data_sg, data_num, 0, 747 out_cursor->iov_base + sizeof(ctrl), data_size); 748 749 /* extract the required buffer from the cursor for output */ 750 iov_copy(&out, 1, out_cursor, 1, 0, cmd_size); 751 /* extract the required buffer from the cursor for input */ 752 iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status)); 753 754 r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1); 755 if (unlikely(r < 0)) { 756 trace_vhost_vdpa_net_load_cmd_retval(s, class, cmd, r); 757 return r; 758 } 759 760 /* iterate the cursors */ 761 dummy_cursor_iov_cnt = 1; 762 iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size); 763 dummy_cursor_iov_cnt = 1; 764 iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status)); 765 766 return 0; 767 } 768 769 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n, 770 struct iovec *out_cursor, 771 struct iovec *in_cursor) 772 { 773 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) { 774 const struct iovec data = { 775 .iov_base = (void *)n->mac, 776 .iov_len = sizeof(n->mac), 777 }; 778 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 779 VIRTIO_NET_CTRL_MAC, 780 VIRTIO_NET_CTRL_MAC_ADDR_SET, 781 &data, 1); 782 if (unlikely(r < 0)) { 783 return r; 784 } 785 } 786 787 /* 788 * According to VirtIO standard, "The device MUST have an 789 * empty MAC filtering table on reset.". 790 * 791 * Therefore, there is no need to send this CVQ command if the 792 * driver also sets an empty MAC filter table, which aligns with 793 * the device's defaults. 794 * 795 * Note that the device's defaults can mismatch the driver's 796 * configuration only at live migration. 797 */ 798 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) || 799 n->mac_table.in_use == 0) { 800 return 0; 801 } 802 803 uint32_t uni_entries = n->mac_table.first_multi, 804 uni_macs_size = uni_entries * ETH_ALEN, 805 mul_entries = n->mac_table.in_use - uni_entries, 806 mul_macs_size = mul_entries * ETH_ALEN; 807 struct virtio_net_ctrl_mac uni = { 808 .entries = cpu_to_le32(uni_entries), 809 }; 810 struct virtio_net_ctrl_mac mul = { 811 .entries = cpu_to_le32(mul_entries), 812 }; 813 const struct iovec data[] = { 814 { 815 .iov_base = &uni, 816 .iov_len = sizeof(uni), 817 }, { 818 .iov_base = n->mac_table.macs, 819 .iov_len = uni_macs_size, 820 }, { 821 .iov_base = &mul, 822 .iov_len = sizeof(mul), 823 }, { 824 .iov_base = &n->mac_table.macs[uni_macs_size], 825 .iov_len = mul_macs_size, 826 }, 827 }; 828 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 829 VIRTIO_NET_CTRL_MAC, 830 VIRTIO_NET_CTRL_MAC_TABLE_SET, 831 data, ARRAY_SIZE(data)); 832 if (unlikely(r < 0)) { 833 return r; 834 } 835 836 return 0; 837 } 838 839 static int vhost_vdpa_net_load_rss(VhostVDPAState *s, const VirtIONet *n, 840 struct iovec *out_cursor, 841 struct iovec *in_cursor, bool do_rss) 842 { 843 struct virtio_net_rss_config cfg = {}; 844 ssize_t r; 845 g_autofree uint16_t *table = NULL; 846 847 /* 848 * According to VirtIO standard, "Initially the device has all hash 849 * types disabled and reports only VIRTIO_NET_HASH_REPORT_NONE.". 850 * 851 * Therefore, there is no need to send this CVQ command if the 852 * driver disables the all hash types, which aligns with 853 * the device's defaults. 854 * 855 * Note that the device's defaults can mismatch the driver's 856 * configuration only at live migration. 857 */ 858 if (!n->rss_data.enabled || 859 n->rss_data.hash_types == VIRTIO_NET_HASH_REPORT_NONE) { 860 return 0; 861 } 862 863 table = g_malloc_n(n->rss_data.indirections_len, 864 sizeof(n->rss_data.indirections_table[0])); 865 cfg.hash_types = cpu_to_le32(n->rss_data.hash_types); 866 867 if (do_rss) { 868 /* 869 * According to VirtIO standard, "Number of entries in indirection_table 870 * is (indirection_table_mask + 1)". 871 */ 872 cfg.indirection_table_mask = cpu_to_le16(n->rss_data.indirections_len - 873 1); 874 cfg.unclassified_queue = cpu_to_le16(n->rss_data.default_queue); 875 for (int i = 0; i < n->rss_data.indirections_len; ++i) { 876 table[i] = cpu_to_le16(n->rss_data.indirections_table[i]); 877 } 878 cfg.max_tx_vq = cpu_to_le16(n->curr_queue_pairs); 879 } else { 880 /* 881 * According to VirtIO standard, "Field reserved MUST contain zeroes. 882 * It is defined to make the structure to match the layout of 883 * virtio_net_rss_config structure, defined in 5.1.6.5.7.". 884 * 885 * Therefore, we need to zero the fields in 886 * struct virtio_net_rss_config, which corresponds to the 887 * `reserved` field in struct virtio_net_hash_config. 888 * 889 * Note that all other fields are zeroed at their definitions, 890 * except for the `indirection_table` field, where the actual data 891 * is stored in the `table` variable to ensure compatibility 892 * with RSS case. Therefore, we need to zero the `table` variable here. 893 */ 894 table[0] = 0; 895 } 896 897 /* 898 * Considering that virtio_net_handle_rss() currently does not restore 899 * the hash key length parsed from the CVQ command sent from the guest 900 * into n->rss_data and uses the maximum key length in other code, so 901 * we also employ the maximum key length here. 902 */ 903 cfg.hash_key_length = sizeof(n->rss_data.key); 904 905 const struct iovec data[] = { 906 { 907 .iov_base = &cfg, 908 .iov_len = offsetof(struct virtio_net_rss_config, 909 indirection_table), 910 }, { 911 .iov_base = table, 912 .iov_len = n->rss_data.indirections_len * 913 sizeof(n->rss_data.indirections_table[0]), 914 }, { 915 .iov_base = &cfg.max_tx_vq, 916 .iov_len = offsetof(struct virtio_net_rss_config, hash_key_data) - 917 offsetof(struct virtio_net_rss_config, max_tx_vq), 918 }, { 919 .iov_base = (void *)n->rss_data.key, 920 .iov_len = sizeof(n->rss_data.key), 921 } 922 }; 923 924 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 925 VIRTIO_NET_CTRL_MQ, 926 do_rss ? VIRTIO_NET_CTRL_MQ_RSS_CONFIG : 927 VIRTIO_NET_CTRL_MQ_HASH_CONFIG, 928 data, ARRAY_SIZE(data)); 929 if (unlikely(r < 0)) { 930 return r; 931 } 932 933 return 0; 934 } 935 936 static int vhost_vdpa_net_load_mq(VhostVDPAState *s, 937 const VirtIONet *n, 938 struct iovec *out_cursor, 939 struct iovec *in_cursor) 940 { 941 struct virtio_net_ctrl_mq mq; 942 ssize_t r; 943 944 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) { 945 return 0; 946 } 947 948 trace_vhost_vdpa_net_load_mq(s, n->curr_queue_pairs); 949 950 mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs); 951 const struct iovec data = { 952 .iov_base = &mq, 953 .iov_len = sizeof(mq), 954 }; 955 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 956 VIRTIO_NET_CTRL_MQ, 957 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET, 958 &data, 1); 959 if (unlikely(r < 0)) { 960 return r; 961 } 962 963 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_RSS)) { 964 /* load the receive-side scaling state */ 965 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, true); 966 if (unlikely(r < 0)) { 967 return r; 968 } 969 } else if (virtio_vdev_has_feature(&n->parent_obj, 970 VIRTIO_NET_F_HASH_REPORT)) { 971 /* load the hash calculation state */ 972 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, false); 973 if (unlikely(r < 0)) { 974 return r; 975 } 976 } 977 978 return 0; 979 } 980 981 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s, 982 const VirtIONet *n, 983 struct iovec *out_cursor, 984 struct iovec *in_cursor) 985 { 986 uint64_t offloads; 987 ssize_t r; 988 989 if (!virtio_vdev_has_feature(&n->parent_obj, 990 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) { 991 return 0; 992 } 993 994 if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) { 995 /* 996 * According to VirtIO standard, "Upon feature negotiation 997 * corresponding offload gets enabled to preserve 998 * backward compatibility.". 999 * 1000 * Therefore, there is no need to send this CVQ command if the 1001 * driver also enables all supported offloads, which aligns with 1002 * the device's defaults. 1003 * 1004 * Note that the device's defaults can mismatch the driver's 1005 * configuration only at live migration. 1006 */ 1007 return 0; 1008 } 1009 1010 offloads = cpu_to_le64(n->curr_guest_offloads); 1011 const struct iovec data = { 1012 .iov_base = &offloads, 1013 .iov_len = sizeof(offloads), 1014 }; 1015 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1016 VIRTIO_NET_CTRL_GUEST_OFFLOADS, 1017 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET, 1018 &data, 1); 1019 if (unlikely(r < 0)) { 1020 return r; 1021 } 1022 1023 return 0; 1024 } 1025 1026 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s, 1027 struct iovec *out_cursor, 1028 struct iovec *in_cursor, 1029 uint8_t cmd, 1030 uint8_t on) 1031 { 1032 const struct iovec data = { 1033 .iov_base = &on, 1034 .iov_len = sizeof(on), 1035 }; 1036 ssize_t r; 1037 1038 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1039 VIRTIO_NET_CTRL_RX, cmd, &data, 1); 1040 if (unlikely(r < 0)) { 1041 return r; 1042 } 1043 1044 return 0; 1045 } 1046 1047 static int vhost_vdpa_net_load_rx(VhostVDPAState *s, 1048 const VirtIONet *n, 1049 struct iovec *out_cursor, 1050 struct iovec *in_cursor) 1051 { 1052 ssize_t r; 1053 1054 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) { 1055 return 0; 1056 } 1057 1058 /* 1059 * According to virtio_net_reset(), device turns promiscuous mode 1060 * on by default. 1061 * 1062 * Additionally, according to VirtIO standard, "Since there are 1063 * no guarantees, it can use a hash filter or silently switch to 1064 * allmulti or promiscuous mode if it is given too many addresses.". 1065 * QEMU marks `n->mac_table.uni_overflow` if guest sets too many 1066 * non-multicast MAC addresses, indicating that promiscuous mode 1067 * should be enabled. 1068 * 1069 * Therefore, QEMU should only send this CVQ command if the 1070 * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off, 1071 * which sets promiscuous mode on, different from the device's defaults. 1072 * 1073 * Note that the device's defaults can mismatch the driver's 1074 * configuration only at live migration. 1075 */ 1076 if (!n->mac_table.uni_overflow && !n->promisc) { 1077 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1078 VIRTIO_NET_CTRL_RX_PROMISC, 0); 1079 if (unlikely(r < 0)) { 1080 return r; 1081 } 1082 } 1083 1084 /* 1085 * According to virtio_net_reset(), device turns all-multicast mode 1086 * off by default. 1087 * 1088 * According to VirtIO standard, "Since there are no guarantees, 1089 * it can use a hash filter or silently switch to allmulti or 1090 * promiscuous mode if it is given too many addresses.". QEMU marks 1091 * `n->mac_table.multi_overflow` if guest sets too many 1092 * non-multicast MAC addresses. 1093 * 1094 * Therefore, QEMU should only send this CVQ command if the 1095 * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on, 1096 * which sets all-multicast mode on, different from the device's defaults. 1097 * 1098 * Note that the device's defaults can mismatch the driver's 1099 * configuration only at live migration. 1100 */ 1101 if (n->mac_table.multi_overflow || n->allmulti) { 1102 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1103 VIRTIO_NET_CTRL_RX_ALLMULTI, 1); 1104 if (unlikely(r < 0)) { 1105 return r; 1106 } 1107 } 1108 1109 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) { 1110 return 0; 1111 } 1112 1113 /* 1114 * According to virtio_net_reset(), device turns all-unicast mode 1115 * off by default. 1116 * 1117 * Therefore, QEMU should only send this CVQ command if the driver 1118 * sets all-unicast mode on, different from the device's defaults. 1119 * 1120 * Note that the device's defaults can mismatch the driver's 1121 * configuration only at live migration. 1122 */ 1123 if (n->alluni) { 1124 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1125 VIRTIO_NET_CTRL_RX_ALLUNI, 1); 1126 if (r < 0) { 1127 return r; 1128 } 1129 } 1130 1131 /* 1132 * According to virtio_net_reset(), device turns non-multicast mode 1133 * off by default. 1134 * 1135 * Therefore, QEMU should only send this CVQ command if the driver 1136 * sets non-multicast mode on, different from the device's defaults. 1137 * 1138 * Note that the device's defaults can mismatch the driver's 1139 * configuration only at live migration. 1140 */ 1141 if (n->nomulti) { 1142 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1143 VIRTIO_NET_CTRL_RX_NOMULTI, 1); 1144 if (r < 0) { 1145 return r; 1146 } 1147 } 1148 1149 /* 1150 * According to virtio_net_reset(), device turns non-unicast mode 1151 * off by default. 1152 * 1153 * Therefore, QEMU should only send this CVQ command if the driver 1154 * sets non-unicast mode on, different from the device's defaults. 1155 * 1156 * Note that the device's defaults can mismatch the driver's 1157 * configuration only at live migration. 1158 */ 1159 if (n->nouni) { 1160 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1161 VIRTIO_NET_CTRL_RX_NOUNI, 1); 1162 if (r < 0) { 1163 return r; 1164 } 1165 } 1166 1167 /* 1168 * According to virtio_net_reset(), device turns non-broadcast mode 1169 * off by default. 1170 * 1171 * Therefore, QEMU should only send this CVQ command if the driver 1172 * sets non-broadcast mode on, different from the device's defaults. 1173 * 1174 * Note that the device's defaults can mismatch the driver's 1175 * configuration only at live migration. 1176 */ 1177 if (n->nobcast) { 1178 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1179 VIRTIO_NET_CTRL_RX_NOBCAST, 1); 1180 if (r < 0) { 1181 return r; 1182 } 1183 } 1184 1185 return 0; 1186 } 1187 1188 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s, 1189 const VirtIONet *n, 1190 struct iovec *out_cursor, 1191 struct iovec *in_cursor, 1192 uint16_t vid) 1193 { 1194 const struct iovec data = { 1195 .iov_base = &vid, 1196 .iov_len = sizeof(vid), 1197 }; 1198 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1199 VIRTIO_NET_CTRL_VLAN, 1200 VIRTIO_NET_CTRL_VLAN_ADD, 1201 &data, 1); 1202 if (unlikely(r < 0)) { 1203 return r; 1204 } 1205 1206 return 0; 1207 } 1208 1209 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s, 1210 const VirtIONet *n, 1211 struct iovec *out_cursor, 1212 struct iovec *in_cursor) 1213 { 1214 int r; 1215 1216 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) { 1217 return 0; 1218 } 1219 1220 for (int i = 0; i < MAX_VLAN >> 5; i++) { 1221 for (int j = 0; n->vlans[i] && j <= 0x1f; j++) { 1222 if (n->vlans[i] & (1U << j)) { 1223 r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor, 1224 in_cursor, (i << 5) + j); 1225 if (unlikely(r != 0)) { 1226 return r; 1227 } 1228 } 1229 } 1230 } 1231 1232 return 0; 1233 } 1234 1235 static int vhost_vdpa_net_cvq_load(NetClientState *nc) 1236 { 1237 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 1238 struct vhost_vdpa *v = &s->vhost_vdpa; 1239 const VirtIONet *n; 1240 int r; 1241 struct iovec out_cursor, in_cursor; 1242 1243 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1244 1245 r = vhost_vdpa_set_vring_ready(v, v->dev->vq_index); 1246 if (unlikely(r < 0)) { 1247 return r; 1248 } 1249 1250 if (v->shadow_vqs_enabled) { 1251 n = VIRTIO_NET(v->dev->vdev); 1252 vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor); 1253 r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor); 1254 if (unlikely(r < 0)) { 1255 return r; 1256 } 1257 r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor); 1258 if (unlikely(r)) { 1259 return r; 1260 } 1261 r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor); 1262 if (unlikely(r)) { 1263 return r; 1264 } 1265 r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor); 1266 if (unlikely(r)) { 1267 return r; 1268 } 1269 r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor); 1270 if (unlikely(r)) { 1271 return r; 1272 } 1273 1274 /* 1275 * We need to poll and check all pending device's used buffers. 1276 * 1277 * We can poll here since we've had BQL from the time 1278 * we sent the descriptor. 1279 */ 1280 r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status); 1281 if (unlikely(r)) { 1282 return r; 1283 } 1284 } 1285 1286 for (int i = 0; i < v->dev->vq_index; ++i) { 1287 r = vhost_vdpa_set_vring_ready(v, i); 1288 if (unlikely(r < 0)) { 1289 return r; 1290 } 1291 } 1292 1293 return 0; 1294 } 1295 1296 static NetClientInfo net_vhost_vdpa_cvq_info = { 1297 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 1298 .size = sizeof(VhostVDPAState), 1299 .receive = vhost_vdpa_receive, 1300 .start = vhost_vdpa_net_cvq_start, 1301 .load = vhost_vdpa_net_cvq_load, 1302 .stop = vhost_vdpa_net_cvq_stop, 1303 .cleanup = vhost_vdpa_cleanup, 1304 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 1305 .has_ufo = vhost_vdpa_has_ufo, 1306 .check_peer_type = vhost_vdpa_check_peer_type, 1307 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 1308 }; 1309 1310 /* 1311 * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to 1312 * vdpa device. 1313 * 1314 * Considering that QEMU cannot send the entire filter table to the 1315 * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ 1316 * command to enable promiscuous mode to receive all packets, 1317 * according to VirtIO standard, "Since there are no guarantees, 1318 * it can use a hash filter or silently switch to allmulti or 1319 * promiscuous mode if it is given too many addresses.". 1320 * 1321 * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and 1322 * marks `n->mac_table.x_overflow` accordingly, it should have 1323 * the same effect on the device model to receive 1324 * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses. 1325 * The same applies to multicast MAC addresses. 1326 * 1327 * Therefore, QEMU can provide the device model with a fake 1328 * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1) 1329 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast 1330 * MAC addresses. This ensures that the device model marks 1331 * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`, 1332 * allowing all packets to be received, which aligns with the 1333 * state of the vdpa device. 1334 */ 1335 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s, 1336 VirtQueueElement *elem, 1337 struct iovec *out, 1338 const struct iovec *in) 1339 { 1340 struct virtio_net_ctrl_mac mac_data, *mac_ptr; 1341 struct virtio_net_ctrl_hdr *hdr_ptr; 1342 uint32_t cursor; 1343 ssize_t r; 1344 uint8_t on = 1; 1345 1346 /* parse the non-multicast MAC address entries from CVQ command */ 1347 cursor = sizeof(*hdr_ptr); 1348 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1349 &mac_data, sizeof(mac_data)); 1350 if (unlikely(r != sizeof(mac_data))) { 1351 /* 1352 * If the CVQ command is invalid, we should simulate the vdpa device 1353 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1354 */ 1355 *s->status = VIRTIO_NET_ERR; 1356 return sizeof(*s->status); 1357 } 1358 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1359 1360 /* parse the multicast MAC address entries from CVQ command */ 1361 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1362 &mac_data, sizeof(mac_data)); 1363 if (r != sizeof(mac_data)) { 1364 /* 1365 * If the CVQ command is invalid, we should simulate the vdpa device 1366 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1367 */ 1368 *s->status = VIRTIO_NET_ERR; 1369 return sizeof(*s->status); 1370 } 1371 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1372 1373 /* validate the CVQ command */ 1374 if (iov_size(elem->out_sg, elem->out_num) != cursor) { 1375 /* 1376 * If the CVQ command is invalid, we should simulate the vdpa device 1377 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1378 */ 1379 *s->status = VIRTIO_NET_ERR; 1380 return sizeof(*s->status); 1381 } 1382 1383 /* 1384 * According to VirtIO standard, "Since there are no guarantees, 1385 * it can use a hash filter or silently switch to allmulti or 1386 * promiscuous mode if it is given too many addresses.". 1387 * 1388 * Therefore, considering that QEMU is unable to send the entire 1389 * filter table to the vdpa device, it should send the 1390 * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode 1391 */ 1392 hdr_ptr = out->iov_base; 1393 out->iov_len = sizeof(*hdr_ptr) + sizeof(on); 1394 1395 hdr_ptr->class = VIRTIO_NET_CTRL_RX; 1396 hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC; 1397 iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on)); 1398 r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1); 1399 if (unlikely(r < 0)) { 1400 return r; 1401 } 1402 1403 /* 1404 * We can poll here since we've had BQL from the time 1405 * we sent the descriptor. 1406 */ 1407 r = vhost_vdpa_net_svq_poll(s, 1); 1408 if (unlikely(r < sizeof(*s->status))) { 1409 return r; 1410 } 1411 if (*s->status != VIRTIO_NET_OK) { 1412 return sizeof(*s->status); 1413 } 1414 1415 /* 1416 * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ 1417 * command to the device model, including (`MAC_TABLE_ENTRIES` + 1) 1418 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) 1419 * multicast MAC addresses. 1420 * 1421 * By doing so, the device model can mark `n->mac_table.uni_overflow` 1422 * and `n->mac_table.multi_overflow`, enabling all packets to be 1423 * received, which aligns with the state of the vdpa device. 1424 */ 1425 cursor = 0; 1426 uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1, 1427 fake_mul_entries = MAC_TABLE_ENTRIES + 1, 1428 fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) + 1429 sizeof(mac_data) + fake_uni_entries * ETH_ALEN + 1430 sizeof(mac_data) + fake_mul_entries * ETH_ALEN; 1431 1432 assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len()); 1433 out->iov_len = fake_cvq_size; 1434 1435 /* pack the header for fake CVQ command */ 1436 hdr_ptr = out->iov_base + cursor; 1437 hdr_ptr->class = VIRTIO_NET_CTRL_MAC; 1438 hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 1439 cursor += sizeof(*hdr_ptr); 1440 1441 /* 1442 * Pack the non-multicast MAC addresses part for fake CVQ command. 1443 * 1444 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1445 * addresses provided in CVQ command. Therefore, only the entries 1446 * field need to be prepared in the CVQ command. 1447 */ 1448 mac_ptr = out->iov_base + cursor; 1449 mac_ptr->entries = cpu_to_le32(fake_uni_entries); 1450 cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN; 1451 1452 /* 1453 * Pack the multicast MAC addresses part for fake CVQ command. 1454 * 1455 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1456 * addresses provided in CVQ command. Therefore, only the entries 1457 * field need to be prepared in the CVQ command. 1458 */ 1459 mac_ptr = out->iov_base + cursor; 1460 mac_ptr->entries = cpu_to_le32(fake_mul_entries); 1461 1462 /* 1463 * Simulating QEMU poll a vdpa device used buffer 1464 * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1465 */ 1466 return sizeof(*s->status); 1467 } 1468 1469 /** 1470 * Validate and copy control virtqueue commands. 1471 * 1472 * Following QEMU guidelines, we offer a copy of the buffers to the device to 1473 * prevent TOCTOU bugs. 1474 */ 1475 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq, 1476 VirtQueueElement *elem, 1477 void *opaque) 1478 { 1479 VhostVDPAState *s = opaque; 1480 size_t in_len; 1481 const struct virtio_net_ctrl_hdr *ctrl; 1482 virtio_net_ctrl_ack status = VIRTIO_NET_ERR; 1483 /* Out buffer sent to both the vdpa device and the device model */ 1484 struct iovec out = { 1485 .iov_base = s->cvq_cmd_out_buffer, 1486 }; 1487 /* in buffer used for device model */ 1488 const struct iovec model_in = { 1489 .iov_base = &status, 1490 .iov_len = sizeof(status), 1491 }; 1492 /* in buffer used for vdpa device */ 1493 const struct iovec vdpa_in = { 1494 .iov_base = s->status, 1495 .iov_len = sizeof(*s->status), 1496 }; 1497 ssize_t dev_written = -EINVAL; 1498 1499 out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0, 1500 s->cvq_cmd_out_buffer, 1501 vhost_vdpa_net_cvq_cmd_page_len()); 1502 1503 ctrl = s->cvq_cmd_out_buffer; 1504 if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) { 1505 /* 1506 * Guest announce capability is emulated by qemu, so don't forward to 1507 * the device. 1508 */ 1509 dev_written = sizeof(status); 1510 *s->status = VIRTIO_NET_OK; 1511 } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC && 1512 ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET && 1513 iov_size(elem->out_sg, elem->out_num) > out.iov_len)) { 1514 /* 1515 * Due to the size limitation of the out buffer sent to the vdpa device, 1516 * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive 1517 * MAC addresses set by the driver for the filter table can cause 1518 * truncation of the CVQ command in QEMU. As a result, the vdpa device 1519 * rejects the flawed CVQ command. 1520 * 1521 * Therefore, QEMU must handle this situation instead of sending 1522 * the CVQ command directly. 1523 */ 1524 dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem, 1525 &out, &vdpa_in); 1526 if (unlikely(dev_written < 0)) { 1527 goto out; 1528 } 1529 } else { 1530 ssize_t r; 1531 r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1); 1532 if (unlikely(r < 0)) { 1533 dev_written = r; 1534 goto out; 1535 } 1536 1537 /* 1538 * We can poll here since we've had BQL from the time 1539 * we sent the descriptor. 1540 */ 1541 dev_written = vhost_vdpa_net_svq_poll(s, 1); 1542 } 1543 1544 if (unlikely(dev_written < sizeof(status))) { 1545 error_report("Insufficient written data (%zu)", dev_written); 1546 goto out; 1547 } 1548 1549 if (*s->status != VIRTIO_NET_OK) { 1550 goto out; 1551 } 1552 1553 status = VIRTIO_NET_ERR; 1554 virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1); 1555 if (status != VIRTIO_NET_OK) { 1556 error_report("Bad CVQ processing in model"); 1557 } 1558 1559 out: 1560 in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status, 1561 sizeof(status)); 1562 if (unlikely(in_len < sizeof(status))) { 1563 error_report("Bad device CVQ written length"); 1564 } 1565 vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status))); 1566 /* 1567 * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when 1568 * the function successfully forwards the CVQ command, indicated 1569 * by a non-negative value of `dev_written`. Otherwise, it still 1570 * belongs to SVQ. 1571 * This function should only free the `elem` when it owns. 1572 */ 1573 if (dev_written >= 0) { 1574 g_free(elem); 1575 } 1576 return dev_written < 0 ? dev_written : 0; 1577 } 1578 1579 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = { 1580 .avail_handler = vhost_vdpa_net_handle_ctrl_avail, 1581 }; 1582 1583 /** 1584 * Probe if CVQ is isolated 1585 * 1586 * @device_fd The vdpa device fd 1587 * @features Features offered by the device. 1588 * @cvq_index The control vq pair index 1589 * 1590 * Returns <0 in case of failure, 0 if false and 1 if true. 1591 */ 1592 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features, 1593 int cvq_index, Error **errp) 1594 { 1595 ERRP_GUARD(); 1596 uint64_t backend_features; 1597 int64_t cvq_group; 1598 uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE | 1599 VIRTIO_CONFIG_S_DRIVER; 1600 int r; 1601 1602 r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features); 1603 if (unlikely(r < 0)) { 1604 error_setg_errno(errp, errno, "Cannot get vdpa backend_features"); 1605 return r; 1606 } 1607 1608 if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) { 1609 return 0; 1610 } 1611 1612 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1613 if (unlikely(r)) { 1614 error_setg_errno(errp, -r, "Cannot set device status"); 1615 goto out; 1616 } 1617 1618 r = ioctl(device_fd, VHOST_SET_FEATURES, &features); 1619 if (unlikely(r)) { 1620 error_setg_errno(errp, -r, "Cannot set features"); 1621 goto out; 1622 } 1623 1624 status |= VIRTIO_CONFIG_S_FEATURES_OK; 1625 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1626 if (unlikely(r)) { 1627 error_setg_errno(errp, -r, "Cannot set device status"); 1628 goto out; 1629 } 1630 1631 cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp); 1632 if (unlikely(cvq_group < 0)) { 1633 if (cvq_group != -ENOTSUP) { 1634 r = cvq_group; 1635 goto out; 1636 } 1637 1638 /* 1639 * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend 1640 * support ASID even if the parent driver does not. The CVQ cannot be 1641 * isolated in this case. 1642 */ 1643 error_free(*errp); 1644 *errp = NULL; 1645 r = 0; 1646 goto out; 1647 } 1648 1649 for (int i = 0; i < cvq_index; ++i) { 1650 int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp); 1651 if (unlikely(group < 0)) { 1652 r = group; 1653 goto out; 1654 } 1655 1656 if (group == (int64_t)cvq_group) { 1657 r = 0; 1658 goto out; 1659 } 1660 } 1661 1662 r = 1; 1663 1664 out: 1665 status = 0; 1666 ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1667 return r; 1668 } 1669 1670 static NetClientState *net_vhost_vdpa_init(NetClientState *peer, 1671 const char *device, 1672 const char *name, 1673 int vdpa_device_fd, 1674 int queue_pair_index, 1675 int nvqs, 1676 bool is_datapath, 1677 bool svq, 1678 struct vhost_vdpa_iova_range iova_range, 1679 uint64_t features, 1680 VhostVDPAShared *shared, 1681 Error **errp) 1682 { 1683 NetClientState *nc = NULL; 1684 VhostVDPAState *s; 1685 int ret = 0; 1686 assert(name); 1687 int cvq_isolated = 0; 1688 1689 if (is_datapath) { 1690 nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device, 1691 name); 1692 } else { 1693 cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features, 1694 queue_pair_index * 2, 1695 errp); 1696 if (unlikely(cvq_isolated < 0)) { 1697 return NULL; 1698 } 1699 1700 nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer, 1701 device, name); 1702 } 1703 qemu_set_info_str(nc, TYPE_VHOST_VDPA); 1704 s = DO_UPCAST(VhostVDPAState, nc, nc); 1705 1706 s->vhost_vdpa.index = queue_pair_index; 1707 s->always_svq = svq; 1708 s->migration_state.notify = NULL; 1709 s->vhost_vdpa.shadow_vqs_enabled = svq; 1710 if (queue_pair_index == 0) { 1711 vhost_vdpa_net_valid_svq_features(features, 1712 &s->vhost_vdpa.migration_blocker); 1713 s->vhost_vdpa.shared = g_new0(VhostVDPAShared, 1); 1714 s->vhost_vdpa.shared->device_fd = vdpa_device_fd; 1715 s->vhost_vdpa.shared->iova_range = iova_range; 1716 s->vhost_vdpa.shared->shadow_data = svq; 1717 } else if (!is_datapath) { 1718 s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1719 PROT_READ | PROT_WRITE, 1720 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1721 s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1722 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 1723 -1, 0); 1724 1725 s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops; 1726 s->vhost_vdpa.shadow_vq_ops_opaque = s; 1727 s->cvq_isolated = cvq_isolated; 1728 } 1729 if (queue_pair_index != 0) { 1730 s->vhost_vdpa.shared = shared; 1731 } 1732 1733 ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs); 1734 if (ret) { 1735 qemu_del_net_client(nc); 1736 return NULL; 1737 } 1738 1739 return nc; 1740 } 1741 1742 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp) 1743 { 1744 int ret = ioctl(fd, VHOST_GET_FEATURES, features); 1745 if (unlikely(ret < 0)) { 1746 error_setg_errno(errp, errno, 1747 "Fail to query features from vhost-vDPA device"); 1748 } 1749 return ret; 1750 } 1751 1752 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features, 1753 int *has_cvq, Error **errp) 1754 { 1755 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 1756 g_autofree struct vhost_vdpa_config *config = NULL; 1757 __virtio16 *max_queue_pairs; 1758 int ret; 1759 1760 if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) { 1761 *has_cvq = 1; 1762 } else { 1763 *has_cvq = 0; 1764 } 1765 1766 if (features & (1 << VIRTIO_NET_F_MQ)) { 1767 config = g_malloc0(config_size + sizeof(*max_queue_pairs)); 1768 config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs); 1769 config->len = sizeof(*max_queue_pairs); 1770 1771 ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config); 1772 if (ret) { 1773 error_setg(errp, "Fail to get config from vhost-vDPA device"); 1774 return -ret; 1775 } 1776 1777 max_queue_pairs = (__virtio16 *)&config->buf; 1778 1779 return lduw_le_p(max_queue_pairs); 1780 } 1781 1782 return 1; 1783 } 1784 1785 int net_init_vhost_vdpa(const Netdev *netdev, const char *name, 1786 NetClientState *peer, Error **errp) 1787 { 1788 ERRP_GUARD(); 1789 const NetdevVhostVDPAOptions *opts; 1790 uint64_t features; 1791 int vdpa_device_fd; 1792 g_autofree NetClientState **ncs = NULL; 1793 struct vhost_vdpa_iova_range iova_range; 1794 NetClientState *nc; 1795 int queue_pairs, r, i = 0, has_cvq = 0; 1796 1797 assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1798 opts = &netdev->u.vhost_vdpa; 1799 if (!opts->vhostdev && !opts->vhostfd) { 1800 error_setg(errp, 1801 "vhost-vdpa: neither vhostdev= nor vhostfd= was specified"); 1802 return -1; 1803 } 1804 1805 if (opts->vhostdev && opts->vhostfd) { 1806 error_setg(errp, 1807 "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive"); 1808 return -1; 1809 } 1810 1811 if (opts->vhostdev) { 1812 vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp); 1813 if (vdpa_device_fd == -1) { 1814 return -errno; 1815 } 1816 } else { 1817 /* has_vhostfd */ 1818 vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp); 1819 if (vdpa_device_fd == -1) { 1820 error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: "); 1821 return -1; 1822 } 1823 } 1824 1825 r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp); 1826 if (unlikely(r < 0)) { 1827 goto err; 1828 } 1829 1830 queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features, 1831 &has_cvq, errp); 1832 if (queue_pairs < 0) { 1833 qemu_close(vdpa_device_fd); 1834 return queue_pairs; 1835 } 1836 1837 r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range); 1838 if (unlikely(r < 0)) { 1839 error_setg(errp, "vhost-vdpa: get iova range failed: %s", 1840 strerror(-r)); 1841 goto err; 1842 } 1843 1844 if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) { 1845 goto err; 1846 } 1847 1848 ncs = g_malloc0(sizeof(*ncs) * queue_pairs); 1849 1850 for (i = 0; i < queue_pairs; i++) { 1851 VhostVDPAShared *shared = NULL; 1852 1853 if (i) { 1854 shared = DO_UPCAST(VhostVDPAState, nc, ncs[0])->vhost_vdpa.shared; 1855 } 1856 ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1857 vdpa_device_fd, i, 2, true, opts->x_svq, 1858 iova_range, features, shared, errp); 1859 if (!ncs[i]) 1860 goto err; 1861 } 1862 1863 if (has_cvq) { 1864 VhostVDPAState *s0 = DO_UPCAST(VhostVDPAState, nc, ncs[0]); 1865 VhostVDPAShared *shared = s0->vhost_vdpa.shared; 1866 1867 nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1868 vdpa_device_fd, i, 1, false, 1869 opts->x_svq, iova_range, features, shared, 1870 errp); 1871 if (!nc) 1872 goto err; 1873 } 1874 1875 return 0; 1876 1877 err: 1878 if (i) { 1879 for (i--; i >= 0; i--) { 1880 qemu_del_net_client(ncs[i]); 1881 } 1882 } 1883 1884 qemu_close(vdpa_device_fd); 1885 1886 return -1; 1887 } 1888