1 /* 2 * vhost-vdpa.c 3 * 4 * Copyright(c) 2017-2018 Intel Corporation. 5 * Copyright(c) 2020 Red Hat, Inc. 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "clients.h" 14 #include "hw/virtio/virtio-net.h" 15 #include "net/vhost_net.h" 16 #include "net/vhost-vdpa.h" 17 #include "hw/virtio/vhost-vdpa.h" 18 #include "qemu/config-file.h" 19 #include "qemu/error-report.h" 20 #include "qemu/log.h" 21 #include "qemu/memalign.h" 22 #include "qemu/option.h" 23 #include "qapi/error.h" 24 #include <linux/vhost.h> 25 #include <sys/ioctl.h> 26 #include <err.h> 27 #include "standard-headers/linux/virtio_net.h" 28 #include "monitor/monitor.h" 29 #include "migration/misc.h" 30 #include "hw/virtio/vhost.h" 31 #include "trace.h" 32 33 /* Todo:need to add the multiqueue support here */ 34 typedef struct VhostVDPAState { 35 NetClientState nc; 36 struct vhost_vdpa vhost_vdpa; 37 NotifierWithReturn migration_state; 38 VHostNetState *vhost_net; 39 40 /* Control commands shadow buffers */ 41 void *cvq_cmd_out_buffer; 42 virtio_net_ctrl_ack *status; 43 44 /* The device always have SVQ enabled */ 45 bool always_svq; 46 47 /* The device can isolate CVQ in its own ASID */ 48 bool cvq_isolated; 49 50 bool started; 51 } VhostVDPAState; 52 53 /* 54 * The array is sorted alphabetically in ascending order, 55 * with the exception of VHOST_INVALID_FEATURE_BIT, 56 * which should always be the last entry. 57 */ 58 const int vdpa_feature_bits[] = { 59 VIRTIO_F_ANY_LAYOUT, 60 VIRTIO_F_IOMMU_PLATFORM, 61 VIRTIO_F_NOTIFY_ON_EMPTY, 62 VIRTIO_F_RING_PACKED, 63 VIRTIO_F_RING_RESET, 64 VIRTIO_F_VERSION_1, 65 VIRTIO_F_IN_ORDER, 66 VIRTIO_F_NOTIFICATION_DATA, 67 VIRTIO_NET_F_CSUM, 68 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, 69 VIRTIO_NET_F_CTRL_MAC_ADDR, 70 VIRTIO_NET_F_CTRL_RX, 71 VIRTIO_NET_F_CTRL_RX_EXTRA, 72 VIRTIO_NET_F_CTRL_VLAN, 73 VIRTIO_NET_F_CTRL_VQ, 74 VIRTIO_NET_F_GSO, 75 VIRTIO_NET_F_GUEST_CSUM, 76 VIRTIO_NET_F_GUEST_ECN, 77 VIRTIO_NET_F_GUEST_TSO4, 78 VIRTIO_NET_F_GUEST_TSO6, 79 VIRTIO_NET_F_GUEST_UFO, 80 VIRTIO_NET_F_GUEST_USO4, 81 VIRTIO_NET_F_GUEST_USO6, 82 VIRTIO_NET_F_HASH_REPORT, 83 VIRTIO_NET_F_HOST_ECN, 84 VIRTIO_NET_F_HOST_TSO4, 85 VIRTIO_NET_F_HOST_TSO6, 86 VIRTIO_NET_F_HOST_UFO, 87 VIRTIO_NET_F_HOST_USO, 88 VIRTIO_NET_F_MQ, 89 VIRTIO_NET_F_MRG_RXBUF, 90 VIRTIO_NET_F_MTU, 91 VIRTIO_NET_F_RSC_EXT, 92 VIRTIO_NET_F_RSS, 93 VIRTIO_NET_F_STATUS, 94 VIRTIO_RING_F_EVENT_IDX, 95 VIRTIO_RING_F_INDIRECT_DESC, 96 97 /* VHOST_INVALID_FEATURE_BIT should always be the last entry */ 98 VHOST_INVALID_FEATURE_BIT 99 }; 100 101 /** Supported device specific feature bits with SVQ */ 102 static const uint64_t vdpa_svq_device_features = 103 BIT_ULL(VIRTIO_NET_F_CSUM) | 104 BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) | 105 BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) | 106 BIT_ULL(VIRTIO_NET_F_MTU) | 107 BIT_ULL(VIRTIO_NET_F_MAC) | 108 BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) | 109 BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) | 110 BIT_ULL(VIRTIO_NET_F_GUEST_ECN) | 111 BIT_ULL(VIRTIO_NET_F_GUEST_UFO) | 112 BIT_ULL(VIRTIO_NET_F_HOST_TSO4) | 113 BIT_ULL(VIRTIO_NET_F_HOST_TSO6) | 114 BIT_ULL(VIRTIO_NET_F_HOST_ECN) | 115 BIT_ULL(VIRTIO_NET_F_HOST_UFO) | 116 BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) | 117 BIT_ULL(VIRTIO_NET_F_STATUS) | 118 BIT_ULL(VIRTIO_NET_F_CTRL_VQ) | 119 BIT_ULL(VIRTIO_NET_F_CTRL_RX) | 120 BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) | 121 BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) | 122 BIT_ULL(VIRTIO_NET_F_MQ) | 123 BIT_ULL(VIRTIO_F_ANY_LAYOUT) | 124 BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) | 125 /* VHOST_F_LOG_ALL is exposed by SVQ */ 126 BIT_ULL(VHOST_F_LOG_ALL) | 127 BIT_ULL(VIRTIO_NET_F_HASH_REPORT) | 128 BIT_ULL(VIRTIO_NET_F_RSS) | 129 BIT_ULL(VIRTIO_NET_F_RSC_EXT) | 130 BIT_ULL(VIRTIO_NET_F_STANDBY) | 131 BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX); 132 133 #define VHOST_VDPA_NET_CVQ_ASID 1 134 135 VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc) 136 { 137 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 138 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 139 return s->vhost_net; 140 } 141 142 static size_t vhost_vdpa_net_cvq_cmd_len(void) 143 { 144 /* 145 * MAC_TABLE_SET is the ctrl command that produces the longer out buffer. 146 * In buffer is always 1 byte, so it should fit here 147 */ 148 return sizeof(struct virtio_net_ctrl_hdr) + 149 2 * sizeof(struct virtio_net_ctrl_mac) + 150 MAC_TABLE_ENTRIES * ETH_ALEN; 151 } 152 153 static size_t vhost_vdpa_net_cvq_cmd_page_len(void) 154 { 155 return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size()); 156 } 157 158 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp) 159 { 160 uint64_t invalid_dev_features = 161 features & ~vdpa_svq_device_features & 162 /* Transport are all accepted at this point */ 163 ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START, 164 VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START); 165 166 if (invalid_dev_features) { 167 error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64, 168 invalid_dev_features); 169 return false; 170 } 171 172 return vhost_svq_valid_features(features, errp); 173 } 174 175 static int vhost_vdpa_net_check_device_id(struct vhost_net *net) 176 { 177 uint32_t device_id; 178 int ret; 179 struct vhost_dev *hdev; 180 181 hdev = (struct vhost_dev *)&net->dev; 182 ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id); 183 if (device_id != VIRTIO_ID_NET) { 184 return -ENOTSUP; 185 } 186 return ret; 187 } 188 189 static int vhost_vdpa_add(NetClientState *ncs, void *be, 190 int queue_pair_index, int nvqs) 191 { 192 VhostNetOptions options; 193 struct vhost_net *net = NULL; 194 VhostVDPAState *s; 195 int ret; 196 197 options.backend_type = VHOST_BACKEND_TYPE_VDPA; 198 assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 199 s = DO_UPCAST(VhostVDPAState, nc, ncs); 200 options.net_backend = ncs; 201 options.opaque = be; 202 options.busyloop_timeout = 0; 203 options.nvqs = nvqs; 204 205 net = vhost_net_init(&options); 206 if (!net) { 207 error_report("failed to init vhost_net for queue"); 208 goto err_init; 209 } 210 s->vhost_net = net; 211 ret = vhost_vdpa_net_check_device_id(net); 212 if (ret) { 213 goto err_check; 214 } 215 return 0; 216 err_check: 217 vhost_net_cleanup(net); 218 g_free(net); 219 err_init: 220 return -1; 221 } 222 223 static void vhost_vdpa_cleanup(NetClientState *nc) 224 { 225 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 226 227 /* 228 * If a peer NIC is attached, do not cleanup anything. 229 * Cleanup will happen as a part of qemu_cleanup() -> net_cleanup() 230 * when the guest is shutting down. 231 */ 232 if (nc->peer && nc->peer->info->type == NET_CLIENT_DRIVER_NIC) { 233 return; 234 } 235 munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len()); 236 munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len()); 237 if (s->vhost_net) { 238 vhost_net_cleanup(s->vhost_net); 239 g_free(s->vhost_net); 240 s->vhost_net = NULL; 241 } 242 if (s->vhost_vdpa.index != 0) { 243 return; 244 } 245 qemu_close(s->vhost_vdpa.shared->device_fd); 246 g_free(s->vhost_vdpa.shared); 247 } 248 249 /** Dummy SetSteeringEBPF to support RSS for vhost-vdpa backend */ 250 static bool vhost_vdpa_set_steering_ebpf(NetClientState *nc, int prog_fd) 251 { 252 return true; 253 } 254 255 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc) 256 { 257 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 258 259 return true; 260 } 261 262 static bool vhost_vdpa_has_ufo(NetClientState *nc) 263 { 264 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 265 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 266 uint64_t features = 0; 267 features |= (1ULL << VIRTIO_NET_F_HOST_UFO); 268 features = vhost_net_get_features(s->vhost_net, features); 269 return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO)); 270 271 } 272 273 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc, 274 Error **errp) 275 { 276 const char *driver = object_class_get_name(oc); 277 278 if (!g_str_has_prefix(driver, "virtio-net-")) { 279 error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*"); 280 return false; 281 } 282 283 return true; 284 } 285 286 /** Dummy receive in case qemu falls back to userland tap networking */ 287 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf, 288 size_t size) 289 { 290 return size; 291 } 292 293 294 /** From any vdpa net client, get the netclient of the i-th queue pair */ 295 static VhostVDPAState *vhost_vdpa_net_get_nc_vdpa(VhostVDPAState *s, int i) 296 { 297 NICState *nic = qemu_get_nic(s->nc.peer); 298 NetClientState *nc_i = qemu_get_peer(nic->ncs, i); 299 300 return DO_UPCAST(VhostVDPAState, nc, nc_i); 301 } 302 303 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s) 304 { 305 return vhost_vdpa_net_get_nc_vdpa(s, 0); 306 } 307 308 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable) 309 { 310 struct vhost_vdpa *v = &s->vhost_vdpa; 311 VirtIONet *n; 312 VirtIODevice *vdev; 313 int data_queue_pairs, cvq, r; 314 315 /* We are only called on the first data vqs and only if x-svq is not set */ 316 if (s->vhost_vdpa.shadow_vqs_enabled == enable) { 317 return; 318 } 319 320 vdev = v->dev->vdev; 321 n = VIRTIO_NET(vdev); 322 if (!n->vhost_started) { 323 return; 324 } 325 326 data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1; 327 cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ? 328 n->max_ncs - n->max_queue_pairs : 0; 329 v->shared->svq_switching = enable ? 330 SVQ_TSTATE_ENABLING : SVQ_TSTATE_DISABLING; 331 /* 332 * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter 333 * in the future and resume the device if read-only operations between 334 * suspend and reset goes wrong. 335 */ 336 vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq); 337 338 /* Start will check migration setup_or_active to configure or not SVQ */ 339 r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq); 340 if (unlikely(r < 0)) { 341 error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r); 342 } 343 v->shared->svq_switching = SVQ_TSTATE_DONE; 344 } 345 346 static int vdpa_net_migration_state_notifier(NotifierWithReturn *notifier, 347 MigrationEvent *e, Error **errp) 348 { 349 VhostVDPAState *s = container_of(notifier, VhostVDPAState, migration_state); 350 351 if (e->type == MIG_EVENT_PRECOPY_SETUP) { 352 vhost_vdpa_net_log_global_enable(s, true); 353 } else if (e->type == MIG_EVENT_PRECOPY_FAILED) { 354 vhost_vdpa_net_log_global_enable(s, false); 355 } 356 return 0; 357 } 358 359 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s) 360 { 361 struct vhost_vdpa *v = &s->vhost_vdpa; 362 363 migration_add_notifier(&s->migration_state, 364 vdpa_net_migration_state_notifier); 365 if (v->shadow_vqs_enabled) { 366 v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first, 367 v->shared->iova_range.last); 368 } 369 } 370 371 static int vhost_vdpa_net_data_start(NetClientState *nc) 372 { 373 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 374 struct vhost_vdpa *v = &s->vhost_vdpa; 375 376 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 377 378 if (s->always_svq || migration_is_running()) { 379 v->shadow_vqs_enabled = true; 380 } else { 381 v->shadow_vqs_enabled = false; 382 } 383 384 if (v->index == 0) { 385 v->shared->shadow_data = v->shadow_vqs_enabled; 386 vhost_vdpa_net_data_start_first(s); 387 return 0; 388 } 389 390 return 0; 391 } 392 393 static int vhost_vdpa_net_data_load(NetClientState *nc) 394 { 395 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 396 struct vhost_vdpa *v = &s->vhost_vdpa; 397 bool has_cvq = v->dev->vq_index_end % 2; 398 399 if (has_cvq) { 400 return 0; 401 } 402 403 for (int i = 0; i < v->dev->nvqs; ++i) { 404 int ret = vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index); 405 if (ret < 0) { 406 return ret; 407 } 408 } 409 return 0; 410 } 411 412 static void vhost_vdpa_net_client_stop(NetClientState *nc) 413 { 414 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 415 struct vhost_dev *dev; 416 417 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 418 419 if (s->vhost_vdpa.index == 0) { 420 migration_remove_notifier(&s->migration_state); 421 } 422 423 dev = s->vhost_vdpa.dev; 424 if (dev->vq_index + dev->nvqs == dev->vq_index_end) { 425 g_clear_pointer(&s->vhost_vdpa.shared->iova_tree, 426 vhost_iova_tree_delete); 427 } 428 } 429 430 static NetClientInfo net_vhost_vdpa_info = { 431 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 432 .size = sizeof(VhostVDPAState), 433 .receive = vhost_vdpa_receive, 434 .start = vhost_vdpa_net_data_start, 435 .load = vhost_vdpa_net_data_load, 436 .stop = vhost_vdpa_net_client_stop, 437 .cleanup = vhost_vdpa_cleanup, 438 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 439 .has_ufo = vhost_vdpa_has_ufo, 440 .check_peer_type = vhost_vdpa_check_peer_type, 441 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 442 }; 443 444 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index, 445 Error **errp) 446 { 447 struct vhost_vring_state state = { 448 .index = vq_index, 449 }; 450 int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state); 451 452 if (unlikely(r < 0)) { 453 r = -errno; 454 error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index); 455 return r; 456 } 457 458 return state.num; 459 } 460 461 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v, 462 unsigned vq_group, 463 unsigned asid_num) 464 { 465 struct vhost_vring_state asid = { 466 .index = vq_group, 467 .num = asid_num, 468 }; 469 int r; 470 471 trace_vhost_vdpa_set_address_space_id(v, vq_group, asid_num); 472 473 r = ioctl(v->shared->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid); 474 if (unlikely(r < 0)) { 475 error_report("Can't set vq group %u asid %u, errno=%d (%s)", 476 asid.index, asid.num, errno, g_strerror(errno)); 477 } 478 return r; 479 } 480 481 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr) 482 { 483 VhostIOVATree *tree = v->shared->iova_tree; 484 DMAMap needle = { 485 /* 486 * No need to specify size or to look for more translations since 487 * this contiguous chunk was allocated by us. 488 */ 489 .translated_addr = (hwaddr)(uintptr_t)addr, 490 }; 491 const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle); 492 int r; 493 494 if (unlikely(!map)) { 495 error_report("Cannot locate expected map"); 496 return; 497 } 498 499 r = vhost_vdpa_dma_unmap(v->shared, v->address_space_id, map->iova, 500 map->size + 1); 501 if (unlikely(r != 0)) { 502 error_report("Device cannot unmap: %s(%d)", g_strerror(r), r); 503 } 504 505 vhost_iova_tree_remove(tree, *map); 506 } 507 508 /** Map CVQ buffer. */ 509 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size, 510 bool write) 511 { 512 DMAMap map = {}; 513 int r; 514 515 map.translated_addr = (hwaddr)(uintptr_t)buf; 516 map.size = size - 1; 517 map.perm = write ? IOMMU_RW : IOMMU_RO, 518 r = vhost_iova_tree_map_alloc(v->shared->iova_tree, &map); 519 if (unlikely(r != IOVA_OK)) { 520 error_report("Cannot map injected element"); 521 return r; 522 } 523 524 r = vhost_vdpa_dma_map(v->shared, v->address_space_id, map.iova, 525 vhost_vdpa_net_cvq_cmd_page_len(), buf, !write); 526 if (unlikely(r < 0)) { 527 goto dma_map_err; 528 } 529 530 return 0; 531 532 dma_map_err: 533 vhost_iova_tree_remove(v->shared->iova_tree, map); 534 return r; 535 } 536 537 static int vhost_vdpa_net_cvq_start(NetClientState *nc) 538 { 539 VhostVDPAState *s, *s0; 540 struct vhost_vdpa *v; 541 int64_t cvq_group; 542 int r; 543 Error *err = NULL; 544 545 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 546 547 s = DO_UPCAST(VhostVDPAState, nc, nc); 548 v = &s->vhost_vdpa; 549 550 s0 = vhost_vdpa_net_first_nc_vdpa(s); 551 v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled; 552 s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID; 553 554 if (v->shared->shadow_data) { 555 /* SVQ is already configured for all virtqueues */ 556 goto out; 557 } 558 559 /* 560 * If we early return in these cases SVQ will not be enabled. The migration 561 * will be blocked as long as vhost-vdpa backends will not offer _F_LOG. 562 */ 563 if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) { 564 return 0; 565 } 566 567 if (!s->cvq_isolated) { 568 return 0; 569 } 570 571 cvq_group = vhost_vdpa_get_vring_group(v->shared->device_fd, 572 v->dev->vq_index_end - 1, 573 &err); 574 if (unlikely(cvq_group < 0)) { 575 error_report_err(err); 576 return cvq_group; 577 } 578 579 r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID); 580 if (unlikely(r < 0)) { 581 return r; 582 } 583 584 v->shadow_vqs_enabled = true; 585 s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID; 586 587 out: 588 if (!s->vhost_vdpa.shadow_vqs_enabled) { 589 return 0; 590 } 591 592 /* 593 * If other vhost_vdpa already have an iova_tree, reuse it for simplicity, 594 * whether CVQ shares ASID with guest or not, because: 595 * - Memory listener need access to guest's memory addresses allocated in 596 * the IOVA tree. 597 * - There should be plenty of IOVA address space for both ASID not to 598 * worry about collisions between them. Guest's translations are still 599 * validated with virtio virtqueue_pop so there is no risk for the guest 600 * to access memory that it shouldn't. 601 * 602 * To allocate a iova tree per ASID is doable but it complicates the code 603 * and it is not worth it for the moment. 604 */ 605 if (!v->shared->iova_tree) { 606 v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first, 607 v->shared->iova_range.last); 608 } 609 610 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer, 611 vhost_vdpa_net_cvq_cmd_page_len(), false); 612 if (unlikely(r < 0)) { 613 return r; 614 } 615 616 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status, 617 vhost_vdpa_net_cvq_cmd_page_len(), true); 618 if (unlikely(r < 0)) { 619 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 620 } 621 622 return r; 623 } 624 625 static void vhost_vdpa_net_cvq_stop(NetClientState *nc) 626 { 627 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 628 629 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 630 631 if (s->vhost_vdpa.shadow_vqs_enabled) { 632 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 633 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status); 634 } 635 636 vhost_vdpa_net_client_stop(nc); 637 } 638 639 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s, 640 const struct iovec *out_sg, size_t out_num, 641 const struct iovec *in_sg, size_t in_num) 642 { 643 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 644 int r; 645 646 r = vhost_svq_add(svq, out_sg, out_num, in_sg, in_num, NULL); 647 if (unlikely(r != 0)) { 648 if (unlikely(r == -ENOSPC)) { 649 qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n", 650 __func__); 651 } 652 } 653 654 return r; 655 } 656 657 /* 658 * Convenience wrapper to poll SVQ for multiple control commands. 659 * 660 * Caller should hold the BQL when invoking this function, and should take 661 * the answer before SVQ pulls by itself when BQL is released. 662 */ 663 static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight) 664 { 665 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 666 return vhost_svq_poll(svq, cmds_in_flight); 667 } 668 669 static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s, 670 struct iovec *out_cursor, 671 struct iovec *in_cursor) 672 { 673 /* reset the cursor of the output buffer for the device */ 674 out_cursor->iov_base = s->cvq_cmd_out_buffer; 675 out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 676 677 /* reset the cursor of the in buffer for the device */ 678 in_cursor->iov_base = s->status; 679 in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 680 } 681 682 /* 683 * Poll SVQ for multiple pending control commands and check the device's ack. 684 * 685 * Caller should hold the BQL when invoking this function. 686 * 687 * @s: The VhostVDPAState 688 * @len: The length of the pending status shadow buffer 689 */ 690 static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len) 691 { 692 /* device uses a one-byte length ack for each control command */ 693 ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len); 694 if (unlikely(dev_written != len)) { 695 return -EIO; 696 } 697 698 /* check the device's ack */ 699 for (int i = 0; i < len; ++i) { 700 if (s->status[i] != VIRTIO_NET_OK) { 701 return -EIO; 702 } 703 } 704 return 0; 705 } 706 707 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s, 708 struct iovec *out_cursor, 709 struct iovec *in_cursor, uint8_t class, 710 uint8_t cmd, const struct iovec *data_sg, 711 size_t data_num) 712 { 713 const struct virtio_net_ctrl_hdr ctrl = { 714 .class = class, 715 .cmd = cmd, 716 }; 717 size_t data_size = iov_size(data_sg, data_num), cmd_size; 718 struct iovec out, in; 719 ssize_t r; 720 unsigned dummy_cursor_iov_cnt; 721 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 722 723 assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl)); 724 cmd_size = sizeof(ctrl) + data_size; 725 trace_vhost_vdpa_net_load_cmd(s, class, cmd, data_num, data_size); 726 if (vhost_svq_available_slots(svq) < 2 || 727 iov_size(out_cursor, 1) < cmd_size) { 728 /* 729 * It is time to flush all pending control commands if SVQ is full 730 * or control commands shadow buffers are full. 731 * 732 * We can poll here since we've had BQL from the time 733 * we sent the descriptor. 734 */ 735 r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base - 736 (void *)s->status); 737 if (unlikely(r < 0)) { 738 return r; 739 } 740 741 vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor); 742 } 743 744 /* pack the CVQ command header */ 745 iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl)); 746 /* pack the CVQ command command-specific-data */ 747 iov_to_buf(data_sg, data_num, 0, 748 out_cursor->iov_base + sizeof(ctrl), data_size); 749 750 /* extract the required buffer from the cursor for output */ 751 iov_copy(&out, 1, out_cursor, 1, 0, cmd_size); 752 /* extract the required buffer from the cursor for input */ 753 iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status)); 754 755 r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1); 756 if (unlikely(r < 0)) { 757 trace_vhost_vdpa_net_load_cmd_retval(s, class, cmd, r); 758 return r; 759 } 760 761 /* iterate the cursors */ 762 dummy_cursor_iov_cnt = 1; 763 iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size); 764 dummy_cursor_iov_cnt = 1; 765 iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status)); 766 767 return 0; 768 } 769 770 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n, 771 struct iovec *out_cursor, 772 struct iovec *in_cursor) 773 { 774 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) { 775 const struct iovec data = { 776 .iov_base = (void *)n->mac, 777 .iov_len = sizeof(n->mac), 778 }; 779 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 780 VIRTIO_NET_CTRL_MAC, 781 VIRTIO_NET_CTRL_MAC_ADDR_SET, 782 &data, 1); 783 if (unlikely(r < 0)) { 784 return r; 785 } 786 } 787 788 /* 789 * According to VirtIO standard, "The device MUST have an 790 * empty MAC filtering table on reset.". 791 * 792 * Therefore, there is no need to send this CVQ command if the 793 * driver also sets an empty MAC filter table, which aligns with 794 * the device's defaults. 795 * 796 * Note that the device's defaults can mismatch the driver's 797 * configuration only at live migration. 798 */ 799 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) || 800 n->mac_table.in_use == 0) { 801 return 0; 802 } 803 804 uint32_t uni_entries = n->mac_table.first_multi, 805 uni_macs_size = uni_entries * ETH_ALEN, 806 mul_entries = n->mac_table.in_use - uni_entries, 807 mul_macs_size = mul_entries * ETH_ALEN; 808 struct virtio_net_ctrl_mac uni = { 809 .entries = cpu_to_le32(uni_entries), 810 }; 811 struct virtio_net_ctrl_mac mul = { 812 .entries = cpu_to_le32(mul_entries), 813 }; 814 const struct iovec data[] = { 815 { 816 .iov_base = &uni, 817 .iov_len = sizeof(uni), 818 }, { 819 .iov_base = n->mac_table.macs, 820 .iov_len = uni_macs_size, 821 }, { 822 .iov_base = &mul, 823 .iov_len = sizeof(mul), 824 }, { 825 .iov_base = &n->mac_table.macs[uni_macs_size], 826 .iov_len = mul_macs_size, 827 }, 828 }; 829 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 830 VIRTIO_NET_CTRL_MAC, 831 VIRTIO_NET_CTRL_MAC_TABLE_SET, 832 data, ARRAY_SIZE(data)); 833 if (unlikely(r < 0)) { 834 return r; 835 } 836 837 return 0; 838 } 839 840 static int vhost_vdpa_net_load_rss(VhostVDPAState *s, const VirtIONet *n, 841 struct iovec *out_cursor, 842 struct iovec *in_cursor, bool do_rss) 843 { 844 struct virtio_net_rss_config cfg = {}; 845 ssize_t r; 846 g_autofree uint16_t *table = NULL; 847 848 /* 849 * According to VirtIO standard, "Initially the device has all hash 850 * types disabled and reports only VIRTIO_NET_HASH_REPORT_NONE.". 851 * 852 * Therefore, there is no need to send this CVQ command if the 853 * driver disables the all hash types, which aligns with 854 * the device's defaults. 855 * 856 * Note that the device's defaults can mismatch the driver's 857 * configuration only at live migration. 858 */ 859 if (!n->rss_data.enabled || 860 n->rss_data.hash_types == VIRTIO_NET_HASH_REPORT_NONE) { 861 return 0; 862 } 863 864 table = g_malloc_n(n->rss_data.indirections_len, 865 sizeof(n->rss_data.indirections_table[0])); 866 cfg.hash_types = cpu_to_le32(n->rss_data.hash_types); 867 868 if (do_rss) { 869 /* 870 * According to VirtIO standard, "Number of entries in indirection_table 871 * is (indirection_table_mask + 1)". 872 */ 873 cfg.indirection_table_mask = cpu_to_le16(n->rss_data.indirections_len - 874 1); 875 cfg.unclassified_queue = cpu_to_le16(n->rss_data.default_queue); 876 for (int i = 0; i < n->rss_data.indirections_len; ++i) { 877 table[i] = cpu_to_le16(n->rss_data.indirections_table[i]); 878 } 879 cfg.max_tx_vq = cpu_to_le16(n->curr_queue_pairs); 880 } else { 881 /* 882 * According to VirtIO standard, "Field reserved MUST contain zeroes. 883 * It is defined to make the structure to match the layout of 884 * virtio_net_rss_config structure, defined in 5.1.6.5.7.". 885 * 886 * Therefore, we need to zero the fields in 887 * struct virtio_net_rss_config, which corresponds to the 888 * `reserved` field in struct virtio_net_hash_config. 889 * 890 * Note that all other fields are zeroed at their definitions, 891 * except for the `indirection_table` field, where the actual data 892 * is stored in the `table` variable to ensure compatibility 893 * with RSS case. Therefore, we need to zero the `table` variable here. 894 */ 895 table[0] = 0; 896 } 897 898 /* 899 * Considering that virtio_net_handle_rss() currently does not restore 900 * the hash key length parsed from the CVQ command sent from the guest 901 * into n->rss_data and uses the maximum key length in other code, so 902 * we also employ the maximum key length here. 903 */ 904 cfg.hash_key_length = sizeof(n->rss_data.key); 905 906 const struct iovec data[] = { 907 { 908 .iov_base = &cfg, 909 .iov_len = offsetof(struct virtio_net_rss_config, 910 indirection_table), 911 }, { 912 .iov_base = table, 913 .iov_len = n->rss_data.indirections_len * 914 sizeof(n->rss_data.indirections_table[0]), 915 }, { 916 .iov_base = &cfg.max_tx_vq, 917 .iov_len = offsetof(struct virtio_net_rss_config, hash_key_data) - 918 offsetof(struct virtio_net_rss_config, max_tx_vq), 919 }, { 920 .iov_base = (void *)n->rss_data.key, 921 .iov_len = sizeof(n->rss_data.key), 922 } 923 }; 924 925 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 926 VIRTIO_NET_CTRL_MQ, 927 do_rss ? VIRTIO_NET_CTRL_MQ_RSS_CONFIG : 928 VIRTIO_NET_CTRL_MQ_HASH_CONFIG, 929 data, ARRAY_SIZE(data)); 930 if (unlikely(r < 0)) { 931 return r; 932 } 933 934 return 0; 935 } 936 937 static int vhost_vdpa_net_load_mq(VhostVDPAState *s, 938 const VirtIONet *n, 939 struct iovec *out_cursor, 940 struct iovec *in_cursor) 941 { 942 struct virtio_net_ctrl_mq mq; 943 ssize_t r; 944 945 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) { 946 return 0; 947 } 948 949 trace_vhost_vdpa_net_load_mq(s, n->curr_queue_pairs); 950 951 mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs); 952 const struct iovec data = { 953 .iov_base = &mq, 954 .iov_len = sizeof(mq), 955 }; 956 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 957 VIRTIO_NET_CTRL_MQ, 958 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET, 959 &data, 1); 960 if (unlikely(r < 0)) { 961 return r; 962 } 963 964 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_RSS)) { 965 /* load the receive-side scaling state */ 966 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, true); 967 if (unlikely(r < 0)) { 968 return r; 969 } 970 } else if (virtio_vdev_has_feature(&n->parent_obj, 971 VIRTIO_NET_F_HASH_REPORT)) { 972 /* load the hash calculation state */ 973 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, false); 974 if (unlikely(r < 0)) { 975 return r; 976 } 977 } 978 979 return 0; 980 } 981 982 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s, 983 const VirtIONet *n, 984 struct iovec *out_cursor, 985 struct iovec *in_cursor) 986 { 987 uint64_t offloads; 988 ssize_t r; 989 990 if (!virtio_vdev_has_feature(&n->parent_obj, 991 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) { 992 return 0; 993 } 994 995 if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) { 996 /* 997 * According to VirtIO standard, "Upon feature negotiation 998 * corresponding offload gets enabled to preserve 999 * backward compatibility.". 1000 * 1001 * Therefore, there is no need to send this CVQ command if the 1002 * driver also enables all supported offloads, which aligns with 1003 * the device's defaults. 1004 * 1005 * Note that the device's defaults can mismatch the driver's 1006 * configuration only at live migration. 1007 */ 1008 return 0; 1009 } 1010 1011 offloads = cpu_to_le64(n->curr_guest_offloads); 1012 const struct iovec data = { 1013 .iov_base = &offloads, 1014 .iov_len = sizeof(offloads), 1015 }; 1016 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1017 VIRTIO_NET_CTRL_GUEST_OFFLOADS, 1018 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET, 1019 &data, 1); 1020 if (unlikely(r < 0)) { 1021 return r; 1022 } 1023 1024 return 0; 1025 } 1026 1027 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s, 1028 struct iovec *out_cursor, 1029 struct iovec *in_cursor, 1030 uint8_t cmd, 1031 uint8_t on) 1032 { 1033 const struct iovec data = { 1034 .iov_base = &on, 1035 .iov_len = sizeof(on), 1036 }; 1037 ssize_t r; 1038 1039 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1040 VIRTIO_NET_CTRL_RX, cmd, &data, 1); 1041 if (unlikely(r < 0)) { 1042 return r; 1043 } 1044 1045 return 0; 1046 } 1047 1048 static int vhost_vdpa_net_load_rx(VhostVDPAState *s, 1049 const VirtIONet *n, 1050 struct iovec *out_cursor, 1051 struct iovec *in_cursor) 1052 { 1053 ssize_t r; 1054 1055 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) { 1056 return 0; 1057 } 1058 1059 /* 1060 * According to virtio_net_reset(), device turns promiscuous mode 1061 * on by default. 1062 * 1063 * Additionally, according to VirtIO standard, "Since there are 1064 * no guarantees, it can use a hash filter or silently switch to 1065 * allmulti or promiscuous mode if it is given too many addresses.". 1066 * QEMU marks `n->mac_table.uni_overflow` if guest sets too many 1067 * non-multicast MAC addresses, indicating that promiscuous mode 1068 * should be enabled. 1069 * 1070 * Therefore, QEMU should only send this CVQ command if the 1071 * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off, 1072 * which sets promiscuous mode on, different from the device's defaults. 1073 * 1074 * Note that the device's defaults can mismatch the driver's 1075 * configuration only at live migration. 1076 */ 1077 if (!n->mac_table.uni_overflow && !n->promisc) { 1078 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1079 VIRTIO_NET_CTRL_RX_PROMISC, 0); 1080 if (unlikely(r < 0)) { 1081 return r; 1082 } 1083 } 1084 1085 /* 1086 * According to virtio_net_reset(), device turns all-multicast mode 1087 * off by default. 1088 * 1089 * According to VirtIO standard, "Since there are no guarantees, 1090 * it can use a hash filter or silently switch to allmulti or 1091 * promiscuous mode if it is given too many addresses.". QEMU marks 1092 * `n->mac_table.multi_overflow` if guest sets too many 1093 * non-multicast MAC addresses. 1094 * 1095 * Therefore, QEMU should only send this CVQ command if the 1096 * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on, 1097 * which sets all-multicast mode on, different from the device's defaults. 1098 * 1099 * Note that the device's defaults can mismatch the driver's 1100 * configuration only at live migration. 1101 */ 1102 if (n->mac_table.multi_overflow || n->allmulti) { 1103 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1104 VIRTIO_NET_CTRL_RX_ALLMULTI, 1); 1105 if (unlikely(r < 0)) { 1106 return r; 1107 } 1108 } 1109 1110 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) { 1111 return 0; 1112 } 1113 1114 /* 1115 * According to virtio_net_reset(), device turns all-unicast mode 1116 * off by default. 1117 * 1118 * Therefore, QEMU should only send this CVQ command if the driver 1119 * sets all-unicast mode on, different from the device's defaults. 1120 * 1121 * Note that the device's defaults can mismatch the driver's 1122 * configuration only at live migration. 1123 */ 1124 if (n->alluni) { 1125 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1126 VIRTIO_NET_CTRL_RX_ALLUNI, 1); 1127 if (r < 0) { 1128 return r; 1129 } 1130 } 1131 1132 /* 1133 * According to virtio_net_reset(), device turns non-multicast mode 1134 * off by default. 1135 * 1136 * Therefore, QEMU should only send this CVQ command if the driver 1137 * sets non-multicast mode on, different from the device's defaults. 1138 * 1139 * Note that the device's defaults can mismatch the driver's 1140 * configuration only at live migration. 1141 */ 1142 if (n->nomulti) { 1143 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1144 VIRTIO_NET_CTRL_RX_NOMULTI, 1); 1145 if (r < 0) { 1146 return r; 1147 } 1148 } 1149 1150 /* 1151 * According to virtio_net_reset(), device turns non-unicast mode 1152 * off by default. 1153 * 1154 * Therefore, QEMU should only send this CVQ command if the driver 1155 * sets non-unicast mode on, different from the device's defaults. 1156 * 1157 * Note that the device's defaults can mismatch the driver's 1158 * configuration only at live migration. 1159 */ 1160 if (n->nouni) { 1161 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1162 VIRTIO_NET_CTRL_RX_NOUNI, 1); 1163 if (r < 0) { 1164 return r; 1165 } 1166 } 1167 1168 /* 1169 * According to virtio_net_reset(), device turns non-broadcast mode 1170 * off by default. 1171 * 1172 * Therefore, QEMU should only send this CVQ command if the driver 1173 * sets non-broadcast mode on, different from the device's defaults. 1174 * 1175 * Note that the device's defaults can mismatch the driver's 1176 * configuration only at live migration. 1177 */ 1178 if (n->nobcast) { 1179 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1180 VIRTIO_NET_CTRL_RX_NOBCAST, 1); 1181 if (r < 0) { 1182 return r; 1183 } 1184 } 1185 1186 return 0; 1187 } 1188 1189 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s, 1190 const VirtIONet *n, 1191 struct iovec *out_cursor, 1192 struct iovec *in_cursor, 1193 uint16_t vid) 1194 { 1195 const struct iovec data = { 1196 .iov_base = &vid, 1197 .iov_len = sizeof(vid), 1198 }; 1199 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1200 VIRTIO_NET_CTRL_VLAN, 1201 VIRTIO_NET_CTRL_VLAN_ADD, 1202 &data, 1); 1203 if (unlikely(r < 0)) { 1204 return r; 1205 } 1206 1207 return 0; 1208 } 1209 1210 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s, 1211 const VirtIONet *n, 1212 struct iovec *out_cursor, 1213 struct iovec *in_cursor) 1214 { 1215 int r; 1216 1217 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) { 1218 return 0; 1219 } 1220 1221 for (int i = 0; i < MAX_VLAN >> 5; i++) { 1222 for (int j = 0; n->vlans[i] && j <= 0x1f; j++) { 1223 if (n->vlans[i] & (1U << j)) { 1224 r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor, 1225 in_cursor, (i << 5) + j); 1226 if (unlikely(r != 0)) { 1227 return r; 1228 } 1229 } 1230 } 1231 } 1232 1233 return 0; 1234 } 1235 1236 static int vhost_vdpa_net_cvq_load(NetClientState *nc) 1237 { 1238 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 1239 struct vhost_vdpa *v = &s->vhost_vdpa; 1240 const VirtIONet *n; 1241 int r; 1242 struct iovec out_cursor, in_cursor; 1243 1244 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1245 1246 r = vhost_vdpa_set_vring_ready(v, v->dev->vq_index); 1247 if (unlikely(r < 0)) { 1248 return r; 1249 } 1250 1251 if (v->shadow_vqs_enabled) { 1252 n = VIRTIO_NET(v->dev->vdev); 1253 vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor); 1254 r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor); 1255 if (unlikely(r < 0)) { 1256 return r; 1257 } 1258 r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor); 1259 if (unlikely(r)) { 1260 return r; 1261 } 1262 r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor); 1263 if (unlikely(r)) { 1264 return r; 1265 } 1266 r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor); 1267 if (unlikely(r)) { 1268 return r; 1269 } 1270 r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor); 1271 if (unlikely(r)) { 1272 return r; 1273 } 1274 1275 /* 1276 * We need to poll and check all pending device's used buffers. 1277 * 1278 * We can poll here since we've had BQL from the time 1279 * we sent the descriptor. 1280 */ 1281 r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status); 1282 if (unlikely(r)) { 1283 return r; 1284 } 1285 } 1286 1287 for (int i = 0; i < v->dev->vq_index; ++i) { 1288 r = vhost_vdpa_set_vring_ready(v, i); 1289 if (unlikely(r < 0)) { 1290 return r; 1291 } 1292 } 1293 1294 return 0; 1295 } 1296 1297 static NetClientInfo net_vhost_vdpa_cvq_info = { 1298 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 1299 .size = sizeof(VhostVDPAState), 1300 .receive = vhost_vdpa_receive, 1301 .start = vhost_vdpa_net_cvq_start, 1302 .load = vhost_vdpa_net_cvq_load, 1303 .stop = vhost_vdpa_net_cvq_stop, 1304 .cleanup = vhost_vdpa_cleanup, 1305 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 1306 .has_ufo = vhost_vdpa_has_ufo, 1307 .check_peer_type = vhost_vdpa_check_peer_type, 1308 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 1309 }; 1310 1311 /* 1312 * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to 1313 * vdpa device. 1314 * 1315 * Considering that QEMU cannot send the entire filter table to the 1316 * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ 1317 * command to enable promiscuous mode to receive all packets, 1318 * according to VirtIO standard, "Since there are no guarantees, 1319 * it can use a hash filter or silently switch to allmulti or 1320 * promiscuous mode if it is given too many addresses.". 1321 * 1322 * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and 1323 * marks `n->mac_table.x_overflow` accordingly, it should have 1324 * the same effect on the device model to receive 1325 * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses. 1326 * The same applies to multicast MAC addresses. 1327 * 1328 * Therefore, QEMU can provide the device model with a fake 1329 * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1) 1330 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast 1331 * MAC addresses. This ensures that the device model marks 1332 * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`, 1333 * allowing all packets to be received, which aligns with the 1334 * state of the vdpa device. 1335 */ 1336 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s, 1337 VirtQueueElement *elem, 1338 struct iovec *out, 1339 const struct iovec *in) 1340 { 1341 struct virtio_net_ctrl_mac mac_data, *mac_ptr; 1342 struct virtio_net_ctrl_hdr *hdr_ptr; 1343 uint32_t cursor; 1344 ssize_t r; 1345 uint8_t on = 1; 1346 1347 /* parse the non-multicast MAC address entries from CVQ command */ 1348 cursor = sizeof(*hdr_ptr); 1349 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1350 &mac_data, sizeof(mac_data)); 1351 if (unlikely(r != sizeof(mac_data))) { 1352 /* 1353 * If the CVQ command is invalid, we should simulate the vdpa device 1354 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1355 */ 1356 *s->status = VIRTIO_NET_ERR; 1357 return sizeof(*s->status); 1358 } 1359 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1360 1361 /* parse the multicast MAC address entries from CVQ command */ 1362 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1363 &mac_data, sizeof(mac_data)); 1364 if (r != sizeof(mac_data)) { 1365 /* 1366 * If the CVQ command is invalid, we should simulate the vdpa device 1367 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1368 */ 1369 *s->status = VIRTIO_NET_ERR; 1370 return sizeof(*s->status); 1371 } 1372 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1373 1374 /* validate the CVQ command */ 1375 if (iov_size(elem->out_sg, elem->out_num) != cursor) { 1376 /* 1377 * If the CVQ command is invalid, we should simulate the vdpa device 1378 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1379 */ 1380 *s->status = VIRTIO_NET_ERR; 1381 return sizeof(*s->status); 1382 } 1383 1384 /* 1385 * According to VirtIO standard, "Since there are no guarantees, 1386 * it can use a hash filter or silently switch to allmulti or 1387 * promiscuous mode if it is given too many addresses.". 1388 * 1389 * Therefore, considering that QEMU is unable to send the entire 1390 * filter table to the vdpa device, it should send the 1391 * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode 1392 */ 1393 hdr_ptr = out->iov_base; 1394 out->iov_len = sizeof(*hdr_ptr) + sizeof(on); 1395 1396 hdr_ptr->class = VIRTIO_NET_CTRL_RX; 1397 hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC; 1398 iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on)); 1399 r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1); 1400 if (unlikely(r < 0)) { 1401 return r; 1402 } 1403 1404 /* 1405 * We can poll here since we've had BQL from the time 1406 * we sent the descriptor. 1407 */ 1408 r = vhost_vdpa_net_svq_poll(s, 1); 1409 if (unlikely(r < sizeof(*s->status))) { 1410 return r; 1411 } 1412 if (*s->status != VIRTIO_NET_OK) { 1413 return sizeof(*s->status); 1414 } 1415 1416 /* 1417 * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ 1418 * command to the device model, including (`MAC_TABLE_ENTRIES` + 1) 1419 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) 1420 * multicast MAC addresses. 1421 * 1422 * By doing so, the device model can mark `n->mac_table.uni_overflow` 1423 * and `n->mac_table.multi_overflow`, enabling all packets to be 1424 * received, which aligns with the state of the vdpa device. 1425 */ 1426 cursor = 0; 1427 uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1, 1428 fake_mul_entries = MAC_TABLE_ENTRIES + 1, 1429 fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) + 1430 sizeof(mac_data) + fake_uni_entries * ETH_ALEN + 1431 sizeof(mac_data) + fake_mul_entries * ETH_ALEN; 1432 1433 assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len()); 1434 out->iov_len = fake_cvq_size; 1435 1436 /* pack the header for fake CVQ command */ 1437 hdr_ptr = out->iov_base + cursor; 1438 hdr_ptr->class = VIRTIO_NET_CTRL_MAC; 1439 hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 1440 cursor += sizeof(*hdr_ptr); 1441 1442 /* 1443 * Pack the non-multicast MAC addresses part for fake CVQ command. 1444 * 1445 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1446 * addresses provided in CVQ command. Therefore, only the entries 1447 * field need to be prepared in the CVQ command. 1448 */ 1449 mac_ptr = out->iov_base + cursor; 1450 mac_ptr->entries = cpu_to_le32(fake_uni_entries); 1451 cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN; 1452 1453 /* 1454 * Pack the multicast MAC addresses part for fake CVQ command. 1455 * 1456 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1457 * addresses provided in CVQ command. Therefore, only the entries 1458 * field need to be prepared in the CVQ command. 1459 */ 1460 mac_ptr = out->iov_base + cursor; 1461 mac_ptr->entries = cpu_to_le32(fake_mul_entries); 1462 1463 /* 1464 * Simulating QEMU poll a vdpa device used buffer 1465 * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1466 */ 1467 return sizeof(*s->status); 1468 } 1469 1470 /** 1471 * Validate and copy control virtqueue commands. 1472 * 1473 * Following QEMU guidelines, we offer a copy of the buffers to the device to 1474 * prevent TOCTOU bugs. 1475 */ 1476 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq, 1477 VirtQueueElement *elem, 1478 void *opaque) 1479 { 1480 VhostVDPAState *s = opaque; 1481 size_t in_len; 1482 const struct virtio_net_ctrl_hdr *ctrl; 1483 virtio_net_ctrl_ack status = VIRTIO_NET_ERR; 1484 /* Out buffer sent to both the vdpa device and the device model */ 1485 struct iovec out = { 1486 .iov_base = s->cvq_cmd_out_buffer, 1487 }; 1488 /* in buffer used for device model */ 1489 const struct iovec model_in = { 1490 .iov_base = &status, 1491 .iov_len = sizeof(status), 1492 }; 1493 /* in buffer used for vdpa device */ 1494 const struct iovec vdpa_in = { 1495 .iov_base = s->status, 1496 .iov_len = sizeof(*s->status), 1497 }; 1498 ssize_t dev_written = -EINVAL; 1499 1500 out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0, 1501 s->cvq_cmd_out_buffer, 1502 vhost_vdpa_net_cvq_cmd_page_len()); 1503 1504 ctrl = s->cvq_cmd_out_buffer; 1505 if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) { 1506 /* 1507 * Guest announce capability is emulated by qemu, so don't forward to 1508 * the device. 1509 */ 1510 dev_written = sizeof(status); 1511 *s->status = VIRTIO_NET_OK; 1512 } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC && 1513 ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET && 1514 iov_size(elem->out_sg, elem->out_num) > out.iov_len)) { 1515 /* 1516 * Due to the size limitation of the out buffer sent to the vdpa device, 1517 * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive 1518 * MAC addresses set by the driver for the filter table can cause 1519 * truncation of the CVQ command in QEMU. As a result, the vdpa device 1520 * rejects the flawed CVQ command. 1521 * 1522 * Therefore, QEMU must handle this situation instead of sending 1523 * the CVQ command directly. 1524 */ 1525 dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem, 1526 &out, &vdpa_in); 1527 if (unlikely(dev_written < 0)) { 1528 goto out; 1529 } 1530 } else { 1531 ssize_t r; 1532 r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1); 1533 if (unlikely(r < 0)) { 1534 dev_written = r; 1535 goto out; 1536 } 1537 1538 /* 1539 * We can poll here since we've had BQL from the time 1540 * we sent the descriptor. 1541 */ 1542 dev_written = vhost_vdpa_net_svq_poll(s, 1); 1543 } 1544 1545 if (unlikely(dev_written < sizeof(status))) { 1546 error_report("Insufficient written data (%zu)", dev_written); 1547 goto out; 1548 } 1549 1550 if (*s->status != VIRTIO_NET_OK) { 1551 goto out; 1552 } 1553 1554 status = VIRTIO_NET_ERR; 1555 virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1); 1556 if (status != VIRTIO_NET_OK) { 1557 error_report("Bad CVQ processing in model"); 1558 } 1559 1560 out: 1561 in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status, 1562 sizeof(status)); 1563 if (unlikely(in_len < sizeof(status))) { 1564 error_report("Bad device CVQ written length"); 1565 } 1566 vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status))); 1567 /* 1568 * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when 1569 * the function successfully forwards the CVQ command, indicated 1570 * by a non-negative value of `dev_written`. Otherwise, it still 1571 * belongs to SVQ. 1572 * This function should only free the `elem` when it owns. 1573 */ 1574 if (dev_written >= 0) { 1575 g_free(elem); 1576 } 1577 return dev_written < 0 ? dev_written : 0; 1578 } 1579 1580 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = { 1581 .avail_handler = vhost_vdpa_net_handle_ctrl_avail, 1582 }; 1583 1584 /** 1585 * Probe if CVQ is isolated 1586 * 1587 * @device_fd The vdpa device fd 1588 * @features Features offered by the device. 1589 * @cvq_index The control vq pair index 1590 * 1591 * Returns <0 in case of failure, 0 if false and 1 if true. 1592 */ 1593 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features, 1594 int cvq_index, Error **errp) 1595 { 1596 ERRP_GUARD(); 1597 uint64_t backend_features; 1598 int64_t cvq_group; 1599 uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE | 1600 VIRTIO_CONFIG_S_DRIVER; 1601 int r; 1602 1603 r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features); 1604 if (unlikely(r < 0)) { 1605 error_setg_errno(errp, errno, "Cannot get vdpa backend_features"); 1606 return r; 1607 } 1608 1609 if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) { 1610 return 0; 1611 } 1612 1613 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1614 if (unlikely(r)) { 1615 error_setg_errno(errp, -r, "Cannot set device status"); 1616 goto out; 1617 } 1618 1619 r = ioctl(device_fd, VHOST_SET_FEATURES, &features); 1620 if (unlikely(r)) { 1621 error_setg_errno(errp, -r, "Cannot set features"); 1622 goto out; 1623 } 1624 1625 status |= VIRTIO_CONFIG_S_FEATURES_OK; 1626 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1627 if (unlikely(r)) { 1628 error_setg_errno(errp, -r, "Cannot set device status"); 1629 goto out; 1630 } 1631 1632 cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp); 1633 if (unlikely(cvq_group < 0)) { 1634 if (cvq_group != -ENOTSUP) { 1635 r = cvq_group; 1636 goto out; 1637 } 1638 1639 /* 1640 * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend 1641 * support ASID even if the parent driver does not. The CVQ cannot be 1642 * isolated in this case. 1643 */ 1644 error_free(*errp); 1645 *errp = NULL; 1646 r = 0; 1647 goto out; 1648 } 1649 1650 for (int i = 0; i < cvq_index; ++i) { 1651 int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp); 1652 if (unlikely(group < 0)) { 1653 r = group; 1654 goto out; 1655 } 1656 1657 if (group == (int64_t)cvq_group) { 1658 r = 0; 1659 goto out; 1660 } 1661 } 1662 1663 r = 1; 1664 1665 out: 1666 status = 0; 1667 ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1668 return r; 1669 } 1670 1671 static NetClientState *net_vhost_vdpa_init(NetClientState *peer, 1672 const char *device, 1673 const char *name, 1674 int vdpa_device_fd, 1675 int queue_pair_index, 1676 int nvqs, 1677 bool is_datapath, 1678 bool svq, 1679 struct vhost_vdpa_iova_range iova_range, 1680 uint64_t features, 1681 VhostVDPAShared *shared, 1682 Error **errp) 1683 { 1684 NetClientState *nc = NULL; 1685 VhostVDPAState *s; 1686 int ret = 0; 1687 assert(name); 1688 int cvq_isolated = 0; 1689 1690 if (is_datapath) { 1691 nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device, 1692 name); 1693 } else { 1694 cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features, 1695 queue_pair_index * 2, 1696 errp); 1697 if (unlikely(cvq_isolated < 0)) { 1698 return NULL; 1699 } 1700 1701 nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer, 1702 device, name); 1703 } 1704 qemu_set_info_str(nc, TYPE_VHOST_VDPA); 1705 s = DO_UPCAST(VhostVDPAState, nc, nc); 1706 1707 s->vhost_vdpa.index = queue_pair_index; 1708 s->always_svq = svq; 1709 s->migration_state.notify = NULL; 1710 s->vhost_vdpa.shadow_vqs_enabled = svq; 1711 if (queue_pair_index == 0) { 1712 vhost_vdpa_net_valid_svq_features(features, 1713 &s->vhost_vdpa.migration_blocker); 1714 s->vhost_vdpa.shared = g_new0(VhostVDPAShared, 1); 1715 s->vhost_vdpa.shared->device_fd = vdpa_device_fd; 1716 s->vhost_vdpa.shared->iova_range = iova_range; 1717 s->vhost_vdpa.shared->shadow_data = svq; 1718 } else if (!is_datapath) { 1719 s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1720 PROT_READ | PROT_WRITE, 1721 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1722 s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1723 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 1724 -1, 0); 1725 1726 s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops; 1727 s->vhost_vdpa.shadow_vq_ops_opaque = s; 1728 s->cvq_isolated = cvq_isolated; 1729 } 1730 if (queue_pair_index != 0) { 1731 s->vhost_vdpa.shared = shared; 1732 } 1733 1734 ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs); 1735 if (ret) { 1736 qemu_del_net_client(nc); 1737 return NULL; 1738 } 1739 1740 return nc; 1741 } 1742 1743 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp) 1744 { 1745 int ret = ioctl(fd, VHOST_GET_FEATURES, features); 1746 if (unlikely(ret < 0)) { 1747 error_setg_errno(errp, errno, 1748 "Fail to query features from vhost-vDPA device"); 1749 } 1750 return ret; 1751 } 1752 1753 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features, 1754 int *has_cvq, Error **errp) 1755 { 1756 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 1757 g_autofree struct vhost_vdpa_config *config = NULL; 1758 __virtio16 *max_queue_pairs; 1759 int ret; 1760 1761 if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) { 1762 *has_cvq = 1; 1763 } else { 1764 *has_cvq = 0; 1765 } 1766 1767 if (features & (1 << VIRTIO_NET_F_MQ)) { 1768 config = g_malloc0(config_size + sizeof(*max_queue_pairs)); 1769 config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs); 1770 config->len = sizeof(*max_queue_pairs); 1771 1772 ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config); 1773 if (ret) { 1774 error_setg(errp, "Fail to get config from vhost-vDPA device"); 1775 return -ret; 1776 } 1777 1778 max_queue_pairs = (__virtio16 *)&config->buf; 1779 1780 return lduw_le_p(max_queue_pairs); 1781 } 1782 1783 return 1; 1784 } 1785 1786 int net_init_vhost_vdpa(const Netdev *netdev, const char *name, 1787 NetClientState *peer, Error **errp) 1788 { 1789 ERRP_GUARD(); 1790 const NetdevVhostVDPAOptions *opts; 1791 uint64_t features; 1792 int vdpa_device_fd; 1793 g_autofree NetClientState **ncs = NULL; 1794 struct vhost_vdpa_iova_range iova_range; 1795 NetClientState *nc; 1796 int queue_pairs, r, i = 0, has_cvq = 0; 1797 1798 assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1799 opts = &netdev->u.vhost_vdpa; 1800 if (!opts->vhostdev && !opts->vhostfd) { 1801 error_setg(errp, 1802 "vhost-vdpa: neither vhostdev= nor vhostfd= was specified"); 1803 return -1; 1804 } 1805 1806 if (opts->vhostdev && opts->vhostfd) { 1807 error_setg(errp, 1808 "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive"); 1809 return -1; 1810 } 1811 1812 if (opts->vhostdev) { 1813 vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp); 1814 if (vdpa_device_fd == -1) { 1815 return -errno; 1816 } 1817 } else { 1818 /* has_vhostfd */ 1819 vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp); 1820 if (vdpa_device_fd == -1) { 1821 error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: "); 1822 return -1; 1823 } 1824 } 1825 1826 r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp); 1827 if (unlikely(r < 0)) { 1828 goto err; 1829 } 1830 1831 queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features, 1832 &has_cvq, errp); 1833 if (queue_pairs < 0) { 1834 qemu_close(vdpa_device_fd); 1835 return queue_pairs; 1836 } 1837 1838 r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range); 1839 if (unlikely(r < 0)) { 1840 error_setg(errp, "vhost-vdpa: get iova range failed: %s", 1841 strerror(-r)); 1842 goto err; 1843 } 1844 1845 if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) { 1846 goto err; 1847 } 1848 1849 ncs = g_malloc0(sizeof(*ncs) * queue_pairs); 1850 1851 for (i = 0; i < queue_pairs; i++) { 1852 VhostVDPAShared *shared = NULL; 1853 1854 if (i) { 1855 shared = DO_UPCAST(VhostVDPAState, nc, ncs[0])->vhost_vdpa.shared; 1856 } 1857 ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1858 vdpa_device_fd, i, 2, true, opts->x_svq, 1859 iova_range, features, shared, errp); 1860 if (!ncs[i]) 1861 goto err; 1862 } 1863 1864 if (has_cvq) { 1865 VhostVDPAState *s0 = DO_UPCAST(VhostVDPAState, nc, ncs[0]); 1866 VhostVDPAShared *shared = s0->vhost_vdpa.shared; 1867 1868 nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1869 vdpa_device_fd, i, 1, false, 1870 opts->x_svq, iova_range, features, shared, 1871 errp); 1872 if (!nc) 1873 goto err; 1874 } 1875 1876 return 0; 1877 1878 err: 1879 if (i) { 1880 for (i--; i >= 0; i--) { 1881 qemu_del_net_client(ncs[i]); 1882 } 1883 } 1884 1885 qemu_close(vdpa_device_fd); 1886 1887 return -1; 1888 } 1889