1 /* 2 * vhost-vdpa.c 3 * 4 * Copyright(c) 2017-2018 Intel Corporation. 5 * Copyright(c) 2020 Red Hat, Inc. 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "clients.h" 14 #include "hw/virtio/virtio-net.h" 15 #include "net/vhost_net.h" 16 #include "net/vhost-vdpa.h" 17 #include "hw/virtio/vhost-vdpa.h" 18 #include "qemu/config-file.h" 19 #include "qemu/error-report.h" 20 #include "qemu/log.h" 21 #include "qemu/memalign.h" 22 #include "qemu/option.h" 23 #include "qapi/error.h" 24 #include <linux/vhost.h> 25 #include <sys/ioctl.h> 26 #include <err.h> 27 #include "standard-headers/linux/virtio_net.h" 28 #include "monitor/monitor.h" 29 #include "migration/migration.h" 30 #include "migration/misc.h" 31 #include "hw/virtio/vhost.h" 32 33 /* Todo:need to add the multiqueue support here */ 34 typedef struct VhostVDPAState { 35 NetClientState nc; 36 struct vhost_vdpa vhost_vdpa; 37 Notifier migration_state; 38 VHostNetState *vhost_net; 39 40 /* Control commands shadow buffers */ 41 void *cvq_cmd_out_buffer; 42 virtio_net_ctrl_ack *status; 43 44 /* The device always have SVQ enabled */ 45 bool always_svq; 46 47 /* The device can isolate CVQ in its own ASID */ 48 bool cvq_isolated; 49 50 bool started; 51 } VhostVDPAState; 52 53 /* 54 * The array is sorted alphabetically in ascending order, 55 * with the exception of VHOST_INVALID_FEATURE_BIT, 56 * which should always be the last entry. 57 */ 58 const int vdpa_feature_bits[] = { 59 VIRTIO_F_ANY_LAYOUT, 60 VIRTIO_F_IOMMU_PLATFORM, 61 VIRTIO_F_NOTIFY_ON_EMPTY, 62 VIRTIO_F_RING_PACKED, 63 VIRTIO_F_RING_RESET, 64 VIRTIO_F_VERSION_1, 65 VIRTIO_NET_F_CSUM, 66 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, 67 VIRTIO_NET_F_CTRL_MAC_ADDR, 68 VIRTIO_NET_F_CTRL_RX, 69 VIRTIO_NET_F_CTRL_RX_EXTRA, 70 VIRTIO_NET_F_CTRL_VLAN, 71 VIRTIO_NET_F_CTRL_VQ, 72 VIRTIO_NET_F_GSO, 73 VIRTIO_NET_F_GUEST_CSUM, 74 VIRTIO_NET_F_GUEST_ECN, 75 VIRTIO_NET_F_GUEST_TSO4, 76 VIRTIO_NET_F_GUEST_TSO6, 77 VIRTIO_NET_F_GUEST_UFO, 78 VIRTIO_NET_F_GUEST_USO4, 79 VIRTIO_NET_F_GUEST_USO6, 80 VIRTIO_NET_F_HASH_REPORT, 81 VIRTIO_NET_F_HOST_ECN, 82 VIRTIO_NET_F_HOST_TSO4, 83 VIRTIO_NET_F_HOST_TSO6, 84 VIRTIO_NET_F_HOST_UFO, 85 VIRTIO_NET_F_HOST_USO, 86 VIRTIO_NET_F_MQ, 87 VIRTIO_NET_F_MRG_RXBUF, 88 VIRTIO_NET_F_MTU, 89 VIRTIO_NET_F_RSS, 90 VIRTIO_NET_F_STATUS, 91 VIRTIO_RING_F_EVENT_IDX, 92 VIRTIO_RING_F_INDIRECT_DESC, 93 94 /* VHOST_INVALID_FEATURE_BIT should always be the last entry */ 95 VHOST_INVALID_FEATURE_BIT 96 }; 97 98 /** Supported device specific feature bits with SVQ */ 99 static const uint64_t vdpa_svq_device_features = 100 BIT_ULL(VIRTIO_NET_F_CSUM) | 101 BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) | 102 BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) | 103 BIT_ULL(VIRTIO_NET_F_MTU) | 104 BIT_ULL(VIRTIO_NET_F_MAC) | 105 BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) | 106 BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) | 107 BIT_ULL(VIRTIO_NET_F_GUEST_ECN) | 108 BIT_ULL(VIRTIO_NET_F_GUEST_UFO) | 109 BIT_ULL(VIRTIO_NET_F_HOST_TSO4) | 110 BIT_ULL(VIRTIO_NET_F_HOST_TSO6) | 111 BIT_ULL(VIRTIO_NET_F_HOST_ECN) | 112 BIT_ULL(VIRTIO_NET_F_HOST_UFO) | 113 BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) | 114 BIT_ULL(VIRTIO_NET_F_STATUS) | 115 BIT_ULL(VIRTIO_NET_F_CTRL_VQ) | 116 BIT_ULL(VIRTIO_NET_F_CTRL_RX) | 117 BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) | 118 BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) | 119 BIT_ULL(VIRTIO_NET_F_MQ) | 120 BIT_ULL(VIRTIO_F_ANY_LAYOUT) | 121 BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) | 122 /* VHOST_F_LOG_ALL is exposed by SVQ */ 123 BIT_ULL(VHOST_F_LOG_ALL) | 124 BIT_ULL(VIRTIO_NET_F_HASH_REPORT) | 125 BIT_ULL(VIRTIO_NET_F_RSC_EXT) | 126 BIT_ULL(VIRTIO_NET_F_STANDBY) | 127 BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX); 128 129 #define VHOST_VDPA_NET_CVQ_ASID 1 130 131 VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc) 132 { 133 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 134 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 135 return s->vhost_net; 136 } 137 138 static size_t vhost_vdpa_net_cvq_cmd_len(void) 139 { 140 /* 141 * MAC_TABLE_SET is the ctrl command that produces the longer out buffer. 142 * In buffer is always 1 byte, so it should fit here 143 */ 144 return sizeof(struct virtio_net_ctrl_hdr) + 145 2 * sizeof(struct virtio_net_ctrl_mac) + 146 MAC_TABLE_ENTRIES * ETH_ALEN; 147 } 148 149 static size_t vhost_vdpa_net_cvq_cmd_page_len(void) 150 { 151 return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size()); 152 } 153 154 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp) 155 { 156 uint64_t invalid_dev_features = 157 features & ~vdpa_svq_device_features & 158 /* Transport are all accepted at this point */ 159 ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START, 160 VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START); 161 162 if (invalid_dev_features) { 163 error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64, 164 invalid_dev_features); 165 return false; 166 } 167 168 return vhost_svq_valid_features(features, errp); 169 } 170 171 static int vhost_vdpa_net_check_device_id(struct vhost_net *net) 172 { 173 uint32_t device_id; 174 int ret; 175 struct vhost_dev *hdev; 176 177 hdev = (struct vhost_dev *)&net->dev; 178 ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id); 179 if (device_id != VIRTIO_ID_NET) { 180 return -ENOTSUP; 181 } 182 return ret; 183 } 184 185 static int vhost_vdpa_add(NetClientState *ncs, void *be, 186 int queue_pair_index, int nvqs) 187 { 188 VhostNetOptions options; 189 struct vhost_net *net = NULL; 190 VhostVDPAState *s; 191 int ret; 192 193 options.backend_type = VHOST_BACKEND_TYPE_VDPA; 194 assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 195 s = DO_UPCAST(VhostVDPAState, nc, ncs); 196 options.net_backend = ncs; 197 options.opaque = be; 198 options.busyloop_timeout = 0; 199 options.nvqs = nvqs; 200 201 net = vhost_net_init(&options); 202 if (!net) { 203 error_report("failed to init vhost_net for queue"); 204 goto err_init; 205 } 206 s->vhost_net = net; 207 ret = vhost_vdpa_net_check_device_id(net); 208 if (ret) { 209 goto err_check; 210 } 211 return 0; 212 err_check: 213 vhost_net_cleanup(net); 214 g_free(net); 215 err_init: 216 return -1; 217 } 218 219 static void vhost_vdpa_cleanup(NetClientState *nc) 220 { 221 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 222 223 /* 224 * If a peer NIC is attached, do not cleanup anything. 225 * Cleanup will happen as a part of qemu_cleanup() -> net_cleanup() 226 * when the guest is shutting down. 227 */ 228 if (nc->peer && nc->peer->info->type == NET_CLIENT_DRIVER_NIC) { 229 return; 230 } 231 munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len()); 232 munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len()); 233 if (s->vhost_net) { 234 vhost_net_cleanup(s->vhost_net); 235 g_free(s->vhost_net); 236 s->vhost_net = NULL; 237 } 238 if (s->vhost_vdpa.device_fd >= 0) { 239 qemu_close(s->vhost_vdpa.device_fd); 240 s->vhost_vdpa.device_fd = -1; 241 } 242 } 243 244 /** Dummy SetSteeringEBPF to support RSS for vhost-vdpa backend */ 245 static bool vhost_vdpa_set_steering_ebpf(NetClientState *nc, int prog_fd) 246 { 247 return true; 248 } 249 250 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc) 251 { 252 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 253 254 return true; 255 } 256 257 static bool vhost_vdpa_has_ufo(NetClientState *nc) 258 { 259 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 260 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 261 uint64_t features = 0; 262 features |= (1ULL << VIRTIO_NET_F_HOST_UFO); 263 features = vhost_net_get_features(s->vhost_net, features); 264 return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO)); 265 266 } 267 268 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc, 269 Error **errp) 270 { 271 const char *driver = object_class_get_name(oc); 272 273 if (!g_str_has_prefix(driver, "virtio-net-")) { 274 error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*"); 275 return false; 276 } 277 278 return true; 279 } 280 281 /** Dummy receive in case qemu falls back to userland tap networking */ 282 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf, 283 size_t size) 284 { 285 return size; 286 } 287 288 /** From any vdpa net client, get the netclient of the first queue pair */ 289 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s) 290 { 291 NICState *nic = qemu_get_nic(s->nc.peer); 292 NetClientState *nc0 = qemu_get_peer(nic->ncs, 0); 293 294 return DO_UPCAST(VhostVDPAState, nc, nc0); 295 } 296 297 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable) 298 { 299 struct vhost_vdpa *v = &s->vhost_vdpa; 300 VirtIONet *n; 301 VirtIODevice *vdev; 302 int data_queue_pairs, cvq, r; 303 304 /* We are only called on the first data vqs and only if x-svq is not set */ 305 if (s->vhost_vdpa.shadow_vqs_enabled == enable) { 306 return; 307 } 308 309 vdev = v->dev->vdev; 310 n = VIRTIO_NET(vdev); 311 if (!n->vhost_started) { 312 return; 313 } 314 315 data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1; 316 cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ? 317 n->max_ncs - n->max_queue_pairs : 0; 318 /* 319 * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter 320 * in the future and resume the device if read-only operations between 321 * suspend and reset goes wrong. 322 */ 323 vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq); 324 325 /* Start will check migration setup_or_active to configure or not SVQ */ 326 r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq); 327 if (unlikely(r < 0)) { 328 error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r); 329 } 330 } 331 332 static void vdpa_net_migration_state_notifier(Notifier *notifier, void *data) 333 { 334 MigrationState *migration = data; 335 VhostVDPAState *s = container_of(notifier, VhostVDPAState, 336 migration_state); 337 338 if (migration_in_setup(migration)) { 339 vhost_vdpa_net_log_global_enable(s, true); 340 } else if (migration_has_failed(migration)) { 341 vhost_vdpa_net_log_global_enable(s, false); 342 } 343 } 344 345 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s) 346 { 347 struct vhost_vdpa *v = &s->vhost_vdpa; 348 349 migration_add_notifier(&s->migration_state, 350 vdpa_net_migration_state_notifier); 351 if (v->shadow_vqs_enabled) { 352 v->iova_tree = vhost_iova_tree_new(v->iova_range.first, 353 v->iova_range.last); 354 } 355 } 356 357 static int vhost_vdpa_net_data_start(NetClientState *nc) 358 { 359 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 360 struct vhost_vdpa *v = &s->vhost_vdpa; 361 362 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 363 364 if (s->always_svq || 365 migration_is_setup_or_active(migrate_get_current()->state)) { 366 v->shadow_vqs_enabled = true; 367 v->shadow_data = true; 368 } else { 369 v->shadow_vqs_enabled = false; 370 v->shadow_data = false; 371 } 372 373 if (v->index == 0) { 374 vhost_vdpa_net_data_start_first(s); 375 return 0; 376 } 377 378 if (v->shadow_vqs_enabled) { 379 VhostVDPAState *s0 = vhost_vdpa_net_first_nc_vdpa(s); 380 v->iova_tree = s0->vhost_vdpa.iova_tree; 381 } 382 383 return 0; 384 } 385 386 static int vhost_vdpa_net_data_load(NetClientState *nc) 387 { 388 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 389 struct vhost_vdpa *v = &s->vhost_vdpa; 390 bool has_cvq = v->dev->vq_index_end % 2; 391 392 if (has_cvq) { 393 return 0; 394 } 395 396 for (int i = 0; i < v->dev->nvqs; ++i) { 397 vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index); 398 } 399 return 0; 400 } 401 402 static void vhost_vdpa_net_client_stop(NetClientState *nc) 403 { 404 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 405 struct vhost_dev *dev; 406 407 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 408 409 if (s->vhost_vdpa.index == 0) { 410 migration_remove_notifier(&s->migration_state); 411 } 412 413 dev = s->vhost_vdpa.dev; 414 if (dev->vq_index + dev->nvqs == dev->vq_index_end) { 415 g_clear_pointer(&s->vhost_vdpa.iova_tree, vhost_iova_tree_delete); 416 } else { 417 s->vhost_vdpa.iova_tree = NULL; 418 } 419 } 420 421 static NetClientInfo net_vhost_vdpa_info = { 422 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 423 .size = sizeof(VhostVDPAState), 424 .receive = vhost_vdpa_receive, 425 .start = vhost_vdpa_net_data_start, 426 .load = vhost_vdpa_net_data_load, 427 .stop = vhost_vdpa_net_client_stop, 428 .cleanup = vhost_vdpa_cleanup, 429 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 430 .has_ufo = vhost_vdpa_has_ufo, 431 .check_peer_type = vhost_vdpa_check_peer_type, 432 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 433 }; 434 435 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index, 436 Error **errp) 437 { 438 struct vhost_vring_state state = { 439 .index = vq_index, 440 }; 441 int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state); 442 443 if (unlikely(r < 0)) { 444 r = -errno; 445 error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index); 446 return r; 447 } 448 449 return state.num; 450 } 451 452 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v, 453 unsigned vq_group, 454 unsigned asid_num) 455 { 456 struct vhost_vring_state asid = { 457 .index = vq_group, 458 .num = asid_num, 459 }; 460 int r; 461 462 r = ioctl(v->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid); 463 if (unlikely(r < 0)) { 464 error_report("Can't set vq group %u asid %u, errno=%d (%s)", 465 asid.index, asid.num, errno, g_strerror(errno)); 466 } 467 return r; 468 } 469 470 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr) 471 { 472 VhostIOVATree *tree = v->iova_tree; 473 DMAMap needle = { 474 /* 475 * No need to specify size or to look for more translations since 476 * this contiguous chunk was allocated by us. 477 */ 478 .translated_addr = (hwaddr)(uintptr_t)addr, 479 }; 480 const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle); 481 int r; 482 483 if (unlikely(!map)) { 484 error_report("Cannot locate expected map"); 485 return; 486 } 487 488 r = vhost_vdpa_dma_unmap(v, v->address_space_id, map->iova, map->size + 1); 489 if (unlikely(r != 0)) { 490 error_report("Device cannot unmap: %s(%d)", g_strerror(r), r); 491 } 492 493 vhost_iova_tree_remove(tree, *map); 494 } 495 496 /** Map CVQ buffer. */ 497 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size, 498 bool write) 499 { 500 DMAMap map = {}; 501 int r; 502 503 map.translated_addr = (hwaddr)(uintptr_t)buf; 504 map.size = size - 1; 505 map.perm = write ? IOMMU_RW : IOMMU_RO, 506 r = vhost_iova_tree_map_alloc(v->iova_tree, &map); 507 if (unlikely(r != IOVA_OK)) { 508 error_report("Cannot map injected element"); 509 return r; 510 } 511 512 r = vhost_vdpa_dma_map(v, v->address_space_id, map.iova, 513 vhost_vdpa_net_cvq_cmd_page_len(), buf, !write); 514 if (unlikely(r < 0)) { 515 goto dma_map_err; 516 } 517 518 return 0; 519 520 dma_map_err: 521 vhost_iova_tree_remove(v->iova_tree, map); 522 return r; 523 } 524 525 static int vhost_vdpa_net_cvq_start(NetClientState *nc) 526 { 527 VhostVDPAState *s, *s0; 528 struct vhost_vdpa *v; 529 int64_t cvq_group; 530 int r; 531 Error *err = NULL; 532 533 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 534 535 s = DO_UPCAST(VhostVDPAState, nc, nc); 536 v = &s->vhost_vdpa; 537 538 s0 = vhost_vdpa_net_first_nc_vdpa(s); 539 v->shadow_data = s0->vhost_vdpa.shadow_vqs_enabled; 540 v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled; 541 s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID; 542 543 if (s->vhost_vdpa.shadow_data) { 544 /* SVQ is already configured for all virtqueues */ 545 goto out; 546 } 547 548 /* 549 * If we early return in these cases SVQ will not be enabled. The migration 550 * will be blocked as long as vhost-vdpa backends will not offer _F_LOG. 551 */ 552 if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) { 553 return 0; 554 } 555 556 if (!s->cvq_isolated) { 557 return 0; 558 } 559 560 cvq_group = vhost_vdpa_get_vring_group(v->device_fd, 561 v->dev->vq_index_end - 1, 562 &err); 563 if (unlikely(cvq_group < 0)) { 564 error_report_err(err); 565 return cvq_group; 566 } 567 568 r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID); 569 if (unlikely(r < 0)) { 570 return r; 571 } 572 573 v->shadow_vqs_enabled = true; 574 s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID; 575 576 out: 577 if (!s->vhost_vdpa.shadow_vqs_enabled) { 578 return 0; 579 } 580 581 if (s0->vhost_vdpa.iova_tree) { 582 /* 583 * SVQ is already configured for all virtqueues. Reuse IOVA tree for 584 * simplicity, whether CVQ shares ASID with guest or not, because: 585 * - Memory listener need access to guest's memory addresses allocated 586 * in the IOVA tree. 587 * - There should be plenty of IOVA address space for both ASID not to 588 * worry about collisions between them. Guest's translations are 589 * still validated with virtio virtqueue_pop so there is no risk for 590 * the guest to access memory that it shouldn't. 591 * 592 * To allocate a iova tree per ASID is doable but it complicates the 593 * code and it is not worth it for the moment. 594 */ 595 v->iova_tree = s0->vhost_vdpa.iova_tree; 596 } else { 597 v->iova_tree = vhost_iova_tree_new(v->iova_range.first, 598 v->iova_range.last); 599 } 600 601 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer, 602 vhost_vdpa_net_cvq_cmd_page_len(), false); 603 if (unlikely(r < 0)) { 604 return r; 605 } 606 607 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status, 608 vhost_vdpa_net_cvq_cmd_page_len(), true); 609 if (unlikely(r < 0)) { 610 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 611 } 612 613 return r; 614 } 615 616 static void vhost_vdpa_net_cvq_stop(NetClientState *nc) 617 { 618 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 619 620 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 621 622 if (s->vhost_vdpa.shadow_vqs_enabled) { 623 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 624 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status); 625 } 626 627 vhost_vdpa_net_client_stop(nc); 628 } 629 630 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s, 631 const struct iovec *out_sg, size_t out_num, 632 const struct iovec *in_sg, size_t in_num) 633 { 634 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 635 int r; 636 637 r = vhost_svq_add(svq, out_sg, out_num, in_sg, in_num, NULL); 638 if (unlikely(r != 0)) { 639 if (unlikely(r == -ENOSPC)) { 640 qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n", 641 __func__); 642 } 643 } 644 645 return r; 646 } 647 648 /* 649 * Convenience wrapper to poll SVQ for multiple control commands. 650 * 651 * Caller should hold the BQL when invoking this function, and should take 652 * the answer before SVQ pulls by itself when BQL is released. 653 */ 654 static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight) 655 { 656 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 657 return vhost_svq_poll(svq, cmds_in_flight); 658 } 659 660 static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s, 661 struct iovec *out_cursor, 662 struct iovec *in_cursor) 663 { 664 /* reset the cursor of the output buffer for the device */ 665 out_cursor->iov_base = s->cvq_cmd_out_buffer; 666 out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 667 668 /* reset the cursor of the in buffer for the device */ 669 in_cursor->iov_base = s->status; 670 in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 671 } 672 673 /* 674 * Poll SVQ for multiple pending control commands and check the device's ack. 675 * 676 * Caller should hold the BQL when invoking this function. 677 * 678 * @s: The VhostVDPAState 679 * @len: The length of the pending status shadow buffer 680 */ 681 static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len) 682 { 683 /* device uses a one-byte length ack for each control command */ 684 ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len); 685 if (unlikely(dev_written != len)) { 686 return -EIO; 687 } 688 689 /* check the device's ack */ 690 for (int i = 0; i < len; ++i) { 691 if (s->status[i] != VIRTIO_NET_OK) { 692 return -EIO; 693 } 694 } 695 return 0; 696 } 697 698 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s, 699 struct iovec *out_cursor, 700 struct iovec *in_cursor, uint8_t class, 701 uint8_t cmd, const struct iovec *data_sg, 702 size_t data_num) 703 { 704 const struct virtio_net_ctrl_hdr ctrl = { 705 .class = class, 706 .cmd = cmd, 707 }; 708 size_t data_size = iov_size(data_sg, data_num), cmd_size; 709 struct iovec out, in; 710 ssize_t r; 711 unsigned dummy_cursor_iov_cnt; 712 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 713 714 assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl)); 715 cmd_size = sizeof(ctrl) + data_size; 716 if (vhost_svq_available_slots(svq) < 2 || 717 iov_size(out_cursor, 1) < cmd_size) { 718 /* 719 * It is time to flush all pending control commands if SVQ is full 720 * or control commands shadow buffers are full. 721 * 722 * We can poll here since we've had BQL from the time 723 * we sent the descriptor. 724 */ 725 r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base - 726 (void *)s->status); 727 if (unlikely(r < 0)) { 728 return r; 729 } 730 731 vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor); 732 } 733 734 /* pack the CVQ command header */ 735 iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl)); 736 /* pack the CVQ command command-specific-data */ 737 iov_to_buf(data_sg, data_num, 0, 738 out_cursor->iov_base + sizeof(ctrl), data_size); 739 740 /* extract the required buffer from the cursor for output */ 741 iov_copy(&out, 1, out_cursor, 1, 0, cmd_size); 742 /* extract the required buffer from the cursor for input */ 743 iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status)); 744 745 r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1); 746 if (unlikely(r < 0)) { 747 return r; 748 } 749 750 /* iterate the cursors */ 751 dummy_cursor_iov_cnt = 1; 752 iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size); 753 dummy_cursor_iov_cnt = 1; 754 iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status)); 755 756 return 0; 757 } 758 759 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n, 760 struct iovec *out_cursor, 761 struct iovec *in_cursor) 762 { 763 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) { 764 const struct iovec data = { 765 .iov_base = (void *)n->mac, 766 .iov_len = sizeof(n->mac), 767 }; 768 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 769 VIRTIO_NET_CTRL_MAC, 770 VIRTIO_NET_CTRL_MAC_ADDR_SET, 771 &data, 1); 772 if (unlikely(r < 0)) { 773 return r; 774 } 775 } 776 777 /* 778 * According to VirtIO standard, "The device MUST have an 779 * empty MAC filtering table on reset.". 780 * 781 * Therefore, there is no need to send this CVQ command if the 782 * driver also sets an empty MAC filter table, which aligns with 783 * the device's defaults. 784 * 785 * Note that the device's defaults can mismatch the driver's 786 * configuration only at live migration. 787 */ 788 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) || 789 n->mac_table.in_use == 0) { 790 return 0; 791 } 792 793 uint32_t uni_entries = n->mac_table.first_multi, 794 uni_macs_size = uni_entries * ETH_ALEN, 795 mul_entries = n->mac_table.in_use - uni_entries, 796 mul_macs_size = mul_entries * ETH_ALEN; 797 struct virtio_net_ctrl_mac uni = { 798 .entries = cpu_to_le32(uni_entries), 799 }; 800 struct virtio_net_ctrl_mac mul = { 801 .entries = cpu_to_le32(mul_entries), 802 }; 803 const struct iovec data[] = { 804 { 805 .iov_base = &uni, 806 .iov_len = sizeof(uni), 807 }, { 808 .iov_base = n->mac_table.macs, 809 .iov_len = uni_macs_size, 810 }, { 811 .iov_base = &mul, 812 .iov_len = sizeof(mul), 813 }, { 814 .iov_base = &n->mac_table.macs[uni_macs_size], 815 .iov_len = mul_macs_size, 816 }, 817 }; 818 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 819 VIRTIO_NET_CTRL_MAC, 820 VIRTIO_NET_CTRL_MAC_TABLE_SET, 821 data, ARRAY_SIZE(data)); 822 if (unlikely(r < 0)) { 823 return r; 824 } 825 826 return 0; 827 } 828 829 static int vhost_vdpa_net_load_rss(VhostVDPAState *s, const VirtIONet *n, 830 struct iovec *out_cursor, 831 struct iovec *in_cursor, bool do_rss) 832 { 833 struct virtio_net_rss_config cfg = {}; 834 ssize_t r; 835 g_autofree uint16_t *table = NULL; 836 837 /* 838 * According to VirtIO standard, "Initially the device has all hash 839 * types disabled and reports only VIRTIO_NET_HASH_REPORT_NONE.". 840 * 841 * Therefore, there is no need to send this CVQ command if the 842 * driver disables the all hash types, which aligns with 843 * the device's defaults. 844 * 845 * Note that the device's defaults can mismatch the driver's 846 * configuration only at live migration. 847 */ 848 if (!n->rss_data.enabled || 849 n->rss_data.hash_types == VIRTIO_NET_HASH_REPORT_NONE) { 850 return 0; 851 } 852 853 table = g_malloc_n(n->rss_data.indirections_len, 854 sizeof(n->rss_data.indirections_table[0])); 855 cfg.hash_types = cpu_to_le32(n->rss_data.hash_types); 856 857 if (do_rss) { 858 /* 859 * According to VirtIO standard, "Number of entries in indirection_table 860 * is (indirection_table_mask + 1)". 861 */ 862 cfg.indirection_table_mask = cpu_to_le16(n->rss_data.indirections_len - 863 1); 864 cfg.unclassified_queue = cpu_to_le16(n->rss_data.default_queue); 865 for (int i = 0; i < n->rss_data.indirections_len; ++i) { 866 table[i] = cpu_to_le16(n->rss_data.indirections_table[i]); 867 } 868 cfg.max_tx_vq = cpu_to_le16(n->curr_queue_pairs); 869 } else { 870 /* 871 * According to VirtIO standard, "Field reserved MUST contain zeroes. 872 * It is defined to make the structure to match the layout of 873 * virtio_net_rss_config structure, defined in 5.1.6.5.7.". 874 * 875 * Therefore, we need to zero the fields in 876 * struct virtio_net_rss_config, which corresponds to the 877 * `reserved` field in struct virtio_net_hash_config. 878 * 879 * Note that all other fields are zeroed at their definitions, 880 * except for the `indirection_table` field, where the actual data 881 * is stored in the `table` variable to ensure compatibility 882 * with RSS case. Therefore, we need to zero the `table` variable here. 883 */ 884 table[0] = 0; 885 } 886 887 /* 888 * Considering that virtio_net_handle_rss() currently does not restore 889 * the hash key length parsed from the CVQ command sent from the guest 890 * into n->rss_data and uses the maximum key length in other code, so 891 * we also employ the maximum key length here. 892 */ 893 cfg.hash_key_length = sizeof(n->rss_data.key); 894 895 const struct iovec data[] = { 896 { 897 .iov_base = &cfg, 898 .iov_len = offsetof(struct virtio_net_rss_config, 899 indirection_table), 900 }, { 901 .iov_base = table, 902 .iov_len = n->rss_data.indirections_len * 903 sizeof(n->rss_data.indirections_table[0]), 904 }, { 905 .iov_base = &cfg.max_tx_vq, 906 .iov_len = offsetof(struct virtio_net_rss_config, hash_key_data) - 907 offsetof(struct virtio_net_rss_config, max_tx_vq), 908 }, { 909 .iov_base = (void *)n->rss_data.key, 910 .iov_len = sizeof(n->rss_data.key), 911 } 912 }; 913 914 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 915 VIRTIO_NET_CTRL_MQ, 916 do_rss ? VIRTIO_NET_CTRL_MQ_RSS_CONFIG : 917 VIRTIO_NET_CTRL_MQ_HASH_CONFIG, 918 data, ARRAY_SIZE(data)); 919 if (unlikely(r < 0)) { 920 return r; 921 } 922 923 return 0; 924 } 925 926 static int vhost_vdpa_net_load_mq(VhostVDPAState *s, 927 const VirtIONet *n, 928 struct iovec *out_cursor, 929 struct iovec *in_cursor) 930 { 931 struct virtio_net_ctrl_mq mq; 932 ssize_t r; 933 934 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) { 935 return 0; 936 } 937 938 mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs); 939 const struct iovec data = { 940 .iov_base = &mq, 941 .iov_len = sizeof(mq), 942 }; 943 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 944 VIRTIO_NET_CTRL_MQ, 945 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET, 946 &data, 1); 947 if (unlikely(r < 0)) { 948 return r; 949 } 950 951 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_RSS)) { 952 /* load the receive-side scaling state */ 953 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, true); 954 if (unlikely(r < 0)) { 955 return r; 956 } 957 } else if (virtio_vdev_has_feature(&n->parent_obj, 958 VIRTIO_NET_F_HASH_REPORT)) { 959 /* load the hash calculation state */ 960 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, false); 961 if (unlikely(r < 0)) { 962 return r; 963 } 964 } 965 966 return 0; 967 } 968 969 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s, 970 const VirtIONet *n, 971 struct iovec *out_cursor, 972 struct iovec *in_cursor) 973 { 974 uint64_t offloads; 975 ssize_t r; 976 977 if (!virtio_vdev_has_feature(&n->parent_obj, 978 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) { 979 return 0; 980 } 981 982 if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) { 983 /* 984 * According to VirtIO standard, "Upon feature negotiation 985 * corresponding offload gets enabled to preserve 986 * backward compatibility.". 987 * 988 * Therefore, there is no need to send this CVQ command if the 989 * driver also enables all supported offloads, which aligns with 990 * the device's defaults. 991 * 992 * Note that the device's defaults can mismatch the driver's 993 * configuration only at live migration. 994 */ 995 return 0; 996 } 997 998 offloads = cpu_to_le64(n->curr_guest_offloads); 999 const struct iovec data = { 1000 .iov_base = &offloads, 1001 .iov_len = sizeof(offloads), 1002 }; 1003 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1004 VIRTIO_NET_CTRL_GUEST_OFFLOADS, 1005 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET, 1006 &data, 1); 1007 if (unlikely(r < 0)) { 1008 return r; 1009 } 1010 1011 return 0; 1012 } 1013 1014 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s, 1015 struct iovec *out_cursor, 1016 struct iovec *in_cursor, 1017 uint8_t cmd, 1018 uint8_t on) 1019 { 1020 const struct iovec data = { 1021 .iov_base = &on, 1022 .iov_len = sizeof(on), 1023 }; 1024 ssize_t r; 1025 1026 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1027 VIRTIO_NET_CTRL_RX, cmd, &data, 1); 1028 if (unlikely(r < 0)) { 1029 return r; 1030 } 1031 1032 return 0; 1033 } 1034 1035 static int vhost_vdpa_net_load_rx(VhostVDPAState *s, 1036 const VirtIONet *n, 1037 struct iovec *out_cursor, 1038 struct iovec *in_cursor) 1039 { 1040 ssize_t r; 1041 1042 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) { 1043 return 0; 1044 } 1045 1046 /* 1047 * According to virtio_net_reset(), device turns promiscuous mode 1048 * on by default. 1049 * 1050 * Additionally, according to VirtIO standard, "Since there are 1051 * no guarantees, it can use a hash filter or silently switch to 1052 * allmulti or promiscuous mode if it is given too many addresses.". 1053 * QEMU marks `n->mac_table.uni_overflow` if guest sets too many 1054 * non-multicast MAC addresses, indicating that promiscuous mode 1055 * should be enabled. 1056 * 1057 * Therefore, QEMU should only send this CVQ command if the 1058 * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off, 1059 * which sets promiscuous mode on, different from the device's defaults. 1060 * 1061 * Note that the device's defaults can mismatch the driver's 1062 * configuration only at live migration. 1063 */ 1064 if (!n->mac_table.uni_overflow && !n->promisc) { 1065 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1066 VIRTIO_NET_CTRL_RX_PROMISC, 0); 1067 if (unlikely(r < 0)) { 1068 return r; 1069 } 1070 } 1071 1072 /* 1073 * According to virtio_net_reset(), device turns all-multicast mode 1074 * off by default. 1075 * 1076 * According to VirtIO standard, "Since there are no guarantees, 1077 * it can use a hash filter or silently switch to allmulti or 1078 * promiscuous mode if it is given too many addresses.". QEMU marks 1079 * `n->mac_table.multi_overflow` if guest sets too many 1080 * non-multicast MAC addresses. 1081 * 1082 * Therefore, QEMU should only send this CVQ command if the 1083 * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on, 1084 * which sets all-multicast mode on, different from the device's defaults. 1085 * 1086 * Note that the device's defaults can mismatch the driver's 1087 * configuration only at live migration. 1088 */ 1089 if (n->mac_table.multi_overflow || n->allmulti) { 1090 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1091 VIRTIO_NET_CTRL_RX_ALLMULTI, 1); 1092 if (unlikely(r < 0)) { 1093 return r; 1094 } 1095 } 1096 1097 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) { 1098 return 0; 1099 } 1100 1101 /* 1102 * According to virtio_net_reset(), device turns all-unicast mode 1103 * off by default. 1104 * 1105 * Therefore, QEMU should only send this CVQ command if the driver 1106 * sets all-unicast mode on, different from the device's defaults. 1107 * 1108 * Note that the device's defaults can mismatch the driver's 1109 * configuration only at live migration. 1110 */ 1111 if (n->alluni) { 1112 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1113 VIRTIO_NET_CTRL_RX_ALLUNI, 1); 1114 if (r < 0) { 1115 return r; 1116 } 1117 } 1118 1119 /* 1120 * According to virtio_net_reset(), device turns non-multicast mode 1121 * off by default. 1122 * 1123 * Therefore, QEMU should only send this CVQ command if the driver 1124 * sets non-multicast mode on, different from the device's defaults. 1125 * 1126 * Note that the device's defaults can mismatch the driver's 1127 * configuration only at live migration. 1128 */ 1129 if (n->nomulti) { 1130 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1131 VIRTIO_NET_CTRL_RX_NOMULTI, 1); 1132 if (r < 0) { 1133 return r; 1134 } 1135 } 1136 1137 /* 1138 * According to virtio_net_reset(), device turns non-unicast mode 1139 * off by default. 1140 * 1141 * Therefore, QEMU should only send this CVQ command if the driver 1142 * sets non-unicast mode on, different from the device's defaults. 1143 * 1144 * Note that the device's defaults can mismatch the driver's 1145 * configuration only at live migration. 1146 */ 1147 if (n->nouni) { 1148 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1149 VIRTIO_NET_CTRL_RX_NOUNI, 1); 1150 if (r < 0) { 1151 return r; 1152 } 1153 } 1154 1155 /* 1156 * According to virtio_net_reset(), device turns non-broadcast mode 1157 * off by default. 1158 * 1159 * Therefore, QEMU should only send this CVQ command if the driver 1160 * sets non-broadcast mode on, different from the device's defaults. 1161 * 1162 * Note that the device's defaults can mismatch the driver's 1163 * configuration only at live migration. 1164 */ 1165 if (n->nobcast) { 1166 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1167 VIRTIO_NET_CTRL_RX_NOBCAST, 1); 1168 if (r < 0) { 1169 return r; 1170 } 1171 } 1172 1173 return 0; 1174 } 1175 1176 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s, 1177 const VirtIONet *n, 1178 struct iovec *out_cursor, 1179 struct iovec *in_cursor, 1180 uint16_t vid) 1181 { 1182 const struct iovec data = { 1183 .iov_base = &vid, 1184 .iov_len = sizeof(vid), 1185 }; 1186 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1187 VIRTIO_NET_CTRL_VLAN, 1188 VIRTIO_NET_CTRL_VLAN_ADD, 1189 &data, 1); 1190 if (unlikely(r < 0)) { 1191 return r; 1192 } 1193 1194 return 0; 1195 } 1196 1197 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s, 1198 const VirtIONet *n, 1199 struct iovec *out_cursor, 1200 struct iovec *in_cursor) 1201 { 1202 int r; 1203 1204 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) { 1205 return 0; 1206 } 1207 1208 for (int i = 0; i < MAX_VLAN >> 5; i++) { 1209 for (int j = 0; n->vlans[i] && j <= 0x1f; j++) { 1210 if (n->vlans[i] & (1U << j)) { 1211 r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor, 1212 in_cursor, (i << 5) + j); 1213 if (unlikely(r != 0)) { 1214 return r; 1215 } 1216 } 1217 } 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int vhost_vdpa_net_cvq_load(NetClientState *nc) 1224 { 1225 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 1226 struct vhost_vdpa *v = &s->vhost_vdpa; 1227 const VirtIONet *n; 1228 int r; 1229 struct iovec out_cursor, in_cursor; 1230 1231 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1232 1233 vhost_vdpa_set_vring_ready(v, v->dev->vq_index); 1234 1235 if (v->shadow_vqs_enabled) { 1236 n = VIRTIO_NET(v->dev->vdev); 1237 vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor); 1238 r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor); 1239 if (unlikely(r < 0)) { 1240 return r; 1241 } 1242 r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor); 1243 if (unlikely(r)) { 1244 return r; 1245 } 1246 r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor); 1247 if (unlikely(r)) { 1248 return r; 1249 } 1250 r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor); 1251 if (unlikely(r)) { 1252 return r; 1253 } 1254 r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor); 1255 if (unlikely(r)) { 1256 return r; 1257 } 1258 1259 /* 1260 * We need to poll and check all pending device's used buffers. 1261 * 1262 * We can poll here since we've had BQL from the time 1263 * we sent the descriptor. 1264 */ 1265 r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status); 1266 if (unlikely(r)) { 1267 return r; 1268 } 1269 } 1270 1271 for (int i = 0; i < v->dev->vq_index; ++i) { 1272 vhost_vdpa_set_vring_ready(v, i); 1273 } 1274 1275 return 0; 1276 } 1277 1278 static NetClientInfo net_vhost_vdpa_cvq_info = { 1279 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 1280 .size = sizeof(VhostVDPAState), 1281 .receive = vhost_vdpa_receive, 1282 .start = vhost_vdpa_net_cvq_start, 1283 .load = vhost_vdpa_net_cvq_load, 1284 .stop = vhost_vdpa_net_cvq_stop, 1285 .cleanup = vhost_vdpa_cleanup, 1286 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 1287 .has_ufo = vhost_vdpa_has_ufo, 1288 .check_peer_type = vhost_vdpa_check_peer_type, 1289 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 1290 }; 1291 1292 /* 1293 * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to 1294 * vdpa device. 1295 * 1296 * Considering that QEMU cannot send the entire filter table to the 1297 * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ 1298 * command to enable promiscuous mode to receive all packets, 1299 * according to VirtIO standard, "Since there are no guarantees, 1300 * it can use a hash filter or silently switch to allmulti or 1301 * promiscuous mode if it is given too many addresses.". 1302 * 1303 * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and 1304 * marks `n->mac_table.x_overflow` accordingly, it should have 1305 * the same effect on the device model to receive 1306 * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses. 1307 * The same applies to multicast MAC addresses. 1308 * 1309 * Therefore, QEMU can provide the device model with a fake 1310 * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1) 1311 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast 1312 * MAC addresses. This ensures that the device model marks 1313 * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`, 1314 * allowing all packets to be received, which aligns with the 1315 * state of the vdpa device. 1316 */ 1317 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s, 1318 VirtQueueElement *elem, 1319 struct iovec *out, 1320 const struct iovec *in) 1321 { 1322 struct virtio_net_ctrl_mac mac_data, *mac_ptr; 1323 struct virtio_net_ctrl_hdr *hdr_ptr; 1324 uint32_t cursor; 1325 ssize_t r; 1326 uint8_t on = 1; 1327 1328 /* parse the non-multicast MAC address entries from CVQ command */ 1329 cursor = sizeof(*hdr_ptr); 1330 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1331 &mac_data, sizeof(mac_data)); 1332 if (unlikely(r != sizeof(mac_data))) { 1333 /* 1334 * If the CVQ command is invalid, we should simulate the vdpa device 1335 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1336 */ 1337 *s->status = VIRTIO_NET_ERR; 1338 return sizeof(*s->status); 1339 } 1340 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1341 1342 /* parse the multicast MAC address entries from CVQ command */ 1343 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1344 &mac_data, sizeof(mac_data)); 1345 if (r != sizeof(mac_data)) { 1346 /* 1347 * If the CVQ command is invalid, we should simulate the vdpa device 1348 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1349 */ 1350 *s->status = VIRTIO_NET_ERR; 1351 return sizeof(*s->status); 1352 } 1353 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1354 1355 /* validate the CVQ command */ 1356 if (iov_size(elem->out_sg, elem->out_num) != cursor) { 1357 /* 1358 * If the CVQ command is invalid, we should simulate the vdpa device 1359 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1360 */ 1361 *s->status = VIRTIO_NET_ERR; 1362 return sizeof(*s->status); 1363 } 1364 1365 /* 1366 * According to VirtIO standard, "Since there are no guarantees, 1367 * it can use a hash filter or silently switch to allmulti or 1368 * promiscuous mode if it is given too many addresses.". 1369 * 1370 * Therefore, considering that QEMU is unable to send the entire 1371 * filter table to the vdpa device, it should send the 1372 * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode 1373 */ 1374 hdr_ptr = out->iov_base; 1375 out->iov_len = sizeof(*hdr_ptr) + sizeof(on); 1376 1377 hdr_ptr->class = VIRTIO_NET_CTRL_RX; 1378 hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC; 1379 iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on)); 1380 r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1); 1381 if (unlikely(r < 0)) { 1382 return r; 1383 } 1384 1385 /* 1386 * We can poll here since we've had BQL from the time 1387 * we sent the descriptor. 1388 */ 1389 r = vhost_vdpa_net_svq_poll(s, 1); 1390 if (unlikely(r < sizeof(*s->status))) { 1391 return r; 1392 } 1393 if (*s->status != VIRTIO_NET_OK) { 1394 return sizeof(*s->status); 1395 } 1396 1397 /* 1398 * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ 1399 * command to the device model, including (`MAC_TABLE_ENTRIES` + 1) 1400 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) 1401 * multicast MAC addresses. 1402 * 1403 * By doing so, the device model can mark `n->mac_table.uni_overflow` 1404 * and `n->mac_table.multi_overflow`, enabling all packets to be 1405 * received, which aligns with the state of the vdpa device. 1406 */ 1407 cursor = 0; 1408 uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1, 1409 fake_mul_entries = MAC_TABLE_ENTRIES + 1, 1410 fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) + 1411 sizeof(mac_data) + fake_uni_entries * ETH_ALEN + 1412 sizeof(mac_data) + fake_mul_entries * ETH_ALEN; 1413 1414 assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len()); 1415 out->iov_len = fake_cvq_size; 1416 1417 /* pack the header for fake CVQ command */ 1418 hdr_ptr = out->iov_base + cursor; 1419 hdr_ptr->class = VIRTIO_NET_CTRL_MAC; 1420 hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 1421 cursor += sizeof(*hdr_ptr); 1422 1423 /* 1424 * Pack the non-multicast MAC addresses part for fake CVQ command. 1425 * 1426 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1427 * addresses provided in CVQ command. Therefore, only the entries 1428 * field need to be prepared in the CVQ command. 1429 */ 1430 mac_ptr = out->iov_base + cursor; 1431 mac_ptr->entries = cpu_to_le32(fake_uni_entries); 1432 cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN; 1433 1434 /* 1435 * Pack the multicast MAC addresses part for fake CVQ command. 1436 * 1437 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1438 * addresses provided in CVQ command. Therefore, only the entries 1439 * field need to be prepared in the CVQ command. 1440 */ 1441 mac_ptr = out->iov_base + cursor; 1442 mac_ptr->entries = cpu_to_le32(fake_mul_entries); 1443 1444 /* 1445 * Simulating QEMU poll a vdpa device used buffer 1446 * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1447 */ 1448 return sizeof(*s->status); 1449 } 1450 1451 /** 1452 * Validate and copy control virtqueue commands. 1453 * 1454 * Following QEMU guidelines, we offer a copy of the buffers to the device to 1455 * prevent TOCTOU bugs. 1456 */ 1457 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq, 1458 VirtQueueElement *elem, 1459 void *opaque) 1460 { 1461 VhostVDPAState *s = opaque; 1462 size_t in_len; 1463 const struct virtio_net_ctrl_hdr *ctrl; 1464 virtio_net_ctrl_ack status = VIRTIO_NET_ERR; 1465 /* Out buffer sent to both the vdpa device and the device model */ 1466 struct iovec out = { 1467 .iov_base = s->cvq_cmd_out_buffer, 1468 }; 1469 /* in buffer used for device model */ 1470 const struct iovec model_in = { 1471 .iov_base = &status, 1472 .iov_len = sizeof(status), 1473 }; 1474 /* in buffer used for vdpa device */ 1475 const struct iovec vdpa_in = { 1476 .iov_base = s->status, 1477 .iov_len = sizeof(*s->status), 1478 }; 1479 ssize_t dev_written = -EINVAL; 1480 1481 out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0, 1482 s->cvq_cmd_out_buffer, 1483 vhost_vdpa_net_cvq_cmd_page_len()); 1484 1485 ctrl = s->cvq_cmd_out_buffer; 1486 if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) { 1487 /* 1488 * Guest announce capability is emulated by qemu, so don't forward to 1489 * the device. 1490 */ 1491 dev_written = sizeof(status); 1492 *s->status = VIRTIO_NET_OK; 1493 } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC && 1494 ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET && 1495 iov_size(elem->out_sg, elem->out_num) > out.iov_len)) { 1496 /* 1497 * Due to the size limitation of the out buffer sent to the vdpa device, 1498 * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive 1499 * MAC addresses set by the driver for the filter table can cause 1500 * truncation of the CVQ command in QEMU. As a result, the vdpa device 1501 * rejects the flawed CVQ command. 1502 * 1503 * Therefore, QEMU must handle this situation instead of sending 1504 * the CVQ command directly. 1505 */ 1506 dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem, 1507 &out, &vdpa_in); 1508 if (unlikely(dev_written < 0)) { 1509 goto out; 1510 } 1511 } else { 1512 ssize_t r; 1513 r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1); 1514 if (unlikely(r < 0)) { 1515 dev_written = r; 1516 goto out; 1517 } 1518 1519 /* 1520 * We can poll here since we've had BQL from the time 1521 * we sent the descriptor. 1522 */ 1523 dev_written = vhost_vdpa_net_svq_poll(s, 1); 1524 } 1525 1526 if (unlikely(dev_written < sizeof(status))) { 1527 error_report("Insufficient written data (%zu)", dev_written); 1528 goto out; 1529 } 1530 1531 if (*s->status != VIRTIO_NET_OK) { 1532 goto out; 1533 } 1534 1535 status = VIRTIO_NET_ERR; 1536 virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1); 1537 if (status != VIRTIO_NET_OK) { 1538 error_report("Bad CVQ processing in model"); 1539 } 1540 1541 out: 1542 in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status, 1543 sizeof(status)); 1544 if (unlikely(in_len < sizeof(status))) { 1545 error_report("Bad device CVQ written length"); 1546 } 1547 vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status))); 1548 /* 1549 * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when 1550 * the function successfully forwards the CVQ command, indicated 1551 * by a non-negative value of `dev_written`. Otherwise, it still 1552 * belongs to SVQ. 1553 * This function should only free the `elem` when it owns. 1554 */ 1555 if (dev_written >= 0) { 1556 g_free(elem); 1557 } 1558 return dev_written < 0 ? dev_written : 0; 1559 } 1560 1561 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = { 1562 .avail_handler = vhost_vdpa_net_handle_ctrl_avail, 1563 }; 1564 1565 /** 1566 * Probe if CVQ is isolated 1567 * 1568 * @device_fd The vdpa device fd 1569 * @features Features offered by the device. 1570 * @cvq_index The control vq pair index 1571 * 1572 * Returns <0 in case of failure, 0 if false and 1 if true. 1573 */ 1574 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features, 1575 int cvq_index, Error **errp) 1576 { 1577 uint64_t backend_features; 1578 int64_t cvq_group; 1579 uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE | 1580 VIRTIO_CONFIG_S_DRIVER; 1581 int r; 1582 1583 ERRP_GUARD(); 1584 1585 r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features); 1586 if (unlikely(r < 0)) { 1587 error_setg_errno(errp, errno, "Cannot get vdpa backend_features"); 1588 return r; 1589 } 1590 1591 if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) { 1592 return 0; 1593 } 1594 1595 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1596 if (unlikely(r)) { 1597 error_setg_errno(errp, -r, "Cannot set device status"); 1598 goto out; 1599 } 1600 1601 r = ioctl(device_fd, VHOST_SET_FEATURES, &features); 1602 if (unlikely(r)) { 1603 error_setg_errno(errp, -r, "Cannot set features"); 1604 goto out; 1605 } 1606 1607 status |= VIRTIO_CONFIG_S_FEATURES_OK; 1608 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1609 if (unlikely(r)) { 1610 error_setg_errno(errp, -r, "Cannot set device status"); 1611 goto out; 1612 } 1613 1614 cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp); 1615 if (unlikely(cvq_group < 0)) { 1616 if (cvq_group != -ENOTSUP) { 1617 r = cvq_group; 1618 goto out; 1619 } 1620 1621 /* 1622 * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend 1623 * support ASID even if the parent driver does not. The CVQ cannot be 1624 * isolated in this case. 1625 */ 1626 error_free(*errp); 1627 *errp = NULL; 1628 r = 0; 1629 goto out; 1630 } 1631 1632 for (int i = 0; i < cvq_index; ++i) { 1633 int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp); 1634 if (unlikely(group < 0)) { 1635 r = group; 1636 goto out; 1637 } 1638 1639 if (group == (int64_t)cvq_group) { 1640 r = 0; 1641 goto out; 1642 } 1643 } 1644 1645 r = 1; 1646 1647 out: 1648 status = 0; 1649 ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1650 return r; 1651 } 1652 1653 static NetClientState *net_vhost_vdpa_init(NetClientState *peer, 1654 const char *device, 1655 const char *name, 1656 int vdpa_device_fd, 1657 int queue_pair_index, 1658 int nvqs, 1659 bool is_datapath, 1660 bool svq, 1661 struct vhost_vdpa_iova_range iova_range, 1662 uint64_t features, 1663 Error **errp) 1664 { 1665 NetClientState *nc = NULL; 1666 VhostVDPAState *s; 1667 int ret = 0; 1668 assert(name); 1669 int cvq_isolated = 0; 1670 1671 if (is_datapath) { 1672 nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device, 1673 name); 1674 } else { 1675 cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features, 1676 queue_pair_index * 2, 1677 errp); 1678 if (unlikely(cvq_isolated < 0)) { 1679 return NULL; 1680 } 1681 1682 nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer, 1683 device, name); 1684 } 1685 qemu_set_info_str(nc, TYPE_VHOST_VDPA); 1686 s = DO_UPCAST(VhostVDPAState, nc, nc); 1687 1688 s->vhost_vdpa.device_fd = vdpa_device_fd; 1689 s->vhost_vdpa.index = queue_pair_index; 1690 s->always_svq = svq; 1691 s->migration_state.notify = NULL; 1692 s->vhost_vdpa.shadow_vqs_enabled = svq; 1693 s->vhost_vdpa.iova_range = iova_range; 1694 s->vhost_vdpa.shadow_data = svq; 1695 if (queue_pair_index == 0) { 1696 vhost_vdpa_net_valid_svq_features(features, 1697 &s->vhost_vdpa.migration_blocker); 1698 } else if (!is_datapath) { 1699 s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1700 PROT_READ | PROT_WRITE, 1701 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1702 s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1703 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 1704 -1, 0); 1705 1706 s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops; 1707 s->vhost_vdpa.shadow_vq_ops_opaque = s; 1708 s->cvq_isolated = cvq_isolated; 1709 } 1710 ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs); 1711 if (ret) { 1712 qemu_del_net_client(nc); 1713 return NULL; 1714 } 1715 return nc; 1716 } 1717 1718 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp) 1719 { 1720 int ret = ioctl(fd, VHOST_GET_FEATURES, features); 1721 if (unlikely(ret < 0)) { 1722 error_setg_errno(errp, errno, 1723 "Fail to query features from vhost-vDPA device"); 1724 } 1725 return ret; 1726 } 1727 1728 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features, 1729 int *has_cvq, Error **errp) 1730 { 1731 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 1732 g_autofree struct vhost_vdpa_config *config = NULL; 1733 __virtio16 *max_queue_pairs; 1734 int ret; 1735 1736 if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) { 1737 *has_cvq = 1; 1738 } else { 1739 *has_cvq = 0; 1740 } 1741 1742 if (features & (1 << VIRTIO_NET_F_MQ)) { 1743 config = g_malloc0(config_size + sizeof(*max_queue_pairs)); 1744 config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs); 1745 config->len = sizeof(*max_queue_pairs); 1746 1747 ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config); 1748 if (ret) { 1749 error_setg(errp, "Fail to get config from vhost-vDPA device"); 1750 return -ret; 1751 } 1752 1753 max_queue_pairs = (__virtio16 *)&config->buf; 1754 1755 return lduw_le_p(max_queue_pairs); 1756 } 1757 1758 return 1; 1759 } 1760 1761 int net_init_vhost_vdpa(const Netdev *netdev, const char *name, 1762 NetClientState *peer, Error **errp) 1763 { 1764 const NetdevVhostVDPAOptions *opts; 1765 uint64_t features; 1766 int vdpa_device_fd; 1767 g_autofree NetClientState **ncs = NULL; 1768 struct vhost_vdpa_iova_range iova_range; 1769 NetClientState *nc; 1770 int queue_pairs, r, i = 0, has_cvq = 0; 1771 1772 assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1773 opts = &netdev->u.vhost_vdpa; 1774 if (!opts->vhostdev && !opts->vhostfd) { 1775 error_setg(errp, 1776 "vhost-vdpa: neither vhostdev= nor vhostfd= was specified"); 1777 return -1; 1778 } 1779 1780 if (opts->vhostdev && opts->vhostfd) { 1781 error_setg(errp, 1782 "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive"); 1783 return -1; 1784 } 1785 1786 if (opts->vhostdev) { 1787 vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp); 1788 if (vdpa_device_fd == -1) { 1789 return -errno; 1790 } 1791 } else { 1792 /* has_vhostfd */ 1793 vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp); 1794 if (vdpa_device_fd == -1) { 1795 error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: "); 1796 return -1; 1797 } 1798 } 1799 1800 r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp); 1801 if (unlikely(r < 0)) { 1802 goto err; 1803 } 1804 1805 queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features, 1806 &has_cvq, errp); 1807 if (queue_pairs < 0) { 1808 qemu_close(vdpa_device_fd); 1809 return queue_pairs; 1810 } 1811 1812 r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range); 1813 if (unlikely(r < 0)) { 1814 error_setg(errp, "vhost-vdpa: get iova range failed: %s", 1815 strerror(-r)); 1816 goto err; 1817 } 1818 1819 if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) { 1820 goto err; 1821 } 1822 1823 ncs = g_malloc0(sizeof(*ncs) * queue_pairs); 1824 1825 for (i = 0; i < queue_pairs; i++) { 1826 ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1827 vdpa_device_fd, i, 2, true, opts->x_svq, 1828 iova_range, features, errp); 1829 if (!ncs[i]) 1830 goto err; 1831 } 1832 1833 if (has_cvq) { 1834 nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1835 vdpa_device_fd, i, 1, false, 1836 opts->x_svq, iova_range, features, errp); 1837 if (!nc) 1838 goto err; 1839 } 1840 1841 return 0; 1842 1843 err: 1844 if (i) { 1845 for (i--; i >= 0; i--) { 1846 qemu_del_net_client(ncs[i]); 1847 } 1848 } 1849 1850 qemu_close(vdpa_device_fd); 1851 1852 return -1; 1853 } 1854