1 /* 2 * vhost-vdpa.c 3 * 4 * Copyright(c) 2017-2018 Intel Corporation. 5 * Copyright(c) 2020 Red Hat, Inc. 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "clients.h" 14 #include "hw/virtio/virtio-net.h" 15 #include "net/vhost_net.h" 16 #include "net/vhost-vdpa.h" 17 #include "hw/virtio/vhost-vdpa.h" 18 #include "qemu/config-file.h" 19 #include "qemu/error-report.h" 20 #include "qemu/log.h" 21 #include "qemu/memalign.h" 22 #include "qemu/option.h" 23 #include "qapi/error.h" 24 #include <linux/vhost.h> 25 #include <sys/ioctl.h> 26 #include <err.h> 27 #include "standard-headers/linux/virtio_net.h" 28 #include "monitor/monitor.h" 29 #include "migration/migration.h" 30 #include "migration/misc.h" 31 #include "hw/virtio/vhost.h" 32 33 /* Todo:need to add the multiqueue support here */ 34 typedef struct VhostVDPAState { 35 NetClientState nc; 36 struct vhost_vdpa vhost_vdpa; 37 Notifier migration_state; 38 VHostNetState *vhost_net; 39 40 /* Control commands shadow buffers */ 41 void *cvq_cmd_out_buffer; 42 virtio_net_ctrl_ack *status; 43 44 /* The device always have SVQ enabled */ 45 bool always_svq; 46 47 /* The device can isolate CVQ in its own ASID */ 48 bool cvq_isolated; 49 50 bool started; 51 } VhostVDPAState; 52 53 /* 54 * The array is sorted alphabetically in ascending order, 55 * with the exception of VHOST_INVALID_FEATURE_BIT, 56 * which should always be the last entry. 57 */ 58 const int vdpa_feature_bits[] = { 59 VIRTIO_F_ANY_LAYOUT, 60 VIRTIO_F_IOMMU_PLATFORM, 61 VIRTIO_F_NOTIFY_ON_EMPTY, 62 VIRTIO_F_RING_PACKED, 63 VIRTIO_F_RING_RESET, 64 VIRTIO_F_VERSION_1, 65 VIRTIO_NET_F_CSUM, 66 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, 67 VIRTIO_NET_F_CTRL_MAC_ADDR, 68 VIRTIO_NET_F_CTRL_RX, 69 VIRTIO_NET_F_CTRL_RX_EXTRA, 70 VIRTIO_NET_F_CTRL_VLAN, 71 VIRTIO_NET_F_CTRL_VQ, 72 VIRTIO_NET_F_GSO, 73 VIRTIO_NET_F_GUEST_CSUM, 74 VIRTIO_NET_F_GUEST_ECN, 75 VIRTIO_NET_F_GUEST_TSO4, 76 VIRTIO_NET_F_GUEST_TSO6, 77 VIRTIO_NET_F_GUEST_UFO, 78 VIRTIO_NET_F_GUEST_USO4, 79 VIRTIO_NET_F_GUEST_USO6, 80 VIRTIO_NET_F_HASH_REPORT, 81 VIRTIO_NET_F_HOST_ECN, 82 VIRTIO_NET_F_HOST_TSO4, 83 VIRTIO_NET_F_HOST_TSO6, 84 VIRTIO_NET_F_HOST_UFO, 85 VIRTIO_NET_F_HOST_USO, 86 VIRTIO_NET_F_MQ, 87 VIRTIO_NET_F_MRG_RXBUF, 88 VIRTIO_NET_F_MTU, 89 VIRTIO_NET_F_RSS, 90 VIRTIO_NET_F_STATUS, 91 VIRTIO_RING_F_EVENT_IDX, 92 VIRTIO_RING_F_INDIRECT_DESC, 93 94 /* VHOST_INVALID_FEATURE_BIT should always be the last entry */ 95 VHOST_INVALID_FEATURE_BIT 96 }; 97 98 /** Supported device specific feature bits with SVQ */ 99 static const uint64_t vdpa_svq_device_features = 100 BIT_ULL(VIRTIO_NET_F_CSUM) | 101 BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) | 102 BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) | 103 BIT_ULL(VIRTIO_NET_F_MTU) | 104 BIT_ULL(VIRTIO_NET_F_MAC) | 105 BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) | 106 BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) | 107 BIT_ULL(VIRTIO_NET_F_GUEST_ECN) | 108 BIT_ULL(VIRTIO_NET_F_GUEST_UFO) | 109 BIT_ULL(VIRTIO_NET_F_HOST_TSO4) | 110 BIT_ULL(VIRTIO_NET_F_HOST_TSO6) | 111 BIT_ULL(VIRTIO_NET_F_HOST_ECN) | 112 BIT_ULL(VIRTIO_NET_F_HOST_UFO) | 113 BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) | 114 BIT_ULL(VIRTIO_NET_F_STATUS) | 115 BIT_ULL(VIRTIO_NET_F_CTRL_VQ) | 116 BIT_ULL(VIRTIO_NET_F_CTRL_RX) | 117 BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) | 118 BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) | 119 BIT_ULL(VIRTIO_NET_F_MQ) | 120 BIT_ULL(VIRTIO_F_ANY_LAYOUT) | 121 BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) | 122 /* VHOST_F_LOG_ALL is exposed by SVQ */ 123 BIT_ULL(VHOST_F_LOG_ALL) | 124 BIT_ULL(VIRTIO_NET_F_HASH_REPORT) | 125 BIT_ULL(VIRTIO_NET_F_RSS) | 126 BIT_ULL(VIRTIO_NET_F_RSC_EXT) | 127 BIT_ULL(VIRTIO_NET_F_STANDBY) | 128 BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX); 129 130 #define VHOST_VDPA_NET_CVQ_ASID 1 131 132 VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc) 133 { 134 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 135 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 136 return s->vhost_net; 137 } 138 139 static size_t vhost_vdpa_net_cvq_cmd_len(void) 140 { 141 /* 142 * MAC_TABLE_SET is the ctrl command that produces the longer out buffer. 143 * In buffer is always 1 byte, so it should fit here 144 */ 145 return sizeof(struct virtio_net_ctrl_hdr) + 146 2 * sizeof(struct virtio_net_ctrl_mac) + 147 MAC_TABLE_ENTRIES * ETH_ALEN; 148 } 149 150 static size_t vhost_vdpa_net_cvq_cmd_page_len(void) 151 { 152 return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size()); 153 } 154 155 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp) 156 { 157 uint64_t invalid_dev_features = 158 features & ~vdpa_svq_device_features & 159 /* Transport are all accepted at this point */ 160 ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START, 161 VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START); 162 163 if (invalid_dev_features) { 164 error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64, 165 invalid_dev_features); 166 return false; 167 } 168 169 return vhost_svq_valid_features(features, errp); 170 } 171 172 static int vhost_vdpa_net_check_device_id(struct vhost_net *net) 173 { 174 uint32_t device_id; 175 int ret; 176 struct vhost_dev *hdev; 177 178 hdev = (struct vhost_dev *)&net->dev; 179 ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id); 180 if (device_id != VIRTIO_ID_NET) { 181 return -ENOTSUP; 182 } 183 return ret; 184 } 185 186 static int vhost_vdpa_add(NetClientState *ncs, void *be, 187 int queue_pair_index, int nvqs) 188 { 189 VhostNetOptions options; 190 struct vhost_net *net = NULL; 191 VhostVDPAState *s; 192 int ret; 193 194 options.backend_type = VHOST_BACKEND_TYPE_VDPA; 195 assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 196 s = DO_UPCAST(VhostVDPAState, nc, ncs); 197 options.net_backend = ncs; 198 options.opaque = be; 199 options.busyloop_timeout = 0; 200 options.nvqs = nvqs; 201 202 net = vhost_net_init(&options); 203 if (!net) { 204 error_report("failed to init vhost_net for queue"); 205 goto err_init; 206 } 207 s->vhost_net = net; 208 ret = vhost_vdpa_net_check_device_id(net); 209 if (ret) { 210 goto err_check; 211 } 212 return 0; 213 err_check: 214 vhost_net_cleanup(net); 215 g_free(net); 216 err_init: 217 return -1; 218 } 219 220 static void vhost_vdpa_cleanup(NetClientState *nc) 221 { 222 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 223 224 /* 225 * If a peer NIC is attached, do not cleanup anything. 226 * Cleanup will happen as a part of qemu_cleanup() -> net_cleanup() 227 * when the guest is shutting down. 228 */ 229 if (nc->peer && nc->peer->info->type == NET_CLIENT_DRIVER_NIC) { 230 return; 231 } 232 munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len()); 233 munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len()); 234 if (s->vhost_net) { 235 vhost_net_cleanup(s->vhost_net); 236 g_free(s->vhost_net); 237 s->vhost_net = NULL; 238 } 239 if (s->vhost_vdpa.device_fd >= 0) { 240 qemu_close(s->vhost_vdpa.device_fd); 241 s->vhost_vdpa.device_fd = -1; 242 } 243 if (s->vhost_vdpa.index != 0) { 244 return; 245 } 246 g_free(s->vhost_vdpa.shared); 247 } 248 249 /** Dummy SetSteeringEBPF to support RSS for vhost-vdpa backend */ 250 static bool vhost_vdpa_set_steering_ebpf(NetClientState *nc, int prog_fd) 251 { 252 return true; 253 } 254 255 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc) 256 { 257 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 258 259 return true; 260 } 261 262 static bool vhost_vdpa_has_ufo(NetClientState *nc) 263 { 264 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 265 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 266 uint64_t features = 0; 267 features |= (1ULL << VIRTIO_NET_F_HOST_UFO); 268 features = vhost_net_get_features(s->vhost_net, features); 269 return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO)); 270 271 } 272 273 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc, 274 Error **errp) 275 { 276 const char *driver = object_class_get_name(oc); 277 278 if (!g_str_has_prefix(driver, "virtio-net-")) { 279 error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*"); 280 return false; 281 } 282 283 return true; 284 } 285 286 /** Dummy receive in case qemu falls back to userland tap networking */ 287 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf, 288 size_t size) 289 { 290 return size; 291 } 292 293 /** From any vdpa net client, get the netclient of the first queue pair */ 294 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s) 295 { 296 NICState *nic = qemu_get_nic(s->nc.peer); 297 NetClientState *nc0 = qemu_get_peer(nic->ncs, 0); 298 299 return DO_UPCAST(VhostVDPAState, nc, nc0); 300 } 301 302 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable) 303 { 304 struct vhost_vdpa *v = &s->vhost_vdpa; 305 VirtIONet *n; 306 VirtIODevice *vdev; 307 int data_queue_pairs, cvq, r; 308 309 /* We are only called on the first data vqs and only if x-svq is not set */ 310 if (s->vhost_vdpa.shadow_vqs_enabled == enable) { 311 return; 312 } 313 314 vdev = v->dev->vdev; 315 n = VIRTIO_NET(vdev); 316 if (!n->vhost_started) { 317 return; 318 } 319 320 data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1; 321 cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ? 322 n->max_ncs - n->max_queue_pairs : 0; 323 /* 324 * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter 325 * in the future and resume the device if read-only operations between 326 * suspend and reset goes wrong. 327 */ 328 vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq); 329 330 /* Start will check migration setup_or_active to configure or not SVQ */ 331 r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq); 332 if (unlikely(r < 0)) { 333 error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r); 334 } 335 } 336 337 static void vdpa_net_migration_state_notifier(Notifier *notifier, void *data) 338 { 339 MigrationState *migration = data; 340 VhostVDPAState *s = container_of(notifier, VhostVDPAState, 341 migration_state); 342 343 if (migration_in_setup(migration)) { 344 vhost_vdpa_net_log_global_enable(s, true); 345 } else if (migration_has_failed(migration)) { 346 vhost_vdpa_net_log_global_enable(s, false); 347 } 348 } 349 350 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s) 351 { 352 struct vhost_vdpa *v = &s->vhost_vdpa; 353 354 migration_add_notifier(&s->migration_state, 355 vdpa_net_migration_state_notifier); 356 if (v->shadow_vqs_enabled) { 357 v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first, 358 v->shared->iova_range.last); 359 } 360 } 361 362 static int vhost_vdpa_net_data_start(NetClientState *nc) 363 { 364 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 365 struct vhost_vdpa *v = &s->vhost_vdpa; 366 367 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 368 369 if (s->always_svq || 370 migration_is_setup_or_active(migrate_get_current()->state)) { 371 v->shadow_vqs_enabled = true; 372 v->shadow_data = true; 373 } else { 374 v->shadow_vqs_enabled = false; 375 v->shadow_data = false; 376 } 377 378 if (v->index == 0) { 379 vhost_vdpa_net_data_start_first(s); 380 return 0; 381 } 382 383 return 0; 384 } 385 386 static int vhost_vdpa_net_data_load(NetClientState *nc) 387 { 388 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 389 struct vhost_vdpa *v = &s->vhost_vdpa; 390 bool has_cvq = v->dev->vq_index_end % 2; 391 392 if (has_cvq) { 393 return 0; 394 } 395 396 for (int i = 0; i < v->dev->nvqs; ++i) { 397 vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index); 398 } 399 return 0; 400 } 401 402 static void vhost_vdpa_net_client_stop(NetClientState *nc) 403 { 404 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 405 struct vhost_dev *dev; 406 407 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 408 409 if (s->vhost_vdpa.index == 0) { 410 migration_remove_notifier(&s->migration_state); 411 } 412 413 dev = s->vhost_vdpa.dev; 414 if (dev->vq_index + dev->nvqs == dev->vq_index_end) { 415 g_clear_pointer(&s->vhost_vdpa.shared->iova_tree, 416 vhost_iova_tree_delete); 417 } 418 } 419 420 static NetClientInfo net_vhost_vdpa_info = { 421 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 422 .size = sizeof(VhostVDPAState), 423 .receive = vhost_vdpa_receive, 424 .start = vhost_vdpa_net_data_start, 425 .load = vhost_vdpa_net_data_load, 426 .stop = vhost_vdpa_net_client_stop, 427 .cleanup = vhost_vdpa_cleanup, 428 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 429 .has_ufo = vhost_vdpa_has_ufo, 430 .check_peer_type = vhost_vdpa_check_peer_type, 431 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 432 }; 433 434 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index, 435 Error **errp) 436 { 437 struct vhost_vring_state state = { 438 .index = vq_index, 439 }; 440 int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state); 441 442 if (unlikely(r < 0)) { 443 r = -errno; 444 error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index); 445 return r; 446 } 447 448 return state.num; 449 } 450 451 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v, 452 unsigned vq_group, 453 unsigned asid_num) 454 { 455 struct vhost_vring_state asid = { 456 .index = vq_group, 457 .num = asid_num, 458 }; 459 int r; 460 461 r = ioctl(v->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid); 462 if (unlikely(r < 0)) { 463 error_report("Can't set vq group %u asid %u, errno=%d (%s)", 464 asid.index, asid.num, errno, g_strerror(errno)); 465 } 466 return r; 467 } 468 469 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr) 470 { 471 VhostIOVATree *tree = v->shared->iova_tree; 472 DMAMap needle = { 473 /* 474 * No need to specify size or to look for more translations since 475 * this contiguous chunk was allocated by us. 476 */ 477 .translated_addr = (hwaddr)(uintptr_t)addr, 478 }; 479 const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle); 480 int r; 481 482 if (unlikely(!map)) { 483 error_report("Cannot locate expected map"); 484 return; 485 } 486 487 r = vhost_vdpa_dma_unmap(v, v->address_space_id, map->iova, map->size + 1); 488 if (unlikely(r != 0)) { 489 error_report("Device cannot unmap: %s(%d)", g_strerror(r), r); 490 } 491 492 vhost_iova_tree_remove(tree, *map); 493 } 494 495 /** Map CVQ buffer. */ 496 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size, 497 bool write) 498 { 499 DMAMap map = {}; 500 int r; 501 502 map.translated_addr = (hwaddr)(uintptr_t)buf; 503 map.size = size - 1; 504 map.perm = write ? IOMMU_RW : IOMMU_RO, 505 r = vhost_iova_tree_map_alloc(v->shared->iova_tree, &map); 506 if (unlikely(r != IOVA_OK)) { 507 error_report("Cannot map injected element"); 508 return r; 509 } 510 511 r = vhost_vdpa_dma_map(v, v->address_space_id, map.iova, 512 vhost_vdpa_net_cvq_cmd_page_len(), buf, !write); 513 if (unlikely(r < 0)) { 514 goto dma_map_err; 515 } 516 517 return 0; 518 519 dma_map_err: 520 vhost_iova_tree_remove(v->shared->iova_tree, map); 521 return r; 522 } 523 524 static int vhost_vdpa_net_cvq_start(NetClientState *nc) 525 { 526 VhostVDPAState *s, *s0; 527 struct vhost_vdpa *v; 528 int64_t cvq_group; 529 int r; 530 Error *err = NULL; 531 532 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 533 534 s = DO_UPCAST(VhostVDPAState, nc, nc); 535 v = &s->vhost_vdpa; 536 537 s0 = vhost_vdpa_net_first_nc_vdpa(s); 538 v->shadow_data = s0->vhost_vdpa.shadow_vqs_enabled; 539 v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled; 540 s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID; 541 542 if (s->vhost_vdpa.shadow_data) { 543 /* SVQ is already configured for all virtqueues */ 544 goto out; 545 } 546 547 /* 548 * If we early return in these cases SVQ will not be enabled. The migration 549 * will be blocked as long as vhost-vdpa backends will not offer _F_LOG. 550 */ 551 if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) { 552 return 0; 553 } 554 555 if (!s->cvq_isolated) { 556 return 0; 557 } 558 559 cvq_group = vhost_vdpa_get_vring_group(v->device_fd, 560 v->dev->vq_index_end - 1, 561 &err); 562 if (unlikely(cvq_group < 0)) { 563 error_report_err(err); 564 return cvq_group; 565 } 566 567 r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID); 568 if (unlikely(r < 0)) { 569 return r; 570 } 571 572 v->shadow_vqs_enabled = true; 573 s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID; 574 575 out: 576 if (!s->vhost_vdpa.shadow_vqs_enabled) { 577 return 0; 578 } 579 580 /* 581 * If other vhost_vdpa already have an iova_tree, reuse it for simplicity, 582 * whether CVQ shares ASID with guest or not, because: 583 * - Memory listener need access to guest's memory addresses allocated in 584 * the IOVA tree. 585 * - There should be plenty of IOVA address space for both ASID not to 586 * worry about collisions between them. Guest's translations are still 587 * validated with virtio virtqueue_pop so there is no risk for the guest 588 * to access memory that it shouldn't. 589 * 590 * To allocate a iova tree per ASID is doable but it complicates the code 591 * and it is not worth it for the moment. 592 */ 593 if (!v->shared->iova_tree) { 594 v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first, 595 v->shared->iova_range.last); 596 } 597 598 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer, 599 vhost_vdpa_net_cvq_cmd_page_len(), false); 600 if (unlikely(r < 0)) { 601 return r; 602 } 603 604 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status, 605 vhost_vdpa_net_cvq_cmd_page_len(), true); 606 if (unlikely(r < 0)) { 607 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 608 } 609 610 return r; 611 } 612 613 static void vhost_vdpa_net_cvq_stop(NetClientState *nc) 614 { 615 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 616 617 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 618 619 if (s->vhost_vdpa.shadow_vqs_enabled) { 620 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 621 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status); 622 } 623 624 vhost_vdpa_net_client_stop(nc); 625 } 626 627 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s, 628 const struct iovec *out_sg, size_t out_num, 629 const struct iovec *in_sg, size_t in_num) 630 { 631 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 632 int r; 633 634 r = vhost_svq_add(svq, out_sg, out_num, in_sg, in_num, NULL); 635 if (unlikely(r != 0)) { 636 if (unlikely(r == -ENOSPC)) { 637 qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n", 638 __func__); 639 } 640 } 641 642 return r; 643 } 644 645 /* 646 * Convenience wrapper to poll SVQ for multiple control commands. 647 * 648 * Caller should hold the BQL when invoking this function, and should take 649 * the answer before SVQ pulls by itself when BQL is released. 650 */ 651 static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight) 652 { 653 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 654 return vhost_svq_poll(svq, cmds_in_flight); 655 } 656 657 static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s, 658 struct iovec *out_cursor, 659 struct iovec *in_cursor) 660 { 661 /* reset the cursor of the output buffer for the device */ 662 out_cursor->iov_base = s->cvq_cmd_out_buffer; 663 out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 664 665 /* reset the cursor of the in buffer for the device */ 666 in_cursor->iov_base = s->status; 667 in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 668 } 669 670 /* 671 * Poll SVQ for multiple pending control commands and check the device's ack. 672 * 673 * Caller should hold the BQL when invoking this function. 674 * 675 * @s: The VhostVDPAState 676 * @len: The length of the pending status shadow buffer 677 */ 678 static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len) 679 { 680 /* device uses a one-byte length ack for each control command */ 681 ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len); 682 if (unlikely(dev_written != len)) { 683 return -EIO; 684 } 685 686 /* check the device's ack */ 687 for (int i = 0; i < len; ++i) { 688 if (s->status[i] != VIRTIO_NET_OK) { 689 return -EIO; 690 } 691 } 692 return 0; 693 } 694 695 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s, 696 struct iovec *out_cursor, 697 struct iovec *in_cursor, uint8_t class, 698 uint8_t cmd, const struct iovec *data_sg, 699 size_t data_num) 700 { 701 const struct virtio_net_ctrl_hdr ctrl = { 702 .class = class, 703 .cmd = cmd, 704 }; 705 size_t data_size = iov_size(data_sg, data_num), cmd_size; 706 struct iovec out, in; 707 ssize_t r; 708 unsigned dummy_cursor_iov_cnt; 709 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 710 711 assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl)); 712 cmd_size = sizeof(ctrl) + data_size; 713 if (vhost_svq_available_slots(svq) < 2 || 714 iov_size(out_cursor, 1) < cmd_size) { 715 /* 716 * It is time to flush all pending control commands if SVQ is full 717 * or control commands shadow buffers are full. 718 * 719 * We can poll here since we've had BQL from the time 720 * we sent the descriptor. 721 */ 722 r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base - 723 (void *)s->status); 724 if (unlikely(r < 0)) { 725 return r; 726 } 727 728 vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor); 729 } 730 731 /* pack the CVQ command header */ 732 iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl)); 733 /* pack the CVQ command command-specific-data */ 734 iov_to_buf(data_sg, data_num, 0, 735 out_cursor->iov_base + sizeof(ctrl), data_size); 736 737 /* extract the required buffer from the cursor for output */ 738 iov_copy(&out, 1, out_cursor, 1, 0, cmd_size); 739 /* extract the required buffer from the cursor for input */ 740 iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status)); 741 742 r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1); 743 if (unlikely(r < 0)) { 744 return r; 745 } 746 747 /* iterate the cursors */ 748 dummy_cursor_iov_cnt = 1; 749 iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size); 750 dummy_cursor_iov_cnt = 1; 751 iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status)); 752 753 return 0; 754 } 755 756 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n, 757 struct iovec *out_cursor, 758 struct iovec *in_cursor) 759 { 760 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) { 761 const struct iovec data = { 762 .iov_base = (void *)n->mac, 763 .iov_len = sizeof(n->mac), 764 }; 765 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 766 VIRTIO_NET_CTRL_MAC, 767 VIRTIO_NET_CTRL_MAC_ADDR_SET, 768 &data, 1); 769 if (unlikely(r < 0)) { 770 return r; 771 } 772 } 773 774 /* 775 * According to VirtIO standard, "The device MUST have an 776 * empty MAC filtering table on reset.". 777 * 778 * Therefore, there is no need to send this CVQ command if the 779 * driver also sets an empty MAC filter table, which aligns with 780 * the device's defaults. 781 * 782 * Note that the device's defaults can mismatch the driver's 783 * configuration only at live migration. 784 */ 785 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) || 786 n->mac_table.in_use == 0) { 787 return 0; 788 } 789 790 uint32_t uni_entries = n->mac_table.first_multi, 791 uni_macs_size = uni_entries * ETH_ALEN, 792 mul_entries = n->mac_table.in_use - uni_entries, 793 mul_macs_size = mul_entries * ETH_ALEN; 794 struct virtio_net_ctrl_mac uni = { 795 .entries = cpu_to_le32(uni_entries), 796 }; 797 struct virtio_net_ctrl_mac mul = { 798 .entries = cpu_to_le32(mul_entries), 799 }; 800 const struct iovec data[] = { 801 { 802 .iov_base = &uni, 803 .iov_len = sizeof(uni), 804 }, { 805 .iov_base = n->mac_table.macs, 806 .iov_len = uni_macs_size, 807 }, { 808 .iov_base = &mul, 809 .iov_len = sizeof(mul), 810 }, { 811 .iov_base = &n->mac_table.macs[uni_macs_size], 812 .iov_len = mul_macs_size, 813 }, 814 }; 815 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 816 VIRTIO_NET_CTRL_MAC, 817 VIRTIO_NET_CTRL_MAC_TABLE_SET, 818 data, ARRAY_SIZE(data)); 819 if (unlikely(r < 0)) { 820 return r; 821 } 822 823 return 0; 824 } 825 826 static int vhost_vdpa_net_load_rss(VhostVDPAState *s, const VirtIONet *n, 827 struct iovec *out_cursor, 828 struct iovec *in_cursor, bool do_rss) 829 { 830 struct virtio_net_rss_config cfg = {}; 831 ssize_t r; 832 g_autofree uint16_t *table = NULL; 833 834 /* 835 * According to VirtIO standard, "Initially the device has all hash 836 * types disabled and reports only VIRTIO_NET_HASH_REPORT_NONE.". 837 * 838 * Therefore, there is no need to send this CVQ command if the 839 * driver disables the all hash types, which aligns with 840 * the device's defaults. 841 * 842 * Note that the device's defaults can mismatch the driver's 843 * configuration only at live migration. 844 */ 845 if (!n->rss_data.enabled || 846 n->rss_data.hash_types == VIRTIO_NET_HASH_REPORT_NONE) { 847 return 0; 848 } 849 850 table = g_malloc_n(n->rss_data.indirections_len, 851 sizeof(n->rss_data.indirections_table[0])); 852 cfg.hash_types = cpu_to_le32(n->rss_data.hash_types); 853 854 if (do_rss) { 855 /* 856 * According to VirtIO standard, "Number of entries in indirection_table 857 * is (indirection_table_mask + 1)". 858 */ 859 cfg.indirection_table_mask = cpu_to_le16(n->rss_data.indirections_len - 860 1); 861 cfg.unclassified_queue = cpu_to_le16(n->rss_data.default_queue); 862 for (int i = 0; i < n->rss_data.indirections_len; ++i) { 863 table[i] = cpu_to_le16(n->rss_data.indirections_table[i]); 864 } 865 cfg.max_tx_vq = cpu_to_le16(n->curr_queue_pairs); 866 } else { 867 /* 868 * According to VirtIO standard, "Field reserved MUST contain zeroes. 869 * It is defined to make the structure to match the layout of 870 * virtio_net_rss_config structure, defined in 5.1.6.5.7.". 871 * 872 * Therefore, we need to zero the fields in 873 * struct virtio_net_rss_config, which corresponds to the 874 * `reserved` field in struct virtio_net_hash_config. 875 * 876 * Note that all other fields are zeroed at their definitions, 877 * except for the `indirection_table` field, where the actual data 878 * is stored in the `table` variable to ensure compatibility 879 * with RSS case. Therefore, we need to zero the `table` variable here. 880 */ 881 table[0] = 0; 882 } 883 884 /* 885 * Considering that virtio_net_handle_rss() currently does not restore 886 * the hash key length parsed from the CVQ command sent from the guest 887 * into n->rss_data and uses the maximum key length in other code, so 888 * we also employ the maximum key length here. 889 */ 890 cfg.hash_key_length = sizeof(n->rss_data.key); 891 892 const struct iovec data[] = { 893 { 894 .iov_base = &cfg, 895 .iov_len = offsetof(struct virtio_net_rss_config, 896 indirection_table), 897 }, { 898 .iov_base = table, 899 .iov_len = n->rss_data.indirections_len * 900 sizeof(n->rss_data.indirections_table[0]), 901 }, { 902 .iov_base = &cfg.max_tx_vq, 903 .iov_len = offsetof(struct virtio_net_rss_config, hash_key_data) - 904 offsetof(struct virtio_net_rss_config, max_tx_vq), 905 }, { 906 .iov_base = (void *)n->rss_data.key, 907 .iov_len = sizeof(n->rss_data.key), 908 } 909 }; 910 911 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 912 VIRTIO_NET_CTRL_MQ, 913 do_rss ? VIRTIO_NET_CTRL_MQ_RSS_CONFIG : 914 VIRTIO_NET_CTRL_MQ_HASH_CONFIG, 915 data, ARRAY_SIZE(data)); 916 if (unlikely(r < 0)) { 917 return r; 918 } 919 920 return 0; 921 } 922 923 static int vhost_vdpa_net_load_mq(VhostVDPAState *s, 924 const VirtIONet *n, 925 struct iovec *out_cursor, 926 struct iovec *in_cursor) 927 { 928 struct virtio_net_ctrl_mq mq; 929 ssize_t r; 930 931 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) { 932 return 0; 933 } 934 935 mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs); 936 const struct iovec data = { 937 .iov_base = &mq, 938 .iov_len = sizeof(mq), 939 }; 940 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 941 VIRTIO_NET_CTRL_MQ, 942 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET, 943 &data, 1); 944 if (unlikely(r < 0)) { 945 return r; 946 } 947 948 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_RSS)) { 949 /* load the receive-side scaling state */ 950 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, true); 951 if (unlikely(r < 0)) { 952 return r; 953 } 954 } else if (virtio_vdev_has_feature(&n->parent_obj, 955 VIRTIO_NET_F_HASH_REPORT)) { 956 /* load the hash calculation state */ 957 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, false); 958 if (unlikely(r < 0)) { 959 return r; 960 } 961 } 962 963 return 0; 964 } 965 966 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s, 967 const VirtIONet *n, 968 struct iovec *out_cursor, 969 struct iovec *in_cursor) 970 { 971 uint64_t offloads; 972 ssize_t r; 973 974 if (!virtio_vdev_has_feature(&n->parent_obj, 975 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) { 976 return 0; 977 } 978 979 if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) { 980 /* 981 * According to VirtIO standard, "Upon feature negotiation 982 * corresponding offload gets enabled to preserve 983 * backward compatibility.". 984 * 985 * Therefore, there is no need to send this CVQ command if the 986 * driver also enables all supported offloads, which aligns with 987 * the device's defaults. 988 * 989 * Note that the device's defaults can mismatch the driver's 990 * configuration only at live migration. 991 */ 992 return 0; 993 } 994 995 offloads = cpu_to_le64(n->curr_guest_offloads); 996 const struct iovec data = { 997 .iov_base = &offloads, 998 .iov_len = sizeof(offloads), 999 }; 1000 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1001 VIRTIO_NET_CTRL_GUEST_OFFLOADS, 1002 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET, 1003 &data, 1); 1004 if (unlikely(r < 0)) { 1005 return r; 1006 } 1007 1008 return 0; 1009 } 1010 1011 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s, 1012 struct iovec *out_cursor, 1013 struct iovec *in_cursor, 1014 uint8_t cmd, 1015 uint8_t on) 1016 { 1017 const struct iovec data = { 1018 .iov_base = &on, 1019 .iov_len = sizeof(on), 1020 }; 1021 ssize_t r; 1022 1023 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1024 VIRTIO_NET_CTRL_RX, cmd, &data, 1); 1025 if (unlikely(r < 0)) { 1026 return r; 1027 } 1028 1029 return 0; 1030 } 1031 1032 static int vhost_vdpa_net_load_rx(VhostVDPAState *s, 1033 const VirtIONet *n, 1034 struct iovec *out_cursor, 1035 struct iovec *in_cursor) 1036 { 1037 ssize_t r; 1038 1039 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) { 1040 return 0; 1041 } 1042 1043 /* 1044 * According to virtio_net_reset(), device turns promiscuous mode 1045 * on by default. 1046 * 1047 * Additionally, according to VirtIO standard, "Since there are 1048 * no guarantees, it can use a hash filter or silently switch to 1049 * allmulti or promiscuous mode if it is given too many addresses.". 1050 * QEMU marks `n->mac_table.uni_overflow` if guest sets too many 1051 * non-multicast MAC addresses, indicating that promiscuous mode 1052 * should be enabled. 1053 * 1054 * Therefore, QEMU should only send this CVQ command if the 1055 * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off, 1056 * which sets promiscuous mode on, different from the device's defaults. 1057 * 1058 * Note that the device's defaults can mismatch the driver's 1059 * configuration only at live migration. 1060 */ 1061 if (!n->mac_table.uni_overflow && !n->promisc) { 1062 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1063 VIRTIO_NET_CTRL_RX_PROMISC, 0); 1064 if (unlikely(r < 0)) { 1065 return r; 1066 } 1067 } 1068 1069 /* 1070 * According to virtio_net_reset(), device turns all-multicast mode 1071 * off by default. 1072 * 1073 * According to VirtIO standard, "Since there are no guarantees, 1074 * it can use a hash filter or silently switch to allmulti or 1075 * promiscuous mode if it is given too many addresses.". QEMU marks 1076 * `n->mac_table.multi_overflow` if guest sets too many 1077 * non-multicast MAC addresses. 1078 * 1079 * Therefore, QEMU should only send this CVQ command if the 1080 * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on, 1081 * which sets all-multicast mode on, different from the device's defaults. 1082 * 1083 * Note that the device's defaults can mismatch the driver's 1084 * configuration only at live migration. 1085 */ 1086 if (n->mac_table.multi_overflow || n->allmulti) { 1087 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1088 VIRTIO_NET_CTRL_RX_ALLMULTI, 1); 1089 if (unlikely(r < 0)) { 1090 return r; 1091 } 1092 } 1093 1094 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) { 1095 return 0; 1096 } 1097 1098 /* 1099 * According to virtio_net_reset(), device turns all-unicast mode 1100 * off by default. 1101 * 1102 * Therefore, QEMU should only send this CVQ command if the driver 1103 * sets all-unicast mode on, different from the device's defaults. 1104 * 1105 * Note that the device's defaults can mismatch the driver's 1106 * configuration only at live migration. 1107 */ 1108 if (n->alluni) { 1109 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1110 VIRTIO_NET_CTRL_RX_ALLUNI, 1); 1111 if (r < 0) { 1112 return r; 1113 } 1114 } 1115 1116 /* 1117 * According to virtio_net_reset(), device turns non-multicast mode 1118 * off by default. 1119 * 1120 * Therefore, QEMU should only send this CVQ command if the driver 1121 * sets non-multicast mode on, different from the device's defaults. 1122 * 1123 * Note that the device's defaults can mismatch the driver's 1124 * configuration only at live migration. 1125 */ 1126 if (n->nomulti) { 1127 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1128 VIRTIO_NET_CTRL_RX_NOMULTI, 1); 1129 if (r < 0) { 1130 return r; 1131 } 1132 } 1133 1134 /* 1135 * According to virtio_net_reset(), device turns non-unicast mode 1136 * off by default. 1137 * 1138 * Therefore, QEMU should only send this CVQ command if the driver 1139 * sets non-unicast mode on, different from the device's defaults. 1140 * 1141 * Note that the device's defaults can mismatch the driver's 1142 * configuration only at live migration. 1143 */ 1144 if (n->nouni) { 1145 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1146 VIRTIO_NET_CTRL_RX_NOUNI, 1); 1147 if (r < 0) { 1148 return r; 1149 } 1150 } 1151 1152 /* 1153 * According to virtio_net_reset(), device turns non-broadcast mode 1154 * off by default. 1155 * 1156 * Therefore, QEMU should only send this CVQ command if the driver 1157 * sets non-broadcast mode on, different from the device's defaults. 1158 * 1159 * Note that the device's defaults can mismatch the driver's 1160 * configuration only at live migration. 1161 */ 1162 if (n->nobcast) { 1163 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1164 VIRTIO_NET_CTRL_RX_NOBCAST, 1); 1165 if (r < 0) { 1166 return r; 1167 } 1168 } 1169 1170 return 0; 1171 } 1172 1173 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s, 1174 const VirtIONet *n, 1175 struct iovec *out_cursor, 1176 struct iovec *in_cursor, 1177 uint16_t vid) 1178 { 1179 const struct iovec data = { 1180 .iov_base = &vid, 1181 .iov_len = sizeof(vid), 1182 }; 1183 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1184 VIRTIO_NET_CTRL_VLAN, 1185 VIRTIO_NET_CTRL_VLAN_ADD, 1186 &data, 1); 1187 if (unlikely(r < 0)) { 1188 return r; 1189 } 1190 1191 return 0; 1192 } 1193 1194 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s, 1195 const VirtIONet *n, 1196 struct iovec *out_cursor, 1197 struct iovec *in_cursor) 1198 { 1199 int r; 1200 1201 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) { 1202 return 0; 1203 } 1204 1205 for (int i = 0; i < MAX_VLAN >> 5; i++) { 1206 for (int j = 0; n->vlans[i] && j <= 0x1f; j++) { 1207 if (n->vlans[i] & (1U << j)) { 1208 r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor, 1209 in_cursor, (i << 5) + j); 1210 if (unlikely(r != 0)) { 1211 return r; 1212 } 1213 } 1214 } 1215 } 1216 1217 return 0; 1218 } 1219 1220 static int vhost_vdpa_net_cvq_load(NetClientState *nc) 1221 { 1222 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 1223 struct vhost_vdpa *v = &s->vhost_vdpa; 1224 const VirtIONet *n; 1225 int r; 1226 struct iovec out_cursor, in_cursor; 1227 1228 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1229 1230 vhost_vdpa_set_vring_ready(v, v->dev->vq_index); 1231 1232 if (v->shadow_vqs_enabled) { 1233 n = VIRTIO_NET(v->dev->vdev); 1234 vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor); 1235 r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor); 1236 if (unlikely(r < 0)) { 1237 return r; 1238 } 1239 r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor); 1240 if (unlikely(r)) { 1241 return r; 1242 } 1243 r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor); 1244 if (unlikely(r)) { 1245 return r; 1246 } 1247 r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor); 1248 if (unlikely(r)) { 1249 return r; 1250 } 1251 r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor); 1252 if (unlikely(r)) { 1253 return r; 1254 } 1255 1256 /* 1257 * We need to poll and check all pending device's used buffers. 1258 * 1259 * We can poll here since we've had BQL from the time 1260 * we sent the descriptor. 1261 */ 1262 r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status); 1263 if (unlikely(r)) { 1264 return r; 1265 } 1266 } 1267 1268 for (int i = 0; i < v->dev->vq_index; ++i) { 1269 vhost_vdpa_set_vring_ready(v, i); 1270 } 1271 1272 return 0; 1273 } 1274 1275 static NetClientInfo net_vhost_vdpa_cvq_info = { 1276 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 1277 .size = sizeof(VhostVDPAState), 1278 .receive = vhost_vdpa_receive, 1279 .start = vhost_vdpa_net_cvq_start, 1280 .load = vhost_vdpa_net_cvq_load, 1281 .stop = vhost_vdpa_net_cvq_stop, 1282 .cleanup = vhost_vdpa_cleanup, 1283 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 1284 .has_ufo = vhost_vdpa_has_ufo, 1285 .check_peer_type = vhost_vdpa_check_peer_type, 1286 .set_steering_ebpf = vhost_vdpa_set_steering_ebpf, 1287 }; 1288 1289 /* 1290 * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to 1291 * vdpa device. 1292 * 1293 * Considering that QEMU cannot send the entire filter table to the 1294 * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ 1295 * command to enable promiscuous mode to receive all packets, 1296 * according to VirtIO standard, "Since there are no guarantees, 1297 * it can use a hash filter or silently switch to allmulti or 1298 * promiscuous mode if it is given too many addresses.". 1299 * 1300 * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and 1301 * marks `n->mac_table.x_overflow` accordingly, it should have 1302 * the same effect on the device model to receive 1303 * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses. 1304 * The same applies to multicast MAC addresses. 1305 * 1306 * Therefore, QEMU can provide the device model with a fake 1307 * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1) 1308 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast 1309 * MAC addresses. This ensures that the device model marks 1310 * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`, 1311 * allowing all packets to be received, which aligns with the 1312 * state of the vdpa device. 1313 */ 1314 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s, 1315 VirtQueueElement *elem, 1316 struct iovec *out, 1317 const struct iovec *in) 1318 { 1319 struct virtio_net_ctrl_mac mac_data, *mac_ptr; 1320 struct virtio_net_ctrl_hdr *hdr_ptr; 1321 uint32_t cursor; 1322 ssize_t r; 1323 uint8_t on = 1; 1324 1325 /* parse the non-multicast MAC address entries from CVQ command */ 1326 cursor = sizeof(*hdr_ptr); 1327 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1328 &mac_data, sizeof(mac_data)); 1329 if (unlikely(r != sizeof(mac_data))) { 1330 /* 1331 * If the CVQ command is invalid, we should simulate the vdpa device 1332 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1333 */ 1334 *s->status = VIRTIO_NET_ERR; 1335 return sizeof(*s->status); 1336 } 1337 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1338 1339 /* parse the multicast MAC address entries from CVQ command */ 1340 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1341 &mac_data, sizeof(mac_data)); 1342 if (r != sizeof(mac_data)) { 1343 /* 1344 * If the CVQ command is invalid, we should simulate the vdpa device 1345 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1346 */ 1347 *s->status = VIRTIO_NET_ERR; 1348 return sizeof(*s->status); 1349 } 1350 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1351 1352 /* validate the CVQ command */ 1353 if (iov_size(elem->out_sg, elem->out_num) != cursor) { 1354 /* 1355 * If the CVQ command is invalid, we should simulate the vdpa device 1356 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1357 */ 1358 *s->status = VIRTIO_NET_ERR; 1359 return sizeof(*s->status); 1360 } 1361 1362 /* 1363 * According to VirtIO standard, "Since there are no guarantees, 1364 * it can use a hash filter or silently switch to allmulti or 1365 * promiscuous mode if it is given too many addresses.". 1366 * 1367 * Therefore, considering that QEMU is unable to send the entire 1368 * filter table to the vdpa device, it should send the 1369 * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode 1370 */ 1371 hdr_ptr = out->iov_base; 1372 out->iov_len = sizeof(*hdr_ptr) + sizeof(on); 1373 1374 hdr_ptr->class = VIRTIO_NET_CTRL_RX; 1375 hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC; 1376 iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on)); 1377 r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1); 1378 if (unlikely(r < 0)) { 1379 return r; 1380 } 1381 1382 /* 1383 * We can poll here since we've had BQL from the time 1384 * we sent the descriptor. 1385 */ 1386 r = vhost_vdpa_net_svq_poll(s, 1); 1387 if (unlikely(r < sizeof(*s->status))) { 1388 return r; 1389 } 1390 if (*s->status != VIRTIO_NET_OK) { 1391 return sizeof(*s->status); 1392 } 1393 1394 /* 1395 * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ 1396 * command to the device model, including (`MAC_TABLE_ENTRIES` + 1) 1397 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) 1398 * multicast MAC addresses. 1399 * 1400 * By doing so, the device model can mark `n->mac_table.uni_overflow` 1401 * and `n->mac_table.multi_overflow`, enabling all packets to be 1402 * received, which aligns with the state of the vdpa device. 1403 */ 1404 cursor = 0; 1405 uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1, 1406 fake_mul_entries = MAC_TABLE_ENTRIES + 1, 1407 fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) + 1408 sizeof(mac_data) + fake_uni_entries * ETH_ALEN + 1409 sizeof(mac_data) + fake_mul_entries * ETH_ALEN; 1410 1411 assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len()); 1412 out->iov_len = fake_cvq_size; 1413 1414 /* pack the header for fake CVQ command */ 1415 hdr_ptr = out->iov_base + cursor; 1416 hdr_ptr->class = VIRTIO_NET_CTRL_MAC; 1417 hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 1418 cursor += sizeof(*hdr_ptr); 1419 1420 /* 1421 * Pack the non-multicast MAC addresses part for fake CVQ command. 1422 * 1423 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1424 * addresses provided in CVQ command. Therefore, only the entries 1425 * field need to be prepared in the CVQ command. 1426 */ 1427 mac_ptr = out->iov_base + cursor; 1428 mac_ptr->entries = cpu_to_le32(fake_uni_entries); 1429 cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN; 1430 1431 /* 1432 * Pack the multicast MAC addresses part for fake CVQ command. 1433 * 1434 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1435 * addresses provided in CVQ command. Therefore, only the entries 1436 * field need to be prepared in the CVQ command. 1437 */ 1438 mac_ptr = out->iov_base + cursor; 1439 mac_ptr->entries = cpu_to_le32(fake_mul_entries); 1440 1441 /* 1442 * Simulating QEMU poll a vdpa device used buffer 1443 * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1444 */ 1445 return sizeof(*s->status); 1446 } 1447 1448 /** 1449 * Validate and copy control virtqueue commands. 1450 * 1451 * Following QEMU guidelines, we offer a copy of the buffers to the device to 1452 * prevent TOCTOU bugs. 1453 */ 1454 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq, 1455 VirtQueueElement *elem, 1456 void *opaque) 1457 { 1458 VhostVDPAState *s = opaque; 1459 size_t in_len; 1460 const struct virtio_net_ctrl_hdr *ctrl; 1461 virtio_net_ctrl_ack status = VIRTIO_NET_ERR; 1462 /* Out buffer sent to both the vdpa device and the device model */ 1463 struct iovec out = { 1464 .iov_base = s->cvq_cmd_out_buffer, 1465 }; 1466 /* in buffer used for device model */ 1467 const struct iovec model_in = { 1468 .iov_base = &status, 1469 .iov_len = sizeof(status), 1470 }; 1471 /* in buffer used for vdpa device */ 1472 const struct iovec vdpa_in = { 1473 .iov_base = s->status, 1474 .iov_len = sizeof(*s->status), 1475 }; 1476 ssize_t dev_written = -EINVAL; 1477 1478 out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0, 1479 s->cvq_cmd_out_buffer, 1480 vhost_vdpa_net_cvq_cmd_page_len()); 1481 1482 ctrl = s->cvq_cmd_out_buffer; 1483 if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) { 1484 /* 1485 * Guest announce capability is emulated by qemu, so don't forward to 1486 * the device. 1487 */ 1488 dev_written = sizeof(status); 1489 *s->status = VIRTIO_NET_OK; 1490 } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC && 1491 ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET && 1492 iov_size(elem->out_sg, elem->out_num) > out.iov_len)) { 1493 /* 1494 * Due to the size limitation of the out buffer sent to the vdpa device, 1495 * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive 1496 * MAC addresses set by the driver for the filter table can cause 1497 * truncation of the CVQ command in QEMU. As a result, the vdpa device 1498 * rejects the flawed CVQ command. 1499 * 1500 * Therefore, QEMU must handle this situation instead of sending 1501 * the CVQ command directly. 1502 */ 1503 dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem, 1504 &out, &vdpa_in); 1505 if (unlikely(dev_written < 0)) { 1506 goto out; 1507 } 1508 } else { 1509 ssize_t r; 1510 r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1); 1511 if (unlikely(r < 0)) { 1512 dev_written = r; 1513 goto out; 1514 } 1515 1516 /* 1517 * We can poll here since we've had BQL from the time 1518 * we sent the descriptor. 1519 */ 1520 dev_written = vhost_vdpa_net_svq_poll(s, 1); 1521 } 1522 1523 if (unlikely(dev_written < sizeof(status))) { 1524 error_report("Insufficient written data (%zu)", dev_written); 1525 goto out; 1526 } 1527 1528 if (*s->status != VIRTIO_NET_OK) { 1529 goto out; 1530 } 1531 1532 status = VIRTIO_NET_ERR; 1533 virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1); 1534 if (status != VIRTIO_NET_OK) { 1535 error_report("Bad CVQ processing in model"); 1536 } 1537 1538 out: 1539 in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status, 1540 sizeof(status)); 1541 if (unlikely(in_len < sizeof(status))) { 1542 error_report("Bad device CVQ written length"); 1543 } 1544 vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status))); 1545 /* 1546 * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when 1547 * the function successfully forwards the CVQ command, indicated 1548 * by a non-negative value of `dev_written`. Otherwise, it still 1549 * belongs to SVQ. 1550 * This function should only free the `elem` when it owns. 1551 */ 1552 if (dev_written >= 0) { 1553 g_free(elem); 1554 } 1555 return dev_written < 0 ? dev_written : 0; 1556 } 1557 1558 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = { 1559 .avail_handler = vhost_vdpa_net_handle_ctrl_avail, 1560 }; 1561 1562 /** 1563 * Probe if CVQ is isolated 1564 * 1565 * @device_fd The vdpa device fd 1566 * @features Features offered by the device. 1567 * @cvq_index The control vq pair index 1568 * 1569 * Returns <0 in case of failure, 0 if false and 1 if true. 1570 */ 1571 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features, 1572 int cvq_index, Error **errp) 1573 { 1574 uint64_t backend_features; 1575 int64_t cvq_group; 1576 uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE | 1577 VIRTIO_CONFIG_S_DRIVER; 1578 int r; 1579 1580 ERRP_GUARD(); 1581 1582 r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features); 1583 if (unlikely(r < 0)) { 1584 error_setg_errno(errp, errno, "Cannot get vdpa backend_features"); 1585 return r; 1586 } 1587 1588 if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) { 1589 return 0; 1590 } 1591 1592 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1593 if (unlikely(r)) { 1594 error_setg_errno(errp, -r, "Cannot set device status"); 1595 goto out; 1596 } 1597 1598 r = ioctl(device_fd, VHOST_SET_FEATURES, &features); 1599 if (unlikely(r)) { 1600 error_setg_errno(errp, -r, "Cannot set features"); 1601 goto out; 1602 } 1603 1604 status |= VIRTIO_CONFIG_S_FEATURES_OK; 1605 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1606 if (unlikely(r)) { 1607 error_setg_errno(errp, -r, "Cannot set device status"); 1608 goto out; 1609 } 1610 1611 cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp); 1612 if (unlikely(cvq_group < 0)) { 1613 if (cvq_group != -ENOTSUP) { 1614 r = cvq_group; 1615 goto out; 1616 } 1617 1618 /* 1619 * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend 1620 * support ASID even if the parent driver does not. The CVQ cannot be 1621 * isolated in this case. 1622 */ 1623 error_free(*errp); 1624 *errp = NULL; 1625 r = 0; 1626 goto out; 1627 } 1628 1629 for (int i = 0; i < cvq_index; ++i) { 1630 int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp); 1631 if (unlikely(group < 0)) { 1632 r = group; 1633 goto out; 1634 } 1635 1636 if (group == (int64_t)cvq_group) { 1637 r = 0; 1638 goto out; 1639 } 1640 } 1641 1642 r = 1; 1643 1644 out: 1645 status = 0; 1646 ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1647 return r; 1648 } 1649 1650 static NetClientState *net_vhost_vdpa_init(NetClientState *peer, 1651 const char *device, 1652 const char *name, 1653 int vdpa_device_fd, 1654 int queue_pair_index, 1655 int nvqs, 1656 bool is_datapath, 1657 bool svq, 1658 struct vhost_vdpa_iova_range iova_range, 1659 uint64_t features, 1660 VhostVDPAShared *shared, 1661 Error **errp) 1662 { 1663 NetClientState *nc = NULL; 1664 VhostVDPAState *s; 1665 int ret = 0; 1666 assert(name); 1667 int cvq_isolated = 0; 1668 1669 if (is_datapath) { 1670 nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device, 1671 name); 1672 } else { 1673 cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features, 1674 queue_pair_index * 2, 1675 errp); 1676 if (unlikely(cvq_isolated < 0)) { 1677 return NULL; 1678 } 1679 1680 nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer, 1681 device, name); 1682 } 1683 qemu_set_info_str(nc, TYPE_VHOST_VDPA); 1684 s = DO_UPCAST(VhostVDPAState, nc, nc); 1685 1686 s->vhost_vdpa.device_fd = vdpa_device_fd; 1687 s->vhost_vdpa.index = queue_pair_index; 1688 s->always_svq = svq; 1689 s->migration_state.notify = NULL; 1690 s->vhost_vdpa.shadow_vqs_enabled = svq; 1691 s->vhost_vdpa.shadow_data = svq; 1692 if (queue_pair_index == 0) { 1693 vhost_vdpa_net_valid_svq_features(features, 1694 &s->vhost_vdpa.migration_blocker); 1695 s->vhost_vdpa.shared = g_new0(VhostVDPAShared, 1); 1696 s->vhost_vdpa.shared->iova_range = iova_range; 1697 } else if (!is_datapath) { 1698 s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1699 PROT_READ | PROT_WRITE, 1700 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1701 s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1702 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 1703 -1, 0); 1704 1705 s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops; 1706 s->vhost_vdpa.shadow_vq_ops_opaque = s; 1707 s->cvq_isolated = cvq_isolated; 1708 } 1709 if (queue_pair_index != 0) { 1710 s->vhost_vdpa.shared = shared; 1711 } 1712 1713 ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs); 1714 if (ret) { 1715 qemu_del_net_client(nc); 1716 return NULL; 1717 } 1718 1719 return nc; 1720 } 1721 1722 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp) 1723 { 1724 int ret = ioctl(fd, VHOST_GET_FEATURES, features); 1725 if (unlikely(ret < 0)) { 1726 error_setg_errno(errp, errno, 1727 "Fail to query features from vhost-vDPA device"); 1728 } 1729 return ret; 1730 } 1731 1732 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features, 1733 int *has_cvq, Error **errp) 1734 { 1735 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 1736 g_autofree struct vhost_vdpa_config *config = NULL; 1737 __virtio16 *max_queue_pairs; 1738 int ret; 1739 1740 if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) { 1741 *has_cvq = 1; 1742 } else { 1743 *has_cvq = 0; 1744 } 1745 1746 if (features & (1 << VIRTIO_NET_F_MQ)) { 1747 config = g_malloc0(config_size + sizeof(*max_queue_pairs)); 1748 config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs); 1749 config->len = sizeof(*max_queue_pairs); 1750 1751 ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config); 1752 if (ret) { 1753 error_setg(errp, "Fail to get config from vhost-vDPA device"); 1754 return -ret; 1755 } 1756 1757 max_queue_pairs = (__virtio16 *)&config->buf; 1758 1759 return lduw_le_p(max_queue_pairs); 1760 } 1761 1762 return 1; 1763 } 1764 1765 int net_init_vhost_vdpa(const Netdev *netdev, const char *name, 1766 NetClientState *peer, Error **errp) 1767 { 1768 const NetdevVhostVDPAOptions *opts; 1769 uint64_t features; 1770 int vdpa_device_fd; 1771 g_autofree NetClientState **ncs = NULL; 1772 struct vhost_vdpa_iova_range iova_range; 1773 NetClientState *nc; 1774 int queue_pairs, r, i = 0, has_cvq = 0; 1775 1776 assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1777 opts = &netdev->u.vhost_vdpa; 1778 if (!opts->vhostdev && !opts->vhostfd) { 1779 error_setg(errp, 1780 "vhost-vdpa: neither vhostdev= nor vhostfd= was specified"); 1781 return -1; 1782 } 1783 1784 if (opts->vhostdev && opts->vhostfd) { 1785 error_setg(errp, 1786 "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive"); 1787 return -1; 1788 } 1789 1790 if (opts->vhostdev) { 1791 vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp); 1792 if (vdpa_device_fd == -1) { 1793 return -errno; 1794 } 1795 } else { 1796 /* has_vhostfd */ 1797 vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp); 1798 if (vdpa_device_fd == -1) { 1799 error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: "); 1800 return -1; 1801 } 1802 } 1803 1804 r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp); 1805 if (unlikely(r < 0)) { 1806 goto err; 1807 } 1808 1809 queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features, 1810 &has_cvq, errp); 1811 if (queue_pairs < 0) { 1812 qemu_close(vdpa_device_fd); 1813 return queue_pairs; 1814 } 1815 1816 r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range); 1817 if (unlikely(r < 0)) { 1818 error_setg(errp, "vhost-vdpa: get iova range failed: %s", 1819 strerror(-r)); 1820 goto err; 1821 } 1822 1823 if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) { 1824 goto err; 1825 } 1826 1827 ncs = g_malloc0(sizeof(*ncs) * queue_pairs); 1828 1829 for (i = 0; i < queue_pairs; i++) { 1830 VhostVDPAShared *shared = NULL; 1831 1832 if (i) { 1833 shared = DO_UPCAST(VhostVDPAState, nc, ncs[0])->vhost_vdpa.shared; 1834 } 1835 ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1836 vdpa_device_fd, i, 2, true, opts->x_svq, 1837 iova_range, features, shared, errp); 1838 if (!ncs[i]) 1839 goto err; 1840 } 1841 1842 if (has_cvq) { 1843 VhostVDPAState *s0 = DO_UPCAST(VhostVDPAState, nc, ncs[0]); 1844 VhostVDPAShared *shared = s0->vhost_vdpa.shared; 1845 1846 nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1847 vdpa_device_fd, i, 1, false, 1848 opts->x_svq, iova_range, features, shared, 1849 errp); 1850 if (!nc) 1851 goto err; 1852 } 1853 1854 return 0; 1855 1856 err: 1857 if (i) { 1858 for (i--; i >= 0; i--) { 1859 qemu_del_net_client(ncs[i]); 1860 } 1861 } 1862 1863 qemu_close(vdpa_device_fd); 1864 1865 return -1; 1866 } 1867