1 /* 2 * vhost-vdpa.c 3 * 4 * Copyright(c) 2017-2018 Intel Corporation. 5 * Copyright(c) 2020 Red Hat, Inc. 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "clients.h" 14 #include "hw/virtio/virtio-net.h" 15 #include "net/vhost_net.h" 16 #include "net/vhost-vdpa.h" 17 #include "hw/virtio/vhost-vdpa.h" 18 #include "qemu/config-file.h" 19 #include "qemu/error-report.h" 20 #include "qemu/log.h" 21 #include "qemu/memalign.h" 22 #include "qemu/option.h" 23 #include "qapi/error.h" 24 #include <linux/vhost.h> 25 #include <sys/ioctl.h> 26 #include <err.h> 27 #include "standard-headers/linux/virtio_net.h" 28 #include "monitor/monitor.h" 29 #include "migration/misc.h" 30 #include "hw/virtio/vhost.h" 31 #include "trace.h" 32 33 /* Todo:need to add the multiqueue support here */ 34 typedef struct VhostVDPAState { 35 NetClientState nc; 36 struct vhost_vdpa vhost_vdpa; 37 NotifierWithReturn migration_state; 38 VHostNetState *vhost_net; 39 40 /* Control commands shadow buffers */ 41 void *cvq_cmd_out_buffer; 42 virtio_net_ctrl_ack *status; 43 44 /* The device always have SVQ enabled */ 45 bool always_svq; 46 47 /* The device can isolate CVQ in its own ASID */ 48 bool cvq_isolated; 49 50 bool started; 51 } VhostVDPAState; 52 53 /* 54 * The array is sorted alphabetically in ascending order, 55 * with the exception of VHOST_INVALID_FEATURE_BIT, 56 * which should always be the last entry. 57 */ 58 static const int vdpa_feature_bits[] = { 59 VIRTIO_F_ANY_LAYOUT, 60 VIRTIO_F_IOMMU_PLATFORM, 61 VIRTIO_F_NOTIFY_ON_EMPTY, 62 VIRTIO_F_RING_PACKED, 63 VIRTIO_F_RING_RESET, 64 VIRTIO_F_VERSION_1, 65 VIRTIO_F_IN_ORDER, 66 VIRTIO_F_NOTIFICATION_DATA, 67 VIRTIO_NET_F_CSUM, 68 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, 69 VIRTIO_NET_F_CTRL_MAC_ADDR, 70 VIRTIO_NET_F_CTRL_RX, 71 VIRTIO_NET_F_CTRL_RX_EXTRA, 72 VIRTIO_NET_F_CTRL_VLAN, 73 VIRTIO_NET_F_CTRL_VQ, 74 VIRTIO_NET_F_GSO, 75 VIRTIO_NET_F_GUEST_CSUM, 76 VIRTIO_NET_F_GUEST_ECN, 77 VIRTIO_NET_F_GUEST_TSO4, 78 VIRTIO_NET_F_GUEST_TSO6, 79 VIRTIO_NET_F_GUEST_UFO, 80 VIRTIO_NET_F_GUEST_USO4, 81 VIRTIO_NET_F_GUEST_USO6, 82 VIRTIO_NET_F_HASH_REPORT, 83 VIRTIO_NET_F_HOST_ECN, 84 VIRTIO_NET_F_HOST_TSO4, 85 VIRTIO_NET_F_HOST_TSO6, 86 VIRTIO_NET_F_HOST_UFO, 87 VIRTIO_NET_F_HOST_USO, 88 VIRTIO_NET_F_MQ, 89 VIRTIO_NET_F_MRG_RXBUF, 90 VIRTIO_NET_F_MTU, 91 VIRTIO_NET_F_RSC_EXT, 92 VIRTIO_NET_F_RSS, 93 VIRTIO_NET_F_STATUS, 94 VIRTIO_RING_F_EVENT_IDX, 95 VIRTIO_RING_F_INDIRECT_DESC, 96 97 /* VHOST_INVALID_FEATURE_BIT should always be the last entry */ 98 VHOST_INVALID_FEATURE_BIT 99 }; 100 101 /** Supported device specific feature bits with SVQ */ 102 static const uint64_t vdpa_svq_device_features = 103 BIT_ULL(VIRTIO_NET_F_CSUM) | 104 BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) | 105 BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) | 106 BIT_ULL(VIRTIO_NET_F_MTU) | 107 BIT_ULL(VIRTIO_NET_F_MAC) | 108 BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) | 109 BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) | 110 BIT_ULL(VIRTIO_NET_F_GUEST_ECN) | 111 BIT_ULL(VIRTIO_NET_F_GUEST_UFO) | 112 BIT_ULL(VIRTIO_NET_F_HOST_TSO4) | 113 BIT_ULL(VIRTIO_NET_F_HOST_TSO6) | 114 BIT_ULL(VIRTIO_NET_F_HOST_ECN) | 115 BIT_ULL(VIRTIO_NET_F_HOST_UFO) | 116 BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) | 117 BIT_ULL(VIRTIO_NET_F_STATUS) | 118 BIT_ULL(VIRTIO_NET_F_CTRL_VQ) | 119 BIT_ULL(VIRTIO_NET_F_CTRL_RX) | 120 BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) | 121 BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) | 122 BIT_ULL(VIRTIO_NET_F_MQ) | 123 BIT_ULL(VIRTIO_F_ANY_LAYOUT) | 124 BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) | 125 /* VHOST_F_LOG_ALL is exposed by SVQ */ 126 BIT_ULL(VHOST_F_LOG_ALL) | 127 BIT_ULL(VIRTIO_NET_F_HASH_REPORT) | 128 BIT_ULL(VIRTIO_NET_F_RSS) | 129 BIT_ULL(VIRTIO_NET_F_RSC_EXT) | 130 BIT_ULL(VIRTIO_NET_F_STANDBY) | 131 BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX); 132 133 #define VHOST_VDPA_NET_CVQ_ASID 1 134 135 static struct vhost_net *vhost_vdpa_get_vhost_net(NetClientState *nc) 136 { 137 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 138 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 139 return s->vhost_net; 140 } 141 142 static size_t vhost_vdpa_net_cvq_cmd_len(void) 143 { 144 /* 145 * MAC_TABLE_SET is the ctrl command that produces the longer out buffer. 146 * In buffer is always 1 byte, so it should fit here 147 */ 148 return sizeof(struct virtio_net_ctrl_hdr) + 149 2 * sizeof(struct virtio_net_ctrl_mac) + 150 MAC_TABLE_ENTRIES * ETH_ALEN; 151 } 152 153 static size_t vhost_vdpa_net_cvq_cmd_page_len(void) 154 { 155 return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size()); 156 } 157 158 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp) 159 { 160 uint64_t invalid_dev_features = 161 features & ~vdpa_svq_device_features & 162 /* Transport are all accepted at this point */ 163 ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START, 164 VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START); 165 166 if (invalid_dev_features) { 167 error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64, 168 invalid_dev_features); 169 return false; 170 } 171 172 return vhost_svq_valid_features(features, errp); 173 } 174 175 static int vhost_vdpa_net_check_device_id(struct vhost_net *net) 176 { 177 uint32_t device_id; 178 int ret; 179 struct vhost_dev *hdev; 180 181 hdev = (struct vhost_dev *)&net->dev; 182 ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id); 183 if (device_id != VIRTIO_ID_NET) { 184 return -ENOTSUP; 185 } 186 return ret; 187 } 188 189 static int vhost_vdpa_add(NetClientState *ncs, void *be, 190 int queue_pair_index, int nvqs) 191 { 192 VhostNetOptions options; 193 struct vhost_net *net = NULL; 194 VhostVDPAState *s; 195 int ret; 196 197 options.backend_type = VHOST_BACKEND_TYPE_VDPA; 198 assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 199 s = DO_UPCAST(VhostVDPAState, nc, ncs); 200 options.net_backend = ncs; 201 options.opaque = be; 202 options.busyloop_timeout = 0; 203 options.nvqs = nvqs; 204 options.feature_bits = vdpa_feature_bits; 205 options.get_acked_features = NULL; 206 options.save_acked_features = NULL; 207 options.max_tx_queue_size = VIRTQUEUE_MAX_SIZE; 208 options.is_vhost_user = false; 209 210 net = vhost_net_init(&options); 211 if (!net) { 212 error_report("failed to init vhost_net for queue"); 213 goto err_init; 214 } 215 s->vhost_net = net; 216 ret = vhost_vdpa_net_check_device_id(net); 217 if (ret) { 218 goto err_check; 219 } 220 return 0; 221 err_check: 222 vhost_net_cleanup(net); 223 g_free(net); 224 err_init: 225 return -1; 226 } 227 228 static void vhost_vdpa_cleanup(NetClientState *nc) 229 { 230 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 231 232 munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len()); 233 munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len()); 234 if (s->vhost_net) { 235 vhost_net_cleanup(s->vhost_net); 236 g_free(s->vhost_net); 237 s->vhost_net = NULL; 238 } 239 if (s->vhost_vdpa.index != 0) { 240 return; 241 } 242 qemu_close(s->vhost_vdpa.shared->device_fd); 243 g_clear_pointer(&s->vhost_vdpa.shared->iova_tree, vhost_iova_tree_delete); 244 g_free(s->vhost_vdpa.shared); 245 } 246 247 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc) 248 { 249 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 250 251 return true; 252 } 253 254 static bool vhost_vdpa_get_vnet_hash_supported_types(NetClientState *nc, 255 uint32_t *types) 256 { 257 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 258 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 259 uint64_t features = s->vhost_vdpa.dev->features; 260 int fd = s->vhost_vdpa.shared->device_fd; 261 struct { 262 struct vhost_vdpa_config hdr; 263 uint32_t supported_hash_types; 264 } config; 265 266 if (!virtio_has_feature(features, VIRTIO_NET_F_HASH_REPORT) && 267 !virtio_has_feature(features, VIRTIO_NET_F_RSS)) { 268 return false; 269 } 270 271 config.hdr.off = offsetof(struct virtio_net_config, supported_hash_types); 272 config.hdr.len = sizeof(config.supported_hash_types); 273 274 assert(!ioctl(fd, VHOST_VDPA_GET_CONFIG, &config)); 275 *types = le32_to_cpu(config.supported_hash_types); 276 277 return true; 278 } 279 280 static bool vhost_vdpa_has_ufo(NetClientState *nc) 281 { 282 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 283 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 284 uint64_t features = 0; 285 features |= (1ULL << VIRTIO_NET_F_HOST_UFO); 286 features = vhost_net_get_features(s->vhost_net, features); 287 return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO)); 288 289 } 290 291 /* 292 * FIXME: vhost_vdpa doesn't have an API to "set h/w endianness". But it's 293 * reasonable to assume that h/w is LE by default, because LE is what 294 * virtio 1.0 and later ask for. So, this function just says "yes, the h/w is 295 * LE". Otherwise, on a BE machine, higher-level code would mistakely think 296 * the h/w is BE and can't support VDPA for a virtio 1.0 client. 297 */ 298 static int vhost_vdpa_set_vnet_le(NetClientState *nc, bool enable) 299 { 300 return 0; 301 } 302 303 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc, 304 Error **errp) 305 { 306 const char *driver = object_class_get_name(oc); 307 308 if (!g_str_has_prefix(driver, "virtio-net-")) { 309 error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*"); 310 return false; 311 } 312 313 return true; 314 } 315 316 /** Dummy receive in case qemu falls back to userland tap networking */ 317 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf, 318 size_t size) 319 { 320 return size; 321 } 322 323 324 /** From any vdpa net client, get the netclient of the i-th queue pair */ 325 static VhostVDPAState *vhost_vdpa_net_get_nc_vdpa(VhostVDPAState *s, int i) 326 { 327 NICState *nic = qemu_get_nic(s->nc.peer); 328 NetClientState *nc_i = qemu_get_peer(nic->ncs, i); 329 330 return DO_UPCAST(VhostVDPAState, nc, nc_i); 331 } 332 333 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s) 334 { 335 return vhost_vdpa_net_get_nc_vdpa(s, 0); 336 } 337 338 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable) 339 { 340 struct vhost_vdpa *v = &s->vhost_vdpa; 341 VirtIONet *n; 342 VirtIODevice *vdev; 343 int data_queue_pairs, cvq, r; 344 345 /* We are only called on the first data vqs and only if x-svq is not set */ 346 if (s->vhost_vdpa.shadow_vqs_enabled == enable) { 347 return; 348 } 349 350 vdev = v->dev->vdev; 351 n = VIRTIO_NET(vdev); 352 if (!n->vhost_started) { 353 return; 354 } 355 356 data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1; 357 cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ? 358 n->max_ncs - n->max_queue_pairs : 0; 359 v->shared->svq_switching = enable ? 360 SVQ_TSTATE_ENABLING : SVQ_TSTATE_DISABLING; 361 /* 362 * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter 363 * in the future and resume the device if read-only operations between 364 * suspend and reset goes wrong. 365 */ 366 vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq); 367 368 /* Start will check migration setup_or_active to configure or not SVQ */ 369 r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq); 370 if (unlikely(r < 0)) { 371 error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r); 372 } 373 v->shared->svq_switching = SVQ_TSTATE_DONE; 374 } 375 376 static int vdpa_net_migration_state_notifier(NotifierWithReturn *notifier, 377 MigrationEvent *e, Error **errp) 378 { 379 VhostVDPAState *s = container_of(notifier, VhostVDPAState, migration_state); 380 381 if (e->type == MIG_EVENT_PRECOPY_SETUP) { 382 vhost_vdpa_net_log_global_enable(s, true); 383 } else if (e->type == MIG_EVENT_PRECOPY_FAILED) { 384 vhost_vdpa_net_log_global_enable(s, false); 385 } 386 return 0; 387 } 388 389 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s) 390 { 391 migration_add_notifier(&s->migration_state, 392 vdpa_net_migration_state_notifier); 393 } 394 395 static int vhost_vdpa_net_data_start(NetClientState *nc) 396 { 397 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 398 struct vhost_vdpa *v = &s->vhost_vdpa; 399 400 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 401 402 if (s->always_svq || migration_is_running()) { 403 v->shadow_vqs_enabled = true; 404 } else { 405 v->shadow_vqs_enabled = false; 406 } 407 408 if (v->index == 0) { 409 v->shared->shadow_data = v->shadow_vqs_enabled; 410 vhost_vdpa_net_data_start_first(s); 411 return 0; 412 } 413 414 return 0; 415 } 416 417 static int vhost_vdpa_net_data_load(NetClientState *nc) 418 { 419 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 420 struct vhost_vdpa *v = &s->vhost_vdpa; 421 bool has_cvq = v->dev->vq_index_end % 2; 422 423 if (has_cvq) { 424 return 0; 425 } 426 427 for (int i = 0; i < v->dev->nvqs; ++i) { 428 int ret = vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index); 429 if (ret < 0) { 430 return ret; 431 } 432 } 433 return 0; 434 } 435 436 static void vhost_vdpa_net_client_stop(NetClientState *nc) 437 { 438 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 439 440 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 441 442 if (s->vhost_vdpa.index == 0) { 443 migration_remove_notifier(&s->migration_state); 444 } 445 } 446 447 static NetClientInfo net_vhost_vdpa_info = { 448 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 449 .size = sizeof(VhostVDPAState), 450 .receive = vhost_vdpa_receive, 451 .start = vhost_vdpa_net_data_start, 452 .load = vhost_vdpa_net_data_load, 453 .stop = vhost_vdpa_net_client_stop, 454 .cleanup = vhost_vdpa_cleanup, 455 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 456 .get_vnet_hash_supported_types = vhost_vdpa_get_vnet_hash_supported_types, 457 .has_ufo = vhost_vdpa_has_ufo, 458 .set_vnet_le = vhost_vdpa_set_vnet_le, 459 .check_peer_type = vhost_vdpa_check_peer_type, 460 .get_vhost_net = vhost_vdpa_get_vhost_net, 461 }; 462 463 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index, 464 Error **errp) 465 { 466 struct vhost_vring_state state = { 467 .index = vq_index, 468 }; 469 int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state); 470 471 if (unlikely(r < 0)) { 472 r = -errno; 473 error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index); 474 return r; 475 } 476 477 return state.num; 478 } 479 480 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v, 481 unsigned vq_group, 482 unsigned asid_num) 483 { 484 struct vhost_vring_state asid = { 485 .index = vq_group, 486 .num = asid_num, 487 }; 488 int r; 489 490 trace_vhost_vdpa_set_address_space_id(v, vq_group, asid_num); 491 492 r = ioctl(v->shared->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid); 493 if (unlikely(r < 0)) { 494 error_report("Can't set vq group %u asid %u, errno=%d (%s)", 495 asid.index, asid.num, errno, g_strerror(errno)); 496 } 497 return r; 498 } 499 500 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr) 501 { 502 VhostIOVATree *tree = v->shared->iova_tree; 503 DMAMap needle = { 504 /* 505 * No need to specify size or to look for more translations since 506 * this contiguous chunk was allocated by us. 507 */ 508 .translated_addr = (hwaddr)(uintptr_t)addr, 509 }; 510 const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle); 511 int r; 512 513 if (unlikely(!map)) { 514 error_report("Cannot locate expected map"); 515 return; 516 } 517 518 r = vhost_vdpa_dma_unmap(v->shared, v->address_space_id, map->iova, 519 map->size + 1); 520 if (unlikely(r != 0)) { 521 error_report("Device cannot unmap: %s(%d)", g_strerror(r), r); 522 } 523 524 vhost_iova_tree_remove(tree, *map); 525 } 526 527 /** Map CVQ buffer. */ 528 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size, 529 bool write) 530 { 531 DMAMap map = {}; 532 hwaddr taddr = (hwaddr)(uintptr_t)buf; 533 int r; 534 535 map.size = size - 1; 536 map.perm = write ? IOMMU_RW : IOMMU_RO, 537 r = vhost_iova_tree_map_alloc(v->shared->iova_tree, &map, taddr); 538 if (unlikely(r != IOVA_OK)) { 539 error_report("Cannot map injected element"); 540 541 if (map.translated_addr == taddr) { 542 error_report("Insertion to IOVA->HVA tree failed"); 543 /* Remove the mapping from the IOVA-only tree */ 544 goto dma_map_err; 545 } 546 return r; 547 } 548 549 r = vhost_vdpa_dma_map(v->shared, v->address_space_id, map.iova, 550 vhost_vdpa_net_cvq_cmd_page_len(), buf, !write); 551 if (unlikely(r < 0)) { 552 goto dma_map_err; 553 } 554 555 return 0; 556 557 dma_map_err: 558 vhost_iova_tree_remove(v->shared->iova_tree, map); 559 return r; 560 } 561 562 static int vhost_vdpa_net_cvq_start(NetClientState *nc) 563 { 564 VhostVDPAState *s, *s0; 565 struct vhost_vdpa *v; 566 int64_t cvq_group; 567 int r; 568 Error *err = NULL; 569 570 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 571 572 s = DO_UPCAST(VhostVDPAState, nc, nc); 573 v = &s->vhost_vdpa; 574 575 s0 = vhost_vdpa_net_first_nc_vdpa(s); 576 v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled; 577 s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID; 578 579 if (v->shared->shadow_data) { 580 /* SVQ is already configured for all virtqueues */ 581 goto out; 582 } 583 584 /* 585 * If we early return in these cases SVQ will not be enabled. The migration 586 * will be blocked as long as vhost-vdpa backends will not offer _F_LOG. 587 */ 588 if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) { 589 return 0; 590 } 591 592 if (!s->cvq_isolated) { 593 return 0; 594 } 595 596 cvq_group = vhost_vdpa_get_vring_group(v->shared->device_fd, 597 v->dev->vq_index_end - 1, 598 &err); 599 if (unlikely(cvq_group < 0)) { 600 error_report_err(err); 601 return cvq_group; 602 } 603 604 r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID); 605 if (unlikely(r < 0)) { 606 return r; 607 } 608 609 v->shadow_vqs_enabled = true; 610 s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID; 611 612 out: 613 if (!s->vhost_vdpa.shadow_vqs_enabled) { 614 return 0; 615 } 616 617 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer, 618 vhost_vdpa_net_cvq_cmd_page_len(), false); 619 if (unlikely(r < 0)) { 620 return r; 621 } 622 623 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status, 624 vhost_vdpa_net_cvq_cmd_page_len(), true); 625 if (unlikely(r < 0)) { 626 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 627 } 628 629 return r; 630 } 631 632 static void vhost_vdpa_net_cvq_stop(NetClientState *nc) 633 { 634 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 635 636 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 637 638 if (s->vhost_vdpa.shadow_vqs_enabled) { 639 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 640 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status); 641 } 642 643 vhost_vdpa_net_client_stop(nc); 644 } 645 646 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s, 647 const struct iovec *out_sg, size_t out_num, 648 const struct iovec *in_sg, size_t in_num) 649 { 650 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 651 int r; 652 653 r = vhost_svq_add(svq, out_sg, out_num, NULL, in_sg, in_num, NULL, NULL); 654 if (unlikely(r != 0)) { 655 if (unlikely(r == -ENOSPC)) { 656 qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n", 657 __func__); 658 } 659 } 660 661 return r; 662 } 663 664 /* 665 * Convenience wrapper to poll SVQ for multiple control commands. 666 * 667 * Caller should hold the BQL when invoking this function, and should take 668 * the answer before SVQ pulls by itself when BQL is released. 669 */ 670 static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight) 671 { 672 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 673 return vhost_svq_poll(svq, cmds_in_flight); 674 } 675 676 static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s, 677 struct iovec *out_cursor, 678 struct iovec *in_cursor) 679 { 680 /* reset the cursor of the output buffer for the device */ 681 out_cursor->iov_base = s->cvq_cmd_out_buffer; 682 out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 683 684 /* reset the cursor of the in buffer for the device */ 685 in_cursor->iov_base = s->status; 686 in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 687 } 688 689 /* 690 * Poll SVQ for multiple pending control commands and check the device's ack. 691 * 692 * Caller should hold the BQL when invoking this function. 693 * 694 * @s: The VhostVDPAState 695 * @len: The length of the pending status shadow buffer 696 */ 697 static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len) 698 { 699 /* device uses a one-byte length ack for each control command */ 700 ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len); 701 if (unlikely(dev_written != len)) { 702 return -EIO; 703 } 704 705 /* check the device's ack */ 706 for (int i = 0; i < len; ++i) { 707 if (s->status[i] != VIRTIO_NET_OK) { 708 return -EIO; 709 } 710 } 711 return 0; 712 } 713 714 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s, 715 struct iovec *out_cursor, 716 struct iovec *in_cursor, uint8_t class, 717 uint8_t cmd, const struct iovec *data_sg, 718 size_t data_num) 719 { 720 const struct virtio_net_ctrl_hdr ctrl = { 721 .class = class, 722 .cmd = cmd, 723 }; 724 size_t data_size = iov_size(data_sg, data_num), cmd_size; 725 struct iovec out, in; 726 ssize_t r; 727 unsigned dummy_cursor_iov_cnt; 728 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 729 730 assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl)); 731 cmd_size = sizeof(ctrl) + data_size; 732 trace_vhost_vdpa_net_load_cmd(s, class, cmd, data_num, data_size); 733 if (vhost_svq_available_slots(svq) < 2 || 734 iov_size(out_cursor, 1) < cmd_size) { 735 /* 736 * It is time to flush all pending control commands if SVQ is full 737 * or control commands shadow buffers are full. 738 * 739 * We can poll here since we've had BQL from the time 740 * we sent the descriptor. 741 */ 742 r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base - 743 (void *)s->status); 744 if (unlikely(r < 0)) { 745 return r; 746 } 747 748 vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor); 749 } 750 751 /* pack the CVQ command header */ 752 iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl)); 753 /* pack the CVQ command command-specific-data */ 754 iov_to_buf(data_sg, data_num, 0, 755 out_cursor->iov_base + sizeof(ctrl), data_size); 756 757 /* extract the required buffer from the cursor for output */ 758 iov_copy(&out, 1, out_cursor, 1, 0, cmd_size); 759 /* extract the required buffer from the cursor for input */ 760 iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status)); 761 762 r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1); 763 if (unlikely(r < 0)) { 764 trace_vhost_vdpa_net_load_cmd_retval(s, class, cmd, r); 765 return r; 766 } 767 768 /* iterate the cursors */ 769 dummy_cursor_iov_cnt = 1; 770 iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size); 771 dummy_cursor_iov_cnt = 1; 772 iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status)); 773 774 return 0; 775 } 776 777 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n, 778 struct iovec *out_cursor, 779 struct iovec *in_cursor) 780 { 781 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) { 782 const struct iovec data = { 783 .iov_base = (void *)n->mac, 784 .iov_len = sizeof(n->mac), 785 }; 786 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 787 VIRTIO_NET_CTRL_MAC, 788 VIRTIO_NET_CTRL_MAC_ADDR_SET, 789 &data, 1); 790 if (unlikely(r < 0)) { 791 return r; 792 } 793 } 794 795 /* 796 * According to VirtIO standard, "The device MUST have an 797 * empty MAC filtering table on reset.". 798 * 799 * Therefore, there is no need to send this CVQ command if the 800 * driver also sets an empty MAC filter table, which aligns with 801 * the device's defaults. 802 * 803 * Note that the device's defaults can mismatch the driver's 804 * configuration only at live migration. 805 */ 806 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) || 807 n->mac_table.in_use == 0) { 808 return 0; 809 } 810 811 uint32_t uni_entries = n->mac_table.first_multi, 812 uni_macs_size = uni_entries * ETH_ALEN, 813 mul_entries = n->mac_table.in_use - uni_entries, 814 mul_macs_size = mul_entries * ETH_ALEN; 815 struct virtio_net_ctrl_mac uni = { 816 .entries = cpu_to_le32(uni_entries), 817 }; 818 struct virtio_net_ctrl_mac mul = { 819 .entries = cpu_to_le32(mul_entries), 820 }; 821 const struct iovec data[] = { 822 { 823 .iov_base = &uni, 824 .iov_len = sizeof(uni), 825 }, { 826 .iov_base = n->mac_table.macs, 827 .iov_len = uni_macs_size, 828 }, { 829 .iov_base = &mul, 830 .iov_len = sizeof(mul), 831 }, { 832 .iov_base = &n->mac_table.macs[uni_macs_size], 833 .iov_len = mul_macs_size, 834 }, 835 }; 836 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 837 VIRTIO_NET_CTRL_MAC, 838 VIRTIO_NET_CTRL_MAC_TABLE_SET, 839 data, ARRAY_SIZE(data)); 840 if (unlikely(r < 0)) { 841 return r; 842 } 843 844 return 0; 845 } 846 847 static int vhost_vdpa_net_load_rss(VhostVDPAState *s, const VirtIONet *n, 848 struct iovec *out_cursor, 849 struct iovec *in_cursor, bool do_rss) 850 { 851 struct virtio_net_rss_config cfg = {}; 852 ssize_t r; 853 g_autofree uint16_t *table = NULL; 854 855 /* 856 * According to VirtIO standard, "Initially the device has all hash 857 * types disabled and reports only VIRTIO_NET_HASH_REPORT_NONE.". 858 * 859 * Therefore, there is no need to send this CVQ command if the 860 * driver disables the all hash types, which aligns with 861 * the device's defaults. 862 * 863 * Note that the device's defaults can mismatch the driver's 864 * configuration only at live migration. 865 */ 866 if (!n->rss_data.enabled || 867 n->rss_data.runtime_hash_types == VIRTIO_NET_HASH_REPORT_NONE) { 868 return 0; 869 } 870 871 table = g_malloc_n(n->rss_data.indirections_len, 872 sizeof(n->rss_data.indirections_table[0])); 873 cfg.hash_types = cpu_to_le32(n->rss_data.runtime_hash_types); 874 875 if (do_rss) { 876 /* 877 * According to VirtIO standard, "Number of entries in indirection_table 878 * is (indirection_table_mask + 1)". 879 */ 880 cfg.indirection_table_mask = cpu_to_le16(n->rss_data.indirections_len - 881 1); 882 cfg.unclassified_queue = cpu_to_le16(n->rss_data.default_queue); 883 for (int i = 0; i < n->rss_data.indirections_len; ++i) { 884 table[i] = cpu_to_le16(n->rss_data.indirections_table[i]); 885 } 886 cfg.max_tx_vq = cpu_to_le16(n->curr_queue_pairs); 887 } else { 888 /* 889 * According to VirtIO standard, "Field reserved MUST contain zeroes. 890 * It is defined to make the structure to match the layout of 891 * virtio_net_rss_config structure, defined in 5.1.6.5.7.". 892 * 893 * Therefore, we need to zero the fields in 894 * struct virtio_net_rss_config, which corresponds to the 895 * `reserved` field in struct virtio_net_hash_config. 896 * 897 * Note that all other fields are zeroed at their definitions, 898 * except for the `indirection_table` field, where the actual data 899 * is stored in the `table` variable to ensure compatibility 900 * with RSS case. Therefore, we need to zero the `table` variable here. 901 */ 902 table[0] = 0; 903 } 904 905 /* 906 * Considering that virtio_net_handle_rss() currently does not restore 907 * the hash key length parsed from the CVQ command sent from the guest 908 * into n->rss_data and uses the maximum key length in other code, so 909 * we also employ the maximum key length here. 910 */ 911 cfg.hash_key_length = sizeof(n->rss_data.key); 912 913 const struct iovec data[] = { 914 { 915 .iov_base = &cfg, 916 .iov_len = offsetof(struct virtio_net_rss_config, 917 indirection_table), 918 }, { 919 .iov_base = table, 920 .iov_len = n->rss_data.indirections_len * 921 sizeof(n->rss_data.indirections_table[0]), 922 }, { 923 .iov_base = &cfg.max_tx_vq, 924 .iov_len = offsetof(struct virtio_net_rss_config, hash_key_data) - 925 offsetof(struct virtio_net_rss_config, max_tx_vq), 926 }, { 927 .iov_base = (void *)n->rss_data.key, 928 .iov_len = sizeof(n->rss_data.key), 929 } 930 }; 931 932 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 933 VIRTIO_NET_CTRL_MQ, 934 do_rss ? VIRTIO_NET_CTRL_MQ_RSS_CONFIG : 935 VIRTIO_NET_CTRL_MQ_HASH_CONFIG, 936 data, ARRAY_SIZE(data)); 937 if (unlikely(r < 0)) { 938 return r; 939 } 940 941 return 0; 942 } 943 944 static int vhost_vdpa_net_load_mq(VhostVDPAState *s, 945 const VirtIONet *n, 946 struct iovec *out_cursor, 947 struct iovec *in_cursor) 948 { 949 struct virtio_net_ctrl_mq mq; 950 ssize_t r; 951 952 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) { 953 return 0; 954 } 955 956 trace_vhost_vdpa_net_load_mq(s, n->curr_queue_pairs); 957 958 mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs); 959 const struct iovec data = { 960 .iov_base = &mq, 961 .iov_len = sizeof(mq), 962 }; 963 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 964 VIRTIO_NET_CTRL_MQ, 965 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET, 966 &data, 1); 967 if (unlikely(r < 0)) { 968 return r; 969 } 970 971 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_RSS)) { 972 /* load the receive-side scaling state */ 973 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, true); 974 if (unlikely(r < 0)) { 975 return r; 976 } 977 } else if (virtio_vdev_has_feature(&n->parent_obj, 978 VIRTIO_NET_F_HASH_REPORT)) { 979 /* load the hash calculation state */ 980 r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, false); 981 if (unlikely(r < 0)) { 982 return r; 983 } 984 } 985 986 return 0; 987 } 988 989 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s, 990 const VirtIONet *n, 991 struct iovec *out_cursor, 992 struct iovec *in_cursor) 993 { 994 uint64_t offloads; 995 ssize_t r; 996 997 if (!virtio_vdev_has_feature(&n->parent_obj, 998 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) { 999 return 0; 1000 } 1001 1002 if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) { 1003 /* 1004 * According to VirtIO standard, "Upon feature negotiation 1005 * corresponding offload gets enabled to preserve 1006 * backward compatibility.". 1007 * 1008 * Therefore, there is no need to send this CVQ command if the 1009 * driver also enables all supported offloads, which aligns with 1010 * the device's defaults. 1011 * 1012 * Note that the device's defaults can mismatch the driver's 1013 * configuration only at live migration. 1014 */ 1015 return 0; 1016 } 1017 1018 offloads = cpu_to_le64(n->curr_guest_offloads); 1019 const struct iovec data = { 1020 .iov_base = &offloads, 1021 .iov_len = sizeof(offloads), 1022 }; 1023 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1024 VIRTIO_NET_CTRL_GUEST_OFFLOADS, 1025 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET, 1026 &data, 1); 1027 if (unlikely(r < 0)) { 1028 return r; 1029 } 1030 1031 return 0; 1032 } 1033 1034 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s, 1035 struct iovec *out_cursor, 1036 struct iovec *in_cursor, 1037 uint8_t cmd, 1038 uint8_t on) 1039 { 1040 const struct iovec data = { 1041 .iov_base = &on, 1042 .iov_len = sizeof(on), 1043 }; 1044 ssize_t r; 1045 1046 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1047 VIRTIO_NET_CTRL_RX, cmd, &data, 1); 1048 if (unlikely(r < 0)) { 1049 return r; 1050 } 1051 1052 return 0; 1053 } 1054 1055 static int vhost_vdpa_net_load_rx(VhostVDPAState *s, 1056 const VirtIONet *n, 1057 struct iovec *out_cursor, 1058 struct iovec *in_cursor) 1059 { 1060 ssize_t r; 1061 1062 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) { 1063 return 0; 1064 } 1065 1066 /* 1067 * According to virtio_net_reset(), device turns promiscuous mode 1068 * on by default. 1069 * 1070 * Additionally, according to VirtIO standard, "Since there are 1071 * no guarantees, it can use a hash filter or silently switch to 1072 * allmulti or promiscuous mode if it is given too many addresses.". 1073 * QEMU marks `n->mac_table.uni_overflow` if guest sets too many 1074 * non-multicast MAC addresses, indicating that promiscuous mode 1075 * should be enabled. 1076 * 1077 * Therefore, QEMU should only send this CVQ command if the 1078 * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off, 1079 * which sets promiscuous mode on, different from the device's defaults. 1080 * 1081 * Note that the device's defaults can mismatch the driver's 1082 * configuration only at live migration. 1083 */ 1084 if (!n->mac_table.uni_overflow && !n->promisc) { 1085 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1086 VIRTIO_NET_CTRL_RX_PROMISC, 0); 1087 if (unlikely(r < 0)) { 1088 return r; 1089 } 1090 } 1091 1092 /* 1093 * According to virtio_net_reset(), device turns all-multicast mode 1094 * off by default. 1095 * 1096 * According to VirtIO standard, "Since there are no guarantees, 1097 * it can use a hash filter or silently switch to allmulti or 1098 * promiscuous mode if it is given too many addresses.". QEMU marks 1099 * `n->mac_table.multi_overflow` if guest sets too many 1100 * non-multicast MAC addresses. 1101 * 1102 * Therefore, QEMU should only send this CVQ command if the 1103 * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on, 1104 * which sets all-multicast mode on, different from the device's defaults. 1105 * 1106 * Note that the device's defaults can mismatch the driver's 1107 * configuration only at live migration. 1108 */ 1109 if (n->mac_table.multi_overflow || n->allmulti) { 1110 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1111 VIRTIO_NET_CTRL_RX_ALLMULTI, 1); 1112 if (unlikely(r < 0)) { 1113 return r; 1114 } 1115 } 1116 1117 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) { 1118 return 0; 1119 } 1120 1121 /* 1122 * According to virtio_net_reset(), device turns all-unicast mode 1123 * off by default. 1124 * 1125 * Therefore, QEMU should only send this CVQ command if the driver 1126 * sets all-unicast mode on, different from the device's defaults. 1127 * 1128 * Note that the device's defaults can mismatch the driver's 1129 * configuration only at live migration. 1130 */ 1131 if (n->alluni) { 1132 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1133 VIRTIO_NET_CTRL_RX_ALLUNI, 1); 1134 if (r < 0) { 1135 return r; 1136 } 1137 } 1138 1139 /* 1140 * According to virtio_net_reset(), device turns non-multicast mode 1141 * off by default. 1142 * 1143 * Therefore, QEMU should only send this CVQ command if the driver 1144 * sets non-multicast mode on, different from the device's defaults. 1145 * 1146 * Note that the device's defaults can mismatch the driver's 1147 * configuration only at live migration. 1148 */ 1149 if (n->nomulti) { 1150 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1151 VIRTIO_NET_CTRL_RX_NOMULTI, 1); 1152 if (r < 0) { 1153 return r; 1154 } 1155 } 1156 1157 /* 1158 * According to virtio_net_reset(), device turns non-unicast mode 1159 * off by default. 1160 * 1161 * Therefore, QEMU should only send this CVQ command if the driver 1162 * sets non-unicast mode on, different from the device's defaults. 1163 * 1164 * Note that the device's defaults can mismatch the driver's 1165 * configuration only at live migration. 1166 */ 1167 if (n->nouni) { 1168 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1169 VIRTIO_NET_CTRL_RX_NOUNI, 1); 1170 if (r < 0) { 1171 return r; 1172 } 1173 } 1174 1175 /* 1176 * According to virtio_net_reset(), device turns non-broadcast mode 1177 * off by default. 1178 * 1179 * Therefore, QEMU should only send this CVQ command if the driver 1180 * sets non-broadcast mode on, different from the device's defaults. 1181 * 1182 * Note that the device's defaults can mismatch the driver's 1183 * configuration only at live migration. 1184 */ 1185 if (n->nobcast) { 1186 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1187 VIRTIO_NET_CTRL_RX_NOBCAST, 1); 1188 if (r < 0) { 1189 return r; 1190 } 1191 } 1192 1193 return 0; 1194 } 1195 1196 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s, 1197 const VirtIONet *n, 1198 struct iovec *out_cursor, 1199 struct iovec *in_cursor, 1200 uint16_t vid) 1201 { 1202 const struct iovec data = { 1203 .iov_base = &vid, 1204 .iov_len = sizeof(vid), 1205 }; 1206 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1207 VIRTIO_NET_CTRL_VLAN, 1208 VIRTIO_NET_CTRL_VLAN_ADD, 1209 &data, 1); 1210 if (unlikely(r < 0)) { 1211 return r; 1212 } 1213 1214 return 0; 1215 } 1216 1217 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s, 1218 const VirtIONet *n, 1219 struct iovec *out_cursor, 1220 struct iovec *in_cursor) 1221 { 1222 int r; 1223 1224 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) { 1225 return 0; 1226 } 1227 1228 for (int i = 0; i < MAX_VLAN >> 5; i++) { 1229 for (int j = 0; n->vlans[i] && j <= 0x1f; j++) { 1230 if (n->vlans[i] & (1U << j)) { 1231 r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor, 1232 in_cursor, (i << 5) + j); 1233 if (unlikely(r != 0)) { 1234 return r; 1235 } 1236 } 1237 } 1238 } 1239 1240 return 0; 1241 } 1242 1243 static int vhost_vdpa_net_cvq_load(NetClientState *nc) 1244 { 1245 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 1246 struct vhost_vdpa *v = &s->vhost_vdpa; 1247 const VirtIONet *n; 1248 int r; 1249 struct iovec out_cursor, in_cursor; 1250 1251 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1252 1253 r = vhost_vdpa_set_vring_ready(v, v->dev->vq_index); 1254 if (unlikely(r < 0)) { 1255 return r; 1256 } 1257 1258 if (v->shadow_vqs_enabled) { 1259 n = VIRTIO_NET(v->dev->vdev); 1260 vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor); 1261 r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor); 1262 if (unlikely(r < 0)) { 1263 return r; 1264 } 1265 r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor); 1266 if (unlikely(r)) { 1267 return r; 1268 } 1269 r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor); 1270 if (unlikely(r)) { 1271 return r; 1272 } 1273 r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor); 1274 if (unlikely(r)) { 1275 return r; 1276 } 1277 r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor); 1278 if (unlikely(r)) { 1279 return r; 1280 } 1281 1282 /* 1283 * We need to poll and check all pending device's used buffers. 1284 * 1285 * We can poll here since we've had BQL from the time 1286 * we sent the descriptor. 1287 */ 1288 r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status); 1289 if (unlikely(r)) { 1290 return r; 1291 } 1292 } 1293 1294 for (int i = 0; i < v->dev->vq_index; ++i) { 1295 r = vhost_vdpa_set_vring_ready(v, i); 1296 if (unlikely(r < 0)) { 1297 return r; 1298 } 1299 } 1300 1301 return 0; 1302 } 1303 1304 static NetClientInfo net_vhost_vdpa_cvq_info = { 1305 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 1306 .size = sizeof(VhostVDPAState), 1307 .receive = vhost_vdpa_receive, 1308 .start = vhost_vdpa_net_cvq_start, 1309 .load = vhost_vdpa_net_cvq_load, 1310 .stop = vhost_vdpa_net_cvq_stop, 1311 .cleanup = vhost_vdpa_cleanup, 1312 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 1313 .get_vnet_hash_supported_types = vhost_vdpa_get_vnet_hash_supported_types, 1314 .has_ufo = vhost_vdpa_has_ufo, 1315 .check_peer_type = vhost_vdpa_check_peer_type, 1316 .get_vhost_net = vhost_vdpa_get_vhost_net, 1317 }; 1318 1319 /* 1320 * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to 1321 * vdpa device. 1322 * 1323 * Considering that QEMU cannot send the entire filter table to the 1324 * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ 1325 * command to enable promiscuous mode to receive all packets, 1326 * according to VirtIO standard, "Since there are no guarantees, 1327 * it can use a hash filter or silently switch to allmulti or 1328 * promiscuous mode if it is given too many addresses.". 1329 * 1330 * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and 1331 * marks `n->mac_table.x_overflow` accordingly, it should have 1332 * the same effect on the device model to receive 1333 * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses. 1334 * The same applies to multicast MAC addresses. 1335 * 1336 * Therefore, QEMU can provide the device model with a fake 1337 * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1) 1338 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast 1339 * MAC addresses. This ensures that the device model marks 1340 * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`, 1341 * allowing all packets to be received, which aligns with the 1342 * state of the vdpa device. 1343 */ 1344 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s, 1345 VirtQueueElement *elem, 1346 struct iovec *out, 1347 const struct iovec *in) 1348 { 1349 struct virtio_net_ctrl_mac mac_data, *mac_ptr; 1350 struct virtio_net_ctrl_hdr *hdr_ptr; 1351 uint32_t cursor; 1352 ssize_t r; 1353 uint8_t on = 1; 1354 1355 /* parse the non-multicast MAC address entries from CVQ command */ 1356 cursor = sizeof(*hdr_ptr); 1357 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1358 &mac_data, sizeof(mac_data)); 1359 if (unlikely(r != sizeof(mac_data))) { 1360 /* 1361 * If the CVQ command is invalid, we should simulate the vdpa device 1362 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1363 */ 1364 *s->status = VIRTIO_NET_ERR; 1365 return sizeof(*s->status); 1366 } 1367 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1368 1369 /* parse the multicast MAC address entries from CVQ command */ 1370 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1371 &mac_data, sizeof(mac_data)); 1372 if (r != sizeof(mac_data)) { 1373 /* 1374 * If the CVQ command is invalid, we should simulate the vdpa device 1375 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1376 */ 1377 *s->status = VIRTIO_NET_ERR; 1378 return sizeof(*s->status); 1379 } 1380 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1381 1382 /* validate the CVQ command */ 1383 if (iov_size(elem->out_sg, elem->out_num) != cursor) { 1384 /* 1385 * If the CVQ command is invalid, we should simulate the vdpa device 1386 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1387 */ 1388 *s->status = VIRTIO_NET_ERR; 1389 return sizeof(*s->status); 1390 } 1391 1392 /* 1393 * According to VirtIO standard, "Since there are no guarantees, 1394 * it can use a hash filter or silently switch to allmulti or 1395 * promiscuous mode if it is given too many addresses.". 1396 * 1397 * Therefore, considering that QEMU is unable to send the entire 1398 * filter table to the vdpa device, it should send the 1399 * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode 1400 */ 1401 hdr_ptr = out->iov_base; 1402 out->iov_len = sizeof(*hdr_ptr) + sizeof(on); 1403 1404 hdr_ptr->class = VIRTIO_NET_CTRL_RX; 1405 hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC; 1406 iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on)); 1407 r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1); 1408 if (unlikely(r < 0)) { 1409 return r; 1410 } 1411 1412 /* 1413 * We can poll here since we've had BQL from the time 1414 * we sent the descriptor. 1415 */ 1416 r = vhost_vdpa_net_svq_poll(s, 1); 1417 if (unlikely(r < sizeof(*s->status))) { 1418 return r; 1419 } 1420 if (*s->status != VIRTIO_NET_OK) { 1421 return sizeof(*s->status); 1422 } 1423 1424 /* 1425 * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ 1426 * command to the device model, including (`MAC_TABLE_ENTRIES` + 1) 1427 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) 1428 * multicast MAC addresses. 1429 * 1430 * By doing so, the device model can mark `n->mac_table.uni_overflow` 1431 * and `n->mac_table.multi_overflow`, enabling all packets to be 1432 * received, which aligns with the state of the vdpa device. 1433 */ 1434 cursor = 0; 1435 uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1, 1436 fake_mul_entries = MAC_TABLE_ENTRIES + 1, 1437 fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) + 1438 sizeof(mac_data) + fake_uni_entries * ETH_ALEN + 1439 sizeof(mac_data) + fake_mul_entries * ETH_ALEN; 1440 1441 assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len()); 1442 out->iov_len = fake_cvq_size; 1443 1444 /* pack the header for fake CVQ command */ 1445 hdr_ptr = out->iov_base + cursor; 1446 hdr_ptr->class = VIRTIO_NET_CTRL_MAC; 1447 hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 1448 cursor += sizeof(*hdr_ptr); 1449 1450 /* 1451 * Pack the non-multicast MAC addresses part for fake CVQ command. 1452 * 1453 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1454 * addresses provided in CVQ command. Therefore, only the entries 1455 * field need to be prepared in the CVQ command. 1456 */ 1457 mac_ptr = out->iov_base + cursor; 1458 mac_ptr->entries = cpu_to_le32(fake_uni_entries); 1459 cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN; 1460 1461 /* 1462 * Pack the multicast MAC addresses part for fake CVQ command. 1463 * 1464 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1465 * addresses provided in CVQ command. Therefore, only the entries 1466 * field need to be prepared in the CVQ command. 1467 */ 1468 mac_ptr = out->iov_base + cursor; 1469 mac_ptr->entries = cpu_to_le32(fake_mul_entries); 1470 1471 /* 1472 * Simulating QEMU poll a vdpa device used buffer 1473 * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1474 */ 1475 return sizeof(*s->status); 1476 } 1477 1478 /** 1479 * Validate and copy control virtqueue commands. 1480 * 1481 * Following QEMU guidelines, we offer a copy of the buffers to the device to 1482 * prevent TOCTOU bugs. 1483 */ 1484 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq, 1485 VirtQueueElement *elem, 1486 void *opaque) 1487 { 1488 VhostVDPAState *s = opaque; 1489 size_t in_len; 1490 const struct virtio_net_ctrl_hdr *ctrl; 1491 virtio_net_ctrl_ack status = VIRTIO_NET_ERR; 1492 /* Out buffer sent to both the vdpa device and the device model */ 1493 struct iovec out = { 1494 .iov_base = s->cvq_cmd_out_buffer, 1495 }; 1496 /* in buffer used for device model */ 1497 const struct iovec model_in = { 1498 .iov_base = &status, 1499 .iov_len = sizeof(status), 1500 }; 1501 /* in buffer used for vdpa device */ 1502 const struct iovec vdpa_in = { 1503 .iov_base = s->status, 1504 .iov_len = sizeof(*s->status), 1505 }; 1506 ssize_t dev_written = -EINVAL; 1507 1508 out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0, 1509 s->cvq_cmd_out_buffer, 1510 vhost_vdpa_net_cvq_cmd_page_len()); 1511 1512 ctrl = s->cvq_cmd_out_buffer; 1513 if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) { 1514 /* 1515 * Guest announce capability is emulated by qemu, so don't forward to 1516 * the device. 1517 */ 1518 dev_written = sizeof(status); 1519 *s->status = VIRTIO_NET_OK; 1520 } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC && 1521 ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET && 1522 iov_size(elem->out_sg, elem->out_num) > out.iov_len)) { 1523 /* 1524 * Due to the size limitation of the out buffer sent to the vdpa device, 1525 * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive 1526 * MAC addresses set by the driver for the filter table can cause 1527 * truncation of the CVQ command in QEMU. As a result, the vdpa device 1528 * rejects the flawed CVQ command. 1529 * 1530 * Therefore, QEMU must handle this situation instead of sending 1531 * the CVQ command directly. 1532 */ 1533 dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem, 1534 &out, &vdpa_in); 1535 if (unlikely(dev_written < 0)) { 1536 goto out; 1537 } 1538 } else { 1539 ssize_t r; 1540 r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1); 1541 if (unlikely(r < 0)) { 1542 dev_written = r; 1543 goto out; 1544 } 1545 1546 /* 1547 * We can poll here since we've had BQL from the time 1548 * we sent the descriptor. 1549 */ 1550 dev_written = vhost_vdpa_net_svq_poll(s, 1); 1551 } 1552 1553 if (unlikely(dev_written < sizeof(status))) { 1554 error_report("Insufficient written data (%zu)", dev_written); 1555 goto out; 1556 } 1557 1558 if (*s->status != VIRTIO_NET_OK) { 1559 goto out; 1560 } 1561 1562 status = VIRTIO_NET_ERR; 1563 virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1); 1564 if (status != VIRTIO_NET_OK) { 1565 error_report("Bad CVQ processing in model"); 1566 } 1567 1568 out: 1569 in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status, 1570 sizeof(status)); 1571 if (unlikely(in_len < sizeof(status))) { 1572 error_report("Bad device CVQ written length"); 1573 } 1574 vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status))); 1575 /* 1576 * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when 1577 * the function successfully forwards the CVQ command, indicated 1578 * by a non-negative value of `dev_written`. Otherwise, it still 1579 * belongs to SVQ. 1580 * This function should only free the `elem` when it owns. 1581 */ 1582 if (dev_written >= 0) { 1583 g_free(elem); 1584 } 1585 return dev_written < 0 ? dev_written : 0; 1586 } 1587 1588 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = { 1589 .avail_handler = vhost_vdpa_net_handle_ctrl_avail, 1590 }; 1591 1592 /** 1593 * Probe if CVQ is isolated 1594 * 1595 * @device_fd The vdpa device fd 1596 * @features Features offered by the device. 1597 * @cvq_index The control vq pair index 1598 * 1599 * Returns <0 in case of failure, 0 if false and 1 if true. 1600 */ 1601 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features, 1602 int cvq_index, Error **errp) 1603 { 1604 ERRP_GUARD(); 1605 uint64_t backend_features; 1606 int64_t cvq_group; 1607 uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE | 1608 VIRTIO_CONFIG_S_DRIVER; 1609 int r; 1610 1611 r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features); 1612 if (unlikely(r < 0)) { 1613 error_setg_errno(errp, errno, "Cannot get vdpa backend_features"); 1614 return r; 1615 } 1616 1617 if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) { 1618 return 0; 1619 } 1620 1621 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1622 if (unlikely(r)) { 1623 error_setg_errno(errp, -r, "Cannot set device status"); 1624 goto out; 1625 } 1626 1627 r = ioctl(device_fd, VHOST_SET_FEATURES, &features); 1628 if (unlikely(r)) { 1629 error_setg_errno(errp, -r, "Cannot set features"); 1630 goto out; 1631 } 1632 1633 status |= VIRTIO_CONFIG_S_FEATURES_OK; 1634 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1635 if (unlikely(r)) { 1636 error_setg_errno(errp, -r, "Cannot set device status"); 1637 goto out; 1638 } 1639 1640 cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp); 1641 if (unlikely(cvq_group < 0)) { 1642 if (cvq_group != -ENOTSUP) { 1643 r = cvq_group; 1644 goto out; 1645 } 1646 1647 /* 1648 * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend 1649 * support ASID even if the parent driver does not. The CVQ cannot be 1650 * isolated in this case. 1651 */ 1652 error_free(*errp); 1653 *errp = NULL; 1654 r = 0; 1655 goto out; 1656 } 1657 1658 for (int i = 0; i < cvq_index; ++i) { 1659 int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp); 1660 if (unlikely(group < 0)) { 1661 r = group; 1662 goto out; 1663 } 1664 1665 if (group == (int64_t)cvq_group) { 1666 r = 0; 1667 goto out; 1668 } 1669 } 1670 1671 r = 1; 1672 1673 out: 1674 status = 0; 1675 ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1676 return r; 1677 } 1678 1679 static NetClientState *net_vhost_vdpa_init(NetClientState *peer, 1680 const char *device, 1681 const char *name, 1682 int vdpa_device_fd, 1683 int queue_pair_index, 1684 int nvqs, 1685 bool is_datapath, 1686 bool svq, 1687 struct vhost_vdpa_iova_range iova_range, 1688 uint64_t features, 1689 VhostVDPAShared *shared, 1690 Error **errp) 1691 { 1692 NetClientState *nc = NULL; 1693 VhostVDPAState *s; 1694 int ret = 0; 1695 assert(name); 1696 int cvq_isolated = 0; 1697 1698 if (is_datapath) { 1699 nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device, 1700 name); 1701 } else { 1702 cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features, 1703 queue_pair_index * 2, 1704 errp); 1705 if (unlikely(cvq_isolated < 0)) { 1706 return NULL; 1707 } 1708 1709 nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer, 1710 device, name); 1711 } 1712 qemu_set_info_str(nc, TYPE_VHOST_VDPA); 1713 s = DO_UPCAST(VhostVDPAState, nc, nc); 1714 1715 s->vhost_vdpa.index = queue_pair_index; 1716 s->always_svq = svq; 1717 s->migration_state.notify = NULL; 1718 s->vhost_vdpa.shadow_vqs_enabled = svq; 1719 if (queue_pair_index == 0) { 1720 vhost_vdpa_net_valid_svq_features(features, 1721 &s->vhost_vdpa.migration_blocker); 1722 s->vhost_vdpa.shared = g_new0(VhostVDPAShared, 1); 1723 s->vhost_vdpa.shared->device_fd = vdpa_device_fd; 1724 s->vhost_vdpa.shared->iova_range = iova_range; 1725 s->vhost_vdpa.shared->shadow_data = svq; 1726 s->vhost_vdpa.shared->iova_tree = vhost_iova_tree_new(iova_range.first, 1727 iova_range.last); 1728 } else if (!is_datapath) { 1729 s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1730 PROT_READ | PROT_WRITE, 1731 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1732 s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1733 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 1734 -1, 0); 1735 1736 s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops; 1737 s->vhost_vdpa.shadow_vq_ops_opaque = s; 1738 s->cvq_isolated = cvq_isolated; 1739 } 1740 if (queue_pair_index != 0) { 1741 s->vhost_vdpa.shared = shared; 1742 } 1743 1744 ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs); 1745 if (ret) { 1746 qemu_del_net_client(nc); 1747 return NULL; 1748 } 1749 1750 return nc; 1751 } 1752 1753 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp) 1754 { 1755 int ret = ioctl(fd, VHOST_GET_FEATURES, features); 1756 if (unlikely(ret < 0)) { 1757 error_setg_errno(errp, errno, 1758 "Fail to query features from vhost-vDPA device"); 1759 } 1760 return ret; 1761 } 1762 1763 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features, 1764 int *has_cvq, Error **errp) 1765 { 1766 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 1767 g_autofree struct vhost_vdpa_config *config = NULL; 1768 __virtio16 *max_queue_pairs; 1769 int ret; 1770 1771 if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) { 1772 *has_cvq = 1; 1773 } else { 1774 *has_cvq = 0; 1775 } 1776 1777 if (features & (1 << VIRTIO_NET_F_MQ)) { 1778 config = g_malloc0(config_size + sizeof(*max_queue_pairs)); 1779 config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs); 1780 config->len = sizeof(*max_queue_pairs); 1781 1782 ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config); 1783 if (ret) { 1784 error_setg(errp, "Fail to get config from vhost-vDPA device"); 1785 return -ret; 1786 } 1787 1788 max_queue_pairs = (__virtio16 *)&config->buf; 1789 1790 return lduw_le_p(max_queue_pairs); 1791 } 1792 1793 return 1; 1794 } 1795 1796 int net_init_vhost_vdpa(const Netdev *netdev, const char *name, 1797 NetClientState *peer, Error **errp) 1798 { 1799 ERRP_GUARD(); 1800 const NetdevVhostVDPAOptions *opts; 1801 uint64_t features; 1802 int vdpa_device_fd; 1803 g_autofree NetClientState **ncs = NULL; 1804 struct vhost_vdpa_iova_range iova_range; 1805 NetClientState *nc; 1806 int queue_pairs, r, i = 0, has_cvq = 0; 1807 1808 assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1809 opts = &netdev->u.vhost_vdpa; 1810 if (!opts->vhostdev && !opts->vhostfd) { 1811 error_setg(errp, 1812 "vhost-vdpa: neither vhostdev= nor vhostfd= was specified"); 1813 return -1; 1814 } 1815 1816 if (opts->vhostdev && opts->vhostfd) { 1817 error_setg(errp, 1818 "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive"); 1819 return -1; 1820 } 1821 1822 if (opts->vhostdev) { 1823 vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp); 1824 if (vdpa_device_fd == -1) { 1825 return -errno; 1826 } 1827 } else { 1828 /* has_vhostfd */ 1829 vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp); 1830 if (vdpa_device_fd == -1) { 1831 error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: "); 1832 return -1; 1833 } 1834 } 1835 1836 r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp); 1837 if (unlikely(r < 0)) { 1838 goto err; 1839 } 1840 1841 queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features, 1842 &has_cvq, errp); 1843 if (queue_pairs <= 0) { 1844 goto err; 1845 } 1846 1847 r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range); 1848 if (unlikely(r < 0)) { 1849 error_setg(errp, "vhost-vdpa: get iova range failed: %s", 1850 strerror(-r)); 1851 goto err; 1852 } 1853 1854 if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) { 1855 goto err; 1856 } 1857 1858 ncs = g_malloc0(sizeof(*ncs) * queue_pairs); 1859 1860 for (i = 0; i < queue_pairs; i++) { 1861 VhostVDPAShared *shared = NULL; 1862 1863 if (i) { 1864 shared = DO_UPCAST(VhostVDPAState, nc, ncs[0])->vhost_vdpa.shared; 1865 } 1866 ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1867 vdpa_device_fd, i, 2, true, opts->x_svq, 1868 iova_range, features, shared, errp); 1869 if (!ncs[i]) 1870 goto err; 1871 } 1872 1873 if (has_cvq) { 1874 VhostVDPAState *s0 = DO_UPCAST(VhostVDPAState, nc, ncs[0]); 1875 VhostVDPAShared *shared = s0->vhost_vdpa.shared; 1876 1877 nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1878 vdpa_device_fd, i, 1, false, 1879 opts->x_svq, iova_range, features, shared, 1880 errp); 1881 if (!nc) 1882 goto err; 1883 } 1884 1885 return 0; 1886 1887 err: 1888 if (i) { 1889 for (i--; i >= 0; i--) { 1890 qemu_del_net_client(ncs[i]); 1891 } 1892 } 1893 1894 qemu_close(vdpa_device_fd); 1895 1896 return -1; 1897 } 1898