xref: /openbmc/qemu/net/vhost-vdpa.c (revision 2f95279a)
1 /*
2  * vhost-vdpa.c
3  *
4  * Copyright(c) 2017-2018 Intel Corporation.
5  * Copyright(c) 2020 Red Hat, Inc.
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "clients.h"
14 #include "hw/virtio/virtio-net.h"
15 #include "net/vhost_net.h"
16 #include "net/vhost-vdpa.h"
17 #include "hw/virtio/vhost-vdpa.h"
18 #include "qemu/config-file.h"
19 #include "qemu/error-report.h"
20 #include "qemu/log.h"
21 #include "qemu/memalign.h"
22 #include "qemu/option.h"
23 #include "qapi/error.h"
24 #include <linux/vhost.h>
25 #include <sys/ioctl.h>
26 #include <err.h>
27 #include "standard-headers/linux/virtio_net.h"
28 #include "monitor/monitor.h"
29 #include "migration/misc.h"
30 #include "hw/virtio/vhost.h"
31 #include "trace.h"
32 
33 /* Todo:need to add the multiqueue support here */
34 typedef struct VhostVDPAState {
35     NetClientState nc;
36     struct vhost_vdpa vhost_vdpa;
37     NotifierWithReturn migration_state;
38     VHostNetState *vhost_net;
39 
40     /* Control commands shadow buffers */
41     void *cvq_cmd_out_buffer;
42     virtio_net_ctrl_ack *status;
43 
44     /* The device always have SVQ enabled */
45     bool always_svq;
46 
47     /* The device can isolate CVQ in its own ASID */
48     bool cvq_isolated;
49 
50     bool started;
51 } VhostVDPAState;
52 
53 /*
54  * The array is sorted alphabetically in ascending order,
55  * with the exception of VHOST_INVALID_FEATURE_BIT,
56  * which should always be the last entry.
57  */
58 const int vdpa_feature_bits[] = {
59     VIRTIO_F_ANY_LAYOUT,
60     VIRTIO_F_IOMMU_PLATFORM,
61     VIRTIO_F_NOTIFY_ON_EMPTY,
62     VIRTIO_F_RING_PACKED,
63     VIRTIO_F_RING_RESET,
64     VIRTIO_F_VERSION_1,
65     VIRTIO_F_NOTIFICATION_DATA,
66     VIRTIO_NET_F_CSUM,
67     VIRTIO_NET_F_CTRL_GUEST_OFFLOADS,
68     VIRTIO_NET_F_CTRL_MAC_ADDR,
69     VIRTIO_NET_F_CTRL_RX,
70     VIRTIO_NET_F_CTRL_RX_EXTRA,
71     VIRTIO_NET_F_CTRL_VLAN,
72     VIRTIO_NET_F_CTRL_VQ,
73     VIRTIO_NET_F_GSO,
74     VIRTIO_NET_F_GUEST_CSUM,
75     VIRTIO_NET_F_GUEST_ECN,
76     VIRTIO_NET_F_GUEST_TSO4,
77     VIRTIO_NET_F_GUEST_TSO6,
78     VIRTIO_NET_F_GUEST_UFO,
79     VIRTIO_NET_F_GUEST_USO4,
80     VIRTIO_NET_F_GUEST_USO6,
81     VIRTIO_NET_F_HASH_REPORT,
82     VIRTIO_NET_F_HOST_ECN,
83     VIRTIO_NET_F_HOST_TSO4,
84     VIRTIO_NET_F_HOST_TSO6,
85     VIRTIO_NET_F_HOST_UFO,
86     VIRTIO_NET_F_HOST_USO,
87     VIRTIO_NET_F_MQ,
88     VIRTIO_NET_F_MRG_RXBUF,
89     VIRTIO_NET_F_MTU,
90     VIRTIO_NET_F_RSS,
91     VIRTIO_NET_F_STATUS,
92     VIRTIO_RING_F_EVENT_IDX,
93     VIRTIO_RING_F_INDIRECT_DESC,
94 
95     /* VHOST_INVALID_FEATURE_BIT should always be the last entry */
96     VHOST_INVALID_FEATURE_BIT
97 };
98 
99 /** Supported device specific feature bits with SVQ */
100 static const uint64_t vdpa_svq_device_features =
101     BIT_ULL(VIRTIO_NET_F_CSUM) |
102     BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) |
103     BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) |
104     BIT_ULL(VIRTIO_NET_F_MTU) |
105     BIT_ULL(VIRTIO_NET_F_MAC) |
106     BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) |
107     BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) |
108     BIT_ULL(VIRTIO_NET_F_GUEST_ECN) |
109     BIT_ULL(VIRTIO_NET_F_GUEST_UFO) |
110     BIT_ULL(VIRTIO_NET_F_HOST_TSO4) |
111     BIT_ULL(VIRTIO_NET_F_HOST_TSO6) |
112     BIT_ULL(VIRTIO_NET_F_HOST_ECN) |
113     BIT_ULL(VIRTIO_NET_F_HOST_UFO) |
114     BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) |
115     BIT_ULL(VIRTIO_NET_F_STATUS) |
116     BIT_ULL(VIRTIO_NET_F_CTRL_VQ) |
117     BIT_ULL(VIRTIO_NET_F_CTRL_RX) |
118     BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) |
119     BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) |
120     BIT_ULL(VIRTIO_NET_F_MQ) |
121     BIT_ULL(VIRTIO_F_ANY_LAYOUT) |
122     BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) |
123     /* VHOST_F_LOG_ALL is exposed by SVQ */
124     BIT_ULL(VHOST_F_LOG_ALL) |
125     BIT_ULL(VIRTIO_NET_F_HASH_REPORT) |
126     BIT_ULL(VIRTIO_NET_F_RSS) |
127     BIT_ULL(VIRTIO_NET_F_RSC_EXT) |
128     BIT_ULL(VIRTIO_NET_F_STANDBY) |
129     BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX);
130 
131 #define VHOST_VDPA_NET_CVQ_ASID 1
132 
133 VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc)
134 {
135     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
136     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
137     return s->vhost_net;
138 }
139 
140 static size_t vhost_vdpa_net_cvq_cmd_len(void)
141 {
142     /*
143      * MAC_TABLE_SET is the ctrl command that produces the longer out buffer.
144      * In buffer is always 1 byte, so it should fit here
145      */
146     return sizeof(struct virtio_net_ctrl_hdr) +
147            2 * sizeof(struct virtio_net_ctrl_mac) +
148            MAC_TABLE_ENTRIES * ETH_ALEN;
149 }
150 
151 static size_t vhost_vdpa_net_cvq_cmd_page_len(void)
152 {
153     return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size());
154 }
155 
156 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp)
157 {
158     uint64_t invalid_dev_features =
159         features & ~vdpa_svq_device_features &
160         /* Transport are all accepted at this point */
161         ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START,
162                          VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START);
163 
164     if (invalid_dev_features) {
165         error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64,
166                    invalid_dev_features);
167         return false;
168     }
169 
170     return vhost_svq_valid_features(features, errp);
171 }
172 
173 static int vhost_vdpa_net_check_device_id(struct vhost_net *net)
174 {
175     uint32_t device_id;
176     int ret;
177     struct vhost_dev *hdev;
178 
179     hdev = (struct vhost_dev *)&net->dev;
180     ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id);
181     if (device_id != VIRTIO_ID_NET) {
182         return -ENOTSUP;
183     }
184     return ret;
185 }
186 
187 static int vhost_vdpa_add(NetClientState *ncs, void *be,
188                           int queue_pair_index, int nvqs)
189 {
190     VhostNetOptions options;
191     struct vhost_net *net = NULL;
192     VhostVDPAState *s;
193     int ret;
194 
195     options.backend_type = VHOST_BACKEND_TYPE_VDPA;
196     assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
197     s = DO_UPCAST(VhostVDPAState, nc, ncs);
198     options.net_backend = ncs;
199     options.opaque      = be;
200     options.busyloop_timeout = 0;
201     options.nvqs = nvqs;
202 
203     net = vhost_net_init(&options);
204     if (!net) {
205         error_report("failed to init vhost_net for queue");
206         goto err_init;
207     }
208     s->vhost_net = net;
209     ret = vhost_vdpa_net_check_device_id(net);
210     if (ret) {
211         goto err_check;
212     }
213     return 0;
214 err_check:
215     vhost_net_cleanup(net);
216     g_free(net);
217 err_init:
218     return -1;
219 }
220 
221 static void vhost_vdpa_cleanup(NetClientState *nc)
222 {
223     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
224 
225     /*
226      * If a peer NIC is attached, do not cleanup anything.
227      * Cleanup will happen as a part of qemu_cleanup() -> net_cleanup()
228      * when the guest is shutting down.
229      */
230     if (nc->peer && nc->peer->info->type == NET_CLIENT_DRIVER_NIC) {
231         return;
232     }
233     munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len());
234     munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len());
235     if (s->vhost_net) {
236         vhost_net_cleanup(s->vhost_net);
237         g_free(s->vhost_net);
238         s->vhost_net = NULL;
239     }
240     if (s->vhost_vdpa.index != 0) {
241         return;
242     }
243     qemu_close(s->vhost_vdpa.shared->device_fd);
244     g_free(s->vhost_vdpa.shared);
245 }
246 
247 /** Dummy SetSteeringEBPF to support RSS for vhost-vdpa backend  */
248 static bool vhost_vdpa_set_steering_ebpf(NetClientState *nc, int prog_fd)
249 {
250     return true;
251 }
252 
253 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc)
254 {
255     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
256 
257     return true;
258 }
259 
260 static bool vhost_vdpa_has_ufo(NetClientState *nc)
261 {
262     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
263     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
264     uint64_t features = 0;
265     features |= (1ULL << VIRTIO_NET_F_HOST_UFO);
266     features = vhost_net_get_features(s->vhost_net, features);
267     return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO));
268 
269 }
270 
271 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc,
272                                        Error **errp)
273 {
274     const char *driver = object_class_get_name(oc);
275 
276     if (!g_str_has_prefix(driver, "virtio-net-")) {
277         error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*");
278         return false;
279     }
280 
281     return true;
282 }
283 
284 /** Dummy receive in case qemu falls back to userland tap networking */
285 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf,
286                                   size_t size)
287 {
288     return size;
289 }
290 
291 
292 /** From any vdpa net client, get the netclient of the i-th queue pair */
293 static VhostVDPAState *vhost_vdpa_net_get_nc_vdpa(VhostVDPAState *s, int i)
294 {
295     NICState *nic = qemu_get_nic(s->nc.peer);
296     NetClientState *nc_i = qemu_get_peer(nic->ncs, i);
297 
298     return DO_UPCAST(VhostVDPAState, nc, nc_i);
299 }
300 
301 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s)
302 {
303     return vhost_vdpa_net_get_nc_vdpa(s, 0);
304 }
305 
306 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable)
307 {
308     struct vhost_vdpa *v = &s->vhost_vdpa;
309     VirtIONet *n;
310     VirtIODevice *vdev;
311     int data_queue_pairs, cvq, r;
312 
313     /* We are only called on the first data vqs and only if x-svq is not set */
314     if (s->vhost_vdpa.shadow_vqs_enabled == enable) {
315         return;
316     }
317 
318     vdev = v->dev->vdev;
319     n = VIRTIO_NET(vdev);
320     if (!n->vhost_started) {
321         return;
322     }
323 
324     data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1;
325     cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ?
326                                   n->max_ncs - n->max_queue_pairs : 0;
327     v->shared->svq_switching = enable ?
328         SVQ_TSTATE_ENABLING : SVQ_TSTATE_DISABLING;
329     /*
330      * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter
331      * in the future and resume the device if read-only operations between
332      * suspend and reset goes wrong.
333      */
334     vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq);
335 
336     /* Start will check migration setup_or_active to configure or not SVQ */
337     r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq);
338     if (unlikely(r < 0)) {
339         error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r);
340     }
341     v->shared->svq_switching = SVQ_TSTATE_DONE;
342 }
343 
344 static int vdpa_net_migration_state_notifier(NotifierWithReturn *notifier,
345                                              MigrationEvent *e, Error **errp)
346 {
347     VhostVDPAState *s = container_of(notifier, VhostVDPAState, migration_state);
348 
349     if (e->type == MIG_EVENT_PRECOPY_SETUP) {
350         vhost_vdpa_net_log_global_enable(s, true);
351     } else if (e->type == MIG_EVENT_PRECOPY_FAILED) {
352         vhost_vdpa_net_log_global_enable(s, false);
353     }
354     return 0;
355 }
356 
357 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s)
358 {
359     struct vhost_vdpa *v = &s->vhost_vdpa;
360 
361     migration_add_notifier(&s->migration_state,
362                            vdpa_net_migration_state_notifier);
363     if (v->shadow_vqs_enabled) {
364         v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first,
365                                                    v->shared->iova_range.last);
366     }
367 }
368 
369 static int vhost_vdpa_net_data_start(NetClientState *nc)
370 {
371     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
372     struct vhost_vdpa *v = &s->vhost_vdpa;
373 
374     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
375 
376     if (s->always_svq ||
377         migration_is_setup_or_active()) {
378         v->shadow_vqs_enabled = true;
379     } else {
380         v->shadow_vqs_enabled = false;
381     }
382 
383     if (v->index == 0) {
384         v->shared->shadow_data = v->shadow_vqs_enabled;
385         vhost_vdpa_net_data_start_first(s);
386         return 0;
387     }
388 
389     return 0;
390 }
391 
392 static int vhost_vdpa_net_data_load(NetClientState *nc)
393 {
394     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
395     struct vhost_vdpa *v = &s->vhost_vdpa;
396     bool has_cvq = v->dev->vq_index_end % 2;
397 
398     if (has_cvq) {
399         return 0;
400     }
401 
402     for (int i = 0; i < v->dev->nvqs; ++i) {
403         int ret = vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index);
404         if (ret < 0) {
405             return ret;
406         }
407     }
408     return 0;
409 }
410 
411 static void vhost_vdpa_net_client_stop(NetClientState *nc)
412 {
413     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
414     struct vhost_dev *dev;
415 
416     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
417 
418     if (s->vhost_vdpa.index == 0) {
419         migration_remove_notifier(&s->migration_state);
420     }
421 
422     dev = s->vhost_vdpa.dev;
423     if (dev->vq_index + dev->nvqs == dev->vq_index_end) {
424         g_clear_pointer(&s->vhost_vdpa.shared->iova_tree,
425                         vhost_iova_tree_delete);
426     }
427 }
428 
429 static NetClientInfo net_vhost_vdpa_info = {
430         .type = NET_CLIENT_DRIVER_VHOST_VDPA,
431         .size = sizeof(VhostVDPAState),
432         .receive = vhost_vdpa_receive,
433         .start = vhost_vdpa_net_data_start,
434         .load = vhost_vdpa_net_data_load,
435         .stop = vhost_vdpa_net_client_stop,
436         .cleanup = vhost_vdpa_cleanup,
437         .has_vnet_hdr = vhost_vdpa_has_vnet_hdr,
438         .has_ufo = vhost_vdpa_has_ufo,
439         .check_peer_type = vhost_vdpa_check_peer_type,
440         .set_steering_ebpf = vhost_vdpa_set_steering_ebpf,
441 };
442 
443 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index,
444                                           Error **errp)
445 {
446     struct vhost_vring_state state = {
447         .index = vq_index,
448     };
449     int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state);
450 
451     if (unlikely(r < 0)) {
452         r = -errno;
453         error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index);
454         return r;
455     }
456 
457     return state.num;
458 }
459 
460 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v,
461                                            unsigned vq_group,
462                                            unsigned asid_num)
463 {
464     struct vhost_vring_state asid = {
465         .index = vq_group,
466         .num = asid_num,
467     };
468     int r;
469 
470     trace_vhost_vdpa_set_address_space_id(v, vq_group, asid_num);
471 
472     r = ioctl(v->shared->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid);
473     if (unlikely(r < 0)) {
474         error_report("Can't set vq group %u asid %u, errno=%d (%s)",
475                      asid.index, asid.num, errno, g_strerror(errno));
476     }
477     return r;
478 }
479 
480 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr)
481 {
482     VhostIOVATree *tree = v->shared->iova_tree;
483     DMAMap needle = {
484         /*
485          * No need to specify size or to look for more translations since
486          * this contiguous chunk was allocated by us.
487          */
488         .translated_addr = (hwaddr)(uintptr_t)addr,
489     };
490     const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle);
491     int r;
492 
493     if (unlikely(!map)) {
494         error_report("Cannot locate expected map");
495         return;
496     }
497 
498     r = vhost_vdpa_dma_unmap(v->shared, v->address_space_id, map->iova,
499                              map->size + 1);
500     if (unlikely(r != 0)) {
501         error_report("Device cannot unmap: %s(%d)", g_strerror(r), r);
502     }
503 
504     vhost_iova_tree_remove(tree, *map);
505 }
506 
507 /** Map CVQ buffer. */
508 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size,
509                                   bool write)
510 {
511     DMAMap map = {};
512     int r;
513 
514     map.translated_addr = (hwaddr)(uintptr_t)buf;
515     map.size = size - 1;
516     map.perm = write ? IOMMU_RW : IOMMU_RO,
517     r = vhost_iova_tree_map_alloc(v->shared->iova_tree, &map);
518     if (unlikely(r != IOVA_OK)) {
519         error_report("Cannot map injected element");
520         return r;
521     }
522 
523     r = vhost_vdpa_dma_map(v->shared, v->address_space_id, map.iova,
524                            vhost_vdpa_net_cvq_cmd_page_len(), buf, !write);
525     if (unlikely(r < 0)) {
526         goto dma_map_err;
527     }
528 
529     return 0;
530 
531 dma_map_err:
532     vhost_iova_tree_remove(v->shared->iova_tree, map);
533     return r;
534 }
535 
536 static int vhost_vdpa_net_cvq_start(NetClientState *nc)
537 {
538     VhostVDPAState *s, *s0;
539     struct vhost_vdpa *v;
540     int64_t cvq_group;
541     int r;
542     Error *err = NULL;
543 
544     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
545 
546     s = DO_UPCAST(VhostVDPAState, nc, nc);
547     v = &s->vhost_vdpa;
548 
549     s0 = vhost_vdpa_net_first_nc_vdpa(s);
550     v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled;
551     s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID;
552 
553     if (v->shared->shadow_data) {
554         /* SVQ is already configured for all virtqueues */
555         goto out;
556     }
557 
558     /*
559      * If we early return in these cases SVQ will not be enabled. The migration
560      * will be blocked as long as vhost-vdpa backends will not offer _F_LOG.
561      */
562     if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) {
563         return 0;
564     }
565 
566     if (!s->cvq_isolated) {
567         return 0;
568     }
569 
570     cvq_group = vhost_vdpa_get_vring_group(v->shared->device_fd,
571                                            v->dev->vq_index_end - 1,
572                                            &err);
573     if (unlikely(cvq_group < 0)) {
574         error_report_err(err);
575         return cvq_group;
576     }
577 
578     r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID);
579     if (unlikely(r < 0)) {
580         return r;
581     }
582 
583     v->shadow_vqs_enabled = true;
584     s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID;
585 
586 out:
587     if (!s->vhost_vdpa.shadow_vqs_enabled) {
588         return 0;
589     }
590 
591     /*
592      * If other vhost_vdpa already have an iova_tree, reuse it for simplicity,
593      * whether CVQ shares ASID with guest or not, because:
594      * - Memory listener need access to guest's memory addresses allocated in
595      *   the IOVA tree.
596      * - There should be plenty of IOVA address space for both ASID not to
597      *   worry about collisions between them.  Guest's translations are still
598      *   validated with virtio virtqueue_pop so there is no risk for the guest
599      *   to access memory that it shouldn't.
600      *
601      * To allocate a iova tree per ASID is doable but it complicates the code
602      * and it is not worth it for the moment.
603      */
604     if (!v->shared->iova_tree) {
605         v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first,
606                                                    v->shared->iova_range.last);
607     }
608 
609     r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer,
610                                vhost_vdpa_net_cvq_cmd_page_len(), false);
611     if (unlikely(r < 0)) {
612         return r;
613     }
614 
615     r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status,
616                                vhost_vdpa_net_cvq_cmd_page_len(), true);
617     if (unlikely(r < 0)) {
618         vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer);
619     }
620 
621     return r;
622 }
623 
624 static void vhost_vdpa_net_cvq_stop(NetClientState *nc)
625 {
626     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
627 
628     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
629 
630     if (s->vhost_vdpa.shadow_vqs_enabled) {
631         vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer);
632         vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status);
633     }
634 
635     vhost_vdpa_net_client_stop(nc);
636 }
637 
638 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s,
639                                     const struct iovec *out_sg, size_t out_num,
640                                     const struct iovec *in_sg, size_t in_num)
641 {
642     VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0);
643     int r;
644 
645     r = vhost_svq_add(svq, out_sg, out_num, in_sg, in_num, NULL);
646     if (unlikely(r != 0)) {
647         if (unlikely(r == -ENOSPC)) {
648             qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n",
649                           __func__);
650         }
651     }
652 
653     return r;
654 }
655 
656 /*
657  * Convenience wrapper to poll SVQ for multiple control commands.
658  *
659  * Caller should hold the BQL when invoking this function, and should take
660  * the answer before SVQ pulls by itself when BQL is released.
661  */
662 static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight)
663 {
664     VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0);
665     return vhost_svq_poll(svq, cmds_in_flight);
666 }
667 
668 static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s,
669                                              struct iovec *out_cursor,
670                                              struct iovec *in_cursor)
671 {
672     /* reset the cursor of the output buffer for the device */
673     out_cursor->iov_base = s->cvq_cmd_out_buffer;
674     out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len();
675 
676     /* reset the cursor of the in buffer for the device */
677     in_cursor->iov_base = s->status;
678     in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len();
679 }
680 
681 /*
682  * Poll SVQ for multiple pending control commands and check the device's ack.
683  *
684  * Caller should hold the BQL when invoking this function.
685  *
686  * @s: The VhostVDPAState
687  * @len: The length of the pending status shadow buffer
688  */
689 static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len)
690 {
691     /* device uses a one-byte length ack for each control command */
692     ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len);
693     if (unlikely(dev_written != len)) {
694         return -EIO;
695     }
696 
697     /* check the device's ack */
698     for (int i = 0; i < len; ++i) {
699         if (s->status[i] != VIRTIO_NET_OK) {
700             return -EIO;
701         }
702     }
703     return 0;
704 }
705 
706 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s,
707                                        struct iovec *out_cursor,
708                                        struct iovec *in_cursor, uint8_t class,
709                                        uint8_t cmd, const struct iovec *data_sg,
710                                        size_t data_num)
711 {
712     const struct virtio_net_ctrl_hdr ctrl = {
713         .class = class,
714         .cmd = cmd,
715     };
716     size_t data_size = iov_size(data_sg, data_num), cmd_size;
717     struct iovec out, in;
718     ssize_t r;
719     unsigned dummy_cursor_iov_cnt;
720     VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0);
721 
722     assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl));
723     cmd_size = sizeof(ctrl) + data_size;
724     trace_vhost_vdpa_net_load_cmd(s, class, cmd, data_num, data_size);
725     if (vhost_svq_available_slots(svq) < 2 ||
726         iov_size(out_cursor, 1) < cmd_size) {
727         /*
728          * It is time to flush all pending control commands if SVQ is full
729          * or control commands shadow buffers are full.
730          *
731          * We can poll here since we've had BQL from the time
732          * we sent the descriptor.
733          */
734         r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base -
735                                      (void *)s->status);
736         if (unlikely(r < 0)) {
737             return r;
738         }
739 
740         vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor);
741     }
742 
743     /* pack the CVQ command header */
744     iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl));
745     /* pack the CVQ command command-specific-data */
746     iov_to_buf(data_sg, data_num, 0,
747                out_cursor->iov_base + sizeof(ctrl), data_size);
748 
749     /* extract the required buffer from the cursor for output */
750     iov_copy(&out, 1, out_cursor, 1, 0, cmd_size);
751     /* extract the required buffer from the cursor for input */
752     iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status));
753 
754     r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1);
755     if (unlikely(r < 0)) {
756         trace_vhost_vdpa_net_load_cmd_retval(s, class, cmd, r);
757         return r;
758     }
759 
760     /* iterate the cursors */
761     dummy_cursor_iov_cnt = 1;
762     iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size);
763     dummy_cursor_iov_cnt = 1;
764     iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status));
765 
766     return 0;
767 }
768 
769 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n,
770                                    struct iovec *out_cursor,
771                                    struct iovec *in_cursor)
772 {
773     if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) {
774         const struct iovec data = {
775             .iov_base = (void *)n->mac,
776             .iov_len = sizeof(n->mac),
777         };
778         ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
779                                             VIRTIO_NET_CTRL_MAC,
780                                             VIRTIO_NET_CTRL_MAC_ADDR_SET,
781                                             &data, 1);
782         if (unlikely(r < 0)) {
783             return r;
784         }
785     }
786 
787     /*
788      * According to VirtIO standard, "The device MUST have an
789      * empty MAC filtering table on reset.".
790      *
791      * Therefore, there is no need to send this CVQ command if the
792      * driver also sets an empty MAC filter table, which aligns with
793      * the device's defaults.
794      *
795      * Note that the device's defaults can mismatch the driver's
796      * configuration only at live migration.
797      */
798     if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) ||
799         n->mac_table.in_use == 0) {
800         return 0;
801     }
802 
803     uint32_t uni_entries = n->mac_table.first_multi,
804              uni_macs_size = uni_entries * ETH_ALEN,
805              mul_entries = n->mac_table.in_use - uni_entries,
806              mul_macs_size = mul_entries * ETH_ALEN;
807     struct virtio_net_ctrl_mac uni = {
808         .entries = cpu_to_le32(uni_entries),
809     };
810     struct virtio_net_ctrl_mac mul = {
811         .entries = cpu_to_le32(mul_entries),
812     };
813     const struct iovec data[] = {
814         {
815             .iov_base = &uni,
816             .iov_len = sizeof(uni),
817         }, {
818             .iov_base = n->mac_table.macs,
819             .iov_len = uni_macs_size,
820         }, {
821             .iov_base = &mul,
822             .iov_len = sizeof(mul),
823         }, {
824             .iov_base = &n->mac_table.macs[uni_macs_size],
825             .iov_len = mul_macs_size,
826         },
827     };
828     ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
829                                         VIRTIO_NET_CTRL_MAC,
830                                         VIRTIO_NET_CTRL_MAC_TABLE_SET,
831                                         data, ARRAY_SIZE(data));
832     if (unlikely(r < 0)) {
833         return r;
834     }
835 
836     return 0;
837 }
838 
839 static int vhost_vdpa_net_load_rss(VhostVDPAState *s, const VirtIONet *n,
840                                    struct iovec *out_cursor,
841                                    struct iovec *in_cursor, bool do_rss)
842 {
843     struct virtio_net_rss_config cfg = {};
844     ssize_t r;
845     g_autofree uint16_t *table = NULL;
846 
847     /*
848      * According to VirtIO standard, "Initially the device has all hash
849      * types disabled and reports only VIRTIO_NET_HASH_REPORT_NONE.".
850      *
851      * Therefore, there is no need to send this CVQ command if the
852      * driver disables the all hash types, which aligns with
853      * the device's defaults.
854      *
855      * Note that the device's defaults can mismatch the driver's
856      * configuration only at live migration.
857      */
858     if (!n->rss_data.enabled ||
859         n->rss_data.hash_types == VIRTIO_NET_HASH_REPORT_NONE) {
860         return 0;
861     }
862 
863     table = g_malloc_n(n->rss_data.indirections_len,
864                        sizeof(n->rss_data.indirections_table[0]));
865     cfg.hash_types = cpu_to_le32(n->rss_data.hash_types);
866 
867     if (do_rss) {
868         /*
869          * According to VirtIO standard, "Number of entries in indirection_table
870          * is (indirection_table_mask + 1)".
871          */
872         cfg.indirection_table_mask = cpu_to_le16(n->rss_data.indirections_len -
873                                                  1);
874         cfg.unclassified_queue = cpu_to_le16(n->rss_data.default_queue);
875         for (int i = 0; i < n->rss_data.indirections_len; ++i) {
876             table[i] = cpu_to_le16(n->rss_data.indirections_table[i]);
877         }
878         cfg.max_tx_vq = cpu_to_le16(n->curr_queue_pairs);
879     } else {
880         /*
881          * According to VirtIO standard, "Field reserved MUST contain zeroes.
882          * It is defined to make the structure to match the layout of
883          * virtio_net_rss_config structure, defined in 5.1.6.5.7.".
884          *
885          * Therefore, we need to zero the fields in
886          * struct virtio_net_rss_config, which corresponds to the
887          * `reserved` field in struct virtio_net_hash_config.
888          *
889          * Note that all other fields are zeroed at their definitions,
890          * except for the `indirection_table` field, where the actual data
891          * is stored in the `table` variable to ensure compatibility
892          * with RSS case. Therefore, we need to zero the `table` variable here.
893          */
894         table[0] = 0;
895     }
896 
897     /*
898      * Considering that virtio_net_handle_rss() currently does not restore
899      * the hash key length parsed from the CVQ command sent from the guest
900      * into n->rss_data and uses the maximum key length in other code, so
901      * we also employ the maximum key length here.
902      */
903     cfg.hash_key_length = sizeof(n->rss_data.key);
904 
905     const struct iovec data[] = {
906         {
907             .iov_base = &cfg,
908             .iov_len = offsetof(struct virtio_net_rss_config,
909                                 indirection_table),
910         }, {
911             .iov_base = table,
912             .iov_len = n->rss_data.indirections_len *
913                        sizeof(n->rss_data.indirections_table[0]),
914         }, {
915             .iov_base = &cfg.max_tx_vq,
916             .iov_len = offsetof(struct virtio_net_rss_config, hash_key_data) -
917                        offsetof(struct virtio_net_rss_config, max_tx_vq),
918         }, {
919             .iov_base = (void *)n->rss_data.key,
920             .iov_len = sizeof(n->rss_data.key),
921         }
922     };
923 
924     r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
925                                 VIRTIO_NET_CTRL_MQ,
926                                 do_rss ? VIRTIO_NET_CTRL_MQ_RSS_CONFIG :
927                                 VIRTIO_NET_CTRL_MQ_HASH_CONFIG,
928                                 data, ARRAY_SIZE(data));
929     if (unlikely(r < 0)) {
930         return r;
931     }
932 
933     return 0;
934 }
935 
936 static int vhost_vdpa_net_load_mq(VhostVDPAState *s,
937                                   const VirtIONet *n,
938                                   struct iovec *out_cursor,
939                                   struct iovec *in_cursor)
940 {
941     struct virtio_net_ctrl_mq mq;
942     ssize_t r;
943 
944     if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) {
945         return 0;
946     }
947 
948     trace_vhost_vdpa_net_load_mq(s, n->curr_queue_pairs);
949 
950     mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs);
951     const struct iovec data = {
952         .iov_base = &mq,
953         .iov_len = sizeof(mq),
954     };
955     r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
956                                 VIRTIO_NET_CTRL_MQ,
957                                 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET,
958                                 &data, 1);
959     if (unlikely(r < 0)) {
960         return r;
961     }
962 
963     if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_RSS)) {
964         /* load the receive-side scaling state */
965         r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, true);
966         if (unlikely(r < 0)) {
967             return r;
968         }
969     } else if (virtio_vdev_has_feature(&n->parent_obj,
970                                        VIRTIO_NET_F_HASH_REPORT)) {
971         /* load the hash calculation state */
972         r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, false);
973         if (unlikely(r < 0)) {
974             return r;
975         }
976     }
977 
978     return 0;
979 }
980 
981 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s,
982                                         const VirtIONet *n,
983                                         struct iovec *out_cursor,
984                                         struct iovec *in_cursor)
985 {
986     uint64_t offloads;
987     ssize_t r;
988 
989     if (!virtio_vdev_has_feature(&n->parent_obj,
990                                  VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) {
991         return 0;
992     }
993 
994     if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) {
995         /*
996          * According to VirtIO standard, "Upon feature negotiation
997          * corresponding offload gets enabled to preserve
998          * backward compatibility.".
999          *
1000          * Therefore, there is no need to send this CVQ command if the
1001          * driver also enables all supported offloads, which aligns with
1002          * the device's defaults.
1003          *
1004          * Note that the device's defaults can mismatch the driver's
1005          * configuration only at live migration.
1006          */
1007         return 0;
1008     }
1009 
1010     offloads = cpu_to_le64(n->curr_guest_offloads);
1011     const struct iovec data = {
1012         .iov_base = &offloads,
1013         .iov_len = sizeof(offloads),
1014     };
1015     r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
1016                                 VIRTIO_NET_CTRL_GUEST_OFFLOADS,
1017                                 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET,
1018                                 &data, 1);
1019     if (unlikely(r < 0)) {
1020         return r;
1021     }
1022 
1023     return 0;
1024 }
1025 
1026 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s,
1027                                        struct iovec *out_cursor,
1028                                        struct iovec *in_cursor,
1029                                        uint8_t cmd,
1030                                        uint8_t on)
1031 {
1032     const struct iovec data = {
1033         .iov_base = &on,
1034         .iov_len = sizeof(on),
1035     };
1036     ssize_t r;
1037 
1038     r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
1039                                 VIRTIO_NET_CTRL_RX, cmd, &data, 1);
1040     if (unlikely(r < 0)) {
1041         return r;
1042     }
1043 
1044     return 0;
1045 }
1046 
1047 static int vhost_vdpa_net_load_rx(VhostVDPAState *s,
1048                                   const VirtIONet *n,
1049                                   struct iovec *out_cursor,
1050                                   struct iovec *in_cursor)
1051 {
1052     ssize_t r;
1053 
1054     if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) {
1055         return 0;
1056     }
1057 
1058     /*
1059      * According to virtio_net_reset(), device turns promiscuous mode
1060      * on by default.
1061      *
1062      * Additionally, according to VirtIO standard, "Since there are
1063      * no guarantees, it can use a hash filter or silently switch to
1064      * allmulti or promiscuous mode if it is given too many addresses.".
1065      * QEMU marks `n->mac_table.uni_overflow` if guest sets too many
1066      * non-multicast MAC addresses, indicating that promiscuous mode
1067      * should be enabled.
1068      *
1069      * Therefore, QEMU should only send this CVQ command if the
1070      * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off,
1071      * which sets promiscuous mode on, different from the device's defaults.
1072      *
1073      * Note that the device's defaults can mismatch the driver's
1074      * configuration only at live migration.
1075      */
1076     if (!n->mac_table.uni_overflow && !n->promisc) {
1077         r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1078                                         VIRTIO_NET_CTRL_RX_PROMISC, 0);
1079         if (unlikely(r < 0)) {
1080             return r;
1081         }
1082     }
1083 
1084     /*
1085      * According to virtio_net_reset(), device turns all-multicast mode
1086      * off by default.
1087      *
1088      * According to VirtIO standard, "Since there are no guarantees,
1089      * it can use a hash filter or silently switch to allmulti or
1090      * promiscuous mode if it is given too many addresses.". QEMU marks
1091      * `n->mac_table.multi_overflow` if guest sets too many
1092      * non-multicast MAC addresses.
1093      *
1094      * Therefore, QEMU should only send this CVQ command if the
1095      * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on,
1096      * which sets all-multicast mode on, different from the device's defaults.
1097      *
1098      * Note that the device's defaults can mismatch the driver's
1099      * configuration only at live migration.
1100      */
1101     if (n->mac_table.multi_overflow || n->allmulti) {
1102         r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1103                                         VIRTIO_NET_CTRL_RX_ALLMULTI, 1);
1104         if (unlikely(r < 0)) {
1105             return r;
1106         }
1107     }
1108 
1109     if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) {
1110         return 0;
1111     }
1112 
1113     /*
1114      * According to virtio_net_reset(), device turns all-unicast mode
1115      * off by default.
1116      *
1117      * Therefore, QEMU should only send this CVQ command if the driver
1118      * sets all-unicast mode on, different from the device's defaults.
1119      *
1120      * Note that the device's defaults can mismatch the driver's
1121      * configuration only at live migration.
1122      */
1123     if (n->alluni) {
1124         r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1125                                         VIRTIO_NET_CTRL_RX_ALLUNI, 1);
1126         if (r < 0) {
1127             return r;
1128         }
1129     }
1130 
1131     /*
1132      * According to virtio_net_reset(), device turns non-multicast mode
1133      * off by default.
1134      *
1135      * Therefore, QEMU should only send this CVQ command if the driver
1136      * sets non-multicast mode on, different from the device's defaults.
1137      *
1138      * Note that the device's defaults can mismatch the driver's
1139      * configuration only at live migration.
1140      */
1141     if (n->nomulti) {
1142         r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1143                                         VIRTIO_NET_CTRL_RX_NOMULTI, 1);
1144         if (r < 0) {
1145             return r;
1146         }
1147     }
1148 
1149     /*
1150      * According to virtio_net_reset(), device turns non-unicast mode
1151      * off by default.
1152      *
1153      * Therefore, QEMU should only send this CVQ command if the driver
1154      * sets non-unicast mode on, different from the device's defaults.
1155      *
1156      * Note that the device's defaults can mismatch the driver's
1157      * configuration only at live migration.
1158      */
1159     if (n->nouni) {
1160         r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1161                                         VIRTIO_NET_CTRL_RX_NOUNI, 1);
1162         if (r < 0) {
1163             return r;
1164         }
1165     }
1166 
1167     /*
1168      * According to virtio_net_reset(), device turns non-broadcast mode
1169      * off by default.
1170      *
1171      * Therefore, QEMU should only send this CVQ command if the driver
1172      * sets non-broadcast mode on, different from the device's defaults.
1173      *
1174      * Note that the device's defaults can mismatch the driver's
1175      * configuration only at live migration.
1176      */
1177     if (n->nobcast) {
1178         r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1179                                         VIRTIO_NET_CTRL_RX_NOBCAST, 1);
1180         if (r < 0) {
1181             return r;
1182         }
1183     }
1184 
1185     return 0;
1186 }
1187 
1188 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s,
1189                                            const VirtIONet *n,
1190                                            struct iovec *out_cursor,
1191                                            struct iovec *in_cursor,
1192                                            uint16_t vid)
1193 {
1194     const struct iovec data = {
1195         .iov_base = &vid,
1196         .iov_len = sizeof(vid),
1197     };
1198     ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
1199                                         VIRTIO_NET_CTRL_VLAN,
1200                                         VIRTIO_NET_CTRL_VLAN_ADD,
1201                                         &data, 1);
1202     if (unlikely(r < 0)) {
1203         return r;
1204     }
1205 
1206     return 0;
1207 }
1208 
1209 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s,
1210                                     const VirtIONet *n,
1211                                     struct iovec *out_cursor,
1212                                     struct iovec *in_cursor)
1213 {
1214     int r;
1215 
1216     if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) {
1217         return 0;
1218     }
1219 
1220     for (int i = 0; i < MAX_VLAN >> 5; i++) {
1221         for (int j = 0; n->vlans[i] && j <= 0x1f; j++) {
1222             if (n->vlans[i] & (1U << j)) {
1223                 r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor,
1224                                                     in_cursor, (i << 5) + j);
1225                 if (unlikely(r != 0)) {
1226                     return r;
1227                 }
1228             }
1229         }
1230     }
1231 
1232     return 0;
1233 }
1234 
1235 static int vhost_vdpa_net_cvq_load(NetClientState *nc)
1236 {
1237     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
1238     struct vhost_vdpa *v = &s->vhost_vdpa;
1239     const VirtIONet *n;
1240     int r;
1241     struct iovec out_cursor, in_cursor;
1242 
1243     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
1244 
1245     r = vhost_vdpa_set_vring_ready(v, v->dev->vq_index);
1246     if (unlikely(r < 0)) {
1247         return r;
1248     }
1249 
1250     if (v->shadow_vqs_enabled) {
1251         n = VIRTIO_NET(v->dev->vdev);
1252         vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor);
1253         r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor);
1254         if (unlikely(r < 0)) {
1255             return r;
1256         }
1257         r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor);
1258         if (unlikely(r)) {
1259             return r;
1260         }
1261         r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor);
1262         if (unlikely(r)) {
1263             return r;
1264         }
1265         r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor);
1266         if (unlikely(r)) {
1267             return r;
1268         }
1269         r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor);
1270         if (unlikely(r)) {
1271             return r;
1272         }
1273 
1274         /*
1275          * We need to poll and check all pending device's used buffers.
1276          *
1277          * We can poll here since we've had BQL from the time
1278          * we sent the descriptor.
1279          */
1280         r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status);
1281         if (unlikely(r)) {
1282             return r;
1283         }
1284     }
1285 
1286     for (int i = 0; i < v->dev->vq_index; ++i) {
1287         r = vhost_vdpa_set_vring_ready(v, i);
1288         if (unlikely(r < 0)) {
1289             return r;
1290         }
1291     }
1292 
1293     return 0;
1294 }
1295 
1296 static NetClientInfo net_vhost_vdpa_cvq_info = {
1297     .type = NET_CLIENT_DRIVER_VHOST_VDPA,
1298     .size = sizeof(VhostVDPAState),
1299     .receive = vhost_vdpa_receive,
1300     .start = vhost_vdpa_net_cvq_start,
1301     .load = vhost_vdpa_net_cvq_load,
1302     .stop = vhost_vdpa_net_cvq_stop,
1303     .cleanup = vhost_vdpa_cleanup,
1304     .has_vnet_hdr = vhost_vdpa_has_vnet_hdr,
1305     .has_ufo = vhost_vdpa_has_ufo,
1306     .check_peer_type = vhost_vdpa_check_peer_type,
1307     .set_steering_ebpf = vhost_vdpa_set_steering_ebpf,
1308 };
1309 
1310 /*
1311  * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to
1312  * vdpa device.
1313  *
1314  * Considering that QEMU cannot send the entire filter table to the
1315  * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ
1316  * command to enable promiscuous mode to receive all packets,
1317  * according to VirtIO standard, "Since there are no guarantees,
1318  * it can use a hash filter or silently switch to allmulti or
1319  * promiscuous mode if it is given too many addresses.".
1320  *
1321  * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and
1322  * marks `n->mac_table.x_overflow` accordingly, it should have
1323  * the same effect on the device model to receive
1324  * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses.
1325  * The same applies to multicast MAC addresses.
1326  *
1327  * Therefore, QEMU can provide the device model with a fake
1328  * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1)
1329  * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast
1330  * MAC addresses. This ensures that the device model marks
1331  * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`,
1332  * allowing all packets to be received, which aligns with the
1333  * state of the vdpa device.
1334  */
1335 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s,
1336                                                        VirtQueueElement *elem,
1337                                                        struct iovec *out,
1338                                                        const struct iovec *in)
1339 {
1340     struct virtio_net_ctrl_mac mac_data, *mac_ptr;
1341     struct virtio_net_ctrl_hdr *hdr_ptr;
1342     uint32_t cursor;
1343     ssize_t r;
1344     uint8_t on = 1;
1345 
1346     /* parse the non-multicast MAC address entries from CVQ command */
1347     cursor = sizeof(*hdr_ptr);
1348     r = iov_to_buf(elem->out_sg, elem->out_num, cursor,
1349                    &mac_data, sizeof(mac_data));
1350     if (unlikely(r != sizeof(mac_data))) {
1351         /*
1352          * If the CVQ command is invalid, we should simulate the vdpa device
1353          * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
1354          */
1355         *s->status = VIRTIO_NET_ERR;
1356         return sizeof(*s->status);
1357     }
1358     cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN;
1359 
1360     /* parse the multicast MAC address entries from CVQ command */
1361     r = iov_to_buf(elem->out_sg, elem->out_num, cursor,
1362                    &mac_data, sizeof(mac_data));
1363     if (r != sizeof(mac_data)) {
1364         /*
1365          * If the CVQ command is invalid, we should simulate the vdpa device
1366          * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
1367          */
1368         *s->status = VIRTIO_NET_ERR;
1369         return sizeof(*s->status);
1370     }
1371     cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN;
1372 
1373     /* validate the CVQ command */
1374     if (iov_size(elem->out_sg, elem->out_num) != cursor) {
1375         /*
1376          * If the CVQ command is invalid, we should simulate the vdpa device
1377          * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
1378          */
1379         *s->status = VIRTIO_NET_ERR;
1380         return sizeof(*s->status);
1381     }
1382 
1383     /*
1384      * According to VirtIO standard, "Since there are no guarantees,
1385      * it can use a hash filter or silently switch to allmulti or
1386      * promiscuous mode if it is given too many addresses.".
1387      *
1388      * Therefore, considering that QEMU is unable to send the entire
1389      * filter table to the vdpa device, it should send the
1390      * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode
1391      */
1392     hdr_ptr = out->iov_base;
1393     out->iov_len = sizeof(*hdr_ptr) + sizeof(on);
1394 
1395     hdr_ptr->class = VIRTIO_NET_CTRL_RX;
1396     hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC;
1397     iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on));
1398     r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1);
1399     if (unlikely(r < 0)) {
1400         return r;
1401     }
1402 
1403     /*
1404      * We can poll here since we've had BQL from the time
1405      * we sent the descriptor.
1406      */
1407     r = vhost_vdpa_net_svq_poll(s, 1);
1408     if (unlikely(r < sizeof(*s->status))) {
1409         return r;
1410     }
1411     if (*s->status != VIRTIO_NET_OK) {
1412         return sizeof(*s->status);
1413     }
1414 
1415     /*
1416      * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ
1417      * command to the device model, including (`MAC_TABLE_ENTRIES` + 1)
1418      * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1)
1419      * multicast MAC addresses.
1420      *
1421      * By doing so, the device model can mark `n->mac_table.uni_overflow`
1422      * and `n->mac_table.multi_overflow`, enabling all packets to be
1423      * received, which aligns with the state of the vdpa device.
1424      */
1425     cursor = 0;
1426     uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1,
1427              fake_mul_entries = MAC_TABLE_ENTRIES + 1,
1428              fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) +
1429                              sizeof(mac_data) + fake_uni_entries * ETH_ALEN +
1430                              sizeof(mac_data) + fake_mul_entries * ETH_ALEN;
1431 
1432     assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len());
1433     out->iov_len = fake_cvq_size;
1434 
1435     /* pack the header for fake CVQ command */
1436     hdr_ptr = out->iov_base + cursor;
1437     hdr_ptr->class = VIRTIO_NET_CTRL_MAC;
1438     hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET;
1439     cursor += sizeof(*hdr_ptr);
1440 
1441     /*
1442      * Pack the non-multicast MAC addresses part for fake CVQ command.
1443      *
1444      * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC
1445      * addresses provided in CVQ command. Therefore, only the entries
1446      * field need to be prepared in the CVQ command.
1447      */
1448     mac_ptr = out->iov_base + cursor;
1449     mac_ptr->entries = cpu_to_le32(fake_uni_entries);
1450     cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN;
1451 
1452     /*
1453      * Pack the multicast MAC addresses part for fake CVQ command.
1454      *
1455      * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC
1456      * addresses provided in CVQ command. Therefore, only the entries
1457      * field need to be prepared in the CVQ command.
1458      */
1459     mac_ptr = out->iov_base + cursor;
1460     mac_ptr->entries = cpu_to_le32(fake_mul_entries);
1461 
1462     /*
1463      * Simulating QEMU poll a vdpa device used buffer
1464      * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
1465      */
1466     return sizeof(*s->status);
1467 }
1468 
1469 /**
1470  * Validate and copy control virtqueue commands.
1471  *
1472  * Following QEMU guidelines, we offer a copy of the buffers to the device to
1473  * prevent TOCTOU bugs.
1474  */
1475 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq,
1476                                             VirtQueueElement *elem,
1477                                             void *opaque)
1478 {
1479     VhostVDPAState *s = opaque;
1480     size_t in_len;
1481     const struct virtio_net_ctrl_hdr *ctrl;
1482     virtio_net_ctrl_ack status = VIRTIO_NET_ERR;
1483     /* Out buffer sent to both the vdpa device and the device model */
1484     struct iovec out = {
1485         .iov_base = s->cvq_cmd_out_buffer,
1486     };
1487     /* in buffer used for device model */
1488     const struct iovec model_in = {
1489         .iov_base = &status,
1490         .iov_len = sizeof(status),
1491     };
1492     /* in buffer used for vdpa device */
1493     const struct iovec vdpa_in = {
1494         .iov_base = s->status,
1495         .iov_len = sizeof(*s->status),
1496     };
1497     ssize_t dev_written = -EINVAL;
1498 
1499     out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0,
1500                              s->cvq_cmd_out_buffer,
1501                              vhost_vdpa_net_cvq_cmd_page_len());
1502 
1503     ctrl = s->cvq_cmd_out_buffer;
1504     if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) {
1505         /*
1506          * Guest announce capability is emulated by qemu, so don't forward to
1507          * the device.
1508          */
1509         dev_written = sizeof(status);
1510         *s->status = VIRTIO_NET_OK;
1511     } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC &&
1512                         ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET &&
1513                         iov_size(elem->out_sg, elem->out_num) > out.iov_len)) {
1514         /*
1515          * Due to the size limitation of the out buffer sent to the vdpa device,
1516          * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive
1517          * MAC addresses set by the driver for the filter table can cause
1518          * truncation of the CVQ command in QEMU. As a result, the vdpa device
1519          * rejects the flawed CVQ command.
1520          *
1521          * Therefore, QEMU must handle this situation instead of sending
1522          * the CVQ command directly.
1523          */
1524         dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem,
1525                                                             &out, &vdpa_in);
1526         if (unlikely(dev_written < 0)) {
1527             goto out;
1528         }
1529     } else {
1530         ssize_t r;
1531         r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1);
1532         if (unlikely(r < 0)) {
1533             dev_written = r;
1534             goto out;
1535         }
1536 
1537         /*
1538          * We can poll here since we've had BQL from the time
1539          * we sent the descriptor.
1540          */
1541         dev_written = vhost_vdpa_net_svq_poll(s, 1);
1542     }
1543 
1544     if (unlikely(dev_written < sizeof(status))) {
1545         error_report("Insufficient written data (%zu)", dev_written);
1546         goto out;
1547     }
1548 
1549     if (*s->status != VIRTIO_NET_OK) {
1550         goto out;
1551     }
1552 
1553     status = VIRTIO_NET_ERR;
1554     virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1);
1555     if (status != VIRTIO_NET_OK) {
1556         error_report("Bad CVQ processing in model");
1557     }
1558 
1559 out:
1560     in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status,
1561                           sizeof(status));
1562     if (unlikely(in_len < sizeof(status))) {
1563         error_report("Bad device CVQ written length");
1564     }
1565     vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status)));
1566     /*
1567      * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when
1568      * the function successfully forwards the CVQ command, indicated
1569      * by a non-negative value of `dev_written`. Otherwise, it still
1570      * belongs to SVQ.
1571      * This function should only free the `elem` when it owns.
1572      */
1573     if (dev_written >= 0) {
1574         g_free(elem);
1575     }
1576     return dev_written < 0 ? dev_written : 0;
1577 }
1578 
1579 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = {
1580     .avail_handler = vhost_vdpa_net_handle_ctrl_avail,
1581 };
1582 
1583 /**
1584  * Probe if CVQ is isolated
1585  *
1586  * @device_fd         The vdpa device fd
1587  * @features          Features offered by the device.
1588  * @cvq_index         The control vq pair index
1589  *
1590  * Returns <0 in case of failure, 0 if false and 1 if true.
1591  */
1592 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features,
1593                                           int cvq_index, Error **errp)
1594 {
1595     ERRP_GUARD();
1596     uint64_t backend_features;
1597     int64_t cvq_group;
1598     uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE |
1599                      VIRTIO_CONFIG_S_DRIVER;
1600     int r;
1601 
1602     r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features);
1603     if (unlikely(r < 0)) {
1604         error_setg_errno(errp, errno, "Cannot get vdpa backend_features");
1605         return r;
1606     }
1607 
1608     if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) {
1609         return 0;
1610     }
1611 
1612     r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status);
1613     if (unlikely(r)) {
1614         error_setg_errno(errp, -r, "Cannot set device status");
1615         goto out;
1616     }
1617 
1618     r = ioctl(device_fd, VHOST_SET_FEATURES, &features);
1619     if (unlikely(r)) {
1620         error_setg_errno(errp, -r, "Cannot set features");
1621         goto out;
1622     }
1623 
1624     status |= VIRTIO_CONFIG_S_FEATURES_OK;
1625     r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status);
1626     if (unlikely(r)) {
1627         error_setg_errno(errp, -r, "Cannot set device status");
1628         goto out;
1629     }
1630 
1631     cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp);
1632     if (unlikely(cvq_group < 0)) {
1633         if (cvq_group != -ENOTSUP) {
1634             r = cvq_group;
1635             goto out;
1636         }
1637 
1638         /*
1639          * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend
1640          * support ASID even if the parent driver does not.  The CVQ cannot be
1641          * isolated in this case.
1642          */
1643         error_free(*errp);
1644         *errp = NULL;
1645         r = 0;
1646         goto out;
1647     }
1648 
1649     for (int i = 0; i < cvq_index; ++i) {
1650         int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp);
1651         if (unlikely(group < 0)) {
1652             r = group;
1653             goto out;
1654         }
1655 
1656         if (group == (int64_t)cvq_group) {
1657             r = 0;
1658             goto out;
1659         }
1660     }
1661 
1662     r = 1;
1663 
1664 out:
1665     status = 0;
1666     ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status);
1667     return r;
1668 }
1669 
1670 static NetClientState *net_vhost_vdpa_init(NetClientState *peer,
1671                                        const char *device,
1672                                        const char *name,
1673                                        int vdpa_device_fd,
1674                                        int queue_pair_index,
1675                                        int nvqs,
1676                                        bool is_datapath,
1677                                        bool svq,
1678                                        struct vhost_vdpa_iova_range iova_range,
1679                                        uint64_t features,
1680                                        VhostVDPAShared *shared,
1681                                        Error **errp)
1682 {
1683     NetClientState *nc = NULL;
1684     VhostVDPAState *s;
1685     int ret = 0;
1686     assert(name);
1687     int cvq_isolated = 0;
1688 
1689     if (is_datapath) {
1690         nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device,
1691                                  name);
1692     } else {
1693         cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features,
1694                                                       queue_pair_index * 2,
1695                                                       errp);
1696         if (unlikely(cvq_isolated < 0)) {
1697             return NULL;
1698         }
1699 
1700         nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer,
1701                                          device, name);
1702     }
1703     qemu_set_info_str(nc, TYPE_VHOST_VDPA);
1704     s = DO_UPCAST(VhostVDPAState, nc, nc);
1705 
1706     s->vhost_vdpa.index = queue_pair_index;
1707     s->always_svq = svq;
1708     s->migration_state.notify = NULL;
1709     s->vhost_vdpa.shadow_vqs_enabled = svq;
1710     if (queue_pair_index == 0) {
1711         vhost_vdpa_net_valid_svq_features(features,
1712                                           &s->vhost_vdpa.migration_blocker);
1713         s->vhost_vdpa.shared = g_new0(VhostVDPAShared, 1);
1714         s->vhost_vdpa.shared->device_fd = vdpa_device_fd;
1715         s->vhost_vdpa.shared->iova_range = iova_range;
1716         s->vhost_vdpa.shared->shadow_data = svq;
1717     } else if (!is_datapath) {
1718         s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(),
1719                                      PROT_READ | PROT_WRITE,
1720                                      MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1721         s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(),
1722                          PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS,
1723                          -1, 0);
1724 
1725         s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops;
1726         s->vhost_vdpa.shadow_vq_ops_opaque = s;
1727         s->cvq_isolated = cvq_isolated;
1728     }
1729     if (queue_pair_index != 0) {
1730         s->vhost_vdpa.shared = shared;
1731     }
1732 
1733     ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs);
1734     if (ret) {
1735         qemu_del_net_client(nc);
1736         return NULL;
1737     }
1738 
1739     return nc;
1740 }
1741 
1742 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp)
1743 {
1744     int ret = ioctl(fd, VHOST_GET_FEATURES, features);
1745     if (unlikely(ret < 0)) {
1746         error_setg_errno(errp, errno,
1747                          "Fail to query features from vhost-vDPA device");
1748     }
1749     return ret;
1750 }
1751 
1752 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features,
1753                                           int *has_cvq, Error **errp)
1754 {
1755     unsigned long config_size = offsetof(struct vhost_vdpa_config, buf);
1756     g_autofree struct vhost_vdpa_config *config = NULL;
1757     __virtio16 *max_queue_pairs;
1758     int ret;
1759 
1760     if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) {
1761         *has_cvq = 1;
1762     } else {
1763         *has_cvq = 0;
1764     }
1765 
1766     if (features & (1 << VIRTIO_NET_F_MQ)) {
1767         config = g_malloc0(config_size + sizeof(*max_queue_pairs));
1768         config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs);
1769         config->len = sizeof(*max_queue_pairs);
1770 
1771         ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config);
1772         if (ret) {
1773             error_setg(errp, "Fail to get config from vhost-vDPA device");
1774             return -ret;
1775         }
1776 
1777         max_queue_pairs = (__virtio16 *)&config->buf;
1778 
1779         return lduw_le_p(max_queue_pairs);
1780     }
1781 
1782     return 1;
1783 }
1784 
1785 int net_init_vhost_vdpa(const Netdev *netdev, const char *name,
1786                         NetClientState *peer, Error **errp)
1787 {
1788     ERRP_GUARD();
1789     const NetdevVhostVDPAOptions *opts;
1790     uint64_t features;
1791     int vdpa_device_fd;
1792     g_autofree NetClientState **ncs = NULL;
1793     struct vhost_vdpa_iova_range iova_range;
1794     NetClientState *nc;
1795     int queue_pairs, r, i = 0, has_cvq = 0;
1796 
1797     assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA);
1798     opts = &netdev->u.vhost_vdpa;
1799     if (!opts->vhostdev && !opts->vhostfd) {
1800         error_setg(errp,
1801                    "vhost-vdpa: neither vhostdev= nor vhostfd= was specified");
1802         return -1;
1803     }
1804 
1805     if (opts->vhostdev && opts->vhostfd) {
1806         error_setg(errp,
1807                    "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive");
1808         return -1;
1809     }
1810 
1811     if (opts->vhostdev) {
1812         vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp);
1813         if (vdpa_device_fd == -1) {
1814             return -errno;
1815         }
1816     } else {
1817         /* has_vhostfd */
1818         vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp);
1819         if (vdpa_device_fd == -1) {
1820             error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: ");
1821             return -1;
1822         }
1823     }
1824 
1825     r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp);
1826     if (unlikely(r < 0)) {
1827         goto err;
1828     }
1829 
1830     queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features,
1831                                                  &has_cvq, errp);
1832     if (queue_pairs < 0) {
1833         qemu_close(vdpa_device_fd);
1834         return queue_pairs;
1835     }
1836 
1837     r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range);
1838     if (unlikely(r < 0)) {
1839         error_setg(errp, "vhost-vdpa: get iova range failed: %s",
1840                    strerror(-r));
1841         goto err;
1842     }
1843 
1844     if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) {
1845         goto err;
1846     }
1847 
1848     ncs = g_malloc0(sizeof(*ncs) * queue_pairs);
1849 
1850     for (i = 0; i < queue_pairs; i++) {
1851         VhostVDPAShared *shared = NULL;
1852 
1853         if (i) {
1854             shared = DO_UPCAST(VhostVDPAState, nc, ncs[0])->vhost_vdpa.shared;
1855         }
1856         ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name,
1857                                      vdpa_device_fd, i, 2, true, opts->x_svq,
1858                                      iova_range, features, shared, errp);
1859         if (!ncs[i])
1860             goto err;
1861     }
1862 
1863     if (has_cvq) {
1864         VhostVDPAState *s0 = DO_UPCAST(VhostVDPAState, nc, ncs[0]);
1865         VhostVDPAShared *shared = s0->vhost_vdpa.shared;
1866 
1867         nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name,
1868                                  vdpa_device_fd, i, 1, false,
1869                                  opts->x_svq, iova_range, features, shared,
1870                                  errp);
1871         if (!nc)
1872             goto err;
1873     }
1874 
1875     return 0;
1876 
1877 err:
1878     if (i) {
1879         for (i--; i >= 0; i--) {
1880             qemu_del_net_client(ncs[i]);
1881         }
1882     }
1883 
1884     qemu_close(vdpa_device_fd);
1885 
1886     return -1;
1887 }
1888