1 /* 2 * vhost-vdpa.c 3 * 4 * Copyright(c) 2017-2018 Intel Corporation. 5 * Copyright(c) 2020 Red Hat, Inc. 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "clients.h" 14 #include "hw/virtio/virtio-net.h" 15 #include "net/vhost_net.h" 16 #include "net/vhost-vdpa.h" 17 #include "hw/virtio/vhost-vdpa.h" 18 #include "qemu/config-file.h" 19 #include "qemu/error-report.h" 20 #include "qemu/log.h" 21 #include "qemu/memalign.h" 22 #include "qemu/option.h" 23 #include "qapi/error.h" 24 #include <linux/vhost.h> 25 #include <sys/ioctl.h> 26 #include <err.h> 27 #include "standard-headers/linux/virtio_net.h" 28 #include "monitor/monitor.h" 29 #include "migration/migration.h" 30 #include "migration/misc.h" 31 #include "hw/virtio/vhost.h" 32 33 /* Todo:need to add the multiqueue support here */ 34 typedef struct VhostVDPAState { 35 NetClientState nc; 36 struct vhost_vdpa vhost_vdpa; 37 Notifier migration_state; 38 VHostNetState *vhost_net; 39 40 /* Control commands shadow buffers */ 41 void *cvq_cmd_out_buffer; 42 virtio_net_ctrl_ack *status; 43 44 /* The device always have SVQ enabled */ 45 bool always_svq; 46 47 /* The device can isolate CVQ in its own ASID */ 48 bool cvq_isolated; 49 50 bool started; 51 } VhostVDPAState; 52 53 /* 54 * The array is sorted alphabetically in ascending order, 55 * with the exception of VHOST_INVALID_FEATURE_BIT, 56 * which should always be the last entry. 57 */ 58 const int vdpa_feature_bits[] = { 59 VIRTIO_F_ANY_LAYOUT, 60 VIRTIO_F_IOMMU_PLATFORM, 61 VIRTIO_F_NOTIFY_ON_EMPTY, 62 VIRTIO_F_RING_PACKED, 63 VIRTIO_F_RING_RESET, 64 VIRTIO_F_VERSION_1, 65 VIRTIO_NET_F_CSUM, 66 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, 67 VIRTIO_NET_F_CTRL_MAC_ADDR, 68 VIRTIO_NET_F_CTRL_RX, 69 VIRTIO_NET_F_CTRL_RX_EXTRA, 70 VIRTIO_NET_F_CTRL_VLAN, 71 VIRTIO_NET_F_CTRL_VQ, 72 VIRTIO_NET_F_GSO, 73 VIRTIO_NET_F_GUEST_CSUM, 74 VIRTIO_NET_F_GUEST_ECN, 75 VIRTIO_NET_F_GUEST_TSO4, 76 VIRTIO_NET_F_GUEST_TSO6, 77 VIRTIO_NET_F_GUEST_UFO, 78 VIRTIO_NET_F_GUEST_USO4, 79 VIRTIO_NET_F_GUEST_USO6, 80 VIRTIO_NET_F_HASH_REPORT, 81 VIRTIO_NET_F_HOST_ECN, 82 VIRTIO_NET_F_HOST_TSO4, 83 VIRTIO_NET_F_HOST_TSO6, 84 VIRTIO_NET_F_HOST_UFO, 85 VIRTIO_NET_F_HOST_USO, 86 VIRTIO_NET_F_MQ, 87 VIRTIO_NET_F_MRG_RXBUF, 88 VIRTIO_NET_F_MTU, 89 VIRTIO_NET_F_RSS, 90 VIRTIO_NET_F_STATUS, 91 VIRTIO_RING_F_EVENT_IDX, 92 VIRTIO_RING_F_INDIRECT_DESC, 93 94 /* VHOST_INVALID_FEATURE_BIT should always be the last entry */ 95 VHOST_INVALID_FEATURE_BIT 96 }; 97 98 /** Supported device specific feature bits with SVQ */ 99 static const uint64_t vdpa_svq_device_features = 100 BIT_ULL(VIRTIO_NET_F_CSUM) | 101 BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) | 102 BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) | 103 BIT_ULL(VIRTIO_NET_F_MTU) | 104 BIT_ULL(VIRTIO_NET_F_MAC) | 105 BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) | 106 BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) | 107 BIT_ULL(VIRTIO_NET_F_GUEST_ECN) | 108 BIT_ULL(VIRTIO_NET_F_GUEST_UFO) | 109 BIT_ULL(VIRTIO_NET_F_HOST_TSO4) | 110 BIT_ULL(VIRTIO_NET_F_HOST_TSO6) | 111 BIT_ULL(VIRTIO_NET_F_HOST_ECN) | 112 BIT_ULL(VIRTIO_NET_F_HOST_UFO) | 113 BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) | 114 BIT_ULL(VIRTIO_NET_F_STATUS) | 115 BIT_ULL(VIRTIO_NET_F_CTRL_VQ) | 116 BIT_ULL(VIRTIO_NET_F_CTRL_RX) | 117 BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) | 118 BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) | 119 BIT_ULL(VIRTIO_NET_F_MQ) | 120 BIT_ULL(VIRTIO_F_ANY_LAYOUT) | 121 BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) | 122 /* VHOST_F_LOG_ALL is exposed by SVQ */ 123 BIT_ULL(VHOST_F_LOG_ALL) | 124 BIT_ULL(VIRTIO_NET_F_RSC_EXT) | 125 BIT_ULL(VIRTIO_NET_F_STANDBY) | 126 BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX); 127 128 #define VHOST_VDPA_NET_CVQ_ASID 1 129 130 VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc) 131 { 132 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 133 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 134 return s->vhost_net; 135 } 136 137 static size_t vhost_vdpa_net_cvq_cmd_len(void) 138 { 139 /* 140 * MAC_TABLE_SET is the ctrl command that produces the longer out buffer. 141 * In buffer is always 1 byte, so it should fit here 142 */ 143 return sizeof(struct virtio_net_ctrl_hdr) + 144 2 * sizeof(struct virtio_net_ctrl_mac) + 145 MAC_TABLE_ENTRIES * ETH_ALEN; 146 } 147 148 static size_t vhost_vdpa_net_cvq_cmd_page_len(void) 149 { 150 return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size()); 151 } 152 153 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp) 154 { 155 uint64_t invalid_dev_features = 156 features & ~vdpa_svq_device_features & 157 /* Transport are all accepted at this point */ 158 ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START, 159 VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START); 160 161 if (invalid_dev_features) { 162 error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64, 163 invalid_dev_features); 164 return false; 165 } 166 167 return vhost_svq_valid_features(features, errp); 168 } 169 170 static int vhost_vdpa_net_check_device_id(struct vhost_net *net) 171 { 172 uint32_t device_id; 173 int ret; 174 struct vhost_dev *hdev; 175 176 hdev = (struct vhost_dev *)&net->dev; 177 ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id); 178 if (device_id != VIRTIO_ID_NET) { 179 return -ENOTSUP; 180 } 181 return ret; 182 } 183 184 static int vhost_vdpa_add(NetClientState *ncs, void *be, 185 int queue_pair_index, int nvqs) 186 { 187 VhostNetOptions options; 188 struct vhost_net *net = NULL; 189 VhostVDPAState *s; 190 int ret; 191 192 options.backend_type = VHOST_BACKEND_TYPE_VDPA; 193 assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 194 s = DO_UPCAST(VhostVDPAState, nc, ncs); 195 options.net_backend = ncs; 196 options.opaque = be; 197 options.busyloop_timeout = 0; 198 options.nvqs = nvqs; 199 200 net = vhost_net_init(&options); 201 if (!net) { 202 error_report("failed to init vhost_net for queue"); 203 goto err_init; 204 } 205 s->vhost_net = net; 206 ret = vhost_vdpa_net_check_device_id(net); 207 if (ret) { 208 goto err_check; 209 } 210 return 0; 211 err_check: 212 vhost_net_cleanup(net); 213 g_free(net); 214 err_init: 215 return -1; 216 } 217 218 static void vhost_vdpa_cleanup(NetClientState *nc) 219 { 220 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 221 222 /* 223 * If a peer NIC is attached, do not cleanup anything. 224 * Cleanup will happen as a part of qemu_cleanup() -> net_cleanup() 225 * when the guest is shutting down. 226 */ 227 if (nc->peer && nc->peer->info->type == NET_CLIENT_DRIVER_NIC) { 228 return; 229 } 230 munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len()); 231 munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len()); 232 if (s->vhost_net) { 233 vhost_net_cleanup(s->vhost_net); 234 g_free(s->vhost_net); 235 s->vhost_net = NULL; 236 } 237 if (s->vhost_vdpa.device_fd >= 0) { 238 qemu_close(s->vhost_vdpa.device_fd); 239 s->vhost_vdpa.device_fd = -1; 240 } 241 } 242 243 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc) 244 { 245 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 246 247 return true; 248 } 249 250 static bool vhost_vdpa_has_ufo(NetClientState *nc) 251 { 252 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 253 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 254 uint64_t features = 0; 255 features |= (1ULL << VIRTIO_NET_F_HOST_UFO); 256 features = vhost_net_get_features(s->vhost_net, features); 257 return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO)); 258 259 } 260 261 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc, 262 Error **errp) 263 { 264 const char *driver = object_class_get_name(oc); 265 266 if (!g_str_has_prefix(driver, "virtio-net-")) { 267 error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*"); 268 return false; 269 } 270 271 return true; 272 } 273 274 /** Dummy receive in case qemu falls back to userland tap networking */ 275 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf, 276 size_t size) 277 { 278 return size; 279 } 280 281 /** From any vdpa net client, get the netclient of the first queue pair */ 282 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s) 283 { 284 NICState *nic = qemu_get_nic(s->nc.peer); 285 NetClientState *nc0 = qemu_get_peer(nic->ncs, 0); 286 287 return DO_UPCAST(VhostVDPAState, nc, nc0); 288 } 289 290 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable) 291 { 292 struct vhost_vdpa *v = &s->vhost_vdpa; 293 VirtIONet *n; 294 VirtIODevice *vdev; 295 int data_queue_pairs, cvq, r; 296 297 /* We are only called on the first data vqs and only if x-svq is not set */ 298 if (s->vhost_vdpa.shadow_vqs_enabled == enable) { 299 return; 300 } 301 302 vdev = v->dev->vdev; 303 n = VIRTIO_NET(vdev); 304 if (!n->vhost_started) { 305 return; 306 } 307 308 data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1; 309 cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ? 310 n->max_ncs - n->max_queue_pairs : 0; 311 /* 312 * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter 313 * in the future and resume the device if read-only operations between 314 * suspend and reset goes wrong. 315 */ 316 vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq); 317 318 /* Start will check migration setup_or_active to configure or not SVQ */ 319 r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq); 320 if (unlikely(r < 0)) { 321 error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r); 322 } 323 } 324 325 static void vdpa_net_migration_state_notifier(Notifier *notifier, void *data) 326 { 327 MigrationState *migration = data; 328 VhostVDPAState *s = container_of(notifier, VhostVDPAState, 329 migration_state); 330 331 if (migration_in_setup(migration)) { 332 vhost_vdpa_net_log_global_enable(s, true); 333 } else if (migration_has_failed(migration)) { 334 vhost_vdpa_net_log_global_enable(s, false); 335 } 336 } 337 338 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s) 339 { 340 struct vhost_vdpa *v = &s->vhost_vdpa; 341 342 migration_add_notifier(&s->migration_state, 343 vdpa_net_migration_state_notifier); 344 if (v->shadow_vqs_enabled) { 345 v->iova_tree = vhost_iova_tree_new(v->iova_range.first, 346 v->iova_range.last); 347 } 348 } 349 350 static int vhost_vdpa_net_data_start(NetClientState *nc) 351 { 352 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 353 struct vhost_vdpa *v = &s->vhost_vdpa; 354 355 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 356 357 if (s->always_svq || 358 migration_is_setup_or_active(migrate_get_current()->state)) { 359 v->shadow_vqs_enabled = true; 360 v->shadow_data = true; 361 } else { 362 v->shadow_vqs_enabled = false; 363 v->shadow_data = false; 364 } 365 366 if (v->index == 0) { 367 vhost_vdpa_net_data_start_first(s); 368 return 0; 369 } 370 371 if (v->shadow_vqs_enabled) { 372 VhostVDPAState *s0 = vhost_vdpa_net_first_nc_vdpa(s); 373 v->iova_tree = s0->vhost_vdpa.iova_tree; 374 } 375 376 return 0; 377 } 378 379 static int vhost_vdpa_net_data_load(NetClientState *nc) 380 { 381 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 382 struct vhost_vdpa *v = &s->vhost_vdpa; 383 bool has_cvq = v->dev->vq_index_end % 2; 384 385 if (has_cvq) { 386 return 0; 387 } 388 389 for (int i = 0; i < v->dev->nvqs; ++i) { 390 vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index); 391 } 392 return 0; 393 } 394 395 static void vhost_vdpa_net_client_stop(NetClientState *nc) 396 { 397 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 398 struct vhost_dev *dev; 399 400 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 401 402 if (s->vhost_vdpa.index == 0) { 403 migration_remove_notifier(&s->migration_state); 404 } 405 406 dev = s->vhost_vdpa.dev; 407 if (dev->vq_index + dev->nvqs == dev->vq_index_end) { 408 g_clear_pointer(&s->vhost_vdpa.iova_tree, vhost_iova_tree_delete); 409 } else { 410 s->vhost_vdpa.iova_tree = NULL; 411 } 412 } 413 414 static NetClientInfo net_vhost_vdpa_info = { 415 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 416 .size = sizeof(VhostVDPAState), 417 .receive = vhost_vdpa_receive, 418 .start = vhost_vdpa_net_data_start, 419 .load = vhost_vdpa_net_data_load, 420 .stop = vhost_vdpa_net_client_stop, 421 .cleanup = vhost_vdpa_cleanup, 422 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 423 .has_ufo = vhost_vdpa_has_ufo, 424 .check_peer_type = vhost_vdpa_check_peer_type, 425 }; 426 427 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index, 428 Error **errp) 429 { 430 struct vhost_vring_state state = { 431 .index = vq_index, 432 }; 433 int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state); 434 435 if (unlikely(r < 0)) { 436 r = -errno; 437 error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index); 438 return r; 439 } 440 441 return state.num; 442 } 443 444 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v, 445 unsigned vq_group, 446 unsigned asid_num) 447 { 448 struct vhost_vring_state asid = { 449 .index = vq_group, 450 .num = asid_num, 451 }; 452 int r; 453 454 r = ioctl(v->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid); 455 if (unlikely(r < 0)) { 456 error_report("Can't set vq group %u asid %u, errno=%d (%s)", 457 asid.index, asid.num, errno, g_strerror(errno)); 458 } 459 return r; 460 } 461 462 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr) 463 { 464 VhostIOVATree *tree = v->iova_tree; 465 DMAMap needle = { 466 /* 467 * No need to specify size or to look for more translations since 468 * this contiguous chunk was allocated by us. 469 */ 470 .translated_addr = (hwaddr)(uintptr_t)addr, 471 }; 472 const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle); 473 int r; 474 475 if (unlikely(!map)) { 476 error_report("Cannot locate expected map"); 477 return; 478 } 479 480 r = vhost_vdpa_dma_unmap(v, v->address_space_id, map->iova, map->size + 1); 481 if (unlikely(r != 0)) { 482 error_report("Device cannot unmap: %s(%d)", g_strerror(r), r); 483 } 484 485 vhost_iova_tree_remove(tree, *map); 486 } 487 488 /** Map CVQ buffer. */ 489 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size, 490 bool write) 491 { 492 DMAMap map = {}; 493 int r; 494 495 map.translated_addr = (hwaddr)(uintptr_t)buf; 496 map.size = size - 1; 497 map.perm = write ? IOMMU_RW : IOMMU_RO, 498 r = vhost_iova_tree_map_alloc(v->iova_tree, &map); 499 if (unlikely(r != IOVA_OK)) { 500 error_report("Cannot map injected element"); 501 return r; 502 } 503 504 r = vhost_vdpa_dma_map(v, v->address_space_id, map.iova, 505 vhost_vdpa_net_cvq_cmd_page_len(), buf, !write); 506 if (unlikely(r < 0)) { 507 goto dma_map_err; 508 } 509 510 return 0; 511 512 dma_map_err: 513 vhost_iova_tree_remove(v->iova_tree, map); 514 return r; 515 } 516 517 static int vhost_vdpa_net_cvq_start(NetClientState *nc) 518 { 519 VhostVDPAState *s, *s0; 520 struct vhost_vdpa *v; 521 int64_t cvq_group; 522 int r; 523 Error *err = NULL; 524 525 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 526 527 s = DO_UPCAST(VhostVDPAState, nc, nc); 528 v = &s->vhost_vdpa; 529 530 s0 = vhost_vdpa_net_first_nc_vdpa(s); 531 v->shadow_data = s0->vhost_vdpa.shadow_vqs_enabled; 532 v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled; 533 s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID; 534 535 if (s->vhost_vdpa.shadow_data) { 536 /* SVQ is already configured for all virtqueues */ 537 goto out; 538 } 539 540 /* 541 * If we early return in these cases SVQ will not be enabled. The migration 542 * will be blocked as long as vhost-vdpa backends will not offer _F_LOG. 543 */ 544 if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) { 545 return 0; 546 } 547 548 if (!s->cvq_isolated) { 549 return 0; 550 } 551 552 cvq_group = vhost_vdpa_get_vring_group(v->device_fd, 553 v->dev->vq_index_end - 1, 554 &err); 555 if (unlikely(cvq_group < 0)) { 556 error_report_err(err); 557 return cvq_group; 558 } 559 560 r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID); 561 if (unlikely(r < 0)) { 562 return r; 563 } 564 565 v->shadow_vqs_enabled = true; 566 s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID; 567 568 out: 569 if (!s->vhost_vdpa.shadow_vqs_enabled) { 570 return 0; 571 } 572 573 if (s0->vhost_vdpa.iova_tree) { 574 /* 575 * SVQ is already configured for all virtqueues. Reuse IOVA tree for 576 * simplicity, whether CVQ shares ASID with guest or not, because: 577 * - Memory listener need access to guest's memory addresses allocated 578 * in the IOVA tree. 579 * - There should be plenty of IOVA address space for both ASID not to 580 * worry about collisions between them. Guest's translations are 581 * still validated with virtio virtqueue_pop so there is no risk for 582 * the guest to access memory that it shouldn't. 583 * 584 * To allocate a iova tree per ASID is doable but it complicates the 585 * code and it is not worth it for the moment. 586 */ 587 v->iova_tree = s0->vhost_vdpa.iova_tree; 588 } else { 589 v->iova_tree = vhost_iova_tree_new(v->iova_range.first, 590 v->iova_range.last); 591 } 592 593 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer, 594 vhost_vdpa_net_cvq_cmd_page_len(), false); 595 if (unlikely(r < 0)) { 596 return r; 597 } 598 599 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status, 600 vhost_vdpa_net_cvq_cmd_page_len(), true); 601 if (unlikely(r < 0)) { 602 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 603 } 604 605 return r; 606 } 607 608 static void vhost_vdpa_net_cvq_stop(NetClientState *nc) 609 { 610 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 611 612 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 613 614 if (s->vhost_vdpa.shadow_vqs_enabled) { 615 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 616 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status); 617 } 618 619 vhost_vdpa_net_client_stop(nc); 620 } 621 622 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s, size_t out_len, 623 size_t in_len) 624 { 625 /* Buffers for the device */ 626 const struct iovec out = { 627 .iov_base = s->cvq_cmd_out_buffer, 628 .iov_len = out_len, 629 }; 630 const struct iovec in = { 631 .iov_base = s->status, 632 .iov_len = sizeof(virtio_net_ctrl_ack), 633 }; 634 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 635 int r; 636 637 r = vhost_svq_add(svq, &out, 1, &in, 1, NULL); 638 if (unlikely(r != 0)) { 639 if (unlikely(r == -ENOSPC)) { 640 qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n", 641 __func__); 642 } 643 return r; 644 } 645 646 /* 647 * We can poll here since we've had BQL from the time we sent the 648 * descriptor. Also, we need to take the answer before SVQ pulls by itself, 649 * when BQL is released 650 */ 651 return vhost_svq_poll(svq, 1); 652 } 653 654 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s, uint8_t class, 655 uint8_t cmd, const struct iovec *data_sg, 656 size_t data_num) 657 { 658 const struct virtio_net_ctrl_hdr ctrl = { 659 .class = class, 660 .cmd = cmd, 661 }; 662 size_t data_size = iov_size(data_sg, data_num); 663 664 assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl)); 665 666 /* pack the CVQ command header */ 667 memcpy(s->cvq_cmd_out_buffer, &ctrl, sizeof(ctrl)); 668 669 /* pack the CVQ command command-specific-data */ 670 iov_to_buf(data_sg, data_num, 0, 671 s->cvq_cmd_out_buffer + sizeof(ctrl), data_size); 672 673 return vhost_vdpa_net_cvq_add(s, data_size + sizeof(ctrl), 674 sizeof(virtio_net_ctrl_ack)); 675 } 676 677 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n) 678 { 679 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) { 680 const struct iovec data = { 681 .iov_base = (void *)n->mac, 682 .iov_len = sizeof(n->mac), 683 }; 684 ssize_t dev_written = vhost_vdpa_net_load_cmd(s, VIRTIO_NET_CTRL_MAC, 685 VIRTIO_NET_CTRL_MAC_ADDR_SET, 686 &data, 1); 687 if (unlikely(dev_written < 0)) { 688 return dev_written; 689 } 690 if (*s->status != VIRTIO_NET_OK) { 691 return -EIO; 692 } 693 } 694 695 /* 696 * According to VirtIO standard, "The device MUST have an 697 * empty MAC filtering table on reset.". 698 * 699 * Therefore, there is no need to send this CVQ command if the 700 * driver also sets an empty MAC filter table, which aligns with 701 * the device's defaults. 702 * 703 * Note that the device's defaults can mismatch the driver's 704 * configuration only at live migration. 705 */ 706 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) || 707 n->mac_table.in_use == 0) { 708 return 0; 709 } 710 711 uint32_t uni_entries = n->mac_table.first_multi, 712 uni_macs_size = uni_entries * ETH_ALEN, 713 mul_entries = n->mac_table.in_use - uni_entries, 714 mul_macs_size = mul_entries * ETH_ALEN; 715 struct virtio_net_ctrl_mac uni = { 716 .entries = cpu_to_le32(uni_entries), 717 }; 718 struct virtio_net_ctrl_mac mul = { 719 .entries = cpu_to_le32(mul_entries), 720 }; 721 const struct iovec data[] = { 722 { 723 .iov_base = &uni, 724 .iov_len = sizeof(uni), 725 }, { 726 .iov_base = n->mac_table.macs, 727 .iov_len = uni_macs_size, 728 }, { 729 .iov_base = &mul, 730 .iov_len = sizeof(mul), 731 }, { 732 .iov_base = &n->mac_table.macs[uni_macs_size], 733 .iov_len = mul_macs_size, 734 }, 735 }; 736 ssize_t dev_written = vhost_vdpa_net_load_cmd(s, 737 VIRTIO_NET_CTRL_MAC, 738 VIRTIO_NET_CTRL_MAC_TABLE_SET, 739 data, ARRAY_SIZE(data)); 740 if (unlikely(dev_written < 0)) { 741 return dev_written; 742 } 743 if (*s->status != VIRTIO_NET_OK) { 744 return -EIO; 745 } 746 747 return 0; 748 } 749 750 static int vhost_vdpa_net_load_mq(VhostVDPAState *s, 751 const VirtIONet *n) 752 { 753 struct virtio_net_ctrl_mq mq; 754 ssize_t dev_written; 755 756 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) { 757 return 0; 758 } 759 760 mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs); 761 const struct iovec data = { 762 .iov_base = &mq, 763 .iov_len = sizeof(mq), 764 }; 765 dev_written = vhost_vdpa_net_load_cmd(s, VIRTIO_NET_CTRL_MQ, 766 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET, 767 &data, 1); 768 if (unlikely(dev_written < 0)) { 769 return dev_written; 770 } 771 if (*s->status != VIRTIO_NET_OK) { 772 return -EIO; 773 } 774 775 return 0; 776 } 777 778 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s, 779 const VirtIONet *n) 780 { 781 uint64_t offloads; 782 ssize_t dev_written; 783 784 if (!virtio_vdev_has_feature(&n->parent_obj, 785 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) { 786 return 0; 787 } 788 789 if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) { 790 /* 791 * According to VirtIO standard, "Upon feature negotiation 792 * corresponding offload gets enabled to preserve 793 * backward compatibility.". 794 * 795 * Therefore, there is no need to send this CVQ command if the 796 * driver also enables all supported offloads, which aligns with 797 * the device's defaults. 798 * 799 * Note that the device's defaults can mismatch the driver's 800 * configuration only at live migration. 801 */ 802 return 0; 803 } 804 805 offloads = cpu_to_le64(n->curr_guest_offloads); 806 const struct iovec data = { 807 .iov_base = &offloads, 808 .iov_len = sizeof(offloads), 809 }; 810 dev_written = vhost_vdpa_net_load_cmd(s, VIRTIO_NET_CTRL_GUEST_OFFLOADS, 811 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET, 812 &data, 1); 813 if (unlikely(dev_written < 0)) { 814 return dev_written; 815 } 816 if (*s->status != VIRTIO_NET_OK) { 817 return -EIO; 818 } 819 820 return 0; 821 } 822 823 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s, 824 uint8_t cmd, 825 uint8_t on) 826 { 827 const struct iovec data = { 828 .iov_base = &on, 829 .iov_len = sizeof(on), 830 }; 831 return vhost_vdpa_net_load_cmd(s, VIRTIO_NET_CTRL_RX, 832 cmd, &data, 1); 833 } 834 835 static int vhost_vdpa_net_load_rx(VhostVDPAState *s, 836 const VirtIONet *n) 837 { 838 ssize_t dev_written; 839 840 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) { 841 return 0; 842 } 843 844 /* 845 * According to virtio_net_reset(), device turns promiscuous mode 846 * on by default. 847 * 848 * Additionally, according to VirtIO standard, "Since there are 849 * no guarantees, it can use a hash filter or silently switch to 850 * allmulti or promiscuous mode if it is given too many addresses.". 851 * QEMU marks `n->mac_table.uni_overflow` if guest sets too many 852 * non-multicast MAC addresses, indicating that promiscuous mode 853 * should be enabled. 854 * 855 * Therefore, QEMU should only send this CVQ command if the 856 * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off, 857 * which sets promiscuous mode on, different from the device's defaults. 858 * 859 * Note that the device's defaults can mismatch the driver's 860 * configuration only at live migration. 861 */ 862 if (!n->mac_table.uni_overflow && !n->promisc) { 863 dev_written = vhost_vdpa_net_load_rx_mode(s, 864 VIRTIO_NET_CTRL_RX_PROMISC, 0); 865 if (unlikely(dev_written < 0)) { 866 return dev_written; 867 } 868 if (*s->status != VIRTIO_NET_OK) { 869 return -EIO; 870 } 871 } 872 873 /* 874 * According to virtio_net_reset(), device turns all-multicast mode 875 * off by default. 876 * 877 * According to VirtIO standard, "Since there are no guarantees, 878 * it can use a hash filter or silently switch to allmulti or 879 * promiscuous mode if it is given too many addresses.". QEMU marks 880 * `n->mac_table.multi_overflow` if guest sets too many 881 * non-multicast MAC addresses. 882 * 883 * Therefore, QEMU should only send this CVQ command if the 884 * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on, 885 * which sets all-multicast mode on, different from the device's defaults. 886 * 887 * Note that the device's defaults can mismatch the driver's 888 * configuration only at live migration. 889 */ 890 if (n->mac_table.multi_overflow || n->allmulti) { 891 dev_written = vhost_vdpa_net_load_rx_mode(s, 892 VIRTIO_NET_CTRL_RX_ALLMULTI, 1); 893 if (unlikely(dev_written < 0)) { 894 return dev_written; 895 } 896 if (*s->status != VIRTIO_NET_OK) { 897 return -EIO; 898 } 899 } 900 901 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) { 902 return 0; 903 } 904 905 /* 906 * According to virtio_net_reset(), device turns all-unicast mode 907 * off by default. 908 * 909 * Therefore, QEMU should only send this CVQ command if the driver 910 * sets all-unicast mode on, different from the device's defaults. 911 * 912 * Note that the device's defaults can mismatch the driver's 913 * configuration only at live migration. 914 */ 915 if (n->alluni) { 916 dev_written = vhost_vdpa_net_load_rx_mode(s, 917 VIRTIO_NET_CTRL_RX_ALLUNI, 1); 918 if (dev_written < 0) { 919 return dev_written; 920 } 921 if (*s->status != VIRTIO_NET_OK) { 922 return -EIO; 923 } 924 } 925 926 /* 927 * According to virtio_net_reset(), device turns non-multicast mode 928 * off by default. 929 * 930 * Therefore, QEMU should only send this CVQ command if the driver 931 * sets non-multicast mode on, different from the device's defaults. 932 * 933 * Note that the device's defaults can mismatch the driver's 934 * configuration only at live migration. 935 */ 936 if (n->nomulti) { 937 dev_written = vhost_vdpa_net_load_rx_mode(s, 938 VIRTIO_NET_CTRL_RX_NOMULTI, 1); 939 if (dev_written < 0) { 940 return dev_written; 941 } 942 if (*s->status != VIRTIO_NET_OK) { 943 return -EIO; 944 } 945 } 946 947 /* 948 * According to virtio_net_reset(), device turns non-unicast mode 949 * off by default. 950 * 951 * Therefore, QEMU should only send this CVQ command if the driver 952 * sets non-unicast mode on, different from the device's defaults. 953 * 954 * Note that the device's defaults can mismatch the driver's 955 * configuration only at live migration. 956 */ 957 if (n->nouni) { 958 dev_written = vhost_vdpa_net_load_rx_mode(s, 959 VIRTIO_NET_CTRL_RX_NOUNI, 1); 960 if (dev_written < 0) { 961 return dev_written; 962 } 963 if (*s->status != VIRTIO_NET_OK) { 964 return -EIO; 965 } 966 } 967 968 /* 969 * According to virtio_net_reset(), device turns non-broadcast mode 970 * off by default. 971 * 972 * Therefore, QEMU should only send this CVQ command if the driver 973 * sets non-broadcast mode on, different from the device's defaults. 974 * 975 * Note that the device's defaults can mismatch the driver's 976 * configuration only at live migration. 977 */ 978 if (n->nobcast) { 979 dev_written = vhost_vdpa_net_load_rx_mode(s, 980 VIRTIO_NET_CTRL_RX_NOBCAST, 1); 981 if (dev_written < 0) { 982 return dev_written; 983 } 984 if (*s->status != VIRTIO_NET_OK) { 985 return -EIO; 986 } 987 } 988 989 return 0; 990 } 991 992 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s, 993 const VirtIONet *n, 994 uint16_t vid) 995 { 996 const struct iovec data = { 997 .iov_base = &vid, 998 .iov_len = sizeof(vid), 999 }; 1000 ssize_t dev_written = vhost_vdpa_net_load_cmd(s, VIRTIO_NET_CTRL_VLAN, 1001 VIRTIO_NET_CTRL_VLAN_ADD, 1002 &data, 1); 1003 if (unlikely(dev_written < 0)) { 1004 return dev_written; 1005 } 1006 if (unlikely(*s->status != VIRTIO_NET_OK)) { 1007 return -EIO; 1008 } 1009 1010 return 0; 1011 } 1012 1013 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s, 1014 const VirtIONet *n) 1015 { 1016 int r; 1017 1018 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) { 1019 return 0; 1020 } 1021 1022 for (int i = 0; i < MAX_VLAN >> 5; i++) { 1023 for (int j = 0; n->vlans[i] && j <= 0x1f; j++) { 1024 if (n->vlans[i] & (1U << j)) { 1025 r = vhost_vdpa_net_load_single_vlan(s, n, (i << 5) + j); 1026 if (unlikely(r != 0)) { 1027 return r; 1028 } 1029 } 1030 } 1031 } 1032 1033 return 0; 1034 } 1035 1036 static int vhost_vdpa_net_cvq_load(NetClientState *nc) 1037 { 1038 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 1039 struct vhost_vdpa *v = &s->vhost_vdpa; 1040 const VirtIONet *n; 1041 int r; 1042 1043 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1044 1045 vhost_vdpa_set_vring_ready(v, v->dev->vq_index); 1046 1047 if (v->shadow_vqs_enabled) { 1048 n = VIRTIO_NET(v->dev->vdev); 1049 r = vhost_vdpa_net_load_mac(s, n); 1050 if (unlikely(r < 0)) { 1051 return r; 1052 } 1053 r = vhost_vdpa_net_load_mq(s, n); 1054 if (unlikely(r)) { 1055 return r; 1056 } 1057 r = vhost_vdpa_net_load_offloads(s, n); 1058 if (unlikely(r)) { 1059 return r; 1060 } 1061 r = vhost_vdpa_net_load_rx(s, n); 1062 if (unlikely(r)) { 1063 return r; 1064 } 1065 r = vhost_vdpa_net_load_vlan(s, n); 1066 if (unlikely(r)) { 1067 return r; 1068 } 1069 } 1070 1071 for (int i = 0; i < v->dev->vq_index; ++i) { 1072 vhost_vdpa_set_vring_ready(v, i); 1073 } 1074 1075 return 0; 1076 } 1077 1078 static NetClientInfo net_vhost_vdpa_cvq_info = { 1079 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 1080 .size = sizeof(VhostVDPAState), 1081 .receive = vhost_vdpa_receive, 1082 .start = vhost_vdpa_net_cvq_start, 1083 .load = vhost_vdpa_net_cvq_load, 1084 .stop = vhost_vdpa_net_cvq_stop, 1085 .cleanup = vhost_vdpa_cleanup, 1086 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 1087 .has_ufo = vhost_vdpa_has_ufo, 1088 .check_peer_type = vhost_vdpa_check_peer_type, 1089 }; 1090 1091 /* 1092 * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to 1093 * vdpa device. 1094 * 1095 * Considering that QEMU cannot send the entire filter table to the 1096 * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ 1097 * command to enable promiscuous mode to receive all packets, 1098 * according to VirtIO standard, "Since there are no guarantees, 1099 * it can use a hash filter or silently switch to allmulti or 1100 * promiscuous mode if it is given too many addresses.". 1101 * 1102 * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and 1103 * marks `n->mac_table.x_overflow` accordingly, it should have 1104 * the same effect on the device model to receive 1105 * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses. 1106 * The same applies to multicast MAC addresses. 1107 * 1108 * Therefore, QEMU can provide the device model with a fake 1109 * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1) 1110 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast 1111 * MAC addresses. This ensures that the device model marks 1112 * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`, 1113 * allowing all packets to be received, which aligns with the 1114 * state of the vdpa device. 1115 */ 1116 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s, 1117 VirtQueueElement *elem, 1118 struct iovec *out) 1119 { 1120 struct virtio_net_ctrl_mac mac_data, *mac_ptr; 1121 struct virtio_net_ctrl_hdr *hdr_ptr; 1122 uint32_t cursor; 1123 ssize_t r; 1124 1125 /* parse the non-multicast MAC address entries from CVQ command */ 1126 cursor = sizeof(*hdr_ptr); 1127 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1128 &mac_data, sizeof(mac_data)); 1129 if (unlikely(r != sizeof(mac_data))) { 1130 /* 1131 * If the CVQ command is invalid, we should simulate the vdpa device 1132 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1133 */ 1134 *s->status = VIRTIO_NET_ERR; 1135 return sizeof(*s->status); 1136 } 1137 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1138 1139 /* parse the multicast MAC address entries from CVQ command */ 1140 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1141 &mac_data, sizeof(mac_data)); 1142 if (r != sizeof(mac_data)) { 1143 /* 1144 * If the CVQ command is invalid, we should simulate the vdpa device 1145 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1146 */ 1147 *s->status = VIRTIO_NET_ERR; 1148 return sizeof(*s->status); 1149 } 1150 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1151 1152 /* validate the CVQ command */ 1153 if (iov_size(elem->out_sg, elem->out_num) != cursor) { 1154 /* 1155 * If the CVQ command is invalid, we should simulate the vdpa device 1156 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1157 */ 1158 *s->status = VIRTIO_NET_ERR; 1159 return sizeof(*s->status); 1160 } 1161 1162 /* 1163 * According to VirtIO standard, "Since there are no guarantees, 1164 * it can use a hash filter or silently switch to allmulti or 1165 * promiscuous mode if it is given too many addresses.". 1166 * 1167 * Therefore, considering that QEMU is unable to send the entire 1168 * filter table to the vdpa device, it should send the 1169 * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode 1170 */ 1171 r = vhost_vdpa_net_load_rx_mode(s, VIRTIO_NET_CTRL_RX_PROMISC, 1); 1172 if (unlikely(r < 0)) { 1173 return r; 1174 } 1175 if (*s->status != VIRTIO_NET_OK) { 1176 return sizeof(*s->status); 1177 } 1178 1179 /* 1180 * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ 1181 * command to the device model, including (`MAC_TABLE_ENTRIES` + 1) 1182 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) 1183 * multicast MAC addresses. 1184 * 1185 * By doing so, the device model can mark `n->mac_table.uni_overflow` 1186 * and `n->mac_table.multi_overflow`, enabling all packets to be 1187 * received, which aligns with the state of the vdpa device. 1188 */ 1189 cursor = 0; 1190 uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1, 1191 fake_mul_entries = MAC_TABLE_ENTRIES + 1, 1192 fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) + 1193 sizeof(mac_data) + fake_uni_entries * ETH_ALEN + 1194 sizeof(mac_data) + fake_mul_entries * ETH_ALEN; 1195 1196 assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len()); 1197 out->iov_len = fake_cvq_size; 1198 1199 /* pack the header for fake CVQ command */ 1200 hdr_ptr = out->iov_base + cursor; 1201 hdr_ptr->class = VIRTIO_NET_CTRL_MAC; 1202 hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 1203 cursor += sizeof(*hdr_ptr); 1204 1205 /* 1206 * Pack the non-multicast MAC addresses part for fake CVQ command. 1207 * 1208 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1209 * addresses provided in CVQ command. Therefore, only the entries 1210 * field need to be prepared in the CVQ command. 1211 */ 1212 mac_ptr = out->iov_base + cursor; 1213 mac_ptr->entries = cpu_to_le32(fake_uni_entries); 1214 cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN; 1215 1216 /* 1217 * Pack the multicast MAC addresses part for fake CVQ command. 1218 * 1219 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1220 * addresses provided in CVQ command. Therefore, only the entries 1221 * field need to be prepared in the CVQ command. 1222 */ 1223 mac_ptr = out->iov_base + cursor; 1224 mac_ptr->entries = cpu_to_le32(fake_mul_entries); 1225 1226 /* 1227 * Simulating QEMU poll a vdpa device used buffer 1228 * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1229 */ 1230 return sizeof(*s->status); 1231 } 1232 1233 /** 1234 * Validate and copy control virtqueue commands. 1235 * 1236 * Following QEMU guidelines, we offer a copy of the buffers to the device to 1237 * prevent TOCTOU bugs. 1238 */ 1239 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq, 1240 VirtQueueElement *elem, 1241 void *opaque) 1242 { 1243 VhostVDPAState *s = opaque; 1244 size_t in_len; 1245 const struct virtio_net_ctrl_hdr *ctrl; 1246 virtio_net_ctrl_ack status = VIRTIO_NET_ERR; 1247 /* Out buffer sent to both the vdpa device and the device model */ 1248 struct iovec out = { 1249 .iov_base = s->cvq_cmd_out_buffer, 1250 }; 1251 /* in buffer used for device model */ 1252 const struct iovec in = { 1253 .iov_base = &status, 1254 .iov_len = sizeof(status), 1255 }; 1256 ssize_t dev_written = -EINVAL; 1257 1258 out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0, 1259 s->cvq_cmd_out_buffer, 1260 vhost_vdpa_net_cvq_cmd_page_len()); 1261 1262 ctrl = s->cvq_cmd_out_buffer; 1263 if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) { 1264 /* 1265 * Guest announce capability is emulated by qemu, so don't forward to 1266 * the device. 1267 */ 1268 dev_written = sizeof(status); 1269 *s->status = VIRTIO_NET_OK; 1270 } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC && 1271 ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET && 1272 iov_size(elem->out_sg, elem->out_num) > out.iov_len)) { 1273 /* 1274 * Due to the size limitation of the out buffer sent to the vdpa device, 1275 * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive 1276 * MAC addresses set by the driver for the filter table can cause 1277 * truncation of the CVQ command in QEMU. As a result, the vdpa device 1278 * rejects the flawed CVQ command. 1279 * 1280 * Therefore, QEMU must handle this situation instead of sending 1281 * the CVQ command directly. 1282 */ 1283 dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem, 1284 &out); 1285 if (unlikely(dev_written < 0)) { 1286 goto out; 1287 } 1288 } else { 1289 dev_written = vhost_vdpa_net_cvq_add(s, out.iov_len, sizeof(status)); 1290 if (unlikely(dev_written < 0)) { 1291 goto out; 1292 } 1293 } 1294 1295 if (unlikely(dev_written < sizeof(status))) { 1296 error_report("Insufficient written data (%zu)", dev_written); 1297 goto out; 1298 } 1299 1300 if (*s->status != VIRTIO_NET_OK) { 1301 goto out; 1302 } 1303 1304 status = VIRTIO_NET_ERR; 1305 virtio_net_handle_ctrl_iov(svq->vdev, &in, 1, &out, 1); 1306 if (status != VIRTIO_NET_OK) { 1307 error_report("Bad CVQ processing in model"); 1308 } 1309 1310 out: 1311 in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status, 1312 sizeof(status)); 1313 if (unlikely(in_len < sizeof(status))) { 1314 error_report("Bad device CVQ written length"); 1315 } 1316 vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status))); 1317 /* 1318 * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when 1319 * the function successfully forwards the CVQ command, indicated 1320 * by a non-negative value of `dev_written`. Otherwise, it still 1321 * belongs to SVQ. 1322 * This function should only free the `elem` when it owns. 1323 */ 1324 if (dev_written >= 0) { 1325 g_free(elem); 1326 } 1327 return dev_written < 0 ? dev_written : 0; 1328 } 1329 1330 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = { 1331 .avail_handler = vhost_vdpa_net_handle_ctrl_avail, 1332 }; 1333 1334 /** 1335 * Probe if CVQ is isolated 1336 * 1337 * @device_fd The vdpa device fd 1338 * @features Features offered by the device. 1339 * @cvq_index The control vq pair index 1340 * 1341 * Returns <0 in case of failure, 0 if false and 1 if true. 1342 */ 1343 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features, 1344 int cvq_index, Error **errp) 1345 { 1346 uint64_t backend_features; 1347 int64_t cvq_group; 1348 uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE | 1349 VIRTIO_CONFIG_S_DRIVER; 1350 int r; 1351 1352 ERRP_GUARD(); 1353 1354 r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features); 1355 if (unlikely(r < 0)) { 1356 error_setg_errno(errp, errno, "Cannot get vdpa backend_features"); 1357 return r; 1358 } 1359 1360 if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) { 1361 return 0; 1362 } 1363 1364 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1365 if (unlikely(r)) { 1366 error_setg_errno(errp, -r, "Cannot set device status"); 1367 goto out; 1368 } 1369 1370 r = ioctl(device_fd, VHOST_SET_FEATURES, &features); 1371 if (unlikely(r)) { 1372 error_setg_errno(errp, -r, "Cannot set features"); 1373 goto out; 1374 } 1375 1376 status |= VIRTIO_CONFIG_S_FEATURES_OK; 1377 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1378 if (unlikely(r)) { 1379 error_setg_errno(errp, -r, "Cannot set device status"); 1380 goto out; 1381 } 1382 1383 cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp); 1384 if (unlikely(cvq_group < 0)) { 1385 if (cvq_group != -ENOTSUP) { 1386 r = cvq_group; 1387 goto out; 1388 } 1389 1390 /* 1391 * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend 1392 * support ASID even if the parent driver does not. The CVQ cannot be 1393 * isolated in this case. 1394 */ 1395 error_free(*errp); 1396 *errp = NULL; 1397 r = 0; 1398 goto out; 1399 } 1400 1401 for (int i = 0; i < cvq_index; ++i) { 1402 int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp); 1403 if (unlikely(group < 0)) { 1404 r = group; 1405 goto out; 1406 } 1407 1408 if (group == (int64_t)cvq_group) { 1409 r = 0; 1410 goto out; 1411 } 1412 } 1413 1414 r = 1; 1415 1416 out: 1417 status = 0; 1418 ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1419 return r; 1420 } 1421 1422 static NetClientState *net_vhost_vdpa_init(NetClientState *peer, 1423 const char *device, 1424 const char *name, 1425 int vdpa_device_fd, 1426 int queue_pair_index, 1427 int nvqs, 1428 bool is_datapath, 1429 bool svq, 1430 struct vhost_vdpa_iova_range iova_range, 1431 uint64_t features, 1432 Error **errp) 1433 { 1434 NetClientState *nc = NULL; 1435 VhostVDPAState *s; 1436 int ret = 0; 1437 assert(name); 1438 int cvq_isolated = 0; 1439 1440 if (is_datapath) { 1441 nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device, 1442 name); 1443 } else { 1444 cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features, 1445 queue_pair_index * 2, 1446 errp); 1447 if (unlikely(cvq_isolated < 0)) { 1448 return NULL; 1449 } 1450 1451 nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer, 1452 device, name); 1453 } 1454 qemu_set_info_str(nc, TYPE_VHOST_VDPA); 1455 s = DO_UPCAST(VhostVDPAState, nc, nc); 1456 1457 s->vhost_vdpa.device_fd = vdpa_device_fd; 1458 s->vhost_vdpa.index = queue_pair_index; 1459 s->always_svq = svq; 1460 s->migration_state.notify = NULL; 1461 s->vhost_vdpa.shadow_vqs_enabled = svq; 1462 s->vhost_vdpa.iova_range = iova_range; 1463 s->vhost_vdpa.shadow_data = svq; 1464 if (queue_pair_index == 0) { 1465 vhost_vdpa_net_valid_svq_features(features, 1466 &s->vhost_vdpa.migration_blocker); 1467 } else if (!is_datapath) { 1468 s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1469 PROT_READ | PROT_WRITE, 1470 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1471 s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1472 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 1473 -1, 0); 1474 1475 s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops; 1476 s->vhost_vdpa.shadow_vq_ops_opaque = s; 1477 s->cvq_isolated = cvq_isolated; 1478 } 1479 ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs); 1480 if (ret) { 1481 qemu_del_net_client(nc); 1482 return NULL; 1483 } 1484 return nc; 1485 } 1486 1487 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp) 1488 { 1489 int ret = ioctl(fd, VHOST_GET_FEATURES, features); 1490 if (unlikely(ret < 0)) { 1491 error_setg_errno(errp, errno, 1492 "Fail to query features from vhost-vDPA device"); 1493 } 1494 return ret; 1495 } 1496 1497 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features, 1498 int *has_cvq, Error **errp) 1499 { 1500 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 1501 g_autofree struct vhost_vdpa_config *config = NULL; 1502 __virtio16 *max_queue_pairs; 1503 int ret; 1504 1505 if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) { 1506 *has_cvq = 1; 1507 } else { 1508 *has_cvq = 0; 1509 } 1510 1511 if (features & (1 << VIRTIO_NET_F_MQ)) { 1512 config = g_malloc0(config_size + sizeof(*max_queue_pairs)); 1513 config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs); 1514 config->len = sizeof(*max_queue_pairs); 1515 1516 ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config); 1517 if (ret) { 1518 error_setg(errp, "Fail to get config from vhost-vDPA device"); 1519 return -ret; 1520 } 1521 1522 max_queue_pairs = (__virtio16 *)&config->buf; 1523 1524 return lduw_le_p(max_queue_pairs); 1525 } 1526 1527 return 1; 1528 } 1529 1530 int net_init_vhost_vdpa(const Netdev *netdev, const char *name, 1531 NetClientState *peer, Error **errp) 1532 { 1533 const NetdevVhostVDPAOptions *opts; 1534 uint64_t features; 1535 int vdpa_device_fd; 1536 g_autofree NetClientState **ncs = NULL; 1537 struct vhost_vdpa_iova_range iova_range; 1538 NetClientState *nc; 1539 int queue_pairs, r, i = 0, has_cvq = 0; 1540 1541 assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1542 opts = &netdev->u.vhost_vdpa; 1543 if (!opts->vhostdev && !opts->vhostfd) { 1544 error_setg(errp, 1545 "vhost-vdpa: neither vhostdev= nor vhostfd= was specified"); 1546 return -1; 1547 } 1548 1549 if (opts->vhostdev && opts->vhostfd) { 1550 error_setg(errp, 1551 "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive"); 1552 return -1; 1553 } 1554 1555 if (opts->vhostdev) { 1556 vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp); 1557 if (vdpa_device_fd == -1) { 1558 return -errno; 1559 } 1560 } else { 1561 /* has_vhostfd */ 1562 vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp); 1563 if (vdpa_device_fd == -1) { 1564 error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: "); 1565 return -1; 1566 } 1567 } 1568 1569 r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp); 1570 if (unlikely(r < 0)) { 1571 goto err; 1572 } 1573 1574 queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features, 1575 &has_cvq, errp); 1576 if (queue_pairs < 0) { 1577 qemu_close(vdpa_device_fd); 1578 return queue_pairs; 1579 } 1580 1581 r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range); 1582 if (unlikely(r < 0)) { 1583 error_setg(errp, "vhost-vdpa: get iova range failed: %s", 1584 strerror(-r)); 1585 goto err; 1586 } 1587 1588 if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) { 1589 goto err; 1590 } 1591 1592 ncs = g_malloc0(sizeof(*ncs) * queue_pairs); 1593 1594 for (i = 0; i < queue_pairs; i++) { 1595 ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1596 vdpa_device_fd, i, 2, true, opts->x_svq, 1597 iova_range, features, errp); 1598 if (!ncs[i]) 1599 goto err; 1600 } 1601 1602 if (has_cvq) { 1603 nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1604 vdpa_device_fd, i, 1, false, 1605 opts->x_svq, iova_range, features, errp); 1606 if (!nc) 1607 goto err; 1608 } 1609 1610 return 0; 1611 1612 err: 1613 if (i) { 1614 for (i--; i >= 0; i--) { 1615 qemu_del_net_client(ncs[i]); 1616 } 1617 } 1618 1619 qemu_close(vdpa_device_fd); 1620 1621 return -1; 1622 } 1623