1 /* 2 * vhost-vdpa.c 3 * 4 * Copyright(c) 2017-2018 Intel Corporation. 5 * Copyright(c) 2020 Red Hat, Inc. 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or later. 8 * See the COPYING file in the top-level directory. 9 * 10 */ 11 12 #include "qemu/osdep.h" 13 #include "clients.h" 14 #include "hw/virtio/virtio-net.h" 15 #include "net/vhost_net.h" 16 #include "net/vhost-vdpa.h" 17 #include "hw/virtio/vhost-vdpa.h" 18 #include "qemu/config-file.h" 19 #include "qemu/error-report.h" 20 #include "qemu/log.h" 21 #include "qemu/memalign.h" 22 #include "qemu/option.h" 23 #include "qapi/error.h" 24 #include <linux/vhost.h> 25 #include <sys/ioctl.h> 26 #include <err.h> 27 #include "standard-headers/linux/virtio_net.h" 28 #include "monitor/monitor.h" 29 #include "migration/migration.h" 30 #include "migration/misc.h" 31 #include "hw/virtio/vhost.h" 32 33 /* Todo:need to add the multiqueue support here */ 34 typedef struct VhostVDPAState { 35 NetClientState nc; 36 struct vhost_vdpa vhost_vdpa; 37 Notifier migration_state; 38 VHostNetState *vhost_net; 39 40 /* Control commands shadow buffers */ 41 void *cvq_cmd_out_buffer; 42 virtio_net_ctrl_ack *status; 43 44 /* The device always have SVQ enabled */ 45 bool always_svq; 46 47 /* The device can isolate CVQ in its own ASID */ 48 bool cvq_isolated; 49 50 bool started; 51 } VhostVDPAState; 52 53 /* 54 * The array is sorted alphabetically in ascending order, 55 * with the exception of VHOST_INVALID_FEATURE_BIT, 56 * which should always be the last entry. 57 */ 58 const int vdpa_feature_bits[] = { 59 VIRTIO_F_ANY_LAYOUT, 60 VIRTIO_F_IOMMU_PLATFORM, 61 VIRTIO_F_NOTIFY_ON_EMPTY, 62 VIRTIO_F_RING_PACKED, 63 VIRTIO_F_RING_RESET, 64 VIRTIO_F_VERSION_1, 65 VIRTIO_NET_F_CSUM, 66 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, 67 VIRTIO_NET_F_CTRL_MAC_ADDR, 68 VIRTIO_NET_F_CTRL_RX, 69 VIRTIO_NET_F_CTRL_RX_EXTRA, 70 VIRTIO_NET_F_CTRL_VLAN, 71 VIRTIO_NET_F_CTRL_VQ, 72 VIRTIO_NET_F_GSO, 73 VIRTIO_NET_F_GUEST_CSUM, 74 VIRTIO_NET_F_GUEST_ECN, 75 VIRTIO_NET_F_GUEST_TSO4, 76 VIRTIO_NET_F_GUEST_TSO6, 77 VIRTIO_NET_F_GUEST_UFO, 78 VIRTIO_NET_F_GUEST_USO4, 79 VIRTIO_NET_F_GUEST_USO6, 80 VIRTIO_NET_F_HASH_REPORT, 81 VIRTIO_NET_F_HOST_ECN, 82 VIRTIO_NET_F_HOST_TSO4, 83 VIRTIO_NET_F_HOST_TSO6, 84 VIRTIO_NET_F_HOST_UFO, 85 VIRTIO_NET_F_HOST_USO, 86 VIRTIO_NET_F_MQ, 87 VIRTIO_NET_F_MRG_RXBUF, 88 VIRTIO_NET_F_MTU, 89 VIRTIO_NET_F_RSS, 90 VIRTIO_NET_F_STATUS, 91 VIRTIO_RING_F_EVENT_IDX, 92 VIRTIO_RING_F_INDIRECT_DESC, 93 94 /* VHOST_INVALID_FEATURE_BIT should always be the last entry */ 95 VHOST_INVALID_FEATURE_BIT 96 }; 97 98 /** Supported device specific feature bits with SVQ */ 99 static const uint64_t vdpa_svq_device_features = 100 BIT_ULL(VIRTIO_NET_F_CSUM) | 101 BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) | 102 BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) | 103 BIT_ULL(VIRTIO_NET_F_MTU) | 104 BIT_ULL(VIRTIO_NET_F_MAC) | 105 BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) | 106 BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) | 107 BIT_ULL(VIRTIO_NET_F_GUEST_ECN) | 108 BIT_ULL(VIRTIO_NET_F_GUEST_UFO) | 109 BIT_ULL(VIRTIO_NET_F_HOST_TSO4) | 110 BIT_ULL(VIRTIO_NET_F_HOST_TSO6) | 111 BIT_ULL(VIRTIO_NET_F_HOST_ECN) | 112 BIT_ULL(VIRTIO_NET_F_HOST_UFO) | 113 BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) | 114 BIT_ULL(VIRTIO_NET_F_STATUS) | 115 BIT_ULL(VIRTIO_NET_F_CTRL_VQ) | 116 BIT_ULL(VIRTIO_NET_F_CTRL_RX) | 117 BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) | 118 BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) | 119 BIT_ULL(VIRTIO_NET_F_MQ) | 120 BIT_ULL(VIRTIO_F_ANY_LAYOUT) | 121 BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) | 122 /* VHOST_F_LOG_ALL is exposed by SVQ */ 123 BIT_ULL(VHOST_F_LOG_ALL) | 124 BIT_ULL(VIRTIO_NET_F_RSC_EXT) | 125 BIT_ULL(VIRTIO_NET_F_STANDBY) | 126 BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX); 127 128 #define VHOST_VDPA_NET_CVQ_ASID 1 129 130 VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc) 131 { 132 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 133 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 134 return s->vhost_net; 135 } 136 137 static size_t vhost_vdpa_net_cvq_cmd_len(void) 138 { 139 /* 140 * MAC_TABLE_SET is the ctrl command that produces the longer out buffer. 141 * In buffer is always 1 byte, so it should fit here 142 */ 143 return sizeof(struct virtio_net_ctrl_hdr) + 144 2 * sizeof(struct virtio_net_ctrl_mac) + 145 MAC_TABLE_ENTRIES * ETH_ALEN; 146 } 147 148 static size_t vhost_vdpa_net_cvq_cmd_page_len(void) 149 { 150 return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size()); 151 } 152 153 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp) 154 { 155 uint64_t invalid_dev_features = 156 features & ~vdpa_svq_device_features & 157 /* Transport are all accepted at this point */ 158 ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START, 159 VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START); 160 161 if (invalid_dev_features) { 162 error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64, 163 invalid_dev_features); 164 return false; 165 } 166 167 return vhost_svq_valid_features(features, errp); 168 } 169 170 static int vhost_vdpa_net_check_device_id(struct vhost_net *net) 171 { 172 uint32_t device_id; 173 int ret; 174 struct vhost_dev *hdev; 175 176 hdev = (struct vhost_dev *)&net->dev; 177 ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id); 178 if (device_id != VIRTIO_ID_NET) { 179 return -ENOTSUP; 180 } 181 return ret; 182 } 183 184 static int vhost_vdpa_add(NetClientState *ncs, void *be, 185 int queue_pair_index, int nvqs) 186 { 187 VhostNetOptions options; 188 struct vhost_net *net = NULL; 189 VhostVDPAState *s; 190 int ret; 191 192 options.backend_type = VHOST_BACKEND_TYPE_VDPA; 193 assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 194 s = DO_UPCAST(VhostVDPAState, nc, ncs); 195 options.net_backend = ncs; 196 options.opaque = be; 197 options.busyloop_timeout = 0; 198 options.nvqs = nvqs; 199 200 net = vhost_net_init(&options); 201 if (!net) { 202 error_report("failed to init vhost_net for queue"); 203 goto err_init; 204 } 205 s->vhost_net = net; 206 ret = vhost_vdpa_net_check_device_id(net); 207 if (ret) { 208 goto err_check; 209 } 210 return 0; 211 err_check: 212 vhost_net_cleanup(net); 213 g_free(net); 214 err_init: 215 return -1; 216 } 217 218 static void vhost_vdpa_cleanup(NetClientState *nc) 219 { 220 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 221 222 /* 223 * If a peer NIC is attached, do not cleanup anything. 224 * Cleanup will happen as a part of qemu_cleanup() -> net_cleanup() 225 * when the guest is shutting down. 226 */ 227 if (nc->peer && nc->peer->info->type == NET_CLIENT_DRIVER_NIC) { 228 return; 229 } 230 munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len()); 231 munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len()); 232 if (s->vhost_net) { 233 vhost_net_cleanup(s->vhost_net); 234 g_free(s->vhost_net); 235 s->vhost_net = NULL; 236 } 237 if (s->vhost_vdpa.device_fd >= 0) { 238 qemu_close(s->vhost_vdpa.device_fd); 239 s->vhost_vdpa.device_fd = -1; 240 } 241 } 242 243 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc) 244 { 245 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 246 247 return true; 248 } 249 250 static bool vhost_vdpa_has_ufo(NetClientState *nc) 251 { 252 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 253 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 254 uint64_t features = 0; 255 features |= (1ULL << VIRTIO_NET_F_HOST_UFO); 256 features = vhost_net_get_features(s->vhost_net, features); 257 return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO)); 258 259 } 260 261 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc, 262 Error **errp) 263 { 264 const char *driver = object_class_get_name(oc); 265 266 if (!g_str_has_prefix(driver, "virtio-net-")) { 267 error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*"); 268 return false; 269 } 270 271 return true; 272 } 273 274 /** Dummy receive in case qemu falls back to userland tap networking */ 275 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf, 276 size_t size) 277 { 278 return size; 279 } 280 281 /** From any vdpa net client, get the netclient of the first queue pair */ 282 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s) 283 { 284 NICState *nic = qemu_get_nic(s->nc.peer); 285 NetClientState *nc0 = qemu_get_peer(nic->ncs, 0); 286 287 return DO_UPCAST(VhostVDPAState, nc, nc0); 288 } 289 290 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable) 291 { 292 struct vhost_vdpa *v = &s->vhost_vdpa; 293 VirtIONet *n; 294 VirtIODevice *vdev; 295 int data_queue_pairs, cvq, r; 296 297 /* We are only called on the first data vqs and only if x-svq is not set */ 298 if (s->vhost_vdpa.shadow_vqs_enabled == enable) { 299 return; 300 } 301 302 vdev = v->dev->vdev; 303 n = VIRTIO_NET(vdev); 304 if (!n->vhost_started) { 305 return; 306 } 307 308 data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1; 309 cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ? 310 n->max_ncs - n->max_queue_pairs : 0; 311 /* 312 * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter 313 * in the future and resume the device if read-only operations between 314 * suspend and reset goes wrong. 315 */ 316 vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq); 317 318 /* Start will check migration setup_or_active to configure or not SVQ */ 319 r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq); 320 if (unlikely(r < 0)) { 321 error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r); 322 } 323 } 324 325 static void vdpa_net_migration_state_notifier(Notifier *notifier, void *data) 326 { 327 MigrationState *migration = data; 328 VhostVDPAState *s = container_of(notifier, VhostVDPAState, 329 migration_state); 330 331 if (migration_in_setup(migration)) { 332 vhost_vdpa_net_log_global_enable(s, true); 333 } else if (migration_has_failed(migration)) { 334 vhost_vdpa_net_log_global_enable(s, false); 335 } 336 } 337 338 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s) 339 { 340 struct vhost_vdpa *v = &s->vhost_vdpa; 341 342 migration_add_notifier(&s->migration_state, 343 vdpa_net_migration_state_notifier); 344 if (v->shadow_vqs_enabled) { 345 v->iova_tree = vhost_iova_tree_new(v->iova_range.first, 346 v->iova_range.last); 347 } 348 } 349 350 static int vhost_vdpa_net_data_start(NetClientState *nc) 351 { 352 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 353 struct vhost_vdpa *v = &s->vhost_vdpa; 354 355 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 356 357 if (s->always_svq || 358 migration_is_setup_or_active(migrate_get_current()->state)) { 359 v->shadow_vqs_enabled = true; 360 v->shadow_data = true; 361 } else { 362 v->shadow_vqs_enabled = false; 363 v->shadow_data = false; 364 } 365 366 if (v->index == 0) { 367 vhost_vdpa_net_data_start_first(s); 368 return 0; 369 } 370 371 if (v->shadow_vqs_enabled) { 372 VhostVDPAState *s0 = vhost_vdpa_net_first_nc_vdpa(s); 373 v->iova_tree = s0->vhost_vdpa.iova_tree; 374 } 375 376 return 0; 377 } 378 379 static int vhost_vdpa_net_data_load(NetClientState *nc) 380 { 381 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 382 struct vhost_vdpa *v = &s->vhost_vdpa; 383 bool has_cvq = v->dev->vq_index_end % 2; 384 385 if (has_cvq) { 386 return 0; 387 } 388 389 for (int i = 0; i < v->dev->nvqs; ++i) { 390 vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index); 391 } 392 return 0; 393 } 394 395 static void vhost_vdpa_net_client_stop(NetClientState *nc) 396 { 397 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 398 struct vhost_dev *dev; 399 400 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 401 402 if (s->vhost_vdpa.index == 0) { 403 migration_remove_notifier(&s->migration_state); 404 } 405 406 dev = s->vhost_vdpa.dev; 407 if (dev->vq_index + dev->nvqs == dev->vq_index_end) { 408 g_clear_pointer(&s->vhost_vdpa.iova_tree, vhost_iova_tree_delete); 409 } else { 410 s->vhost_vdpa.iova_tree = NULL; 411 } 412 } 413 414 static NetClientInfo net_vhost_vdpa_info = { 415 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 416 .size = sizeof(VhostVDPAState), 417 .receive = vhost_vdpa_receive, 418 .start = vhost_vdpa_net_data_start, 419 .load = vhost_vdpa_net_data_load, 420 .stop = vhost_vdpa_net_client_stop, 421 .cleanup = vhost_vdpa_cleanup, 422 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 423 .has_ufo = vhost_vdpa_has_ufo, 424 .check_peer_type = vhost_vdpa_check_peer_type, 425 }; 426 427 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index, 428 Error **errp) 429 { 430 struct vhost_vring_state state = { 431 .index = vq_index, 432 }; 433 int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state); 434 435 if (unlikely(r < 0)) { 436 r = -errno; 437 error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index); 438 return r; 439 } 440 441 return state.num; 442 } 443 444 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v, 445 unsigned vq_group, 446 unsigned asid_num) 447 { 448 struct vhost_vring_state asid = { 449 .index = vq_group, 450 .num = asid_num, 451 }; 452 int r; 453 454 r = ioctl(v->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid); 455 if (unlikely(r < 0)) { 456 error_report("Can't set vq group %u asid %u, errno=%d (%s)", 457 asid.index, asid.num, errno, g_strerror(errno)); 458 } 459 return r; 460 } 461 462 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr) 463 { 464 VhostIOVATree *tree = v->iova_tree; 465 DMAMap needle = { 466 /* 467 * No need to specify size or to look for more translations since 468 * this contiguous chunk was allocated by us. 469 */ 470 .translated_addr = (hwaddr)(uintptr_t)addr, 471 }; 472 const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle); 473 int r; 474 475 if (unlikely(!map)) { 476 error_report("Cannot locate expected map"); 477 return; 478 } 479 480 r = vhost_vdpa_dma_unmap(v, v->address_space_id, map->iova, map->size + 1); 481 if (unlikely(r != 0)) { 482 error_report("Device cannot unmap: %s(%d)", g_strerror(r), r); 483 } 484 485 vhost_iova_tree_remove(tree, *map); 486 } 487 488 /** Map CVQ buffer. */ 489 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size, 490 bool write) 491 { 492 DMAMap map = {}; 493 int r; 494 495 map.translated_addr = (hwaddr)(uintptr_t)buf; 496 map.size = size - 1; 497 map.perm = write ? IOMMU_RW : IOMMU_RO, 498 r = vhost_iova_tree_map_alloc(v->iova_tree, &map); 499 if (unlikely(r != IOVA_OK)) { 500 error_report("Cannot map injected element"); 501 return r; 502 } 503 504 r = vhost_vdpa_dma_map(v, v->address_space_id, map.iova, 505 vhost_vdpa_net_cvq_cmd_page_len(), buf, !write); 506 if (unlikely(r < 0)) { 507 goto dma_map_err; 508 } 509 510 return 0; 511 512 dma_map_err: 513 vhost_iova_tree_remove(v->iova_tree, map); 514 return r; 515 } 516 517 static int vhost_vdpa_net_cvq_start(NetClientState *nc) 518 { 519 VhostVDPAState *s, *s0; 520 struct vhost_vdpa *v; 521 int64_t cvq_group; 522 int r; 523 Error *err = NULL; 524 525 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 526 527 s = DO_UPCAST(VhostVDPAState, nc, nc); 528 v = &s->vhost_vdpa; 529 530 s0 = vhost_vdpa_net_first_nc_vdpa(s); 531 v->shadow_data = s0->vhost_vdpa.shadow_vqs_enabled; 532 v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled; 533 s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID; 534 535 if (s->vhost_vdpa.shadow_data) { 536 /* SVQ is already configured for all virtqueues */ 537 goto out; 538 } 539 540 /* 541 * If we early return in these cases SVQ will not be enabled. The migration 542 * will be blocked as long as vhost-vdpa backends will not offer _F_LOG. 543 */ 544 if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) { 545 return 0; 546 } 547 548 if (!s->cvq_isolated) { 549 return 0; 550 } 551 552 cvq_group = vhost_vdpa_get_vring_group(v->device_fd, 553 v->dev->vq_index_end - 1, 554 &err); 555 if (unlikely(cvq_group < 0)) { 556 error_report_err(err); 557 return cvq_group; 558 } 559 560 r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID); 561 if (unlikely(r < 0)) { 562 return r; 563 } 564 565 v->shadow_vqs_enabled = true; 566 s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID; 567 568 out: 569 if (!s->vhost_vdpa.shadow_vqs_enabled) { 570 return 0; 571 } 572 573 if (s0->vhost_vdpa.iova_tree) { 574 /* 575 * SVQ is already configured for all virtqueues. Reuse IOVA tree for 576 * simplicity, whether CVQ shares ASID with guest or not, because: 577 * - Memory listener need access to guest's memory addresses allocated 578 * in the IOVA tree. 579 * - There should be plenty of IOVA address space for both ASID not to 580 * worry about collisions between them. Guest's translations are 581 * still validated with virtio virtqueue_pop so there is no risk for 582 * the guest to access memory that it shouldn't. 583 * 584 * To allocate a iova tree per ASID is doable but it complicates the 585 * code and it is not worth it for the moment. 586 */ 587 v->iova_tree = s0->vhost_vdpa.iova_tree; 588 } else { 589 v->iova_tree = vhost_iova_tree_new(v->iova_range.first, 590 v->iova_range.last); 591 } 592 593 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer, 594 vhost_vdpa_net_cvq_cmd_page_len(), false); 595 if (unlikely(r < 0)) { 596 return r; 597 } 598 599 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status, 600 vhost_vdpa_net_cvq_cmd_page_len(), true); 601 if (unlikely(r < 0)) { 602 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 603 } 604 605 return r; 606 } 607 608 static void vhost_vdpa_net_cvq_stop(NetClientState *nc) 609 { 610 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 611 612 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 613 614 if (s->vhost_vdpa.shadow_vqs_enabled) { 615 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer); 616 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status); 617 } 618 619 vhost_vdpa_net_client_stop(nc); 620 } 621 622 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s, 623 const struct iovec *out_sg, size_t out_num, 624 const struct iovec *in_sg, size_t in_num) 625 { 626 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 627 int r; 628 629 r = vhost_svq_add(svq, out_sg, out_num, in_sg, in_num, NULL); 630 if (unlikely(r != 0)) { 631 if (unlikely(r == -ENOSPC)) { 632 qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n", 633 __func__); 634 } 635 } 636 637 return r; 638 } 639 640 /* 641 * Convenience wrapper to poll SVQ for multiple control commands. 642 * 643 * Caller should hold the BQL when invoking this function, and should take 644 * the answer before SVQ pulls by itself when BQL is released. 645 */ 646 static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight) 647 { 648 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 649 return vhost_svq_poll(svq, cmds_in_flight); 650 } 651 652 static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s, 653 struct iovec *out_cursor, 654 struct iovec *in_cursor) 655 { 656 /* reset the cursor of the output buffer for the device */ 657 out_cursor->iov_base = s->cvq_cmd_out_buffer; 658 out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 659 660 /* reset the cursor of the in buffer for the device */ 661 in_cursor->iov_base = s->status; 662 in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len(); 663 } 664 665 /* 666 * Poll SVQ for multiple pending control commands and check the device's ack. 667 * 668 * Caller should hold the BQL when invoking this function. 669 * 670 * @s: The VhostVDPAState 671 * @len: The length of the pending status shadow buffer 672 */ 673 static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len) 674 { 675 /* device uses a one-byte length ack for each control command */ 676 ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len); 677 if (unlikely(dev_written != len)) { 678 return -EIO; 679 } 680 681 /* check the device's ack */ 682 for (int i = 0; i < len; ++i) { 683 if (s->status[i] != VIRTIO_NET_OK) { 684 return -EIO; 685 } 686 } 687 return 0; 688 } 689 690 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s, 691 struct iovec *out_cursor, 692 struct iovec *in_cursor, uint8_t class, 693 uint8_t cmd, const struct iovec *data_sg, 694 size_t data_num) 695 { 696 const struct virtio_net_ctrl_hdr ctrl = { 697 .class = class, 698 .cmd = cmd, 699 }; 700 size_t data_size = iov_size(data_sg, data_num), cmd_size; 701 struct iovec out, in; 702 ssize_t r; 703 unsigned dummy_cursor_iov_cnt; 704 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0); 705 706 assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl)); 707 cmd_size = sizeof(ctrl) + data_size; 708 if (vhost_svq_available_slots(svq) < 2 || 709 iov_size(out_cursor, 1) < cmd_size) { 710 /* 711 * It is time to flush all pending control commands if SVQ is full 712 * or control commands shadow buffers are full. 713 * 714 * We can poll here since we've had BQL from the time 715 * we sent the descriptor. 716 */ 717 r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base - 718 (void *)s->status); 719 if (unlikely(r < 0)) { 720 return r; 721 } 722 723 vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor); 724 } 725 726 /* pack the CVQ command header */ 727 iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl)); 728 /* pack the CVQ command command-specific-data */ 729 iov_to_buf(data_sg, data_num, 0, 730 out_cursor->iov_base + sizeof(ctrl), data_size); 731 732 /* extract the required buffer from the cursor for output */ 733 iov_copy(&out, 1, out_cursor, 1, 0, cmd_size); 734 /* extract the required buffer from the cursor for input */ 735 iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status)); 736 737 r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1); 738 if (unlikely(r < 0)) { 739 return r; 740 } 741 742 /* iterate the cursors */ 743 dummy_cursor_iov_cnt = 1; 744 iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size); 745 dummy_cursor_iov_cnt = 1; 746 iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status)); 747 748 return 0; 749 } 750 751 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n, 752 struct iovec *out_cursor, 753 struct iovec *in_cursor) 754 { 755 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) { 756 const struct iovec data = { 757 .iov_base = (void *)n->mac, 758 .iov_len = sizeof(n->mac), 759 }; 760 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 761 VIRTIO_NET_CTRL_MAC, 762 VIRTIO_NET_CTRL_MAC_ADDR_SET, 763 &data, 1); 764 if (unlikely(r < 0)) { 765 return r; 766 } 767 } 768 769 /* 770 * According to VirtIO standard, "The device MUST have an 771 * empty MAC filtering table on reset.". 772 * 773 * Therefore, there is no need to send this CVQ command if the 774 * driver also sets an empty MAC filter table, which aligns with 775 * the device's defaults. 776 * 777 * Note that the device's defaults can mismatch the driver's 778 * configuration only at live migration. 779 */ 780 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) || 781 n->mac_table.in_use == 0) { 782 return 0; 783 } 784 785 uint32_t uni_entries = n->mac_table.first_multi, 786 uni_macs_size = uni_entries * ETH_ALEN, 787 mul_entries = n->mac_table.in_use - uni_entries, 788 mul_macs_size = mul_entries * ETH_ALEN; 789 struct virtio_net_ctrl_mac uni = { 790 .entries = cpu_to_le32(uni_entries), 791 }; 792 struct virtio_net_ctrl_mac mul = { 793 .entries = cpu_to_le32(mul_entries), 794 }; 795 const struct iovec data[] = { 796 { 797 .iov_base = &uni, 798 .iov_len = sizeof(uni), 799 }, { 800 .iov_base = n->mac_table.macs, 801 .iov_len = uni_macs_size, 802 }, { 803 .iov_base = &mul, 804 .iov_len = sizeof(mul), 805 }, { 806 .iov_base = &n->mac_table.macs[uni_macs_size], 807 .iov_len = mul_macs_size, 808 }, 809 }; 810 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 811 VIRTIO_NET_CTRL_MAC, 812 VIRTIO_NET_CTRL_MAC_TABLE_SET, 813 data, ARRAY_SIZE(data)); 814 if (unlikely(r < 0)) { 815 return r; 816 } 817 818 return 0; 819 } 820 821 static int vhost_vdpa_net_load_mq(VhostVDPAState *s, 822 const VirtIONet *n, 823 struct iovec *out_cursor, 824 struct iovec *in_cursor) 825 { 826 struct virtio_net_ctrl_mq mq; 827 ssize_t r; 828 829 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) { 830 return 0; 831 } 832 833 mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs); 834 const struct iovec data = { 835 .iov_base = &mq, 836 .iov_len = sizeof(mq), 837 }; 838 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 839 VIRTIO_NET_CTRL_MQ, 840 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET, 841 &data, 1); 842 if (unlikely(r < 0)) { 843 return r; 844 } 845 846 return 0; 847 } 848 849 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s, 850 const VirtIONet *n, 851 struct iovec *out_cursor, 852 struct iovec *in_cursor) 853 { 854 uint64_t offloads; 855 ssize_t r; 856 857 if (!virtio_vdev_has_feature(&n->parent_obj, 858 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) { 859 return 0; 860 } 861 862 if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) { 863 /* 864 * According to VirtIO standard, "Upon feature negotiation 865 * corresponding offload gets enabled to preserve 866 * backward compatibility.". 867 * 868 * Therefore, there is no need to send this CVQ command if the 869 * driver also enables all supported offloads, which aligns with 870 * the device's defaults. 871 * 872 * Note that the device's defaults can mismatch the driver's 873 * configuration only at live migration. 874 */ 875 return 0; 876 } 877 878 offloads = cpu_to_le64(n->curr_guest_offloads); 879 const struct iovec data = { 880 .iov_base = &offloads, 881 .iov_len = sizeof(offloads), 882 }; 883 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 884 VIRTIO_NET_CTRL_GUEST_OFFLOADS, 885 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET, 886 &data, 1); 887 if (unlikely(r < 0)) { 888 return r; 889 } 890 891 return 0; 892 } 893 894 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s, 895 struct iovec *out_cursor, 896 struct iovec *in_cursor, 897 uint8_t cmd, 898 uint8_t on) 899 { 900 const struct iovec data = { 901 .iov_base = &on, 902 .iov_len = sizeof(on), 903 }; 904 ssize_t r; 905 906 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 907 VIRTIO_NET_CTRL_RX, cmd, &data, 1); 908 if (unlikely(r < 0)) { 909 return r; 910 } 911 912 return 0; 913 } 914 915 static int vhost_vdpa_net_load_rx(VhostVDPAState *s, 916 const VirtIONet *n, 917 struct iovec *out_cursor, 918 struct iovec *in_cursor) 919 { 920 ssize_t r; 921 922 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) { 923 return 0; 924 } 925 926 /* 927 * According to virtio_net_reset(), device turns promiscuous mode 928 * on by default. 929 * 930 * Additionally, according to VirtIO standard, "Since there are 931 * no guarantees, it can use a hash filter or silently switch to 932 * allmulti or promiscuous mode if it is given too many addresses.". 933 * QEMU marks `n->mac_table.uni_overflow` if guest sets too many 934 * non-multicast MAC addresses, indicating that promiscuous mode 935 * should be enabled. 936 * 937 * Therefore, QEMU should only send this CVQ command if the 938 * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off, 939 * which sets promiscuous mode on, different from the device's defaults. 940 * 941 * Note that the device's defaults can mismatch the driver's 942 * configuration only at live migration. 943 */ 944 if (!n->mac_table.uni_overflow && !n->promisc) { 945 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 946 VIRTIO_NET_CTRL_RX_PROMISC, 0); 947 if (unlikely(r < 0)) { 948 return r; 949 } 950 } 951 952 /* 953 * According to virtio_net_reset(), device turns all-multicast mode 954 * off by default. 955 * 956 * According to VirtIO standard, "Since there are no guarantees, 957 * it can use a hash filter or silently switch to allmulti or 958 * promiscuous mode if it is given too many addresses.". QEMU marks 959 * `n->mac_table.multi_overflow` if guest sets too many 960 * non-multicast MAC addresses. 961 * 962 * Therefore, QEMU should only send this CVQ command if the 963 * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on, 964 * which sets all-multicast mode on, different from the device's defaults. 965 * 966 * Note that the device's defaults can mismatch the driver's 967 * configuration only at live migration. 968 */ 969 if (n->mac_table.multi_overflow || n->allmulti) { 970 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 971 VIRTIO_NET_CTRL_RX_ALLMULTI, 1); 972 if (unlikely(r < 0)) { 973 return r; 974 } 975 } 976 977 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) { 978 return 0; 979 } 980 981 /* 982 * According to virtio_net_reset(), device turns all-unicast mode 983 * off by default. 984 * 985 * Therefore, QEMU should only send this CVQ command if the driver 986 * sets all-unicast mode on, different from the device's defaults. 987 * 988 * Note that the device's defaults can mismatch the driver's 989 * configuration only at live migration. 990 */ 991 if (n->alluni) { 992 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 993 VIRTIO_NET_CTRL_RX_ALLUNI, 1); 994 if (r < 0) { 995 return r; 996 } 997 } 998 999 /* 1000 * According to virtio_net_reset(), device turns non-multicast mode 1001 * off by default. 1002 * 1003 * Therefore, QEMU should only send this CVQ command if the driver 1004 * sets non-multicast mode on, different from the device's defaults. 1005 * 1006 * Note that the device's defaults can mismatch the driver's 1007 * configuration only at live migration. 1008 */ 1009 if (n->nomulti) { 1010 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1011 VIRTIO_NET_CTRL_RX_NOMULTI, 1); 1012 if (r < 0) { 1013 return r; 1014 } 1015 } 1016 1017 /* 1018 * According to virtio_net_reset(), device turns non-unicast mode 1019 * off by default. 1020 * 1021 * Therefore, QEMU should only send this CVQ command if the driver 1022 * sets non-unicast mode on, different from the device's defaults. 1023 * 1024 * Note that the device's defaults can mismatch the driver's 1025 * configuration only at live migration. 1026 */ 1027 if (n->nouni) { 1028 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1029 VIRTIO_NET_CTRL_RX_NOUNI, 1); 1030 if (r < 0) { 1031 return r; 1032 } 1033 } 1034 1035 /* 1036 * According to virtio_net_reset(), device turns non-broadcast mode 1037 * off by default. 1038 * 1039 * Therefore, QEMU should only send this CVQ command if the driver 1040 * sets non-broadcast mode on, different from the device's defaults. 1041 * 1042 * Note that the device's defaults can mismatch the driver's 1043 * configuration only at live migration. 1044 */ 1045 if (n->nobcast) { 1046 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor, 1047 VIRTIO_NET_CTRL_RX_NOBCAST, 1); 1048 if (r < 0) { 1049 return r; 1050 } 1051 } 1052 1053 return 0; 1054 } 1055 1056 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s, 1057 const VirtIONet *n, 1058 struct iovec *out_cursor, 1059 struct iovec *in_cursor, 1060 uint16_t vid) 1061 { 1062 const struct iovec data = { 1063 .iov_base = &vid, 1064 .iov_len = sizeof(vid), 1065 }; 1066 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor, 1067 VIRTIO_NET_CTRL_VLAN, 1068 VIRTIO_NET_CTRL_VLAN_ADD, 1069 &data, 1); 1070 if (unlikely(r < 0)) { 1071 return r; 1072 } 1073 1074 return 0; 1075 } 1076 1077 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s, 1078 const VirtIONet *n, 1079 struct iovec *out_cursor, 1080 struct iovec *in_cursor) 1081 { 1082 int r; 1083 1084 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) { 1085 return 0; 1086 } 1087 1088 for (int i = 0; i < MAX_VLAN >> 5; i++) { 1089 for (int j = 0; n->vlans[i] && j <= 0x1f; j++) { 1090 if (n->vlans[i] & (1U << j)) { 1091 r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor, 1092 in_cursor, (i << 5) + j); 1093 if (unlikely(r != 0)) { 1094 return r; 1095 } 1096 } 1097 } 1098 } 1099 1100 return 0; 1101 } 1102 1103 static int vhost_vdpa_net_cvq_load(NetClientState *nc) 1104 { 1105 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc); 1106 struct vhost_vdpa *v = &s->vhost_vdpa; 1107 const VirtIONet *n; 1108 int r; 1109 struct iovec out_cursor, in_cursor; 1110 1111 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1112 1113 vhost_vdpa_set_vring_ready(v, v->dev->vq_index); 1114 1115 if (v->shadow_vqs_enabled) { 1116 n = VIRTIO_NET(v->dev->vdev); 1117 vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor); 1118 r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor); 1119 if (unlikely(r < 0)) { 1120 return r; 1121 } 1122 r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor); 1123 if (unlikely(r)) { 1124 return r; 1125 } 1126 r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor); 1127 if (unlikely(r)) { 1128 return r; 1129 } 1130 r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor); 1131 if (unlikely(r)) { 1132 return r; 1133 } 1134 r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor); 1135 if (unlikely(r)) { 1136 return r; 1137 } 1138 1139 /* 1140 * We need to poll and check all pending device's used buffers. 1141 * 1142 * We can poll here since we've had BQL from the time 1143 * we sent the descriptor. 1144 */ 1145 r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status); 1146 if (unlikely(r)) { 1147 return r; 1148 } 1149 } 1150 1151 for (int i = 0; i < v->dev->vq_index; ++i) { 1152 vhost_vdpa_set_vring_ready(v, i); 1153 } 1154 1155 return 0; 1156 } 1157 1158 static NetClientInfo net_vhost_vdpa_cvq_info = { 1159 .type = NET_CLIENT_DRIVER_VHOST_VDPA, 1160 .size = sizeof(VhostVDPAState), 1161 .receive = vhost_vdpa_receive, 1162 .start = vhost_vdpa_net_cvq_start, 1163 .load = vhost_vdpa_net_cvq_load, 1164 .stop = vhost_vdpa_net_cvq_stop, 1165 .cleanup = vhost_vdpa_cleanup, 1166 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr, 1167 .has_ufo = vhost_vdpa_has_ufo, 1168 .check_peer_type = vhost_vdpa_check_peer_type, 1169 }; 1170 1171 /* 1172 * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to 1173 * vdpa device. 1174 * 1175 * Considering that QEMU cannot send the entire filter table to the 1176 * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ 1177 * command to enable promiscuous mode to receive all packets, 1178 * according to VirtIO standard, "Since there are no guarantees, 1179 * it can use a hash filter or silently switch to allmulti or 1180 * promiscuous mode if it is given too many addresses.". 1181 * 1182 * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and 1183 * marks `n->mac_table.x_overflow` accordingly, it should have 1184 * the same effect on the device model to receive 1185 * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses. 1186 * The same applies to multicast MAC addresses. 1187 * 1188 * Therefore, QEMU can provide the device model with a fake 1189 * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1) 1190 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast 1191 * MAC addresses. This ensures that the device model marks 1192 * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`, 1193 * allowing all packets to be received, which aligns with the 1194 * state of the vdpa device. 1195 */ 1196 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s, 1197 VirtQueueElement *elem, 1198 struct iovec *out, 1199 const struct iovec *in) 1200 { 1201 struct virtio_net_ctrl_mac mac_data, *mac_ptr; 1202 struct virtio_net_ctrl_hdr *hdr_ptr; 1203 uint32_t cursor; 1204 ssize_t r; 1205 uint8_t on = 1; 1206 1207 /* parse the non-multicast MAC address entries from CVQ command */ 1208 cursor = sizeof(*hdr_ptr); 1209 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1210 &mac_data, sizeof(mac_data)); 1211 if (unlikely(r != sizeof(mac_data))) { 1212 /* 1213 * If the CVQ command is invalid, we should simulate the vdpa device 1214 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1215 */ 1216 *s->status = VIRTIO_NET_ERR; 1217 return sizeof(*s->status); 1218 } 1219 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1220 1221 /* parse the multicast MAC address entries from CVQ command */ 1222 r = iov_to_buf(elem->out_sg, elem->out_num, cursor, 1223 &mac_data, sizeof(mac_data)); 1224 if (r != sizeof(mac_data)) { 1225 /* 1226 * If the CVQ command is invalid, we should simulate the vdpa device 1227 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1228 */ 1229 *s->status = VIRTIO_NET_ERR; 1230 return sizeof(*s->status); 1231 } 1232 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN; 1233 1234 /* validate the CVQ command */ 1235 if (iov_size(elem->out_sg, elem->out_num) != cursor) { 1236 /* 1237 * If the CVQ command is invalid, we should simulate the vdpa device 1238 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1239 */ 1240 *s->status = VIRTIO_NET_ERR; 1241 return sizeof(*s->status); 1242 } 1243 1244 /* 1245 * According to VirtIO standard, "Since there are no guarantees, 1246 * it can use a hash filter or silently switch to allmulti or 1247 * promiscuous mode if it is given too many addresses.". 1248 * 1249 * Therefore, considering that QEMU is unable to send the entire 1250 * filter table to the vdpa device, it should send the 1251 * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode 1252 */ 1253 hdr_ptr = out->iov_base; 1254 out->iov_len = sizeof(*hdr_ptr) + sizeof(on); 1255 1256 hdr_ptr->class = VIRTIO_NET_CTRL_RX; 1257 hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC; 1258 iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on)); 1259 r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1); 1260 if (unlikely(r < 0)) { 1261 return r; 1262 } 1263 1264 /* 1265 * We can poll here since we've had BQL from the time 1266 * we sent the descriptor. 1267 */ 1268 r = vhost_vdpa_net_svq_poll(s, 1); 1269 if (unlikely(r < sizeof(*s->status))) { 1270 return r; 1271 } 1272 if (*s->status != VIRTIO_NET_OK) { 1273 return sizeof(*s->status); 1274 } 1275 1276 /* 1277 * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ 1278 * command to the device model, including (`MAC_TABLE_ENTRIES` + 1) 1279 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) 1280 * multicast MAC addresses. 1281 * 1282 * By doing so, the device model can mark `n->mac_table.uni_overflow` 1283 * and `n->mac_table.multi_overflow`, enabling all packets to be 1284 * received, which aligns with the state of the vdpa device. 1285 */ 1286 cursor = 0; 1287 uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1, 1288 fake_mul_entries = MAC_TABLE_ENTRIES + 1, 1289 fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) + 1290 sizeof(mac_data) + fake_uni_entries * ETH_ALEN + 1291 sizeof(mac_data) + fake_mul_entries * ETH_ALEN; 1292 1293 assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len()); 1294 out->iov_len = fake_cvq_size; 1295 1296 /* pack the header for fake CVQ command */ 1297 hdr_ptr = out->iov_base + cursor; 1298 hdr_ptr->class = VIRTIO_NET_CTRL_MAC; 1299 hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET; 1300 cursor += sizeof(*hdr_ptr); 1301 1302 /* 1303 * Pack the non-multicast MAC addresses part for fake CVQ command. 1304 * 1305 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1306 * addresses provided in CVQ command. Therefore, only the entries 1307 * field need to be prepared in the CVQ command. 1308 */ 1309 mac_ptr = out->iov_base + cursor; 1310 mac_ptr->entries = cpu_to_le32(fake_uni_entries); 1311 cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN; 1312 1313 /* 1314 * Pack the multicast MAC addresses part for fake CVQ command. 1315 * 1316 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC 1317 * addresses provided in CVQ command. Therefore, only the entries 1318 * field need to be prepared in the CVQ command. 1319 */ 1320 mac_ptr = out->iov_base + cursor; 1321 mac_ptr->entries = cpu_to_le32(fake_mul_entries); 1322 1323 /* 1324 * Simulating QEMU poll a vdpa device used buffer 1325 * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command 1326 */ 1327 return sizeof(*s->status); 1328 } 1329 1330 /** 1331 * Validate and copy control virtqueue commands. 1332 * 1333 * Following QEMU guidelines, we offer a copy of the buffers to the device to 1334 * prevent TOCTOU bugs. 1335 */ 1336 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq, 1337 VirtQueueElement *elem, 1338 void *opaque) 1339 { 1340 VhostVDPAState *s = opaque; 1341 size_t in_len; 1342 const struct virtio_net_ctrl_hdr *ctrl; 1343 virtio_net_ctrl_ack status = VIRTIO_NET_ERR; 1344 /* Out buffer sent to both the vdpa device and the device model */ 1345 struct iovec out = { 1346 .iov_base = s->cvq_cmd_out_buffer, 1347 }; 1348 /* in buffer used for device model */ 1349 const struct iovec model_in = { 1350 .iov_base = &status, 1351 .iov_len = sizeof(status), 1352 }; 1353 /* in buffer used for vdpa device */ 1354 const struct iovec vdpa_in = { 1355 .iov_base = s->status, 1356 .iov_len = sizeof(*s->status), 1357 }; 1358 ssize_t dev_written = -EINVAL; 1359 1360 out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0, 1361 s->cvq_cmd_out_buffer, 1362 vhost_vdpa_net_cvq_cmd_page_len()); 1363 1364 ctrl = s->cvq_cmd_out_buffer; 1365 if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) { 1366 /* 1367 * Guest announce capability is emulated by qemu, so don't forward to 1368 * the device. 1369 */ 1370 dev_written = sizeof(status); 1371 *s->status = VIRTIO_NET_OK; 1372 } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC && 1373 ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET && 1374 iov_size(elem->out_sg, elem->out_num) > out.iov_len)) { 1375 /* 1376 * Due to the size limitation of the out buffer sent to the vdpa device, 1377 * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive 1378 * MAC addresses set by the driver for the filter table can cause 1379 * truncation of the CVQ command in QEMU. As a result, the vdpa device 1380 * rejects the flawed CVQ command. 1381 * 1382 * Therefore, QEMU must handle this situation instead of sending 1383 * the CVQ command directly. 1384 */ 1385 dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem, 1386 &out, &vdpa_in); 1387 if (unlikely(dev_written < 0)) { 1388 goto out; 1389 } 1390 } else { 1391 ssize_t r; 1392 r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1); 1393 if (unlikely(r < 0)) { 1394 dev_written = r; 1395 goto out; 1396 } 1397 1398 /* 1399 * We can poll here since we've had BQL from the time 1400 * we sent the descriptor. 1401 */ 1402 dev_written = vhost_vdpa_net_svq_poll(s, 1); 1403 } 1404 1405 if (unlikely(dev_written < sizeof(status))) { 1406 error_report("Insufficient written data (%zu)", dev_written); 1407 goto out; 1408 } 1409 1410 if (*s->status != VIRTIO_NET_OK) { 1411 goto out; 1412 } 1413 1414 status = VIRTIO_NET_ERR; 1415 virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1); 1416 if (status != VIRTIO_NET_OK) { 1417 error_report("Bad CVQ processing in model"); 1418 } 1419 1420 out: 1421 in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status, 1422 sizeof(status)); 1423 if (unlikely(in_len < sizeof(status))) { 1424 error_report("Bad device CVQ written length"); 1425 } 1426 vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status))); 1427 /* 1428 * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when 1429 * the function successfully forwards the CVQ command, indicated 1430 * by a non-negative value of `dev_written`. Otherwise, it still 1431 * belongs to SVQ. 1432 * This function should only free the `elem` when it owns. 1433 */ 1434 if (dev_written >= 0) { 1435 g_free(elem); 1436 } 1437 return dev_written < 0 ? dev_written : 0; 1438 } 1439 1440 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = { 1441 .avail_handler = vhost_vdpa_net_handle_ctrl_avail, 1442 }; 1443 1444 /** 1445 * Probe if CVQ is isolated 1446 * 1447 * @device_fd The vdpa device fd 1448 * @features Features offered by the device. 1449 * @cvq_index The control vq pair index 1450 * 1451 * Returns <0 in case of failure, 0 if false and 1 if true. 1452 */ 1453 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features, 1454 int cvq_index, Error **errp) 1455 { 1456 uint64_t backend_features; 1457 int64_t cvq_group; 1458 uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE | 1459 VIRTIO_CONFIG_S_DRIVER; 1460 int r; 1461 1462 ERRP_GUARD(); 1463 1464 r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features); 1465 if (unlikely(r < 0)) { 1466 error_setg_errno(errp, errno, "Cannot get vdpa backend_features"); 1467 return r; 1468 } 1469 1470 if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) { 1471 return 0; 1472 } 1473 1474 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1475 if (unlikely(r)) { 1476 error_setg_errno(errp, -r, "Cannot set device status"); 1477 goto out; 1478 } 1479 1480 r = ioctl(device_fd, VHOST_SET_FEATURES, &features); 1481 if (unlikely(r)) { 1482 error_setg_errno(errp, -r, "Cannot set features"); 1483 goto out; 1484 } 1485 1486 status |= VIRTIO_CONFIG_S_FEATURES_OK; 1487 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1488 if (unlikely(r)) { 1489 error_setg_errno(errp, -r, "Cannot set device status"); 1490 goto out; 1491 } 1492 1493 cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp); 1494 if (unlikely(cvq_group < 0)) { 1495 if (cvq_group != -ENOTSUP) { 1496 r = cvq_group; 1497 goto out; 1498 } 1499 1500 /* 1501 * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend 1502 * support ASID even if the parent driver does not. The CVQ cannot be 1503 * isolated in this case. 1504 */ 1505 error_free(*errp); 1506 *errp = NULL; 1507 r = 0; 1508 goto out; 1509 } 1510 1511 for (int i = 0; i < cvq_index; ++i) { 1512 int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp); 1513 if (unlikely(group < 0)) { 1514 r = group; 1515 goto out; 1516 } 1517 1518 if (group == (int64_t)cvq_group) { 1519 r = 0; 1520 goto out; 1521 } 1522 } 1523 1524 r = 1; 1525 1526 out: 1527 status = 0; 1528 ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status); 1529 return r; 1530 } 1531 1532 static NetClientState *net_vhost_vdpa_init(NetClientState *peer, 1533 const char *device, 1534 const char *name, 1535 int vdpa_device_fd, 1536 int queue_pair_index, 1537 int nvqs, 1538 bool is_datapath, 1539 bool svq, 1540 struct vhost_vdpa_iova_range iova_range, 1541 uint64_t features, 1542 Error **errp) 1543 { 1544 NetClientState *nc = NULL; 1545 VhostVDPAState *s; 1546 int ret = 0; 1547 assert(name); 1548 int cvq_isolated = 0; 1549 1550 if (is_datapath) { 1551 nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device, 1552 name); 1553 } else { 1554 cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features, 1555 queue_pair_index * 2, 1556 errp); 1557 if (unlikely(cvq_isolated < 0)) { 1558 return NULL; 1559 } 1560 1561 nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer, 1562 device, name); 1563 } 1564 qemu_set_info_str(nc, TYPE_VHOST_VDPA); 1565 s = DO_UPCAST(VhostVDPAState, nc, nc); 1566 1567 s->vhost_vdpa.device_fd = vdpa_device_fd; 1568 s->vhost_vdpa.index = queue_pair_index; 1569 s->always_svq = svq; 1570 s->migration_state.notify = NULL; 1571 s->vhost_vdpa.shadow_vqs_enabled = svq; 1572 s->vhost_vdpa.iova_range = iova_range; 1573 s->vhost_vdpa.shadow_data = svq; 1574 if (queue_pair_index == 0) { 1575 vhost_vdpa_net_valid_svq_features(features, 1576 &s->vhost_vdpa.migration_blocker); 1577 } else if (!is_datapath) { 1578 s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1579 PROT_READ | PROT_WRITE, 1580 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1581 s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(), 1582 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 1583 -1, 0); 1584 1585 s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops; 1586 s->vhost_vdpa.shadow_vq_ops_opaque = s; 1587 s->cvq_isolated = cvq_isolated; 1588 } 1589 ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs); 1590 if (ret) { 1591 qemu_del_net_client(nc); 1592 return NULL; 1593 } 1594 return nc; 1595 } 1596 1597 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp) 1598 { 1599 int ret = ioctl(fd, VHOST_GET_FEATURES, features); 1600 if (unlikely(ret < 0)) { 1601 error_setg_errno(errp, errno, 1602 "Fail to query features from vhost-vDPA device"); 1603 } 1604 return ret; 1605 } 1606 1607 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features, 1608 int *has_cvq, Error **errp) 1609 { 1610 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf); 1611 g_autofree struct vhost_vdpa_config *config = NULL; 1612 __virtio16 *max_queue_pairs; 1613 int ret; 1614 1615 if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) { 1616 *has_cvq = 1; 1617 } else { 1618 *has_cvq = 0; 1619 } 1620 1621 if (features & (1 << VIRTIO_NET_F_MQ)) { 1622 config = g_malloc0(config_size + sizeof(*max_queue_pairs)); 1623 config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs); 1624 config->len = sizeof(*max_queue_pairs); 1625 1626 ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config); 1627 if (ret) { 1628 error_setg(errp, "Fail to get config from vhost-vDPA device"); 1629 return -ret; 1630 } 1631 1632 max_queue_pairs = (__virtio16 *)&config->buf; 1633 1634 return lduw_le_p(max_queue_pairs); 1635 } 1636 1637 return 1; 1638 } 1639 1640 int net_init_vhost_vdpa(const Netdev *netdev, const char *name, 1641 NetClientState *peer, Error **errp) 1642 { 1643 const NetdevVhostVDPAOptions *opts; 1644 uint64_t features; 1645 int vdpa_device_fd; 1646 g_autofree NetClientState **ncs = NULL; 1647 struct vhost_vdpa_iova_range iova_range; 1648 NetClientState *nc; 1649 int queue_pairs, r, i = 0, has_cvq = 0; 1650 1651 assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA); 1652 opts = &netdev->u.vhost_vdpa; 1653 if (!opts->vhostdev && !opts->vhostfd) { 1654 error_setg(errp, 1655 "vhost-vdpa: neither vhostdev= nor vhostfd= was specified"); 1656 return -1; 1657 } 1658 1659 if (opts->vhostdev && opts->vhostfd) { 1660 error_setg(errp, 1661 "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive"); 1662 return -1; 1663 } 1664 1665 if (opts->vhostdev) { 1666 vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp); 1667 if (vdpa_device_fd == -1) { 1668 return -errno; 1669 } 1670 } else { 1671 /* has_vhostfd */ 1672 vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp); 1673 if (vdpa_device_fd == -1) { 1674 error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: "); 1675 return -1; 1676 } 1677 } 1678 1679 r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp); 1680 if (unlikely(r < 0)) { 1681 goto err; 1682 } 1683 1684 queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features, 1685 &has_cvq, errp); 1686 if (queue_pairs < 0) { 1687 qemu_close(vdpa_device_fd); 1688 return queue_pairs; 1689 } 1690 1691 r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range); 1692 if (unlikely(r < 0)) { 1693 error_setg(errp, "vhost-vdpa: get iova range failed: %s", 1694 strerror(-r)); 1695 goto err; 1696 } 1697 1698 if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) { 1699 goto err; 1700 } 1701 1702 ncs = g_malloc0(sizeof(*ncs) * queue_pairs); 1703 1704 for (i = 0; i < queue_pairs; i++) { 1705 ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1706 vdpa_device_fd, i, 2, true, opts->x_svq, 1707 iova_range, features, errp); 1708 if (!ncs[i]) 1709 goto err; 1710 } 1711 1712 if (has_cvq) { 1713 nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name, 1714 vdpa_device_fd, i, 1, false, 1715 opts->x_svq, iova_range, features, errp); 1716 if (!nc) 1717 goto err; 1718 } 1719 1720 return 0; 1721 1722 err: 1723 if (i) { 1724 for (i--; i >= 0; i--) { 1725 qemu_del_net_client(ncs[i]); 1726 } 1727 } 1728 1729 qemu_close(vdpa_device_fd); 1730 1731 return -1; 1732 } 1733