1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/boards.h" 31 #include "hw/xen/xen.h" 32 #include "net/net.h" 33 #include "migration.h" 34 #include "migration/snapshot.h" 35 #include "migration/misc.h" 36 #include "migration/register.h" 37 #include "migration/global_state.h" 38 #include "ram.h" 39 #include "qemu-file-channel.h" 40 #include "qemu-file.h" 41 #include "savevm.h" 42 #include "postcopy-ram.h" 43 #include "qapi/error.h" 44 #include "qapi/qapi-commands-migration.h" 45 #include "qapi/qapi-commands-misc.h" 46 #include "qapi/qmp/qerror.h" 47 #include "qemu/error-report.h" 48 #include "sysemu/cpus.h" 49 #include "exec/memory.h" 50 #include "exec/target_page.h" 51 #include "trace.h" 52 #include "qemu/iov.h" 53 #include "block/snapshot.h" 54 #include "qemu/cutils.h" 55 #include "io/channel-buffer.h" 56 #include "io/channel-file.h" 57 #include "sysemu/replay.h" 58 59 #ifndef ETH_P_RARP 60 #define ETH_P_RARP 0x8035 61 #endif 62 #define ARP_HTYPE_ETH 0x0001 63 #define ARP_PTYPE_IP 0x0800 64 #define ARP_OP_REQUEST_REV 0x3 65 66 const unsigned int postcopy_ram_discard_version = 0; 67 68 /* Subcommands for QEMU_VM_COMMAND */ 69 enum qemu_vm_cmd { 70 MIG_CMD_INVALID = 0, /* Must be 0 */ 71 MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */ 72 MIG_CMD_PING, /* Request a PONG on the RP */ 73 74 MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just 75 warn we might want to do PC */ 76 MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming 77 pages as it's running. */ 78 MIG_CMD_POSTCOPY_RUN, /* Start execution */ 79 80 MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that 81 were previously sent during 82 precopy but are dirty. */ 83 MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */ 84 MIG_CMD_MAX 85 }; 86 87 #define MAX_VM_CMD_PACKAGED_SIZE UINT32_MAX 88 static struct mig_cmd_args { 89 ssize_t len; /* -1 = variable */ 90 const char *name; 91 } mig_cmd_args[] = { 92 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 93 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 94 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 95 [MIG_CMD_POSTCOPY_ADVISE] = { .len = -1, .name = "POSTCOPY_ADVISE" }, 96 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 97 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 98 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 99 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 100 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 101 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 102 }; 103 104 /* Note for MIG_CMD_POSTCOPY_ADVISE: 105 * The format of arguments is depending on postcopy mode: 106 * - postcopy RAM only 107 * uint64_t host page size 108 * uint64_t taget page size 109 * 110 * - postcopy RAM and postcopy dirty bitmaps 111 * format is the same as for postcopy RAM only 112 * 113 * - postcopy dirty bitmaps only 114 * Nothing. Command length field is 0. 115 * 116 * Be careful: adding a new postcopy entity with some other parameters should 117 * not break format self-description ability. Good way is to introduce some 118 * generic extendable format with an exception for two old entities. 119 */ 120 121 static int announce_self_create(uint8_t *buf, 122 uint8_t *mac_addr) 123 { 124 /* Ethernet header. */ 125 memset(buf, 0xff, 6); /* destination MAC addr */ 126 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 127 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 128 129 /* RARP header. */ 130 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 131 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 132 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 133 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 134 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 135 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 136 memset(buf + 28, 0x00, 4); /* source protocol addr */ 137 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 138 memset(buf + 38, 0x00, 4); /* target protocol addr */ 139 140 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 141 memset(buf + 42, 0x00, 18); 142 143 return 60; /* len (FCS will be added by hardware) */ 144 } 145 146 static void qemu_announce_self_iter(NICState *nic, void *opaque) 147 { 148 uint8_t buf[60]; 149 int len; 150 151 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 152 len = announce_self_create(buf, nic->conf->macaddr.a); 153 154 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 155 } 156 157 158 static void qemu_announce_self_once(void *opaque) 159 { 160 static int count = SELF_ANNOUNCE_ROUNDS; 161 QEMUTimer *timer = *(QEMUTimer **)opaque; 162 163 qemu_foreach_nic(qemu_announce_self_iter, NULL); 164 165 if (--count) { 166 /* delay 50ms, 150ms, 250ms, ... */ 167 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 168 self_announce_delay(count)); 169 } else { 170 timer_del(timer); 171 timer_free(timer); 172 } 173 } 174 175 void qemu_announce_self(void) 176 { 177 static QEMUTimer *timer; 178 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 179 qemu_announce_self_once(&timer); 180 } 181 182 /***********************************************************/ 183 /* savevm/loadvm support */ 184 185 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 186 int64_t pos) 187 { 188 int ret; 189 QEMUIOVector qiov; 190 191 qemu_iovec_init_external(&qiov, iov, iovcnt); 192 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 193 if (ret < 0) { 194 return ret; 195 } 196 197 return qiov.size; 198 } 199 200 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 201 size_t size) 202 { 203 return bdrv_load_vmstate(opaque, buf, pos, size); 204 } 205 206 static int bdrv_fclose(void *opaque) 207 { 208 return bdrv_flush(opaque); 209 } 210 211 static const QEMUFileOps bdrv_read_ops = { 212 .get_buffer = block_get_buffer, 213 .close = bdrv_fclose 214 }; 215 216 static const QEMUFileOps bdrv_write_ops = { 217 .writev_buffer = block_writev_buffer, 218 .close = bdrv_fclose 219 }; 220 221 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 222 { 223 if (is_writable) { 224 return qemu_fopen_ops(bs, &bdrv_write_ops); 225 } 226 return qemu_fopen_ops(bs, &bdrv_read_ops); 227 } 228 229 230 /* QEMUFile timer support. 231 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 232 */ 233 234 void timer_put(QEMUFile *f, QEMUTimer *ts) 235 { 236 uint64_t expire_time; 237 238 expire_time = timer_expire_time_ns(ts); 239 qemu_put_be64(f, expire_time); 240 } 241 242 void timer_get(QEMUFile *f, QEMUTimer *ts) 243 { 244 uint64_t expire_time; 245 246 expire_time = qemu_get_be64(f); 247 if (expire_time != -1) { 248 timer_mod_ns(ts, expire_time); 249 } else { 250 timer_del(ts); 251 } 252 } 253 254 255 /* VMState timer support. 256 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 257 */ 258 259 static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field) 260 { 261 QEMUTimer *v = pv; 262 timer_get(f, v); 263 return 0; 264 } 265 266 static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field, 267 QJSON *vmdesc) 268 { 269 QEMUTimer *v = pv; 270 timer_put(f, v); 271 272 return 0; 273 } 274 275 const VMStateInfo vmstate_info_timer = { 276 .name = "timer", 277 .get = get_timer, 278 .put = put_timer, 279 }; 280 281 282 typedef struct CompatEntry { 283 char idstr[256]; 284 int instance_id; 285 } CompatEntry; 286 287 typedef struct SaveStateEntry { 288 QTAILQ_ENTRY(SaveStateEntry) entry; 289 char idstr[256]; 290 int instance_id; 291 int alias_id; 292 int version_id; 293 /* version id read from the stream */ 294 int load_version_id; 295 int section_id; 296 /* section id read from the stream */ 297 int load_section_id; 298 SaveVMHandlers *ops; 299 const VMStateDescription *vmsd; 300 void *opaque; 301 CompatEntry *compat; 302 int is_ram; 303 } SaveStateEntry; 304 305 typedef struct SaveState { 306 QTAILQ_HEAD(, SaveStateEntry) handlers; 307 int global_section_id; 308 uint32_t len; 309 const char *name; 310 uint32_t target_page_bits; 311 } SaveState; 312 313 static SaveState savevm_state = { 314 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 315 .global_section_id = 0, 316 }; 317 318 static int configuration_pre_save(void *opaque) 319 { 320 SaveState *state = opaque; 321 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 322 323 state->len = strlen(current_name); 324 state->name = current_name; 325 state->target_page_bits = qemu_target_page_bits(); 326 327 return 0; 328 } 329 330 static int configuration_pre_load(void *opaque) 331 { 332 SaveState *state = opaque; 333 334 /* If there is no target-page-bits subsection it means the source 335 * predates the variable-target-page-bits support and is using the 336 * minimum possible value for this CPU. 337 */ 338 state->target_page_bits = qemu_target_page_bits_min(); 339 return 0; 340 } 341 342 static int configuration_post_load(void *opaque, int version_id) 343 { 344 SaveState *state = opaque; 345 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 346 347 if (strncmp(state->name, current_name, state->len) != 0) { 348 error_report("Machine type received is '%.*s' and local is '%s'", 349 (int) state->len, state->name, current_name); 350 return -EINVAL; 351 } 352 353 if (state->target_page_bits != qemu_target_page_bits()) { 354 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 355 state->target_page_bits, qemu_target_page_bits()); 356 return -EINVAL; 357 } 358 359 return 0; 360 } 361 362 /* The target-page-bits subsection is present only if the 363 * target page size is not the same as the default (ie the 364 * minimum page size for a variable-page-size guest CPU). 365 * If it is present then it contains the actual target page 366 * bits for the machine, and migration will fail if the 367 * two ends don't agree about it. 368 */ 369 static bool vmstate_target_page_bits_needed(void *opaque) 370 { 371 return qemu_target_page_bits() 372 > qemu_target_page_bits_min(); 373 } 374 375 static const VMStateDescription vmstate_target_page_bits = { 376 .name = "configuration/target-page-bits", 377 .version_id = 1, 378 .minimum_version_id = 1, 379 .needed = vmstate_target_page_bits_needed, 380 .fields = (VMStateField[]) { 381 VMSTATE_UINT32(target_page_bits, SaveState), 382 VMSTATE_END_OF_LIST() 383 } 384 }; 385 386 static const VMStateDescription vmstate_configuration = { 387 .name = "configuration", 388 .version_id = 1, 389 .pre_load = configuration_pre_load, 390 .post_load = configuration_post_load, 391 .pre_save = configuration_pre_save, 392 .fields = (VMStateField[]) { 393 VMSTATE_UINT32(len, SaveState), 394 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len), 395 VMSTATE_END_OF_LIST() 396 }, 397 .subsections = (const VMStateDescription*[]) { 398 &vmstate_target_page_bits, 399 NULL 400 } 401 }; 402 403 static void dump_vmstate_vmsd(FILE *out_file, 404 const VMStateDescription *vmsd, int indent, 405 bool is_subsection); 406 407 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 408 int indent) 409 { 410 fprintf(out_file, "%*s{\n", indent, ""); 411 indent += 2; 412 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 413 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 414 field->version_id); 415 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 416 field->field_exists ? "true" : "false"); 417 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 418 if (field->vmsd != NULL) { 419 fprintf(out_file, ",\n"); 420 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 421 } 422 fprintf(out_file, "\n%*s}", indent - 2, ""); 423 } 424 425 static void dump_vmstate_vmss(FILE *out_file, 426 const VMStateDescription **subsection, 427 int indent) 428 { 429 if (*subsection != NULL) { 430 dump_vmstate_vmsd(out_file, *subsection, indent, true); 431 } 432 } 433 434 static void dump_vmstate_vmsd(FILE *out_file, 435 const VMStateDescription *vmsd, int indent, 436 bool is_subsection) 437 { 438 if (is_subsection) { 439 fprintf(out_file, "%*s{\n", indent, ""); 440 } else { 441 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 442 } 443 indent += 2; 444 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 445 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 446 vmsd->version_id); 447 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 448 vmsd->minimum_version_id); 449 if (vmsd->fields != NULL) { 450 const VMStateField *field = vmsd->fields; 451 bool first; 452 453 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 454 first = true; 455 while (field->name != NULL) { 456 if (field->flags & VMS_MUST_EXIST) { 457 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 458 field++; 459 continue; 460 } 461 if (!first) { 462 fprintf(out_file, ",\n"); 463 } 464 dump_vmstate_vmsf(out_file, field, indent + 2); 465 field++; 466 first = false; 467 } 468 fprintf(out_file, "\n%*s]", indent, ""); 469 } 470 if (vmsd->subsections != NULL) { 471 const VMStateDescription **subsection = vmsd->subsections; 472 bool first; 473 474 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 475 first = true; 476 while (*subsection != NULL) { 477 if (!first) { 478 fprintf(out_file, ",\n"); 479 } 480 dump_vmstate_vmss(out_file, subsection, indent + 2); 481 subsection++; 482 first = false; 483 } 484 fprintf(out_file, "\n%*s]", indent, ""); 485 } 486 fprintf(out_file, "\n%*s}", indent - 2, ""); 487 } 488 489 static void dump_machine_type(FILE *out_file) 490 { 491 MachineClass *mc; 492 493 mc = MACHINE_GET_CLASS(current_machine); 494 495 fprintf(out_file, " \"vmschkmachine\": {\n"); 496 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 497 fprintf(out_file, " },\n"); 498 } 499 500 void dump_vmstate_json_to_file(FILE *out_file) 501 { 502 GSList *list, *elt; 503 bool first; 504 505 fprintf(out_file, "{\n"); 506 dump_machine_type(out_file); 507 508 first = true; 509 list = object_class_get_list(TYPE_DEVICE, true); 510 for (elt = list; elt; elt = elt->next) { 511 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 512 TYPE_DEVICE); 513 const char *name; 514 int indent = 2; 515 516 if (!dc->vmsd) { 517 continue; 518 } 519 520 if (!first) { 521 fprintf(out_file, ",\n"); 522 } 523 name = object_class_get_name(OBJECT_CLASS(dc)); 524 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 525 indent += 2; 526 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 527 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 528 dc->vmsd->version_id); 529 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 530 dc->vmsd->minimum_version_id); 531 532 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 533 534 fprintf(out_file, "\n%*s}", indent - 2, ""); 535 first = false; 536 } 537 fprintf(out_file, "\n}\n"); 538 fclose(out_file); 539 } 540 541 static int calculate_new_instance_id(const char *idstr) 542 { 543 SaveStateEntry *se; 544 int instance_id = 0; 545 546 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 547 if (strcmp(idstr, se->idstr) == 0 548 && instance_id <= se->instance_id) { 549 instance_id = se->instance_id + 1; 550 } 551 } 552 return instance_id; 553 } 554 555 static int calculate_compat_instance_id(const char *idstr) 556 { 557 SaveStateEntry *se; 558 int instance_id = 0; 559 560 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 561 if (!se->compat) { 562 continue; 563 } 564 565 if (strcmp(idstr, se->compat->idstr) == 0 566 && instance_id <= se->compat->instance_id) { 567 instance_id = se->compat->instance_id + 1; 568 } 569 } 570 return instance_id; 571 } 572 573 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 574 { 575 if (se->vmsd) { 576 return se->vmsd->priority; 577 } 578 return MIG_PRI_DEFAULT; 579 } 580 581 static void savevm_state_handler_insert(SaveStateEntry *nse) 582 { 583 MigrationPriority priority = save_state_priority(nse); 584 SaveStateEntry *se; 585 586 assert(priority <= MIG_PRI_MAX); 587 588 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 589 if (save_state_priority(se) < priority) { 590 break; 591 } 592 } 593 594 if (se) { 595 QTAILQ_INSERT_BEFORE(se, nse, entry); 596 } else { 597 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 598 } 599 } 600 601 /* TODO: Individual devices generally have very little idea about the rest 602 of the system, so instance_id should be removed/replaced. 603 Meanwhile pass -1 as instance_id if you do not already have a clearly 604 distinguishing id for all instances of your device class. */ 605 int register_savevm_live(DeviceState *dev, 606 const char *idstr, 607 int instance_id, 608 int version_id, 609 SaveVMHandlers *ops, 610 void *opaque) 611 { 612 SaveStateEntry *se; 613 614 se = g_new0(SaveStateEntry, 1); 615 se->version_id = version_id; 616 se->section_id = savevm_state.global_section_id++; 617 se->ops = ops; 618 se->opaque = opaque; 619 se->vmsd = NULL; 620 /* if this is a live_savem then set is_ram */ 621 if (ops->save_setup != NULL) { 622 se->is_ram = 1; 623 } 624 625 if (dev) { 626 char *id = qdev_get_dev_path(dev); 627 if (id) { 628 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 629 sizeof(se->idstr)) { 630 error_report("Path too long for VMState (%s)", id); 631 g_free(id); 632 g_free(se); 633 634 return -1; 635 } 636 g_free(id); 637 638 se->compat = g_new0(CompatEntry, 1); 639 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 640 se->compat->instance_id = instance_id == -1 ? 641 calculate_compat_instance_id(idstr) : instance_id; 642 instance_id = -1; 643 } 644 } 645 pstrcat(se->idstr, sizeof(se->idstr), idstr); 646 647 if (instance_id == -1) { 648 se->instance_id = calculate_new_instance_id(se->idstr); 649 } else { 650 se->instance_id = instance_id; 651 } 652 assert(!se->compat || se->instance_id == 0); 653 savevm_state_handler_insert(se); 654 return 0; 655 } 656 657 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 658 { 659 SaveStateEntry *se, *new_se; 660 char id[256] = ""; 661 662 if (dev) { 663 char *path = qdev_get_dev_path(dev); 664 if (path) { 665 pstrcpy(id, sizeof(id), path); 666 pstrcat(id, sizeof(id), "/"); 667 g_free(path); 668 } 669 } 670 pstrcat(id, sizeof(id), idstr); 671 672 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 673 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 674 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 675 g_free(se->compat); 676 g_free(se); 677 } 678 } 679 } 680 681 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 682 const VMStateDescription *vmsd, 683 void *opaque, int alias_id, 684 int required_for_version, 685 Error **errp) 686 { 687 SaveStateEntry *se; 688 689 /* If this triggers, alias support can be dropped for the vmsd. */ 690 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 691 692 se = g_new0(SaveStateEntry, 1); 693 se->version_id = vmsd->version_id; 694 se->section_id = savevm_state.global_section_id++; 695 se->opaque = opaque; 696 se->vmsd = vmsd; 697 se->alias_id = alias_id; 698 699 if (dev) { 700 char *id = qdev_get_dev_path(dev); 701 if (id) { 702 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 703 sizeof(se->idstr)) { 704 error_setg(errp, "Path too long for VMState (%s)", id); 705 g_free(id); 706 g_free(se); 707 708 return -1; 709 } 710 g_free(id); 711 712 se->compat = g_new0(CompatEntry, 1); 713 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 714 se->compat->instance_id = instance_id == -1 ? 715 calculate_compat_instance_id(vmsd->name) : instance_id; 716 instance_id = -1; 717 } 718 } 719 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 720 721 if (instance_id == -1) { 722 se->instance_id = calculate_new_instance_id(se->idstr); 723 } else { 724 se->instance_id = instance_id; 725 } 726 assert(!se->compat || se->instance_id == 0); 727 savevm_state_handler_insert(se); 728 return 0; 729 } 730 731 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 732 void *opaque) 733 { 734 SaveStateEntry *se, *new_se; 735 736 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 737 if (se->vmsd == vmsd && se->opaque == opaque) { 738 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 739 g_free(se->compat); 740 g_free(se); 741 } 742 } 743 } 744 745 static int vmstate_load(QEMUFile *f, SaveStateEntry *se) 746 { 747 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 748 if (!se->vmsd) { /* Old style */ 749 return se->ops->load_state(f, se->opaque, se->load_version_id); 750 } 751 return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id); 752 } 753 754 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 755 { 756 int64_t old_offset, size; 757 758 old_offset = qemu_ftell_fast(f); 759 se->ops->save_state(f, se->opaque); 760 size = qemu_ftell_fast(f) - old_offset; 761 762 if (vmdesc) { 763 json_prop_int(vmdesc, "size", size); 764 json_start_array(vmdesc, "fields"); 765 json_start_object(vmdesc, NULL); 766 json_prop_str(vmdesc, "name", "data"); 767 json_prop_int(vmdesc, "size", size); 768 json_prop_str(vmdesc, "type", "buffer"); 769 json_end_object(vmdesc); 770 json_end_array(vmdesc); 771 } 772 } 773 774 static int vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 775 { 776 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 777 if (!se->vmsd) { 778 vmstate_save_old_style(f, se, vmdesc); 779 return 0; 780 } 781 return vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 782 } 783 784 /* 785 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 786 */ 787 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 788 uint8_t section_type) 789 { 790 qemu_put_byte(f, section_type); 791 qemu_put_be32(f, se->section_id); 792 793 if (section_type == QEMU_VM_SECTION_FULL || 794 section_type == QEMU_VM_SECTION_START) { 795 /* ID string */ 796 size_t len = strlen(se->idstr); 797 qemu_put_byte(f, len); 798 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 799 800 qemu_put_be32(f, se->instance_id); 801 qemu_put_be32(f, se->version_id); 802 } 803 } 804 805 /* 806 * Write a footer onto device sections that catches cases misformatted device 807 * sections. 808 */ 809 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 810 { 811 if (migrate_get_current()->send_section_footer) { 812 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 813 qemu_put_be32(f, se->section_id); 814 } 815 } 816 817 /** 818 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 819 * command and associated data. 820 * 821 * @f: File to send command on 822 * @command: Command type to send 823 * @len: Length of associated data 824 * @data: Data associated with command. 825 */ 826 static void qemu_savevm_command_send(QEMUFile *f, 827 enum qemu_vm_cmd command, 828 uint16_t len, 829 uint8_t *data) 830 { 831 trace_savevm_command_send(command, len); 832 qemu_put_byte(f, QEMU_VM_COMMAND); 833 qemu_put_be16(f, (uint16_t)command); 834 qemu_put_be16(f, len); 835 qemu_put_buffer(f, data, len); 836 qemu_fflush(f); 837 } 838 839 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 840 { 841 uint32_t buf; 842 843 trace_savevm_send_ping(value); 844 buf = cpu_to_be32(value); 845 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 846 } 847 848 void qemu_savevm_send_open_return_path(QEMUFile *f) 849 { 850 trace_savevm_send_open_return_path(); 851 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 852 } 853 854 /* We have a buffer of data to send; we don't want that all to be loaded 855 * by the command itself, so the command contains just the length of the 856 * extra buffer that we then send straight after it. 857 * TODO: Must be a better way to organise that 858 * 859 * Returns: 860 * 0 on success 861 * -ve on error 862 */ 863 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 864 { 865 uint32_t tmp; 866 867 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 868 error_report("%s: Unreasonably large packaged state: %zu", 869 __func__, len); 870 return -1; 871 } 872 873 tmp = cpu_to_be32(len); 874 875 trace_qemu_savevm_send_packaged(); 876 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 877 878 qemu_put_buffer(f, buf, len); 879 880 return 0; 881 } 882 883 /* Send prior to any postcopy transfer */ 884 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 885 { 886 if (migrate_postcopy_ram()) { 887 uint64_t tmp[2]; 888 tmp[0] = cpu_to_be64(ram_pagesize_summary()); 889 tmp[1] = cpu_to_be64(qemu_target_page_size()); 890 891 trace_qemu_savevm_send_postcopy_advise(); 892 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 893 16, (uint8_t *)tmp); 894 } else { 895 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 0, NULL); 896 } 897 } 898 899 /* Sent prior to starting the destination running in postcopy, discard pages 900 * that have already been sent but redirtied on the source. 901 * CMD_POSTCOPY_RAM_DISCARD consist of: 902 * byte version (0) 903 * byte Length of name field (not including 0) 904 * n x byte RAM block name 905 * byte 0 terminator (just for safety) 906 * n x Byte ranges within the named RAMBlock 907 * be64 Start of the range 908 * be64 Length 909 * 910 * name: RAMBlock name that these entries are part of 911 * len: Number of page entries 912 * start_list: 'len' addresses 913 * length_list: 'len' addresses 914 * 915 */ 916 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 917 uint16_t len, 918 uint64_t *start_list, 919 uint64_t *length_list) 920 { 921 uint8_t *buf; 922 uint16_t tmplen; 923 uint16_t t; 924 size_t name_len = strlen(name); 925 926 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 927 assert(name_len < 256); 928 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 929 buf[0] = postcopy_ram_discard_version; 930 buf[1] = name_len; 931 memcpy(buf + 2, name, name_len); 932 tmplen = 2 + name_len; 933 buf[tmplen++] = '\0'; 934 935 for (t = 0; t < len; t++) { 936 stq_be_p(buf + tmplen, start_list[t]); 937 tmplen += 8; 938 stq_be_p(buf + tmplen, length_list[t]); 939 tmplen += 8; 940 } 941 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 942 g_free(buf); 943 } 944 945 /* Get the destination into a state where it can receive postcopy data. */ 946 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 947 { 948 trace_savevm_send_postcopy_listen(); 949 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 950 } 951 952 /* Kick the destination into running */ 953 void qemu_savevm_send_postcopy_run(QEMUFile *f) 954 { 955 trace_savevm_send_postcopy_run(); 956 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 957 } 958 959 bool qemu_savevm_state_blocked(Error **errp) 960 { 961 SaveStateEntry *se; 962 963 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 964 if (se->vmsd && se->vmsd->unmigratable) { 965 error_setg(errp, "State blocked by non-migratable device '%s'", 966 se->idstr); 967 return true; 968 } 969 } 970 return false; 971 } 972 973 void qemu_savevm_state_header(QEMUFile *f) 974 { 975 trace_savevm_state_header(); 976 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 977 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 978 979 if (migrate_get_current()->send_configuration) { 980 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 981 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 982 } 983 } 984 985 void qemu_savevm_state_setup(QEMUFile *f) 986 { 987 SaveStateEntry *se; 988 int ret; 989 990 trace_savevm_state_setup(); 991 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 992 if (!se->ops || !se->ops->save_setup) { 993 continue; 994 } 995 if (se->ops && se->ops->is_active) { 996 if (!se->ops->is_active(se->opaque)) { 997 continue; 998 } 999 } 1000 save_section_header(f, se, QEMU_VM_SECTION_START); 1001 1002 ret = se->ops->save_setup(f, se->opaque); 1003 save_section_footer(f, se); 1004 if (ret < 0) { 1005 qemu_file_set_error(f, ret); 1006 break; 1007 } 1008 } 1009 } 1010 1011 /* 1012 * this function has three return values: 1013 * negative: there was one error, and we have -errno. 1014 * 0 : We haven't finished, caller have to go again 1015 * 1 : We have finished, we can go to complete phase 1016 */ 1017 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 1018 { 1019 SaveStateEntry *se; 1020 int ret = 1; 1021 1022 trace_savevm_state_iterate(); 1023 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1024 if (!se->ops || !se->ops->save_live_iterate) { 1025 continue; 1026 } 1027 if (se->ops && se->ops->is_active) { 1028 if (!se->ops->is_active(se->opaque)) { 1029 continue; 1030 } 1031 } 1032 if (se->ops && se->ops->is_active_iterate) { 1033 if (!se->ops->is_active_iterate(se->opaque)) { 1034 continue; 1035 } 1036 } 1037 /* 1038 * In the postcopy phase, any device that doesn't know how to 1039 * do postcopy should have saved it's state in the _complete 1040 * call that's already run, it might get confused if we call 1041 * iterate afterwards. 1042 */ 1043 if (postcopy && 1044 !(se->ops->has_postcopy && se->ops->has_postcopy(se->opaque))) { 1045 continue; 1046 } 1047 if (qemu_file_rate_limit(f)) { 1048 return 0; 1049 } 1050 trace_savevm_section_start(se->idstr, se->section_id); 1051 1052 save_section_header(f, se, QEMU_VM_SECTION_PART); 1053 1054 ret = se->ops->save_live_iterate(f, se->opaque); 1055 trace_savevm_section_end(se->idstr, se->section_id, ret); 1056 save_section_footer(f, se); 1057 1058 if (ret < 0) { 1059 qemu_file_set_error(f, ret); 1060 } 1061 if (ret <= 0) { 1062 /* Do not proceed to the next vmstate before this one reported 1063 completion of the current stage. This serializes the migration 1064 and reduces the probability that a faster changing state is 1065 synchronized over and over again. */ 1066 break; 1067 } 1068 } 1069 return ret; 1070 } 1071 1072 static bool should_send_vmdesc(void) 1073 { 1074 MachineState *machine = MACHINE(qdev_get_machine()); 1075 bool in_postcopy = migration_in_postcopy(); 1076 return !machine->suppress_vmdesc && !in_postcopy; 1077 } 1078 1079 /* 1080 * Calls the save_live_complete_postcopy methods 1081 * causing the last few pages to be sent immediately and doing any associated 1082 * cleanup. 1083 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1084 * all the other devices, but that happens at the point we switch to postcopy. 1085 */ 1086 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1087 { 1088 SaveStateEntry *se; 1089 int ret; 1090 1091 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1092 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1093 continue; 1094 } 1095 if (se->ops && se->ops->is_active) { 1096 if (!se->ops->is_active(se->opaque)) { 1097 continue; 1098 } 1099 } 1100 trace_savevm_section_start(se->idstr, se->section_id); 1101 /* Section type */ 1102 qemu_put_byte(f, QEMU_VM_SECTION_END); 1103 qemu_put_be32(f, se->section_id); 1104 1105 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1106 trace_savevm_section_end(se->idstr, se->section_id, ret); 1107 save_section_footer(f, se); 1108 if (ret < 0) { 1109 qemu_file_set_error(f, ret); 1110 return; 1111 } 1112 } 1113 1114 qemu_put_byte(f, QEMU_VM_EOF); 1115 qemu_fflush(f); 1116 } 1117 1118 int qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only, 1119 bool inactivate_disks) 1120 { 1121 QJSON *vmdesc; 1122 int vmdesc_len; 1123 SaveStateEntry *se; 1124 int ret; 1125 bool in_postcopy = migration_in_postcopy(); 1126 1127 trace_savevm_state_complete_precopy(); 1128 1129 cpu_synchronize_all_states(); 1130 1131 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1132 if (!se->ops || 1133 (in_postcopy && se->ops->has_postcopy && 1134 se->ops->has_postcopy(se->opaque)) || 1135 (in_postcopy && !iterable_only) || 1136 !se->ops->save_live_complete_precopy) { 1137 continue; 1138 } 1139 1140 if (se->ops && se->ops->is_active) { 1141 if (!se->ops->is_active(se->opaque)) { 1142 continue; 1143 } 1144 } 1145 trace_savevm_section_start(se->idstr, se->section_id); 1146 1147 save_section_header(f, se, QEMU_VM_SECTION_END); 1148 1149 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1150 trace_savevm_section_end(se->idstr, se->section_id, ret); 1151 save_section_footer(f, se); 1152 if (ret < 0) { 1153 qemu_file_set_error(f, ret); 1154 return -1; 1155 } 1156 } 1157 1158 if (iterable_only) { 1159 return 0; 1160 } 1161 1162 vmdesc = qjson_new(); 1163 json_prop_int(vmdesc, "page_size", qemu_target_page_size()); 1164 json_start_array(vmdesc, "devices"); 1165 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1166 1167 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1168 continue; 1169 } 1170 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1171 trace_savevm_section_skip(se->idstr, se->section_id); 1172 continue; 1173 } 1174 1175 trace_savevm_section_start(se->idstr, se->section_id); 1176 1177 json_start_object(vmdesc, NULL); 1178 json_prop_str(vmdesc, "name", se->idstr); 1179 json_prop_int(vmdesc, "instance_id", se->instance_id); 1180 1181 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1182 ret = vmstate_save(f, se, vmdesc); 1183 if (ret) { 1184 qemu_file_set_error(f, ret); 1185 return ret; 1186 } 1187 trace_savevm_section_end(se->idstr, se->section_id, 0); 1188 save_section_footer(f, se); 1189 1190 json_end_object(vmdesc); 1191 } 1192 1193 if (inactivate_disks) { 1194 /* Inactivate before sending QEMU_VM_EOF so that the 1195 * bdrv_invalidate_cache_all() on the other end won't fail. */ 1196 ret = bdrv_inactivate_all(); 1197 if (ret) { 1198 error_report("%s: bdrv_inactivate_all() failed (%d)", 1199 __func__, ret); 1200 qemu_file_set_error(f, ret); 1201 return ret; 1202 } 1203 } 1204 if (!in_postcopy) { 1205 /* Postcopy stream will still be going */ 1206 qemu_put_byte(f, QEMU_VM_EOF); 1207 } 1208 1209 json_end_array(vmdesc); 1210 qjson_finish(vmdesc); 1211 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1212 1213 if (should_send_vmdesc()) { 1214 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1215 qemu_put_be32(f, vmdesc_len); 1216 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1217 } 1218 qjson_destroy(vmdesc); 1219 1220 qemu_fflush(f); 1221 return 0; 1222 } 1223 1224 /* Give an estimate of the amount left to be transferred, 1225 * the result is split into the amount for units that can and 1226 * for units that can't do postcopy. 1227 */ 1228 void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size, 1229 uint64_t *res_precopy_only, 1230 uint64_t *res_compatible, 1231 uint64_t *res_postcopy_only) 1232 { 1233 SaveStateEntry *se; 1234 1235 *res_precopy_only = 0; 1236 *res_compatible = 0; 1237 *res_postcopy_only = 0; 1238 1239 1240 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1241 if (!se->ops || !se->ops->save_live_pending) { 1242 continue; 1243 } 1244 if (se->ops && se->ops->is_active) { 1245 if (!se->ops->is_active(se->opaque)) { 1246 continue; 1247 } 1248 } 1249 se->ops->save_live_pending(f, se->opaque, threshold_size, 1250 res_precopy_only, res_compatible, 1251 res_postcopy_only); 1252 } 1253 } 1254 1255 void qemu_savevm_state_cleanup(void) 1256 { 1257 SaveStateEntry *se; 1258 1259 trace_savevm_state_cleanup(); 1260 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1261 if (se->ops && se->ops->save_cleanup) { 1262 se->ops->save_cleanup(se->opaque); 1263 } 1264 } 1265 } 1266 1267 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1268 { 1269 int ret; 1270 MigrationState *ms = migrate_get_current(); 1271 MigrationStatus status; 1272 1273 migrate_init(ms); 1274 1275 ms->to_dst_file = f; 1276 1277 if (migration_is_blocked(errp)) { 1278 ret = -EINVAL; 1279 goto done; 1280 } 1281 1282 if (migrate_use_block()) { 1283 error_setg(errp, "Block migration and snapshots are incompatible"); 1284 ret = -EINVAL; 1285 goto done; 1286 } 1287 1288 qemu_mutex_unlock_iothread(); 1289 qemu_savevm_state_header(f); 1290 qemu_savevm_state_setup(f); 1291 qemu_mutex_lock_iothread(); 1292 1293 while (qemu_file_get_error(f) == 0) { 1294 if (qemu_savevm_state_iterate(f, false) > 0) { 1295 break; 1296 } 1297 } 1298 1299 ret = qemu_file_get_error(f); 1300 if (ret == 0) { 1301 qemu_savevm_state_complete_precopy(f, false, false); 1302 ret = qemu_file_get_error(f); 1303 } 1304 qemu_savevm_state_cleanup(); 1305 if (ret != 0) { 1306 error_setg_errno(errp, -ret, "Error while writing VM state"); 1307 } 1308 1309 done: 1310 if (ret != 0) { 1311 status = MIGRATION_STATUS_FAILED; 1312 } else { 1313 status = MIGRATION_STATUS_COMPLETED; 1314 } 1315 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1316 1317 /* f is outer parameter, it should not stay in global migration state after 1318 * this function finished */ 1319 ms->to_dst_file = NULL; 1320 1321 return ret; 1322 } 1323 1324 static int qemu_save_device_state(QEMUFile *f) 1325 { 1326 SaveStateEntry *se; 1327 1328 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1329 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1330 1331 cpu_synchronize_all_states(); 1332 1333 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1334 int ret; 1335 1336 if (se->is_ram) { 1337 continue; 1338 } 1339 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1340 continue; 1341 } 1342 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1343 continue; 1344 } 1345 1346 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1347 1348 ret = vmstate_save(f, se, NULL); 1349 if (ret) { 1350 return ret; 1351 } 1352 1353 save_section_footer(f, se); 1354 } 1355 1356 qemu_put_byte(f, QEMU_VM_EOF); 1357 1358 return qemu_file_get_error(f); 1359 } 1360 1361 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1362 { 1363 SaveStateEntry *se; 1364 1365 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1366 if (!strcmp(se->idstr, idstr) && 1367 (instance_id == se->instance_id || 1368 instance_id == se->alias_id)) 1369 return se; 1370 /* Migrating from an older version? */ 1371 if (strstr(se->idstr, idstr) && se->compat) { 1372 if (!strcmp(se->compat->idstr, idstr) && 1373 (instance_id == se->compat->instance_id || 1374 instance_id == se->alias_id)) 1375 return se; 1376 } 1377 } 1378 return NULL; 1379 } 1380 1381 enum LoadVMExitCodes { 1382 /* Allow a command to quit all layers of nested loadvm loops */ 1383 LOADVM_QUIT = 1, 1384 }; 1385 1386 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1387 1388 /* ------ incoming postcopy messages ------ */ 1389 /* 'advise' arrives before any transfers just to tell us that a postcopy 1390 * *might* happen - it might be skipped if precopy transferred everything 1391 * quickly. 1392 */ 1393 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis, 1394 uint16_t len) 1395 { 1396 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1397 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps; 1398 1399 trace_loadvm_postcopy_handle_advise(); 1400 if (ps != POSTCOPY_INCOMING_NONE) { 1401 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1402 return -1; 1403 } 1404 1405 switch (len) { 1406 case 0: 1407 if (migrate_postcopy_ram()) { 1408 error_report("RAM postcopy is enabled but have 0 byte advise"); 1409 return -EINVAL; 1410 } 1411 return 0; 1412 case 8 + 8: 1413 if (!migrate_postcopy_ram()) { 1414 error_report("RAM postcopy is disabled but have 16 byte advise"); 1415 return -EINVAL; 1416 } 1417 break; 1418 default: 1419 error_report("CMD_POSTCOPY_ADVISE invalid length (%d)", len); 1420 return -EINVAL; 1421 } 1422 1423 if (!postcopy_ram_supported_by_host(mis)) { 1424 postcopy_state_set(POSTCOPY_INCOMING_NONE); 1425 return -1; 1426 } 1427 1428 remote_pagesize_summary = qemu_get_be64(mis->from_src_file); 1429 local_pagesize_summary = ram_pagesize_summary(); 1430 1431 if (remote_pagesize_summary != local_pagesize_summary) { 1432 /* 1433 * This detects two potential causes of mismatch: 1434 * a) A mismatch in host page sizes 1435 * Some combinations of mismatch are probably possible but it gets 1436 * a bit more complicated. In particular we need to place whole 1437 * host pages on the dest at once, and we need to ensure that we 1438 * handle dirtying to make sure we never end up sending part of 1439 * a hostpage on it's own. 1440 * b) The use of different huge page sizes on source/destination 1441 * a more fine grain test is performed during RAM block migration 1442 * but this test here causes a nice early clear failure, and 1443 * also fails when passed to an older qemu that doesn't 1444 * do huge pages. 1445 */ 1446 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64 1447 " d=%" PRIx64 ")", 1448 remote_pagesize_summary, local_pagesize_summary); 1449 return -1; 1450 } 1451 1452 remote_tps = qemu_get_be64(mis->from_src_file); 1453 if (remote_tps != qemu_target_page_size()) { 1454 /* 1455 * Again, some differences could be dealt with, but for now keep it 1456 * simple. 1457 */ 1458 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)", 1459 (int)remote_tps, qemu_target_page_size()); 1460 return -1; 1461 } 1462 1463 if (ram_postcopy_incoming_init(mis)) { 1464 return -1; 1465 } 1466 1467 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1468 1469 return 0; 1470 } 1471 1472 /* After postcopy we will be told to throw some pages away since they're 1473 * dirty and will have to be demand fetched. Must happen before CPU is 1474 * started. 1475 * There can be 0..many of these messages, each encoding multiple pages. 1476 */ 1477 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1478 uint16_t len) 1479 { 1480 int tmp; 1481 char ramid[256]; 1482 PostcopyState ps = postcopy_state_get(); 1483 1484 trace_loadvm_postcopy_ram_handle_discard(); 1485 1486 switch (ps) { 1487 case POSTCOPY_INCOMING_ADVISE: 1488 /* 1st discard */ 1489 tmp = postcopy_ram_prepare_discard(mis); 1490 if (tmp) { 1491 return tmp; 1492 } 1493 break; 1494 1495 case POSTCOPY_INCOMING_DISCARD: 1496 /* Expected state */ 1497 break; 1498 1499 default: 1500 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1501 ps); 1502 return -1; 1503 } 1504 /* We're expecting a 1505 * Version (0) 1506 * a RAM ID string (length byte, name, 0 term) 1507 * then at least 1 16 byte chunk 1508 */ 1509 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1510 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1511 return -1; 1512 } 1513 1514 tmp = qemu_get_byte(mis->from_src_file); 1515 if (tmp != postcopy_ram_discard_version) { 1516 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1517 return -1; 1518 } 1519 1520 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1521 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1522 return -1; 1523 } 1524 tmp = qemu_get_byte(mis->from_src_file); 1525 if (tmp != 0) { 1526 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1527 return -1; 1528 } 1529 1530 len -= 3 + strlen(ramid); 1531 if (len % 16) { 1532 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1533 return -1; 1534 } 1535 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1536 while (len) { 1537 uint64_t start_addr, block_length; 1538 start_addr = qemu_get_be64(mis->from_src_file); 1539 block_length = qemu_get_be64(mis->from_src_file); 1540 1541 len -= 16; 1542 int ret = ram_discard_range(ramid, start_addr, block_length); 1543 if (ret) { 1544 return ret; 1545 } 1546 } 1547 trace_loadvm_postcopy_ram_handle_discard_end(); 1548 1549 return 0; 1550 } 1551 1552 /* 1553 * Triggered by a postcopy_listen command; this thread takes over reading 1554 * the input stream, leaving the main thread free to carry on loading the rest 1555 * of the device state (from RAM). 1556 * (TODO:This could do with being in a postcopy file - but there again it's 1557 * just another input loop, not that postcopy specific) 1558 */ 1559 static void *postcopy_ram_listen_thread(void *opaque) 1560 { 1561 QEMUFile *f = opaque; 1562 MigrationIncomingState *mis = migration_incoming_get_current(); 1563 int load_res; 1564 1565 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1566 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1567 qemu_sem_post(&mis->listen_thread_sem); 1568 trace_postcopy_ram_listen_thread_start(); 1569 1570 /* 1571 * Because we're a thread and not a coroutine we can't yield 1572 * in qemu_file, and thus we must be blocking now. 1573 */ 1574 qemu_file_set_blocking(f, true); 1575 load_res = qemu_loadvm_state_main(f, mis); 1576 /* And non-blocking again so we don't block in any cleanup */ 1577 qemu_file_set_blocking(f, false); 1578 1579 trace_postcopy_ram_listen_thread_exit(); 1580 if (load_res < 0) { 1581 error_report("%s: loadvm failed: %d", __func__, load_res); 1582 qemu_file_set_error(f, load_res); 1583 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1584 MIGRATION_STATUS_FAILED); 1585 } else { 1586 /* 1587 * This looks good, but it's possible that the device loading in the 1588 * main thread hasn't finished yet, and so we might not be in 'RUN' 1589 * state yet; wait for the end of the main thread. 1590 */ 1591 qemu_event_wait(&mis->main_thread_load_event); 1592 } 1593 postcopy_ram_incoming_cleanup(mis); 1594 1595 if (load_res < 0) { 1596 /* 1597 * If something went wrong then we have a bad state so exit; 1598 * depending how far we got it might be possible at this point 1599 * to leave the guest running and fire MCEs for pages that never 1600 * arrived as a desperate recovery step. 1601 */ 1602 exit(EXIT_FAILURE); 1603 } 1604 1605 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1606 MIGRATION_STATUS_COMPLETED); 1607 /* 1608 * If everything has worked fine, then the main thread has waited 1609 * for us to start, and we're the last use of the mis. 1610 * (If something broke then qemu will have to exit anyway since it's 1611 * got a bad migration state). 1612 */ 1613 migration_incoming_state_destroy(); 1614 qemu_loadvm_state_cleanup(); 1615 1616 return NULL; 1617 } 1618 1619 /* After this message we must be able to immediately receive postcopy data */ 1620 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1621 { 1622 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1623 trace_loadvm_postcopy_handle_listen(); 1624 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1625 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1626 return -1; 1627 } 1628 if (ps == POSTCOPY_INCOMING_ADVISE) { 1629 /* 1630 * A rare case, we entered listen without having to do any discards, 1631 * so do the setup that's normally done at the time of the 1st discard. 1632 */ 1633 if (migrate_postcopy_ram()) { 1634 postcopy_ram_prepare_discard(mis); 1635 } 1636 } 1637 1638 /* 1639 * Sensitise RAM - can now generate requests for blocks that don't exist 1640 * However, at this point the CPU shouldn't be running, and the IO 1641 * shouldn't be doing anything yet so don't actually expect requests 1642 */ 1643 if (migrate_postcopy_ram()) { 1644 if (postcopy_ram_enable_notify(mis)) { 1645 return -1; 1646 } 1647 } 1648 1649 if (mis->have_listen_thread) { 1650 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1651 return -1; 1652 } 1653 1654 mis->have_listen_thread = true; 1655 /* Start up the listening thread and wait for it to signal ready */ 1656 qemu_sem_init(&mis->listen_thread_sem, 0); 1657 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1658 postcopy_ram_listen_thread, mis->from_src_file, 1659 QEMU_THREAD_DETACHED); 1660 qemu_sem_wait(&mis->listen_thread_sem); 1661 qemu_sem_destroy(&mis->listen_thread_sem); 1662 1663 return 0; 1664 } 1665 1666 1667 typedef struct { 1668 QEMUBH *bh; 1669 } HandleRunBhData; 1670 1671 static void loadvm_postcopy_handle_run_bh(void *opaque) 1672 { 1673 Error *local_err = NULL; 1674 HandleRunBhData *data = opaque; 1675 1676 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1677 * in migration.c 1678 */ 1679 cpu_synchronize_all_post_init(); 1680 1681 qemu_announce_self(); 1682 1683 /* Make sure all file formats flush their mutable metadata. 1684 * If we get an error here, just don't restart the VM yet. */ 1685 bdrv_invalidate_cache_all(&local_err); 1686 if (local_err) { 1687 error_report_err(local_err); 1688 local_err = NULL; 1689 autostart = false; 1690 } 1691 1692 trace_loadvm_postcopy_handle_run_cpu_sync(); 1693 cpu_synchronize_all_post_init(); 1694 1695 trace_loadvm_postcopy_handle_run_vmstart(); 1696 1697 dirty_bitmap_mig_before_vm_start(); 1698 1699 if (autostart) { 1700 /* Hold onto your hats, starting the CPU */ 1701 vm_start(); 1702 } else { 1703 /* leave it paused and let management decide when to start the CPU */ 1704 runstate_set(RUN_STATE_PAUSED); 1705 } 1706 1707 qemu_bh_delete(data->bh); 1708 g_free(data); 1709 } 1710 1711 /* After all discards we can start running and asking for pages */ 1712 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1713 { 1714 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1715 HandleRunBhData *data; 1716 1717 trace_loadvm_postcopy_handle_run(); 1718 if (ps != POSTCOPY_INCOMING_LISTENING) { 1719 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1720 return -1; 1721 } 1722 1723 data = g_new(HandleRunBhData, 1); 1724 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1725 qemu_bh_schedule(data->bh); 1726 1727 /* We need to finish reading the stream from the package 1728 * and also stop reading anything more from the stream that loaded the 1729 * package (since it's now being read by the listener thread). 1730 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1731 */ 1732 return LOADVM_QUIT; 1733 } 1734 1735 /** 1736 * Immediately following this command is a blob of data containing an embedded 1737 * chunk of migration stream; read it and load it. 1738 * 1739 * @mis: Incoming state 1740 * @length: Length of packaged data to read 1741 * 1742 * Returns: Negative values on error 1743 * 1744 */ 1745 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1746 { 1747 int ret; 1748 size_t length; 1749 QIOChannelBuffer *bioc; 1750 1751 length = qemu_get_be32(mis->from_src_file); 1752 trace_loadvm_handle_cmd_packaged(length); 1753 1754 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1755 error_report("Unreasonably large packaged state: %zu", length); 1756 return -1; 1757 } 1758 1759 bioc = qio_channel_buffer_new(length); 1760 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 1761 ret = qemu_get_buffer(mis->from_src_file, 1762 bioc->data, 1763 length); 1764 if (ret != length) { 1765 object_unref(OBJECT(bioc)); 1766 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1767 ret, length); 1768 return (ret < 0) ? ret : -EAGAIN; 1769 } 1770 bioc->usage += length; 1771 trace_loadvm_handle_cmd_packaged_received(ret); 1772 1773 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1774 1775 ret = qemu_loadvm_state_main(packf, mis); 1776 trace_loadvm_handle_cmd_packaged_main(ret); 1777 qemu_fclose(packf); 1778 object_unref(OBJECT(bioc)); 1779 1780 return ret; 1781 } 1782 1783 /* 1784 * Process an incoming 'QEMU_VM_COMMAND' 1785 * 0 just a normal return 1786 * LOADVM_QUIT All good, but exit the loop 1787 * <0 Error 1788 */ 1789 static int loadvm_process_command(QEMUFile *f) 1790 { 1791 MigrationIncomingState *mis = migration_incoming_get_current(); 1792 uint16_t cmd; 1793 uint16_t len; 1794 uint32_t tmp32; 1795 1796 cmd = qemu_get_be16(f); 1797 len = qemu_get_be16(f); 1798 1799 /* Check validity before continue processing of cmds */ 1800 if (qemu_file_get_error(f)) { 1801 return qemu_file_get_error(f); 1802 } 1803 1804 trace_loadvm_process_command(cmd, len); 1805 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1806 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1807 return -EINVAL; 1808 } 1809 1810 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1811 error_report("%s received with bad length - expecting %zu, got %d", 1812 mig_cmd_args[cmd].name, 1813 (size_t)mig_cmd_args[cmd].len, len); 1814 return -ERANGE; 1815 } 1816 1817 switch (cmd) { 1818 case MIG_CMD_OPEN_RETURN_PATH: 1819 if (mis->to_src_file) { 1820 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1821 /* Not really a problem, so don't give up */ 1822 return 0; 1823 } 1824 mis->to_src_file = qemu_file_get_return_path(f); 1825 if (!mis->to_src_file) { 1826 error_report("CMD_OPEN_RETURN_PATH failed"); 1827 return -1; 1828 } 1829 break; 1830 1831 case MIG_CMD_PING: 1832 tmp32 = qemu_get_be32(f); 1833 trace_loadvm_process_command_ping(tmp32); 1834 if (!mis->to_src_file) { 1835 error_report("CMD_PING (0x%x) received with no return path", 1836 tmp32); 1837 return -1; 1838 } 1839 migrate_send_rp_pong(mis, tmp32); 1840 break; 1841 1842 case MIG_CMD_PACKAGED: 1843 return loadvm_handle_cmd_packaged(mis); 1844 1845 case MIG_CMD_POSTCOPY_ADVISE: 1846 return loadvm_postcopy_handle_advise(mis, len); 1847 1848 case MIG_CMD_POSTCOPY_LISTEN: 1849 return loadvm_postcopy_handle_listen(mis); 1850 1851 case MIG_CMD_POSTCOPY_RUN: 1852 return loadvm_postcopy_handle_run(mis); 1853 1854 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1855 return loadvm_postcopy_ram_handle_discard(mis, len); 1856 } 1857 1858 return 0; 1859 } 1860 1861 /* 1862 * Read a footer off the wire and check that it matches the expected section 1863 * 1864 * Returns: true if the footer was good 1865 * false if there is a problem (and calls error_report to say why) 1866 */ 1867 static bool check_section_footer(QEMUFile *f, SaveStateEntry *se) 1868 { 1869 int ret; 1870 uint8_t read_mark; 1871 uint32_t read_section_id; 1872 1873 if (!migrate_get_current()->send_section_footer) { 1874 /* No footer to check */ 1875 return true; 1876 } 1877 1878 read_mark = qemu_get_byte(f); 1879 1880 ret = qemu_file_get_error(f); 1881 if (ret) { 1882 error_report("%s: Read section footer failed: %d", 1883 __func__, ret); 1884 return false; 1885 } 1886 1887 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1888 error_report("Missing section footer for %s", se->idstr); 1889 return false; 1890 } 1891 1892 read_section_id = qemu_get_be32(f); 1893 if (read_section_id != se->load_section_id) { 1894 error_report("Mismatched section id in footer for %s -" 1895 " read 0x%x expected 0x%x", 1896 se->idstr, read_section_id, se->load_section_id); 1897 return false; 1898 } 1899 1900 /* All good */ 1901 return true; 1902 } 1903 1904 static int 1905 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1906 { 1907 uint32_t instance_id, version_id, section_id; 1908 SaveStateEntry *se; 1909 char idstr[256]; 1910 int ret; 1911 1912 /* Read section start */ 1913 section_id = qemu_get_be32(f); 1914 if (!qemu_get_counted_string(f, idstr)) { 1915 error_report("Unable to read ID string for section %u", 1916 section_id); 1917 return -EINVAL; 1918 } 1919 instance_id = qemu_get_be32(f); 1920 version_id = qemu_get_be32(f); 1921 1922 ret = qemu_file_get_error(f); 1923 if (ret) { 1924 error_report("%s: Failed to read instance/version ID: %d", 1925 __func__, ret); 1926 return ret; 1927 } 1928 1929 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1930 instance_id, version_id); 1931 /* Find savevm section */ 1932 se = find_se(idstr, instance_id); 1933 if (se == NULL) { 1934 error_report("Unknown savevm section or instance '%s' %d", 1935 idstr, instance_id); 1936 return -EINVAL; 1937 } 1938 1939 /* Validate version */ 1940 if (version_id > se->version_id) { 1941 error_report("savevm: unsupported version %d for '%s' v%d", 1942 version_id, idstr, se->version_id); 1943 return -EINVAL; 1944 } 1945 se->load_version_id = version_id; 1946 se->load_section_id = section_id; 1947 1948 /* Validate if it is a device's state */ 1949 if (xen_enabled() && se->is_ram) { 1950 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1951 return -EINVAL; 1952 } 1953 1954 ret = vmstate_load(f, se); 1955 if (ret < 0) { 1956 error_report("error while loading state for instance 0x%x of" 1957 " device '%s'", instance_id, idstr); 1958 return ret; 1959 } 1960 if (!check_section_footer(f, se)) { 1961 return -EINVAL; 1962 } 1963 1964 return 0; 1965 } 1966 1967 static int 1968 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1969 { 1970 uint32_t section_id; 1971 SaveStateEntry *se; 1972 int ret; 1973 1974 section_id = qemu_get_be32(f); 1975 1976 ret = qemu_file_get_error(f); 1977 if (ret) { 1978 error_report("%s: Failed to read section ID: %d", 1979 __func__, ret); 1980 return ret; 1981 } 1982 1983 trace_qemu_loadvm_state_section_partend(section_id); 1984 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1985 if (se->load_section_id == section_id) { 1986 break; 1987 } 1988 } 1989 if (se == NULL) { 1990 error_report("Unknown savevm section %d", section_id); 1991 return -EINVAL; 1992 } 1993 1994 ret = vmstate_load(f, se); 1995 if (ret < 0) { 1996 error_report("error while loading state section id %d(%s)", 1997 section_id, se->idstr); 1998 return ret; 1999 } 2000 if (!check_section_footer(f, se)) { 2001 return -EINVAL; 2002 } 2003 2004 return 0; 2005 } 2006 2007 static int qemu_loadvm_state_setup(QEMUFile *f) 2008 { 2009 SaveStateEntry *se; 2010 int ret; 2011 2012 trace_loadvm_state_setup(); 2013 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 2014 if (!se->ops || !se->ops->load_setup) { 2015 continue; 2016 } 2017 if (se->ops && se->ops->is_active) { 2018 if (!se->ops->is_active(se->opaque)) { 2019 continue; 2020 } 2021 } 2022 2023 ret = se->ops->load_setup(f, se->opaque); 2024 if (ret < 0) { 2025 qemu_file_set_error(f, ret); 2026 error_report("Load state of device %s failed", se->idstr); 2027 return ret; 2028 } 2029 } 2030 return 0; 2031 } 2032 2033 void qemu_loadvm_state_cleanup(void) 2034 { 2035 SaveStateEntry *se; 2036 2037 trace_loadvm_state_cleanup(); 2038 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 2039 if (se->ops && se->ops->load_cleanup) { 2040 se->ops->load_cleanup(se->opaque); 2041 } 2042 } 2043 } 2044 2045 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 2046 { 2047 uint8_t section_type; 2048 int ret = 0; 2049 2050 while (true) { 2051 section_type = qemu_get_byte(f); 2052 2053 if (qemu_file_get_error(f)) { 2054 ret = qemu_file_get_error(f); 2055 break; 2056 } 2057 2058 trace_qemu_loadvm_state_section(section_type); 2059 switch (section_type) { 2060 case QEMU_VM_SECTION_START: 2061 case QEMU_VM_SECTION_FULL: 2062 ret = qemu_loadvm_section_start_full(f, mis); 2063 if (ret < 0) { 2064 goto out; 2065 } 2066 break; 2067 case QEMU_VM_SECTION_PART: 2068 case QEMU_VM_SECTION_END: 2069 ret = qemu_loadvm_section_part_end(f, mis); 2070 if (ret < 0) { 2071 goto out; 2072 } 2073 break; 2074 case QEMU_VM_COMMAND: 2075 ret = loadvm_process_command(f); 2076 trace_qemu_loadvm_state_section_command(ret); 2077 if ((ret < 0) || (ret & LOADVM_QUIT)) { 2078 goto out; 2079 } 2080 break; 2081 case QEMU_VM_EOF: 2082 /* This is the end of migration */ 2083 goto out; 2084 default: 2085 error_report("Unknown savevm section type %d", section_type); 2086 ret = -EINVAL; 2087 goto out; 2088 } 2089 } 2090 2091 out: 2092 if (ret < 0) { 2093 qemu_file_set_error(f, ret); 2094 } 2095 return ret; 2096 } 2097 2098 int qemu_loadvm_state(QEMUFile *f) 2099 { 2100 MigrationIncomingState *mis = migration_incoming_get_current(); 2101 Error *local_err = NULL; 2102 unsigned int v; 2103 int ret; 2104 2105 if (qemu_savevm_state_blocked(&local_err)) { 2106 error_report_err(local_err); 2107 return -EINVAL; 2108 } 2109 2110 v = qemu_get_be32(f); 2111 if (v != QEMU_VM_FILE_MAGIC) { 2112 error_report("Not a migration stream"); 2113 return -EINVAL; 2114 } 2115 2116 v = qemu_get_be32(f); 2117 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 2118 error_report("SaveVM v2 format is obsolete and don't work anymore"); 2119 return -ENOTSUP; 2120 } 2121 if (v != QEMU_VM_FILE_VERSION) { 2122 error_report("Unsupported migration stream version"); 2123 return -ENOTSUP; 2124 } 2125 2126 if (qemu_loadvm_state_setup(f) != 0) { 2127 return -EINVAL; 2128 } 2129 2130 if (migrate_get_current()->send_configuration) { 2131 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 2132 error_report("Configuration section missing"); 2133 return -EINVAL; 2134 } 2135 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 2136 2137 if (ret) { 2138 return ret; 2139 } 2140 } 2141 2142 cpu_synchronize_all_pre_loadvm(); 2143 2144 ret = qemu_loadvm_state_main(f, mis); 2145 qemu_event_set(&mis->main_thread_load_event); 2146 2147 trace_qemu_loadvm_state_post_main(ret); 2148 2149 if (mis->have_listen_thread) { 2150 /* Listen thread still going, can't clean up yet */ 2151 return ret; 2152 } 2153 2154 if (ret == 0) { 2155 ret = qemu_file_get_error(f); 2156 } 2157 2158 /* 2159 * Try to read in the VMDESC section as well, so that dumping tools that 2160 * intercept our migration stream have the chance to see it. 2161 */ 2162 2163 /* We've got to be careful; if we don't read the data and just shut the fd 2164 * then the sender can error if we close while it's still sending. 2165 * We also mustn't read data that isn't there; some transports (RDMA) 2166 * will stall waiting for that data when the source has already closed. 2167 */ 2168 if (ret == 0 && should_send_vmdesc()) { 2169 uint8_t *buf; 2170 uint32_t size; 2171 uint8_t section_type = qemu_get_byte(f); 2172 2173 if (section_type != QEMU_VM_VMDESCRIPTION) { 2174 error_report("Expected vmdescription section, but got %d", 2175 section_type); 2176 /* 2177 * It doesn't seem worth failing at this point since 2178 * we apparently have an otherwise valid VM state 2179 */ 2180 } else { 2181 buf = g_malloc(0x1000); 2182 size = qemu_get_be32(f); 2183 2184 while (size > 0) { 2185 uint32_t read_chunk = MIN(size, 0x1000); 2186 qemu_get_buffer(f, buf, read_chunk); 2187 size -= read_chunk; 2188 } 2189 g_free(buf); 2190 } 2191 } 2192 2193 qemu_loadvm_state_cleanup(); 2194 cpu_synchronize_all_post_init(); 2195 2196 return ret; 2197 } 2198 2199 int save_snapshot(const char *name, Error **errp) 2200 { 2201 BlockDriverState *bs, *bs1; 2202 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 2203 int ret = -1; 2204 QEMUFile *f; 2205 int saved_vm_running; 2206 uint64_t vm_state_size; 2207 qemu_timeval tv; 2208 struct tm tm; 2209 AioContext *aio_context; 2210 2211 if (!replay_can_snapshot()) { 2212 error_report("Record/replay does not allow making snapshot " 2213 "right now. Try once more later."); 2214 return ret; 2215 } 2216 2217 if (!bdrv_all_can_snapshot(&bs)) { 2218 error_setg(errp, "Device '%s' is writable but does not support " 2219 "snapshots", bdrv_get_device_name(bs)); 2220 return ret; 2221 } 2222 2223 /* Delete old snapshots of the same name */ 2224 if (name) { 2225 ret = bdrv_all_delete_snapshot(name, &bs1, errp); 2226 if (ret < 0) { 2227 error_prepend(errp, "Error while deleting snapshot on device " 2228 "'%s': ", bdrv_get_device_name(bs1)); 2229 return ret; 2230 } 2231 } 2232 2233 bs = bdrv_all_find_vmstate_bs(); 2234 if (bs == NULL) { 2235 error_setg(errp, "No block device can accept snapshots"); 2236 return ret; 2237 } 2238 aio_context = bdrv_get_aio_context(bs); 2239 2240 saved_vm_running = runstate_is_running(); 2241 2242 ret = global_state_store(); 2243 if (ret) { 2244 error_setg(errp, "Error saving global state"); 2245 return ret; 2246 } 2247 vm_stop(RUN_STATE_SAVE_VM); 2248 2249 bdrv_drain_all_begin(); 2250 2251 aio_context_acquire(aio_context); 2252 2253 memset(sn, 0, sizeof(*sn)); 2254 2255 /* fill auxiliary fields */ 2256 qemu_gettimeofday(&tv); 2257 sn->date_sec = tv.tv_sec; 2258 sn->date_nsec = tv.tv_usec * 1000; 2259 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2260 2261 if (name) { 2262 ret = bdrv_snapshot_find(bs, old_sn, name); 2263 if (ret >= 0) { 2264 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2265 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2266 } else { 2267 pstrcpy(sn->name, sizeof(sn->name), name); 2268 } 2269 } else { 2270 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2271 localtime_r((const time_t *)&tv.tv_sec, &tm); 2272 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2273 } 2274 2275 /* save the VM state */ 2276 f = qemu_fopen_bdrv(bs, 1); 2277 if (!f) { 2278 error_setg(errp, "Could not open VM state file"); 2279 goto the_end; 2280 } 2281 ret = qemu_savevm_state(f, errp); 2282 vm_state_size = qemu_ftell(f); 2283 qemu_fclose(f); 2284 if (ret < 0) { 2285 goto the_end; 2286 } 2287 2288 /* The bdrv_all_create_snapshot() call that follows acquires the AioContext 2289 * for itself. BDRV_POLL_WHILE() does not support nested locking because 2290 * it only releases the lock once. Therefore synchronous I/O will deadlock 2291 * unless we release the AioContext before bdrv_all_create_snapshot(). 2292 */ 2293 aio_context_release(aio_context); 2294 aio_context = NULL; 2295 2296 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2297 if (ret < 0) { 2298 error_setg(errp, "Error while creating snapshot on '%s'", 2299 bdrv_get_device_name(bs)); 2300 goto the_end; 2301 } 2302 2303 ret = 0; 2304 2305 the_end: 2306 if (aio_context) { 2307 aio_context_release(aio_context); 2308 } 2309 2310 bdrv_drain_all_end(); 2311 2312 if (saved_vm_running) { 2313 vm_start(); 2314 } 2315 return ret; 2316 } 2317 2318 void qmp_xen_save_devices_state(const char *filename, bool has_live, bool live, 2319 Error **errp) 2320 { 2321 QEMUFile *f; 2322 QIOChannelFile *ioc; 2323 int saved_vm_running; 2324 int ret; 2325 2326 if (!has_live) { 2327 /* live default to true so old version of Xen tool stack can have a 2328 * successfull live migration */ 2329 live = true; 2330 } 2331 2332 saved_vm_running = runstate_is_running(); 2333 vm_stop(RUN_STATE_SAVE_VM); 2334 global_state_store_running(); 2335 2336 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2337 if (!ioc) { 2338 goto the_end; 2339 } 2340 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 2341 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2342 object_unref(OBJECT(ioc)); 2343 ret = qemu_save_device_state(f); 2344 if (ret < 0 || qemu_fclose(f) < 0) { 2345 error_setg(errp, QERR_IO_ERROR); 2346 } else { 2347 /* libxl calls the QMP command "stop" before calling 2348 * "xen-save-devices-state" and in case of migration failure, libxl 2349 * would call "cont". 2350 * So call bdrv_inactivate_all (release locks) here to let the other 2351 * side of the migration take controle of the images. 2352 */ 2353 if (live && !saved_vm_running) { 2354 ret = bdrv_inactivate_all(); 2355 if (ret) { 2356 error_setg(errp, "%s: bdrv_inactivate_all() failed (%d)", 2357 __func__, ret); 2358 } 2359 } 2360 } 2361 2362 the_end: 2363 if (saved_vm_running) { 2364 vm_start(); 2365 } 2366 } 2367 2368 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2369 { 2370 QEMUFile *f; 2371 QIOChannelFile *ioc; 2372 int ret; 2373 2374 /* Guest must be paused before loading the device state; the RAM state 2375 * will already have been loaded by xc 2376 */ 2377 if (runstate_is_running()) { 2378 error_setg(errp, "Cannot update device state while vm is running"); 2379 return; 2380 } 2381 vm_stop(RUN_STATE_RESTORE_VM); 2382 2383 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2384 if (!ioc) { 2385 return; 2386 } 2387 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 2388 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2389 object_unref(OBJECT(ioc)); 2390 2391 ret = qemu_loadvm_state(f); 2392 qemu_fclose(f); 2393 if (ret < 0) { 2394 error_setg(errp, QERR_IO_ERROR); 2395 } 2396 migration_incoming_state_destroy(); 2397 } 2398 2399 int load_snapshot(const char *name, Error **errp) 2400 { 2401 BlockDriverState *bs, *bs_vm_state; 2402 QEMUSnapshotInfo sn; 2403 QEMUFile *f; 2404 int ret; 2405 AioContext *aio_context; 2406 MigrationIncomingState *mis = migration_incoming_get_current(); 2407 2408 if (!replay_can_snapshot()) { 2409 error_report("Record/replay does not allow loading snapshot " 2410 "right now. Try once more later."); 2411 return -EINVAL; 2412 } 2413 2414 if (!bdrv_all_can_snapshot(&bs)) { 2415 error_setg(errp, 2416 "Device '%s' is writable but does not support snapshots", 2417 bdrv_get_device_name(bs)); 2418 return -ENOTSUP; 2419 } 2420 ret = bdrv_all_find_snapshot(name, &bs); 2421 if (ret < 0) { 2422 error_setg(errp, 2423 "Device '%s' does not have the requested snapshot '%s'", 2424 bdrv_get_device_name(bs), name); 2425 return ret; 2426 } 2427 2428 bs_vm_state = bdrv_all_find_vmstate_bs(); 2429 if (!bs_vm_state) { 2430 error_setg(errp, "No block device supports snapshots"); 2431 return -ENOTSUP; 2432 } 2433 aio_context = bdrv_get_aio_context(bs_vm_state); 2434 2435 /* Don't even try to load empty VM states */ 2436 aio_context_acquire(aio_context); 2437 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2438 aio_context_release(aio_context); 2439 if (ret < 0) { 2440 return ret; 2441 } else if (sn.vm_state_size == 0) { 2442 error_setg(errp, "This is a disk-only snapshot. Revert to it " 2443 " offline using qemu-img"); 2444 return -EINVAL; 2445 } 2446 2447 /* Flush all IO requests so they don't interfere with the new state. */ 2448 bdrv_drain_all_begin(); 2449 2450 ret = bdrv_all_goto_snapshot(name, &bs, errp); 2451 if (ret < 0) { 2452 error_prepend(errp, "Could not load snapshot '%s' on '%s': ", 2453 name, bdrv_get_device_name(bs)); 2454 goto err_drain; 2455 } 2456 2457 /* restore the VM state */ 2458 f = qemu_fopen_bdrv(bs_vm_state, 0); 2459 if (!f) { 2460 error_setg(errp, "Could not open VM state file"); 2461 ret = -EINVAL; 2462 goto err_drain; 2463 } 2464 2465 qemu_system_reset(SHUTDOWN_CAUSE_NONE); 2466 mis->from_src_file = f; 2467 2468 aio_context_acquire(aio_context); 2469 ret = qemu_loadvm_state(f); 2470 migration_incoming_state_destroy(); 2471 aio_context_release(aio_context); 2472 2473 bdrv_drain_all_end(); 2474 2475 if (ret < 0) { 2476 error_setg(errp, "Error %d while loading VM state", ret); 2477 return ret; 2478 } 2479 2480 return 0; 2481 2482 err_drain: 2483 bdrv_drain_all_end(); 2484 return ret; 2485 } 2486 2487 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2488 { 2489 qemu_ram_set_idstr(mr->ram_block, 2490 memory_region_name(mr), dev); 2491 } 2492 2493 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2494 { 2495 qemu_ram_unset_idstr(mr->ram_block); 2496 } 2497 2498 void vmstate_register_ram_global(MemoryRegion *mr) 2499 { 2500 vmstate_register_ram(mr, NULL); 2501 } 2502 2503 bool vmstate_check_only_migratable(const VMStateDescription *vmsd) 2504 { 2505 /* check needed if --only-migratable is specified */ 2506 if (!migrate_get_current()->only_migratable) { 2507 return true; 2508 } 2509 2510 return !(vmsd && vmsd->unmigratable); 2511 } 2512