1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include "hw/boards.h" 32 #include "hw/hw.h" 33 #include "hw/qdev.h" 34 #include "hw/xen/xen.h" 35 #include "net/net.h" 36 #include "monitor/monitor.h" 37 #include "sysemu/sysemu.h" 38 #include "qemu/timer.h" 39 #include "audio/audio.h" 40 #include "migration/migration.h" 41 #include "migration/postcopy-ram.h" 42 #include "qapi/qmp/qerror.h" 43 #include "qemu/error-report.h" 44 #include "qemu/sockets.h" 45 #include "qemu/queue.h" 46 #include "sysemu/cpus.h" 47 #include "exec/memory.h" 48 #include "qmp-commands.h" 49 #include "trace.h" 50 #include "qemu/bitops.h" 51 #include "qemu/iov.h" 52 #include "block/snapshot.h" 53 #include "block/qapi.h" 54 #include "qemu/cutils.h" 55 #include "io/channel-buffer.h" 56 #include "io/channel-file.h" 57 58 #ifndef ETH_P_RARP 59 #define ETH_P_RARP 0x8035 60 #endif 61 #define ARP_HTYPE_ETH 0x0001 62 #define ARP_PTYPE_IP 0x0800 63 #define ARP_OP_REQUEST_REV 0x3 64 65 const unsigned int postcopy_ram_discard_version = 0; 66 67 static bool skip_section_footers; 68 69 static struct mig_cmd_args { 70 ssize_t len; /* -1 = variable */ 71 const char *name; 72 } mig_cmd_args[] = { 73 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 74 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 75 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 76 [MIG_CMD_POSTCOPY_ADVISE] = { .len = 16, .name = "POSTCOPY_ADVISE" }, 77 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 78 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 79 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 80 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 81 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 82 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 83 }; 84 85 static int announce_self_create(uint8_t *buf, 86 uint8_t *mac_addr) 87 { 88 /* Ethernet header. */ 89 memset(buf, 0xff, 6); /* destination MAC addr */ 90 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 91 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 92 93 /* RARP header. */ 94 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 95 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 96 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 97 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 98 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 99 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 100 memset(buf + 28, 0x00, 4); /* source protocol addr */ 101 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 102 memset(buf + 38, 0x00, 4); /* target protocol addr */ 103 104 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 105 memset(buf + 42, 0x00, 18); 106 107 return 60; /* len (FCS will be added by hardware) */ 108 } 109 110 static void qemu_announce_self_iter(NICState *nic, void *opaque) 111 { 112 uint8_t buf[60]; 113 int len; 114 115 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 116 len = announce_self_create(buf, nic->conf->macaddr.a); 117 118 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 119 } 120 121 122 static void qemu_announce_self_once(void *opaque) 123 { 124 static int count = SELF_ANNOUNCE_ROUNDS; 125 QEMUTimer *timer = *(QEMUTimer **)opaque; 126 127 qemu_foreach_nic(qemu_announce_self_iter, NULL); 128 129 if (--count) { 130 /* delay 50ms, 150ms, 250ms, ... */ 131 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 132 self_announce_delay(count)); 133 } else { 134 timer_del(timer); 135 timer_free(timer); 136 } 137 } 138 139 void qemu_announce_self(void) 140 { 141 static QEMUTimer *timer; 142 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 143 qemu_announce_self_once(&timer); 144 } 145 146 /***********************************************************/ 147 /* savevm/loadvm support */ 148 149 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 150 int64_t pos) 151 { 152 int ret; 153 QEMUIOVector qiov; 154 155 qemu_iovec_init_external(&qiov, iov, iovcnt); 156 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 157 if (ret < 0) { 158 return ret; 159 } 160 161 return qiov.size; 162 } 163 164 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 165 size_t size) 166 { 167 return bdrv_load_vmstate(opaque, buf, pos, size); 168 } 169 170 static int bdrv_fclose(void *opaque) 171 { 172 return bdrv_flush(opaque); 173 } 174 175 static const QEMUFileOps bdrv_read_ops = { 176 .get_buffer = block_get_buffer, 177 .close = bdrv_fclose 178 }; 179 180 static const QEMUFileOps bdrv_write_ops = { 181 .writev_buffer = block_writev_buffer, 182 .close = bdrv_fclose 183 }; 184 185 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 186 { 187 if (is_writable) { 188 return qemu_fopen_ops(bs, &bdrv_write_ops); 189 } 190 return qemu_fopen_ops(bs, &bdrv_read_ops); 191 } 192 193 194 /* QEMUFile timer support. 195 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 196 */ 197 198 void timer_put(QEMUFile *f, QEMUTimer *ts) 199 { 200 uint64_t expire_time; 201 202 expire_time = timer_expire_time_ns(ts); 203 qemu_put_be64(f, expire_time); 204 } 205 206 void timer_get(QEMUFile *f, QEMUTimer *ts) 207 { 208 uint64_t expire_time; 209 210 expire_time = qemu_get_be64(f); 211 if (expire_time != -1) { 212 timer_mod_ns(ts, expire_time); 213 } else { 214 timer_del(ts); 215 } 216 } 217 218 219 /* VMState timer support. 220 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 221 */ 222 223 static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field) 224 { 225 QEMUTimer *v = pv; 226 timer_get(f, v); 227 return 0; 228 } 229 230 static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field, 231 QJSON *vmdesc) 232 { 233 QEMUTimer *v = pv; 234 timer_put(f, v); 235 236 return 0; 237 } 238 239 const VMStateInfo vmstate_info_timer = { 240 .name = "timer", 241 .get = get_timer, 242 .put = put_timer, 243 }; 244 245 246 typedef struct CompatEntry { 247 char idstr[256]; 248 int instance_id; 249 } CompatEntry; 250 251 typedef struct SaveStateEntry { 252 QTAILQ_ENTRY(SaveStateEntry) entry; 253 char idstr[256]; 254 int instance_id; 255 int alias_id; 256 int version_id; 257 int section_id; 258 SaveVMHandlers *ops; 259 const VMStateDescription *vmsd; 260 void *opaque; 261 CompatEntry *compat; 262 int is_ram; 263 } SaveStateEntry; 264 265 typedef struct SaveState { 266 QTAILQ_HEAD(, SaveStateEntry) handlers; 267 int global_section_id; 268 bool skip_configuration; 269 uint32_t len; 270 const char *name; 271 uint32_t target_page_bits; 272 } SaveState; 273 274 static SaveState savevm_state = { 275 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 276 .global_section_id = 0, 277 .skip_configuration = false, 278 }; 279 280 void savevm_skip_configuration(void) 281 { 282 savevm_state.skip_configuration = true; 283 } 284 285 286 static void configuration_pre_save(void *opaque) 287 { 288 SaveState *state = opaque; 289 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 290 291 state->len = strlen(current_name); 292 state->name = current_name; 293 state->target_page_bits = TARGET_PAGE_BITS; 294 } 295 296 static int configuration_pre_load(void *opaque) 297 { 298 SaveState *state = opaque; 299 300 /* If there is no target-page-bits subsection it means the source 301 * predates the variable-target-page-bits support and is using the 302 * minimum possible value for this CPU. 303 */ 304 state->target_page_bits = TARGET_PAGE_BITS_MIN; 305 return 0; 306 } 307 308 static int configuration_post_load(void *opaque, int version_id) 309 { 310 SaveState *state = opaque; 311 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 312 313 if (strncmp(state->name, current_name, state->len) != 0) { 314 error_report("Machine type received is '%.*s' and local is '%s'", 315 (int) state->len, state->name, current_name); 316 return -EINVAL; 317 } 318 319 if (state->target_page_bits != TARGET_PAGE_BITS) { 320 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 321 state->target_page_bits, TARGET_PAGE_BITS); 322 return -EINVAL; 323 } 324 325 return 0; 326 } 327 328 /* The target-page-bits subsection is present only if the 329 * target page size is not the same as the default (ie the 330 * minimum page size for a variable-page-size guest CPU). 331 * If it is present then it contains the actual target page 332 * bits for the machine, and migration will fail if the 333 * two ends don't agree about it. 334 */ 335 static bool vmstate_target_page_bits_needed(void *opaque) 336 { 337 return TARGET_PAGE_BITS > TARGET_PAGE_BITS_MIN; 338 } 339 340 static const VMStateDescription vmstate_target_page_bits = { 341 .name = "configuration/target-page-bits", 342 .version_id = 1, 343 .minimum_version_id = 1, 344 .needed = vmstate_target_page_bits_needed, 345 .fields = (VMStateField[]) { 346 VMSTATE_UINT32(target_page_bits, SaveState), 347 VMSTATE_END_OF_LIST() 348 } 349 }; 350 351 static const VMStateDescription vmstate_configuration = { 352 .name = "configuration", 353 .version_id = 1, 354 .pre_load = configuration_pre_load, 355 .post_load = configuration_post_load, 356 .pre_save = configuration_pre_save, 357 .fields = (VMStateField[]) { 358 VMSTATE_UINT32(len, SaveState), 359 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len), 360 VMSTATE_END_OF_LIST() 361 }, 362 .subsections = (const VMStateDescription*[]) { 363 &vmstate_target_page_bits, 364 NULL 365 } 366 }; 367 368 static void dump_vmstate_vmsd(FILE *out_file, 369 const VMStateDescription *vmsd, int indent, 370 bool is_subsection); 371 372 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 373 int indent) 374 { 375 fprintf(out_file, "%*s{\n", indent, ""); 376 indent += 2; 377 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 378 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 379 field->version_id); 380 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 381 field->field_exists ? "true" : "false"); 382 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 383 if (field->vmsd != NULL) { 384 fprintf(out_file, ",\n"); 385 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 386 } 387 fprintf(out_file, "\n%*s}", indent - 2, ""); 388 } 389 390 static void dump_vmstate_vmss(FILE *out_file, 391 const VMStateDescription **subsection, 392 int indent) 393 { 394 if (*subsection != NULL) { 395 dump_vmstate_vmsd(out_file, *subsection, indent, true); 396 } 397 } 398 399 static void dump_vmstate_vmsd(FILE *out_file, 400 const VMStateDescription *vmsd, int indent, 401 bool is_subsection) 402 { 403 if (is_subsection) { 404 fprintf(out_file, "%*s{\n", indent, ""); 405 } else { 406 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 407 } 408 indent += 2; 409 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 410 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 411 vmsd->version_id); 412 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 413 vmsd->minimum_version_id); 414 if (vmsd->fields != NULL) { 415 const VMStateField *field = vmsd->fields; 416 bool first; 417 418 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 419 first = true; 420 while (field->name != NULL) { 421 if (field->flags & VMS_MUST_EXIST) { 422 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 423 field++; 424 continue; 425 } 426 if (!first) { 427 fprintf(out_file, ",\n"); 428 } 429 dump_vmstate_vmsf(out_file, field, indent + 2); 430 field++; 431 first = false; 432 } 433 fprintf(out_file, "\n%*s]", indent, ""); 434 } 435 if (vmsd->subsections != NULL) { 436 const VMStateDescription **subsection = vmsd->subsections; 437 bool first; 438 439 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 440 first = true; 441 while (*subsection != NULL) { 442 if (!first) { 443 fprintf(out_file, ",\n"); 444 } 445 dump_vmstate_vmss(out_file, subsection, indent + 2); 446 subsection++; 447 first = false; 448 } 449 fprintf(out_file, "\n%*s]", indent, ""); 450 } 451 fprintf(out_file, "\n%*s}", indent - 2, ""); 452 } 453 454 static void dump_machine_type(FILE *out_file) 455 { 456 MachineClass *mc; 457 458 mc = MACHINE_GET_CLASS(current_machine); 459 460 fprintf(out_file, " \"vmschkmachine\": {\n"); 461 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 462 fprintf(out_file, " },\n"); 463 } 464 465 void dump_vmstate_json_to_file(FILE *out_file) 466 { 467 GSList *list, *elt; 468 bool first; 469 470 fprintf(out_file, "{\n"); 471 dump_machine_type(out_file); 472 473 first = true; 474 list = object_class_get_list(TYPE_DEVICE, true); 475 for (elt = list; elt; elt = elt->next) { 476 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 477 TYPE_DEVICE); 478 const char *name; 479 int indent = 2; 480 481 if (!dc->vmsd) { 482 continue; 483 } 484 485 if (!first) { 486 fprintf(out_file, ",\n"); 487 } 488 name = object_class_get_name(OBJECT_CLASS(dc)); 489 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 490 indent += 2; 491 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 492 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 493 dc->vmsd->version_id); 494 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 495 dc->vmsd->minimum_version_id); 496 497 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 498 499 fprintf(out_file, "\n%*s}", indent - 2, ""); 500 first = false; 501 } 502 fprintf(out_file, "\n}\n"); 503 fclose(out_file); 504 } 505 506 static int calculate_new_instance_id(const char *idstr) 507 { 508 SaveStateEntry *se; 509 int instance_id = 0; 510 511 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 512 if (strcmp(idstr, se->idstr) == 0 513 && instance_id <= se->instance_id) { 514 instance_id = se->instance_id + 1; 515 } 516 } 517 return instance_id; 518 } 519 520 static int calculate_compat_instance_id(const char *idstr) 521 { 522 SaveStateEntry *se; 523 int instance_id = 0; 524 525 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 526 if (!se->compat) { 527 continue; 528 } 529 530 if (strcmp(idstr, se->compat->idstr) == 0 531 && instance_id <= se->compat->instance_id) { 532 instance_id = se->compat->instance_id + 1; 533 } 534 } 535 return instance_id; 536 } 537 538 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 539 { 540 if (se->vmsd) { 541 return se->vmsd->priority; 542 } 543 return MIG_PRI_DEFAULT; 544 } 545 546 static void savevm_state_handler_insert(SaveStateEntry *nse) 547 { 548 MigrationPriority priority = save_state_priority(nse); 549 SaveStateEntry *se; 550 551 assert(priority <= MIG_PRI_MAX); 552 553 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 554 if (save_state_priority(se) < priority) { 555 break; 556 } 557 } 558 559 if (se) { 560 QTAILQ_INSERT_BEFORE(se, nse, entry); 561 } else { 562 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 563 } 564 } 565 566 /* TODO: Individual devices generally have very little idea about the rest 567 of the system, so instance_id should be removed/replaced. 568 Meanwhile pass -1 as instance_id if you do not already have a clearly 569 distinguishing id for all instances of your device class. */ 570 int register_savevm_live(DeviceState *dev, 571 const char *idstr, 572 int instance_id, 573 int version_id, 574 SaveVMHandlers *ops, 575 void *opaque) 576 { 577 SaveStateEntry *se; 578 579 se = g_new0(SaveStateEntry, 1); 580 se->version_id = version_id; 581 se->section_id = savevm_state.global_section_id++; 582 se->ops = ops; 583 se->opaque = opaque; 584 se->vmsd = NULL; 585 /* if this is a live_savem then set is_ram */ 586 if (ops->save_live_setup != NULL) { 587 se->is_ram = 1; 588 } 589 590 if (dev) { 591 char *id = qdev_get_dev_path(dev); 592 if (id) { 593 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 594 sizeof(se->idstr)) { 595 error_report("Path too long for VMState (%s)", id); 596 g_free(id); 597 g_free(se); 598 599 return -1; 600 } 601 g_free(id); 602 603 se->compat = g_new0(CompatEntry, 1); 604 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 605 se->compat->instance_id = instance_id == -1 ? 606 calculate_compat_instance_id(idstr) : instance_id; 607 instance_id = -1; 608 } 609 } 610 pstrcat(se->idstr, sizeof(se->idstr), idstr); 611 612 if (instance_id == -1) { 613 se->instance_id = calculate_new_instance_id(se->idstr); 614 } else { 615 se->instance_id = instance_id; 616 } 617 assert(!se->compat || se->instance_id == 0); 618 savevm_state_handler_insert(se); 619 return 0; 620 } 621 622 int register_savevm(DeviceState *dev, 623 const char *idstr, 624 int instance_id, 625 int version_id, 626 SaveStateHandler *save_state, 627 LoadStateHandler *load_state, 628 void *opaque) 629 { 630 SaveVMHandlers *ops = g_new0(SaveVMHandlers, 1); 631 ops->save_state = save_state; 632 ops->load_state = load_state; 633 return register_savevm_live(dev, idstr, instance_id, version_id, 634 ops, opaque); 635 } 636 637 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 638 { 639 SaveStateEntry *se, *new_se; 640 char id[256] = ""; 641 642 if (dev) { 643 char *path = qdev_get_dev_path(dev); 644 if (path) { 645 pstrcpy(id, sizeof(id), path); 646 pstrcat(id, sizeof(id), "/"); 647 g_free(path); 648 } 649 } 650 pstrcat(id, sizeof(id), idstr); 651 652 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 653 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 654 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 655 g_free(se->compat); 656 g_free(se->ops); 657 g_free(se); 658 } 659 } 660 } 661 662 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 663 const VMStateDescription *vmsd, 664 void *opaque, int alias_id, 665 int required_for_version, 666 Error **errp) 667 { 668 SaveStateEntry *se; 669 670 /* If this triggers, alias support can be dropped for the vmsd. */ 671 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 672 673 se = g_new0(SaveStateEntry, 1); 674 se->version_id = vmsd->version_id; 675 se->section_id = savevm_state.global_section_id++; 676 se->opaque = opaque; 677 se->vmsd = vmsd; 678 se->alias_id = alias_id; 679 680 if (dev) { 681 char *id = qdev_get_dev_path(dev); 682 if (id) { 683 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 684 sizeof(se->idstr)) { 685 error_setg(errp, "Path too long for VMState (%s)", id); 686 g_free(id); 687 g_free(se); 688 689 return -1; 690 } 691 692 se->compat = g_new0(CompatEntry, 1); 693 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 694 se->compat->instance_id = instance_id == -1 ? 695 calculate_compat_instance_id(vmsd->name) : instance_id; 696 instance_id = -1; 697 } 698 } 699 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 700 701 if (instance_id == -1) { 702 se->instance_id = calculate_new_instance_id(se->idstr); 703 } else { 704 se->instance_id = instance_id; 705 } 706 assert(!se->compat || se->instance_id == 0); 707 savevm_state_handler_insert(se); 708 return 0; 709 } 710 711 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 712 void *opaque) 713 { 714 SaveStateEntry *se, *new_se; 715 716 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 717 if (se->vmsd == vmsd && se->opaque == opaque) { 718 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 719 g_free(se->compat); 720 g_free(se); 721 } 722 } 723 } 724 725 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id) 726 { 727 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 728 if (!se->vmsd) { /* Old style */ 729 return se->ops->load_state(f, se->opaque, version_id); 730 } 731 return vmstate_load_state(f, se->vmsd, se->opaque, version_id); 732 } 733 734 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 735 { 736 int64_t old_offset, size; 737 738 old_offset = qemu_ftell_fast(f); 739 se->ops->save_state(f, se->opaque); 740 size = qemu_ftell_fast(f) - old_offset; 741 742 if (vmdesc) { 743 json_prop_int(vmdesc, "size", size); 744 json_start_array(vmdesc, "fields"); 745 json_start_object(vmdesc, NULL); 746 json_prop_str(vmdesc, "name", "data"); 747 json_prop_int(vmdesc, "size", size); 748 json_prop_str(vmdesc, "type", "buffer"); 749 json_end_object(vmdesc); 750 json_end_array(vmdesc); 751 } 752 } 753 754 static void vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 755 { 756 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 757 if (!se->vmsd) { 758 vmstate_save_old_style(f, se, vmdesc); 759 return; 760 } 761 vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 762 } 763 764 void savevm_skip_section_footers(void) 765 { 766 skip_section_footers = true; 767 } 768 769 /* 770 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 771 */ 772 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 773 uint8_t section_type) 774 { 775 qemu_put_byte(f, section_type); 776 qemu_put_be32(f, se->section_id); 777 778 if (section_type == QEMU_VM_SECTION_FULL || 779 section_type == QEMU_VM_SECTION_START) { 780 /* ID string */ 781 size_t len = strlen(se->idstr); 782 qemu_put_byte(f, len); 783 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 784 785 qemu_put_be32(f, se->instance_id); 786 qemu_put_be32(f, se->version_id); 787 } 788 } 789 790 /* 791 * Write a footer onto device sections that catches cases misformatted device 792 * sections. 793 */ 794 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 795 { 796 if (!skip_section_footers) { 797 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 798 qemu_put_be32(f, se->section_id); 799 } 800 } 801 802 /** 803 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 804 * command and associated data. 805 * 806 * @f: File to send command on 807 * @command: Command type to send 808 * @len: Length of associated data 809 * @data: Data associated with command. 810 */ 811 void qemu_savevm_command_send(QEMUFile *f, 812 enum qemu_vm_cmd command, 813 uint16_t len, 814 uint8_t *data) 815 { 816 trace_savevm_command_send(command, len); 817 qemu_put_byte(f, QEMU_VM_COMMAND); 818 qemu_put_be16(f, (uint16_t)command); 819 qemu_put_be16(f, len); 820 qemu_put_buffer(f, data, len); 821 qemu_fflush(f); 822 } 823 824 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 825 { 826 uint32_t buf; 827 828 trace_savevm_send_ping(value); 829 buf = cpu_to_be32(value); 830 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 831 } 832 833 void qemu_savevm_send_open_return_path(QEMUFile *f) 834 { 835 trace_savevm_send_open_return_path(); 836 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 837 } 838 839 /* We have a buffer of data to send; we don't want that all to be loaded 840 * by the command itself, so the command contains just the length of the 841 * extra buffer that we then send straight after it. 842 * TODO: Must be a better way to organise that 843 * 844 * Returns: 845 * 0 on success 846 * -ve on error 847 */ 848 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 849 { 850 uint32_t tmp; 851 852 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 853 error_report("%s: Unreasonably large packaged state: %zu", 854 __func__, len); 855 return -1; 856 } 857 858 tmp = cpu_to_be32(len); 859 860 trace_qemu_savevm_send_packaged(); 861 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 862 863 qemu_put_buffer(f, buf, len); 864 865 return 0; 866 } 867 868 /* Send prior to any postcopy transfer */ 869 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 870 { 871 uint64_t tmp[2]; 872 tmp[0] = cpu_to_be64(getpagesize()); 873 tmp[1] = cpu_to_be64(1ul << qemu_target_page_bits()); 874 875 trace_qemu_savevm_send_postcopy_advise(); 876 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 16, (uint8_t *)tmp); 877 } 878 879 /* Sent prior to starting the destination running in postcopy, discard pages 880 * that have already been sent but redirtied on the source. 881 * CMD_POSTCOPY_RAM_DISCARD consist of: 882 * byte version (0) 883 * byte Length of name field (not including 0) 884 * n x byte RAM block name 885 * byte 0 terminator (just for safety) 886 * n x Byte ranges within the named RAMBlock 887 * be64 Start of the range 888 * be64 Length 889 * 890 * name: RAMBlock name that these entries are part of 891 * len: Number of page entries 892 * start_list: 'len' addresses 893 * length_list: 'len' addresses 894 * 895 */ 896 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 897 uint16_t len, 898 uint64_t *start_list, 899 uint64_t *length_list) 900 { 901 uint8_t *buf; 902 uint16_t tmplen; 903 uint16_t t; 904 size_t name_len = strlen(name); 905 906 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 907 assert(name_len < 256); 908 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 909 buf[0] = postcopy_ram_discard_version; 910 buf[1] = name_len; 911 memcpy(buf + 2, name, name_len); 912 tmplen = 2 + name_len; 913 buf[tmplen++] = '\0'; 914 915 for (t = 0; t < len; t++) { 916 stq_be_p(buf + tmplen, start_list[t]); 917 tmplen += 8; 918 stq_be_p(buf + tmplen, length_list[t]); 919 tmplen += 8; 920 } 921 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 922 g_free(buf); 923 } 924 925 /* Get the destination into a state where it can receive postcopy data. */ 926 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 927 { 928 trace_savevm_send_postcopy_listen(); 929 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 930 } 931 932 /* Kick the destination into running */ 933 void qemu_savevm_send_postcopy_run(QEMUFile *f) 934 { 935 trace_savevm_send_postcopy_run(); 936 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 937 } 938 939 bool qemu_savevm_state_blocked(Error **errp) 940 { 941 SaveStateEntry *se; 942 943 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 944 if (se->vmsd && se->vmsd->unmigratable) { 945 error_setg(errp, "State blocked by non-migratable device '%s'", 946 se->idstr); 947 return true; 948 } 949 } 950 return false; 951 } 952 953 static bool enforce_config_section(void) 954 { 955 MachineState *machine = MACHINE(qdev_get_machine()); 956 return machine->enforce_config_section; 957 } 958 959 void qemu_savevm_state_header(QEMUFile *f) 960 { 961 trace_savevm_state_header(); 962 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 963 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 964 965 if (!savevm_state.skip_configuration || enforce_config_section()) { 966 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 967 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 968 } 969 970 } 971 972 void qemu_savevm_state_begin(QEMUFile *f, 973 const MigrationParams *params) 974 { 975 SaveStateEntry *se; 976 int ret; 977 978 trace_savevm_state_begin(); 979 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 980 if (!se->ops || !se->ops->set_params) { 981 continue; 982 } 983 se->ops->set_params(params, se->opaque); 984 } 985 986 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 987 if (!se->ops || !se->ops->save_live_setup) { 988 continue; 989 } 990 if (se->ops && se->ops->is_active) { 991 if (!se->ops->is_active(se->opaque)) { 992 continue; 993 } 994 } 995 save_section_header(f, se, QEMU_VM_SECTION_START); 996 997 ret = se->ops->save_live_setup(f, se->opaque); 998 save_section_footer(f, se); 999 if (ret < 0) { 1000 qemu_file_set_error(f, ret); 1001 break; 1002 } 1003 } 1004 } 1005 1006 /* 1007 * this function has three return values: 1008 * negative: there was one error, and we have -errno. 1009 * 0 : We haven't finished, caller have to go again 1010 * 1 : We have finished, we can go to complete phase 1011 */ 1012 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 1013 { 1014 SaveStateEntry *se; 1015 int ret = 1; 1016 1017 trace_savevm_state_iterate(); 1018 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1019 if (!se->ops || !se->ops->save_live_iterate) { 1020 continue; 1021 } 1022 if (se->ops && se->ops->is_active) { 1023 if (!se->ops->is_active(se->opaque)) { 1024 continue; 1025 } 1026 } 1027 /* 1028 * In the postcopy phase, any device that doesn't know how to 1029 * do postcopy should have saved it's state in the _complete 1030 * call that's already run, it might get confused if we call 1031 * iterate afterwards. 1032 */ 1033 if (postcopy && !se->ops->save_live_complete_postcopy) { 1034 continue; 1035 } 1036 if (qemu_file_rate_limit(f)) { 1037 return 0; 1038 } 1039 trace_savevm_section_start(se->idstr, se->section_id); 1040 1041 save_section_header(f, se, QEMU_VM_SECTION_PART); 1042 1043 ret = se->ops->save_live_iterate(f, se->opaque); 1044 trace_savevm_section_end(se->idstr, se->section_id, ret); 1045 save_section_footer(f, se); 1046 1047 if (ret < 0) { 1048 qemu_file_set_error(f, ret); 1049 } 1050 if (ret <= 0) { 1051 /* Do not proceed to the next vmstate before this one reported 1052 completion of the current stage. This serializes the migration 1053 and reduces the probability that a faster changing state is 1054 synchronized over and over again. */ 1055 break; 1056 } 1057 } 1058 return ret; 1059 } 1060 1061 static bool should_send_vmdesc(void) 1062 { 1063 MachineState *machine = MACHINE(qdev_get_machine()); 1064 bool in_postcopy = migration_in_postcopy(migrate_get_current()); 1065 return !machine->suppress_vmdesc && !in_postcopy; 1066 } 1067 1068 /* 1069 * Calls the save_live_complete_postcopy methods 1070 * causing the last few pages to be sent immediately and doing any associated 1071 * cleanup. 1072 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1073 * all the other devices, but that happens at the point we switch to postcopy. 1074 */ 1075 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1076 { 1077 SaveStateEntry *se; 1078 int ret; 1079 1080 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1081 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1082 continue; 1083 } 1084 if (se->ops && se->ops->is_active) { 1085 if (!se->ops->is_active(se->opaque)) { 1086 continue; 1087 } 1088 } 1089 trace_savevm_section_start(se->idstr, se->section_id); 1090 /* Section type */ 1091 qemu_put_byte(f, QEMU_VM_SECTION_END); 1092 qemu_put_be32(f, se->section_id); 1093 1094 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1095 trace_savevm_section_end(se->idstr, se->section_id, ret); 1096 save_section_footer(f, se); 1097 if (ret < 0) { 1098 qemu_file_set_error(f, ret); 1099 return; 1100 } 1101 } 1102 1103 qemu_put_byte(f, QEMU_VM_EOF); 1104 qemu_fflush(f); 1105 } 1106 1107 void qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only) 1108 { 1109 QJSON *vmdesc; 1110 int vmdesc_len; 1111 SaveStateEntry *se; 1112 int ret; 1113 bool in_postcopy = migration_in_postcopy(migrate_get_current()); 1114 1115 trace_savevm_state_complete_precopy(); 1116 1117 cpu_synchronize_all_states(); 1118 1119 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1120 if (!se->ops || 1121 (in_postcopy && se->ops->save_live_complete_postcopy) || 1122 (in_postcopy && !iterable_only) || 1123 !se->ops->save_live_complete_precopy) { 1124 continue; 1125 } 1126 1127 if (se->ops && se->ops->is_active) { 1128 if (!se->ops->is_active(se->opaque)) { 1129 continue; 1130 } 1131 } 1132 trace_savevm_section_start(se->idstr, se->section_id); 1133 1134 save_section_header(f, se, QEMU_VM_SECTION_END); 1135 1136 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1137 trace_savevm_section_end(se->idstr, se->section_id, ret); 1138 save_section_footer(f, se); 1139 if (ret < 0) { 1140 qemu_file_set_error(f, ret); 1141 return; 1142 } 1143 } 1144 1145 if (iterable_only) { 1146 return; 1147 } 1148 1149 vmdesc = qjson_new(); 1150 json_prop_int(vmdesc, "page_size", TARGET_PAGE_SIZE); 1151 json_start_array(vmdesc, "devices"); 1152 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1153 1154 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1155 continue; 1156 } 1157 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1158 trace_savevm_section_skip(se->idstr, se->section_id); 1159 continue; 1160 } 1161 1162 trace_savevm_section_start(se->idstr, se->section_id); 1163 1164 json_start_object(vmdesc, NULL); 1165 json_prop_str(vmdesc, "name", se->idstr); 1166 json_prop_int(vmdesc, "instance_id", se->instance_id); 1167 1168 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1169 vmstate_save(f, se, vmdesc); 1170 trace_savevm_section_end(se->idstr, se->section_id, 0); 1171 save_section_footer(f, se); 1172 1173 json_end_object(vmdesc); 1174 } 1175 1176 if (!in_postcopy) { 1177 /* Postcopy stream will still be going */ 1178 qemu_put_byte(f, QEMU_VM_EOF); 1179 } 1180 1181 json_end_array(vmdesc); 1182 qjson_finish(vmdesc); 1183 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1184 1185 if (should_send_vmdesc()) { 1186 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1187 qemu_put_be32(f, vmdesc_len); 1188 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1189 } 1190 qjson_destroy(vmdesc); 1191 1192 qemu_fflush(f); 1193 } 1194 1195 /* Give an estimate of the amount left to be transferred, 1196 * the result is split into the amount for units that can and 1197 * for units that can't do postcopy. 1198 */ 1199 void qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size, 1200 uint64_t *res_non_postcopiable, 1201 uint64_t *res_postcopiable) 1202 { 1203 SaveStateEntry *se; 1204 1205 *res_non_postcopiable = 0; 1206 *res_postcopiable = 0; 1207 1208 1209 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1210 if (!se->ops || !se->ops->save_live_pending) { 1211 continue; 1212 } 1213 if (se->ops && se->ops->is_active) { 1214 if (!se->ops->is_active(se->opaque)) { 1215 continue; 1216 } 1217 } 1218 se->ops->save_live_pending(f, se->opaque, max_size, 1219 res_non_postcopiable, res_postcopiable); 1220 } 1221 } 1222 1223 void qemu_savevm_state_cleanup(void) 1224 { 1225 SaveStateEntry *se; 1226 1227 trace_savevm_state_cleanup(); 1228 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1229 if (se->ops && se->ops->cleanup) { 1230 se->ops->cleanup(se->opaque); 1231 } 1232 } 1233 } 1234 1235 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1236 { 1237 int ret; 1238 MigrationParams params = { 1239 .blk = 0, 1240 .shared = 0 1241 }; 1242 MigrationState *ms = migrate_init(¶ms); 1243 MigrationStatus status; 1244 ms->to_dst_file = f; 1245 1246 if (migration_is_blocked(errp)) { 1247 ret = -EINVAL; 1248 goto done; 1249 } 1250 1251 qemu_mutex_unlock_iothread(); 1252 qemu_savevm_state_header(f); 1253 qemu_savevm_state_begin(f, ¶ms); 1254 qemu_mutex_lock_iothread(); 1255 1256 while (qemu_file_get_error(f) == 0) { 1257 if (qemu_savevm_state_iterate(f, false) > 0) { 1258 break; 1259 } 1260 } 1261 1262 ret = qemu_file_get_error(f); 1263 if (ret == 0) { 1264 qemu_savevm_state_complete_precopy(f, false); 1265 ret = qemu_file_get_error(f); 1266 } 1267 qemu_savevm_state_cleanup(); 1268 if (ret != 0) { 1269 error_setg_errno(errp, -ret, "Error while writing VM state"); 1270 } 1271 1272 done: 1273 if (ret != 0) { 1274 status = MIGRATION_STATUS_FAILED; 1275 } else { 1276 status = MIGRATION_STATUS_COMPLETED; 1277 } 1278 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1279 return ret; 1280 } 1281 1282 static int qemu_save_device_state(QEMUFile *f) 1283 { 1284 SaveStateEntry *se; 1285 1286 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1287 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1288 1289 cpu_synchronize_all_states(); 1290 1291 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1292 if (se->is_ram) { 1293 continue; 1294 } 1295 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1296 continue; 1297 } 1298 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1299 continue; 1300 } 1301 1302 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1303 1304 vmstate_save(f, se, NULL); 1305 1306 save_section_footer(f, se); 1307 } 1308 1309 qemu_put_byte(f, QEMU_VM_EOF); 1310 1311 return qemu_file_get_error(f); 1312 } 1313 1314 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1315 { 1316 SaveStateEntry *se; 1317 1318 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1319 if (!strcmp(se->idstr, idstr) && 1320 (instance_id == se->instance_id || 1321 instance_id == se->alias_id)) 1322 return se; 1323 /* Migrating from an older version? */ 1324 if (strstr(se->idstr, idstr) && se->compat) { 1325 if (!strcmp(se->compat->idstr, idstr) && 1326 (instance_id == se->compat->instance_id || 1327 instance_id == se->alias_id)) 1328 return se; 1329 } 1330 } 1331 return NULL; 1332 } 1333 1334 enum LoadVMExitCodes { 1335 /* Allow a command to quit all layers of nested loadvm loops */ 1336 LOADVM_QUIT = 1, 1337 }; 1338 1339 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1340 1341 /* ------ incoming postcopy messages ------ */ 1342 /* 'advise' arrives before any transfers just to tell us that a postcopy 1343 * *might* happen - it might be skipped if precopy transferred everything 1344 * quickly. 1345 */ 1346 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis) 1347 { 1348 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1349 uint64_t remote_hps, remote_tps; 1350 1351 trace_loadvm_postcopy_handle_advise(); 1352 if (ps != POSTCOPY_INCOMING_NONE) { 1353 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1354 return -1; 1355 } 1356 1357 if (!postcopy_ram_supported_by_host()) { 1358 postcopy_state_set(POSTCOPY_INCOMING_NONE); 1359 return -1; 1360 } 1361 1362 remote_hps = qemu_get_be64(mis->from_src_file); 1363 if (remote_hps != getpagesize()) { 1364 /* 1365 * Some combinations of mismatch are probably possible but it gets 1366 * a bit more complicated. In particular we need to place whole 1367 * host pages on the dest at once, and we need to ensure that we 1368 * handle dirtying to make sure we never end up sending part of 1369 * a hostpage on it's own. 1370 */ 1371 error_report("Postcopy needs matching host page sizes (s=%d d=%d)", 1372 (int)remote_hps, getpagesize()); 1373 return -1; 1374 } 1375 1376 remote_tps = qemu_get_be64(mis->from_src_file); 1377 if (remote_tps != (1ul << qemu_target_page_bits())) { 1378 /* 1379 * Again, some differences could be dealt with, but for now keep it 1380 * simple. 1381 */ 1382 error_report("Postcopy needs matching target page sizes (s=%d d=%d)", 1383 (int)remote_tps, 1 << qemu_target_page_bits()); 1384 return -1; 1385 } 1386 1387 if (ram_postcopy_incoming_init(mis)) { 1388 return -1; 1389 } 1390 1391 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1392 1393 return 0; 1394 } 1395 1396 /* After postcopy we will be told to throw some pages away since they're 1397 * dirty and will have to be demand fetched. Must happen before CPU is 1398 * started. 1399 * There can be 0..many of these messages, each encoding multiple pages. 1400 */ 1401 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1402 uint16_t len) 1403 { 1404 int tmp; 1405 char ramid[256]; 1406 PostcopyState ps = postcopy_state_get(); 1407 1408 trace_loadvm_postcopy_ram_handle_discard(); 1409 1410 switch (ps) { 1411 case POSTCOPY_INCOMING_ADVISE: 1412 /* 1st discard */ 1413 tmp = postcopy_ram_prepare_discard(mis); 1414 if (tmp) { 1415 return tmp; 1416 } 1417 break; 1418 1419 case POSTCOPY_INCOMING_DISCARD: 1420 /* Expected state */ 1421 break; 1422 1423 default: 1424 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1425 ps); 1426 return -1; 1427 } 1428 /* We're expecting a 1429 * Version (0) 1430 * a RAM ID string (length byte, name, 0 term) 1431 * then at least 1 16 byte chunk 1432 */ 1433 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1434 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1435 return -1; 1436 } 1437 1438 tmp = qemu_get_byte(mis->from_src_file); 1439 if (tmp != postcopy_ram_discard_version) { 1440 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1441 return -1; 1442 } 1443 1444 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1445 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1446 return -1; 1447 } 1448 tmp = qemu_get_byte(mis->from_src_file); 1449 if (tmp != 0) { 1450 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1451 return -1; 1452 } 1453 1454 len -= 3 + strlen(ramid); 1455 if (len % 16) { 1456 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1457 return -1; 1458 } 1459 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1460 while (len) { 1461 uint64_t start_addr, block_length; 1462 start_addr = qemu_get_be64(mis->from_src_file); 1463 block_length = qemu_get_be64(mis->from_src_file); 1464 1465 len -= 16; 1466 int ret = ram_discard_range(mis, ramid, start_addr, 1467 block_length); 1468 if (ret) { 1469 return ret; 1470 } 1471 } 1472 trace_loadvm_postcopy_ram_handle_discard_end(); 1473 1474 return 0; 1475 } 1476 1477 /* 1478 * Triggered by a postcopy_listen command; this thread takes over reading 1479 * the input stream, leaving the main thread free to carry on loading the rest 1480 * of the device state (from RAM). 1481 * (TODO:This could do with being in a postcopy file - but there again it's 1482 * just another input loop, not that postcopy specific) 1483 */ 1484 static void *postcopy_ram_listen_thread(void *opaque) 1485 { 1486 QEMUFile *f = opaque; 1487 MigrationIncomingState *mis = migration_incoming_get_current(); 1488 int load_res; 1489 1490 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1491 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1492 qemu_sem_post(&mis->listen_thread_sem); 1493 trace_postcopy_ram_listen_thread_start(); 1494 1495 /* 1496 * Because we're a thread and not a coroutine we can't yield 1497 * in qemu_file, and thus we must be blocking now. 1498 */ 1499 qemu_file_set_blocking(f, true); 1500 load_res = qemu_loadvm_state_main(f, mis); 1501 /* And non-blocking again so we don't block in any cleanup */ 1502 qemu_file_set_blocking(f, false); 1503 1504 trace_postcopy_ram_listen_thread_exit(); 1505 if (load_res < 0) { 1506 error_report("%s: loadvm failed: %d", __func__, load_res); 1507 qemu_file_set_error(f, load_res); 1508 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1509 MIGRATION_STATUS_FAILED); 1510 } else { 1511 /* 1512 * This looks good, but it's possible that the device loading in the 1513 * main thread hasn't finished yet, and so we might not be in 'RUN' 1514 * state yet; wait for the end of the main thread. 1515 */ 1516 qemu_event_wait(&mis->main_thread_load_event); 1517 } 1518 postcopy_ram_incoming_cleanup(mis); 1519 1520 if (load_res < 0) { 1521 /* 1522 * If something went wrong then we have a bad state so exit; 1523 * depending how far we got it might be possible at this point 1524 * to leave the guest running and fire MCEs for pages that never 1525 * arrived as a desperate recovery step. 1526 */ 1527 exit(EXIT_FAILURE); 1528 } 1529 1530 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1531 MIGRATION_STATUS_COMPLETED); 1532 /* 1533 * If everything has worked fine, then the main thread has waited 1534 * for us to start, and we're the last use of the mis. 1535 * (If something broke then qemu will have to exit anyway since it's 1536 * got a bad migration state). 1537 */ 1538 migration_incoming_state_destroy(); 1539 1540 1541 return NULL; 1542 } 1543 1544 /* After this message we must be able to immediately receive postcopy data */ 1545 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1546 { 1547 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1548 trace_loadvm_postcopy_handle_listen(); 1549 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1550 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1551 return -1; 1552 } 1553 if (ps == POSTCOPY_INCOMING_ADVISE) { 1554 /* 1555 * A rare case, we entered listen without having to do any discards, 1556 * so do the setup that's normally done at the time of the 1st discard. 1557 */ 1558 postcopy_ram_prepare_discard(mis); 1559 } 1560 1561 /* 1562 * Sensitise RAM - can now generate requests for blocks that don't exist 1563 * However, at this point the CPU shouldn't be running, and the IO 1564 * shouldn't be doing anything yet so don't actually expect requests 1565 */ 1566 if (postcopy_ram_enable_notify(mis)) { 1567 return -1; 1568 } 1569 1570 if (mis->have_listen_thread) { 1571 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1572 return -1; 1573 } 1574 1575 mis->have_listen_thread = true; 1576 /* Start up the listening thread and wait for it to signal ready */ 1577 qemu_sem_init(&mis->listen_thread_sem, 0); 1578 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1579 postcopy_ram_listen_thread, mis->from_src_file, 1580 QEMU_THREAD_DETACHED); 1581 qemu_sem_wait(&mis->listen_thread_sem); 1582 qemu_sem_destroy(&mis->listen_thread_sem); 1583 1584 return 0; 1585 } 1586 1587 1588 typedef struct { 1589 QEMUBH *bh; 1590 } HandleRunBhData; 1591 1592 static void loadvm_postcopy_handle_run_bh(void *opaque) 1593 { 1594 Error *local_err = NULL; 1595 HandleRunBhData *data = opaque; 1596 1597 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1598 * in migration.c 1599 */ 1600 cpu_synchronize_all_post_init(); 1601 1602 qemu_announce_self(); 1603 1604 /* Make sure all file formats flush their mutable metadata */ 1605 bdrv_invalidate_cache_all(&local_err); 1606 if (local_err) { 1607 error_report_err(local_err); 1608 } 1609 1610 trace_loadvm_postcopy_handle_run_cpu_sync(); 1611 cpu_synchronize_all_post_init(); 1612 1613 trace_loadvm_postcopy_handle_run_vmstart(); 1614 1615 if (autostart) { 1616 /* Hold onto your hats, starting the CPU */ 1617 vm_start(); 1618 } else { 1619 /* leave it paused and let management decide when to start the CPU */ 1620 runstate_set(RUN_STATE_PAUSED); 1621 } 1622 1623 qemu_bh_delete(data->bh); 1624 g_free(data); 1625 } 1626 1627 /* After all discards we can start running and asking for pages */ 1628 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1629 { 1630 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1631 HandleRunBhData *data; 1632 1633 trace_loadvm_postcopy_handle_run(); 1634 if (ps != POSTCOPY_INCOMING_LISTENING) { 1635 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1636 return -1; 1637 } 1638 1639 data = g_new(HandleRunBhData, 1); 1640 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1641 qemu_bh_schedule(data->bh); 1642 1643 /* We need to finish reading the stream from the package 1644 * and also stop reading anything more from the stream that loaded the 1645 * package (since it's now being read by the listener thread). 1646 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1647 */ 1648 return LOADVM_QUIT; 1649 } 1650 1651 /** 1652 * Immediately following this command is a blob of data containing an embedded 1653 * chunk of migration stream; read it and load it. 1654 * 1655 * @mis: Incoming state 1656 * @length: Length of packaged data to read 1657 * 1658 * Returns: Negative values on error 1659 * 1660 */ 1661 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1662 { 1663 int ret; 1664 size_t length; 1665 QIOChannelBuffer *bioc; 1666 1667 length = qemu_get_be32(mis->from_src_file); 1668 trace_loadvm_handle_cmd_packaged(length); 1669 1670 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1671 error_report("Unreasonably large packaged state: %zu", length); 1672 return -1; 1673 } 1674 1675 bioc = qio_channel_buffer_new(length); 1676 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 1677 ret = qemu_get_buffer(mis->from_src_file, 1678 bioc->data, 1679 length); 1680 if (ret != length) { 1681 object_unref(OBJECT(bioc)); 1682 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1683 ret, length); 1684 return (ret < 0) ? ret : -EAGAIN; 1685 } 1686 bioc->usage += length; 1687 trace_loadvm_handle_cmd_packaged_received(ret); 1688 1689 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1690 1691 ret = qemu_loadvm_state_main(packf, mis); 1692 trace_loadvm_handle_cmd_packaged_main(ret); 1693 qemu_fclose(packf); 1694 object_unref(OBJECT(bioc)); 1695 1696 return ret; 1697 } 1698 1699 /* 1700 * Process an incoming 'QEMU_VM_COMMAND' 1701 * 0 just a normal return 1702 * LOADVM_QUIT All good, but exit the loop 1703 * <0 Error 1704 */ 1705 static int loadvm_process_command(QEMUFile *f) 1706 { 1707 MigrationIncomingState *mis = migration_incoming_get_current(); 1708 uint16_t cmd; 1709 uint16_t len; 1710 uint32_t tmp32; 1711 1712 cmd = qemu_get_be16(f); 1713 len = qemu_get_be16(f); 1714 1715 trace_loadvm_process_command(cmd, len); 1716 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1717 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1718 return -EINVAL; 1719 } 1720 1721 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1722 error_report("%s received with bad length - expecting %zu, got %d", 1723 mig_cmd_args[cmd].name, 1724 (size_t)mig_cmd_args[cmd].len, len); 1725 return -ERANGE; 1726 } 1727 1728 switch (cmd) { 1729 case MIG_CMD_OPEN_RETURN_PATH: 1730 if (mis->to_src_file) { 1731 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1732 /* Not really a problem, so don't give up */ 1733 return 0; 1734 } 1735 mis->to_src_file = qemu_file_get_return_path(f); 1736 if (!mis->to_src_file) { 1737 error_report("CMD_OPEN_RETURN_PATH failed"); 1738 return -1; 1739 } 1740 break; 1741 1742 case MIG_CMD_PING: 1743 tmp32 = qemu_get_be32(f); 1744 trace_loadvm_process_command_ping(tmp32); 1745 if (!mis->to_src_file) { 1746 error_report("CMD_PING (0x%x) received with no return path", 1747 tmp32); 1748 return -1; 1749 } 1750 migrate_send_rp_pong(mis, tmp32); 1751 break; 1752 1753 case MIG_CMD_PACKAGED: 1754 return loadvm_handle_cmd_packaged(mis); 1755 1756 case MIG_CMD_POSTCOPY_ADVISE: 1757 return loadvm_postcopy_handle_advise(mis); 1758 1759 case MIG_CMD_POSTCOPY_LISTEN: 1760 return loadvm_postcopy_handle_listen(mis); 1761 1762 case MIG_CMD_POSTCOPY_RUN: 1763 return loadvm_postcopy_handle_run(mis); 1764 1765 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1766 return loadvm_postcopy_ram_handle_discard(mis, len); 1767 } 1768 1769 return 0; 1770 } 1771 1772 struct LoadStateEntry { 1773 QLIST_ENTRY(LoadStateEntry) entry; 1774 SaveStateEntry *se; 1775 int section_id; 1776 int version_id; 1777 }; 1778 1779 /* 1780 * Read a footer off the wire and check that it matches the expected section 1781 * 1782 * Returns: true if the footer was good 1783 * false if there is a problem (and calls error_report to say why) 1784 */ 1785 static bool check_section_footer(QEMUFile *f, LoadStateEntry *le) 1786 { 1787 uint8_t read_mark; 1788 uint32_t read_section_id; 1789 1790 if (skip_section_footers) { 1791 /* No footer to check */ 1792 return true; 1793 } 1794 1795 read_mark = qemu_get_byte(f); 1796 1797 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1798 error_report("Missing section footer for %s", le->se->idstr); 1799 return false; 1800 } 1801 1802 read_section_id = qemu_get_be32(f); 1803 if (read_section_id != le->section_id) { 1804 error_report("Mismatched section id in footer for %s -" 1805 " read 0x%x expected 0x%x", 1806 le->se->idstr, read_section_id, le->section_id); 1807 return false; 1808 } 1809 1810 /* All good */ 1811 return true; 1812 } 1813 1814 void loadvm_free_handlers(MigrationIncomingState *mis) 1815 { 1816 LoadStateEntry *le, *new_le; 1817 1818 QLIST_FOREACH_SAFE(le, &mis->loadvm_handlers, entry, new_le) { 1819 QLIST_REMOVE(le, entry); 1820 g_free(le); 1821 } 1822 } 1823 1824 static int 1825 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1826 { 1827 uint32_t instance_id, version_id, section_id; 1828 SaveStateEntry *se; 1829 LoadStateEntry *le; 1830 char idstr[256]; 1831 int ret; 1832 1833 /* Read section start */ 1834 section_id = qemu_get_be32(f); 1835 if (!qemu_get_counted_string(f, idstr)) { 1836 error_report("Unable to read ID string for section %u", 1837 section_id); 1838 return -EINVAL; 1839 } 1840 instance_id = qemu_get_be32(f); 1841 version_id = qemu_get_be32(f); 1842 1843 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1844 instance_id, version_id); 1845 /* Find savevm section */ 1846 se = find_se(idstr, instance_id); 1847 if (se == NULL) { 1848 error_report("Unknown savevm section or instance '%s' %d", 1849 idstr, instance_id); 1850 return -EINVAL; 1851 } 1852 1853 /* Validate version */ 1854 if (version_id > se->version_id) { 1855 error_report("savevm: unsupported version %d for '%s' v%d", 1856 version_id, idstr, se->version_id); 1857 return -EINVAL; 1858 } 1859 1860 /* Validate if it is a device's state */ 1861 if (xen_enabled() && se->is_ram) { 1862 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1863 return -EINVAL; 1864 } 1865 1866 /* Add entry */ 1867 le = g_malloc0(sizeof(*le)); 1868 1869 le->se = se; 1870 le->section_id = section_id; 1871 le->version_id = version_id; 1872 QLIST_INSERT_HEAD(&mis->loadvm_handlers, le, entry); 1873 1874 ret = vmstate_load(f, le->se, le->version_id); 1875 if (ret < 0) { 1876 error_report("error while loading state for instance 0x%x of" 1877 " device '%s'", instance_id, idstr); 1878 return ret; 1879 } 1880 if (!check_section_footer(f, le)) { 1881 return -EINVAL; 1882 } 1883 1884 return 0; 1885 } 1886 1887 static int 1888 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1889 { 1890 uint32_t section_id; 1891 LoadStateEntry *le; 1892 int ret; 1893 1894 section_id = qemu_get_be32(f); 1895 1896 trace_qemu_loadvm_state_section_partend(section_id); 1897 QLIST_FOREACH(le, &mis->loadvm_handlers, entry) { 1898 if (le->section_id == section_id) { 1899 break; 1900 } 1901 } 1902 if (le == NULL) { 1903 error_report("Unknown savevm section %d", section_id); 1904 return -EINVAL; 1905 } 1906 1907 ret = vmstate_load(f, le->se, le->version_id); 1908 if (ret < 0) { 1909 error_report("error while loading state section id %d(%s)", 1910 section_id, le->se->idstr); 1911 return ret; 1912 } 1913 if (!check_section_footer(f, le)) { 1914 return -EINVAL; 1915 } 1916 1917 return 0; 1918 } 1919 1920 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 1921 { 1922 uint8_t section_type; 1923 int ret = 0; 1924 1925 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { 1926 ret = 0; 1927 trace_qemu_loadvm_state_section(section_type); 1928 switch (section_type) { 1929 case QEMU_VM_SECTION_START: 1930 case QEMU_VM_SECTION_FULL: 1931 ret = qemu_loadvm_section_start_full(f, mis); 1932 if (ret < 0) { 1933 goto out; 1934 } 1935 break; 1936 case QEMU_VM_SECTION_PART: 1937 case QEMU_VM_SECTION_END: 1938 ret = qemu_loadvm_section_part_end(f, mis); 1939 if (ret < 0) { 1940 goto out; 1941 } 1942 break; 1943 case QEMU_VM_COMMAND: 1944 ret = loadvm_process_command(f); 1945 trace_qemu_loadvm_state_section_command(ret); 1946 if ((ret < 0) || (ret & LOADVM_QUIT)) { 1947 goto out; 1948 } 1949 break; 1950 default: 1951 error_report("Unknown savevm section type %d", section_type); 1952 ret = -EINVAL; 1953 goto out; 1954 } 1955 } 1956 1957 out: 1958 if (ret < 0) { 1959 qemu_file_set_error(f, ret); 1960 } 1961 return ret; 1962 } 1963 1964 int qemu_loadvm_state(QEMUFile *f) 1965 { 1966 MigrationIncomingState *mis = migration_incoming_get_current(); 1967 Error *local_err = NULL; 1968 unsigned int v; 1969 int ret; 1970 1971 if (qemu_savevm_state_blocked(&local_err)) { 1972 error_report_err(local_err); 1973 return -EINVAL; 1974 } 1975 1976 v = qemu_get_be32(f); 1977 if (v != QEMU_VM_FILE_MAGIC) { 1978 error_report("Not a migration stream"); 1979 return -EINVAL; 1980 } 1981 1982 v = qemu_get_be32(f); 1983 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 1984 error_report("SaveVM v2 format is obsolete and don't work anymore"); 1985 return -ENOTSUP; 1986 } 1987 if (v != QEMU_VM_FILE_VERSION) { 1988 error_report("Unsupported migration stream version"); 1989 return -ENOTSUP; 1990 } 1991 1992 if (!savevm_state.skip_configuration || enforce_config_section()) { 1993 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 1994 error_report("Configuration section missing"); 1995 return -EINVAL; 1996 } 1997 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 1998 1999 if (ret) { 2000 return ret; 2001 } 2002 } 2003 2004 ret = qemu_loadvm_state_main(f, mis); 2005 qemu_event_set(&mis->main_thread_load_event); 2006 2007 trace_qemu_loadvm_state_post_main(ret); 2008 2009 if (mis->have_listen_thread) { 2010 /* Listen thread still going, can't clean up yet */ 2011 return ret; 2012 } 2013 2014 if (ret == 0) { 2015 ret = qemu_file_get_error(f); 2016 } 2017 2018 /* 2019 * Try to read in the VMDESC section as well, so that dumping tools that 2020 * intercept our migration stream have the chance to see it. 2021 */ 2022 2023 /* We've got to be careful; if we don't read the data and just shut the fd 2024 * then the sender can error if we close while it's still sending. 2025 * We also mustn't read data that isn't there; some transports (RDMA) 2026 * will stall waiting for that data when the source has already closed. 2027 */ 2028 if (ret == 0 && should_send_vmdesc()) { 2029 uint8_t *buf; 2030 uint32_t size; 2031 uint8_t section_type = qemu_get_byte(f); 2032 2033 if (section_type != QEMU_VM_VMDESCRIPTION) { 2034 error_report("Expected vmdescription section, but got %d", 2035 section_type); 2036 /* 2037 * It doesn't seem worth failing at this point since 2038 * we apparently have an otherwise valid VM state 2039 */ 2040 } else { 2041 buf = g_malloc(0x1000); 2042 size = qemu_get_be32(f); 2043 2044 while (size > 0) { 2045 uint32_t read_chunk = MIN(size, 0x1000); 2046 qemu_get_buffer(f, buf, read_chunk); 2047 size -= read_chunk; 2048 } 2049 g_free(buf); 2050 } 2051 } 2052 2053 cpu_synchronize_all_post_init(); 2054 2055 return ret; 2056 } 2057 2058 int save_vmstate(Monitor *mon, const char *name) 2059 { 2060 BlockDriverState *bs, *bs1; 2061 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 2062 int ret = -1; 2063 QEMUFile *f; 2064 int saved_vm_running; 2065 uint64_t vm_state_size; 2066 qemu_timeval tv; 2067 struct tm tm; 2068 Error *local_err = NULL; 2069 AioContext *aio_context; 2070 2071 if (!bdrv_all_can_snapshot(&bs)) { 2072 monitor_printf(mon, "Device '%s' is writable but does not " 2073 "support snapshots.\n", bdrv_get_device_name(bs)); 2074 return ret; 2075 } 2076 2077 /* Delete old snapshots of the same name */ 2078 if (name) { 2079 ret = bdrv_all_delete_snapshot(name, &bs1, &local_err); 2080 if (ret < 0) { 2081 error_reportf_err(local_err, 2082 "Error while deleting snapshot on device '%s': ", 2083 bdrv_get_device_name(bs1)); 2084 return ret; 2085 } 2086 } 2087 2088 bs = bdrv_all_find_vmstate_bs(); 2089 if (bs == NULL) { 2090 monitor_printf(mon, "No block device can accept snapshots\n"); 2091 return ret; 2092 } 2093 aio_context = bdrv_get_aio_context(bs); 2094 2095 saved_vm_running = runstate_is_running(); 2096 2097 ret = global_state_store(); 2098 if (ret) { 2099 monitor_printf(mon, "Error saving global state\n"); 2100 return ret; 2101 } 2102 vm_stop(RUN_STATE_SAVE_VM); 2103 2104 aio_context_acquire(aio_context); 2105 2106 memset(sn, 0, sizeof(*sn)); 2107 2108 /* fill auxiliary fields */ 2109 qemu_gettimeofday(&tv); 2110 sn->date_sec = tv.tv_sec; 2111 sn->date_nsec = tv.tv_usec * 1000; 2112 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2113 2114 if (name) { 2115 ret = bdrv_snapshot_find(bs, old_sn, name); 2116 if (ret >= 0) { 2117 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2118 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2119 } else { 2120 pstrcpy(sn->name, sizeof(sn->name), name); 2121 } 2122 } else { 2123 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2124 localtime_r((const time_t *)&tv.tv_sec, &tm); 2125 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2126 } 2127 2128 /* save the VM state */ 2129 f = qemu_fopen_bdrv(bs, 1); 2130 if (!f) { 2131 monitor_printf(mon, "Could not open VM state file\n"); 2132 goto the_end; 2133 } 2134 ret = qemu_savevm_state(f, &local_err); 2135 vm_state_size = qemu_ftell(f); 2136 qemu_fclose(f); 2137 if (ret < 0) { 2138 error_report_err(local_err); 2139 goto the_end; 2140 } 2141 2142 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2143 if (ret < 0) { 2144 monitor_printf(mon, "Error while creating snapshot on '%s'\n", 2145 bdrv_get_device_name(bs)); 2146 goto the_end; 2147 } 2148 2149 ret = 0; 2150 2151 the_end: 2152 aio_context_release(aio_context); 2153 if (saved_vm_running) { 2154 vm_start(); 2155 } 2156 return ret; 2157 } 2158 2159 void hmp_savevm(Monitor *mon, const QDict *qdict) 2160 { 2161 save_vmstate(mon, qdict_get_try_str(qdict, "name")); 2162 } 2163 2164 void qmp_xen_save_devices_state(const char *filename, Error **errp) 2165 { 2166 QEMUFile *f; 2167 QIOChannelFile *ioc; 2168 int saved_vm_running; 2169 int ret; 2170 2171 saved_vm_running = runstate_is_running(); 2172 vm_stop(RUN_STATE_SAVE_VM); 2173 global_state_store_running(); 2174 2175 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2176 if (!ioc) { 2177 goto the_end; 2178 } 2179 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 2180 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2181 ret = qemu_save_device_state(f); 2182 qemu_fclose(f); 2183 if (ret < 0) { 2184 error_setg(errp, QERR_IO_ERROR); 2185 } 2186 2187 the_end: 2188 if (saved_vm_running) { 2189 vm_start(); 2190 } 2191 } 2192 2193 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2194 { 2195 QEMUFile *f; 2196 QIOChannelFile *ioc; 2197 int ret; 2198 2199 /* Guest must be paused before loading the device state; the RAM state 2200 * will already have been loaded by xc 2201 */ 2202 if (runstate_is_running()) { 2203 error_setg(errp, "Cannot update device state while vm is running"); 2204 return; 2205 } 2206 vm_stop(RUN_STATE_RESTORE_VM); 2207 2208 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2209 if (!ioc) { 2210 return; 2211 } 2212 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 2213 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2214 2215 ret = qemu_loadvm_state(f); 2216 qemu_fclose(f); 2217 if (ret < 0) { 2218 error_setg(errp, QERR_IO_ERROR); 2219 } 2220 migration_incoming_state_destroy(); 2221 } 2222 2223 int load_vmstate(const char *name) 2224 { 2225 BlockDriverState *bs, *bs_vm_state; 2226 QEMUSnapshotInfo sn; 2227 QEMUFile *f; 2228 int ret; 2229 AioContext *aio_context; 2230 MigrationIncomingState *mis = migration_incoming_get_current(); 2231 2232 if (!bdrv_all_can_snapshot(&bs)) { 2233 error_report("Device '%s' is writable but does not support snapshots.", 2234 bdrv_get_device_name(bs)); 2235 return -ENOTSUP; 2236 } 2237 ret = bdrv_all_find_snapshot(name, &bs); 2238 if (ret < 0) { 2239 error_report("Device '%s' does not have the requested snapshot '%s'", 2240 bdrv_get_device_name(bs), name); 2241 return ret; 2242 } 2243 2244 bs_vm_state = bdrv_all_find_vmstate_bs(); 2245 if (!bs_vm_state) { 2246 error_report("No block device supports snapshots"); 2247 return -ENOTSUP; 2248 } 2249 aio_context = bdrv_get_aio_context(bs_vm_state); 2250 2251 /* Don't even try to load empty VM states */ 2252 aio_context_acquire(aio_context); 2253 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2254 aio_context_release(aio_context); 2255 if (ret < 0) { 2256 return ret; 2257 } else if (sn.vm_state_size == 0) { 2258 error_report("This is a disk-only snapshot. Revert to it offline " 2259 "using qemu-img."); 2260 return -EINVAL; 2261 } 2262 2263 /* Flush all IO requests so they don't interfere with the new state. */ 2264 bdrv_drain_all(); 2265 2266 ret = bdrv_all_goto_snapshot(name, &bs); 2267 if (ret < 0) { 2268 error_report("Error %d while activating snapshot '%s' on '%s'", 2269 ret, name, bdrv_get_device_name(bs)); 2270 return ret; 2271 } 2272 2273 /* restore the VM state */ 2274 f = qemu_fopen_bdrv(bs_vm_state, 0); 2275 if (!f) { 2276 error_report("Could not open VM state file"); 2277 return -EINVAL; 2278 } 2279 2280 qemu_system_reset(VMRESET_SILENT); 2281 mis->from_src_file = f; 2282 2283 aio_context_acquire(aio_context); 2284 ret = qemu_loadvm_state(f); 2285 qemu_fclose(f); 2286 aio_context_release(aio_context); 2287 2288 migration_incoming_state_destroy(); 2289 if (ret < 0) { 2290 error_report("Error %d while loading VM state", ret); 2291 return ret; 2292 } 2293 2294 return 0; 2295 } 2296 2297 void hmp_delvm(Monitor *mon, const QDict *qdict) 2298 { 2299 BlockDriverState *bs; 2300 Error *err; 2301 const char *name = qdict_get_str(qdict, "name"); 2302 2303 if (bdrv_all_delete_snapshot(name, &bs, &err) < 0) { 2304 error_reportf_err(err, 2305 "Error while deleting snapshot on device '%s': ", 2306 bdrv_get_device_name(bs)); 2307 } 2308 } 2309 2310 void hmp_info_snapshots(Monitor *mon, const QDict *qdict) 2311 { 2312 BlockDriverState *bs, *bs1; 2313 BdrvNextIterator it1; 2314 QEMUSnapshotInfo *sn_tab, *sn; 2315 bool no_snapshot = true; 2316 int nb_sns, i; 2317 int total; 2318 int *global_snapshots; 2319 AioContext *aio_context; 2320 2321 typedef struct SnapshotEntry { 2322 QEMUSnapshotInfo sn; 2323 QTAILQ_ENTRY(SnapshotEntry) next; 2324 } SnapshotEntry; 2325 2326 typedef struct ImageEntry { 2327 const char *imagename; 2328 QTAILQ_ENTRY(ImageEntry) next; 2329 QTAILQ_HEAD(, SnapshotEntry) snapshots; 2330 } ImageEntry; 2331 2332 QTAILQ_HEAD(, ImageEntry) image_list = 2333 QTAILQ_HEAD_INITIALIZER(image_list); 2334 2335 ImageEntry *image_entry, *next_ie; 2336 SnapshotEntry *snapshot_entry; 2337 2338 bs = bdrv_all_find_vmstate_bs(); 2339 if (!bs) { 2340 monitor_printf(mon, "No available block device supports snapshots\n"); 2341 return; 2342 } 2343 aio_context = bdrv_get_aio_context(bs); 2344 2345 aio_context_acquire(aio_context); 2346 nb_sns = bdrv_snapshot_list(bs, &sn_tab); 2347 aio_context_release(aio_context); 2348 2349 if (nb_sns < 0) { 2350 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns); 2351 return; 2352 } 2353 2354 for (bs1 = bdrv_first(&it1); bs1; bs1 = bdrv_next(&it1)) { 2355 int bs1_nb_sns = 0; 2356 ImageEntry *ie; 2357 SnapshotEntry *se; 2358 AioContext *ctx = bdrv_get_aio_context(bs1); 2359 2360 aio_context_acquire(ctx); 2361 if (bdrv_can_snapshot(bs1)) { 2362 sn = NULL; 2363 bs1_nb_sns = bdrv_snapshot_list(bs1, &sn); 2364 if (bs1_nb_sns > 0) { 2365 no_snapshot = false; 2366 ie = g_new0(ImageEntry, 1); 2367 ie->imagename = bdrv_get_device_name(bs1); 2368 QTAILQ_INIT(&ie->snapshots); 2369 QTAILQ_INSERT_TAIL(&image_list, ie, next); 2370 for (i = 0; i < bs1_nb_sns; i++) { 2371 se = g_new0(SnapshotEntry, 1); 2372 se->sn = sn[i]; 2373 QTAILQ_INSERT_TAIL(&ie->snapshots, se, next); 2374 } 2375 } 2376 g_free(sn); 2377 } 2378 aio_context_release(ctx); 2379 } 2380 2381 if (no_snapshot) { 2382 monitor_printf(mon, "There is no snapshot available.\n"); 2383 return; 2384 } 2385 2386 global_snapshots = g_new0(int, nb_sns); 2387 total = 0; 2388 for (i = 0; i < nb_sns; i++) { 2389 SnapshotEntry *next_sn; 2390 if (bdrv_all_find_snapshot(sn_tab[i].name, &bs1) == 0) { 2391 global_snapshots[total] = i; 2392 total++; 2393 QTAILQ_FOREACH(image_entry, &image_list, next) { 2394 QTAILQ_FOREACH_SAFE(snapshot_entry, &image_entry->snapshots, 2395 next, next_sn) { 2396 if (!strcmp(sn_tab[i].name, snapshot_entry->sn.name)) { 2397 QTAILQ_REMOVE(&image_entry->snapshots, snapshot_entry, 2398 next); 2399 g_free(snapshot_entry); 2400 } 2401 } 2402 } 2403 } 2404 } 2405 2406 monitor_printf(mon, "List of snapshots present on all disks:\n"); 2407 2408 if (total > 0) { 2409 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL); 2410 monitor_printf(mon, "\n"); 2411 for (i = 0; i < total; i++) { 2412 sn = &sn_tab[global_snapshots[i]]; 2413 /* The ID is not guaranteed to be the same on all images, so 2414 * overwrite it. 2415 */ 2416 pstrcpy(sn->id_str, sizeof(sn->id_str), "--"); 2417 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, sn); 2418 monitor_printf(mon, "\n"); 2419 } 2420 } else { 2421 monitor_printf(mon, "None\n"); 2422 } 2423 2424 QTAILQ_FOREACH(image_entry, &image_list, next) { 2425 if (QTAILQ_EMPTY(&image_entry->snapshots)) { 2426 continue; 2427 } 2428 monitor_printf(mon, 2429 "\nList of partial (non-loadable) snapshots on '%s':\n", 2430 image_entry->imagename); 2431 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL); 2432 monitor_printf(mon, "\n"); 2433 QTAILQ_FOREACH(snapshot_entry, &image_entry->snapshots, next) { 2434 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, 2435 &snapshot_entry->sn); 2436 monitor_printf(mon, "\n"); 2437 } 2438 } 2439 2440 QTAILQ_FOREACH_SAFE(image_entry, &image_list, next, next_ie) { 2441 SnapshotEntry *next_sn; 2442 QTAILQ_FOREACH_SAFE(snapshot_entry, &image_entry->snapshots, next, 2443 next_sn) { 2444 g_free(snapshot_entry); 2445 } 2446 g_free(image_entry); 2447 } 2448 g_free(sn_tab); 2449 g_free(global_snapshots); 2450 2451 } 2452 2453 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2454 { 2455 qemu_ram_set_idstr(mr->ram_block, 2456 memory_region_name(mr), dev); 2457 } 2458 2459 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2460 { 2461 qemu_ram_unset_idstr(mr->ram_block); 2462 } 2463 2464 void vmstate_register_ram_global(MemoryRegion *mr) 2465 { 2466 vmstate_register_ram(mr, NULL); 2467 } 2468