1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include "hw/boards.h" 32 #include "hw/hw.h" 33 #include "hw/qdev.h" 34 #include "hw/xen/xen.h" 35 #include "net/net.h" 36 #include "monitor/monitor.h" 37 #include "sysemu/sysemu.h" 38 #include "qemu/timer.h" 39 #include "audio/audio.h" 40 #include "migration/migration.h" 41 #include "migration/postcopy-ram.h" 42 #include "qapi/qmp/qerror.h" 43 #include "qemu/error-report.h" 44 #include "qemu/sockets.h" 45 #include "qemu/queue.h" 46 #include "sysemu/cpus.h" 47 #include "exec/memory.h" 48 #include "qmp-commands.h" 49 #include "trace.h" 50 #include "qemu/bitops.h" 51 #include "qemu/iov.h" 52 #include "block/snapshot.h" 53 #include "block/qapi.h" 54 #include "qemu/cutils.h" 55 #include "io/channel-buffer.h" 56 #include "io/channel-file.h" 57 58 #ifndef ETH_P_RARP 59 #define ETH_P_RARP 0x8035 60 #endif 61 #define ARP_HTYPE_ETH 0x0001 62 #define ARP_PTYPE_IP 0x0800 63 #define ARP_OP_REQUEST_REV 0x3 64 65 const unsigned int postcopy_ram_discard_version = 0; 66 67 static bool skip_section_footers; 68 69 static struct mig_cmd_args { 70 ssize_t len; /* -1 = variable */ 71 const char *name; 72 } mig_cmd_args[] = { 73 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 74 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 75 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 76 [MIG_CMD_POSTCOPY_ADVISE] = { .len = 16, .name = "POSTCOPY_ADVISE" }, 77 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 78 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 79 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 80 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 81 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 82 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 83 }; 84 85 static int announce_self_create(uint8_t *buf, 86 uint8_t *mac_addr) 87 { 88 /* Ethernet header. */ 89 memset(buf, 0xff, 6); /* destination MAC addr */ 90 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 91 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 92 93 /* RARP header. */ 94 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 95 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 96 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 97 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 98 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 99 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 100 memset(buf + 28, 0x00, 4); /* source protocol addr */ 101 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 102 memset(buf + 38, 0x00, 4); /* target protocol addr */ 103 104 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 105 memset(buf + 42, 0x00, 18); 106 107 return 60; /* len (FCS will be added by hardware) */ 108 } 109 110 static void qemu_announce_self_iter(NICState *nic, void *opaque) 111 { 112 uint8_t buf[60]; 113 int len; 114 115 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 116 len = announce_self_create(buf, nic->conf->macaddr.a); 117 118 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 119 } 120 121 122 static void qemu_announce_self_once(void *opaque) 123 { 124 static int count = SELF_ANNOUNCE_ROUNDS; 125 QEMUTimer *timer = *(QEMUTimer **)opaque; 126 127 qemu_foreach_nic(qemu_announce_self_iter, NULL); 128 129 if (--count) { 130 /* delay 50ms, 150ms, 250ms, ... */ 131 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 132 self_announce_delay(count)); 133 } else { 134 timer_del(timer); 135 timer_free(timer); 136 } 137 } 138 139 void qemu_announce_self(void) 140 { 141 static QEMUTimer *timer; 142 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 143 qemu_announce_self_once(&timer); 144 } 145 146 /***********************************************************/ 147 /* savevm/loadvm support */ 148 149 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 150 int64_t pos) 151 { 152 int ret; 153 QEMUIOVector qiov; 154 155 qemu_iovec_init_external(&qiov, iov, iovcnt); 156 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 157 if (ret < 0) { 158 return ret; 159 } 160 161 return qiov.size; 162 } 163 164 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 165 size_t size) 166 { 167 return bdrv_load_vmstate(opaque, buf, pos, size); 168 } 169 170 static int bdrv_fclose(void *opaque) 171 { 172 return bdrv_flush(opaque); 173 } 174 175 static const QEMUFileOps bdrv_read_ops = { 176 .get_buffer = block_get_buffer, 177 .close = bdrv_fclose 178 }; 179 180 static const QEMUFileOps bdrv_write_ops = { 181 .writev_buffer = block_writev_buffer, 182 .close = bdrv_fclose 183 }; 184 185 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 186 { 187 if (is_writable) { 188 return qemu_fopen_ops(bs, &bdrv_write_ops); 189 } 190 return qemu_fopen_ops(bs, &bdrv_read_ops); 191 } 192 193 194 /* QEMUFile timer support. 195 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 196 */ 197 198 void timer_put(QEMUFile *f, QEMUTimer *ts) 199 { 200 uint64_t expire_time; 201 202 expire_time = timer_expire_time_ns(ts); 203 qemu_put_be64(f, expire_time); 204 } 205 206 void timer_get(QEMUFile *f, QEMUTimer *ts) 207 { 208 uint64_t expire_time; 209 210 expire_time = qemu_get_be64(f); 211 if (expire_time != -1) { 212 timer_mod_ns(ts, expire_time); 213 } else { 214 timer_del(ts); 215 } 216 } 217 218 219 /* VMState timer support. 220 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 221 */ 222 223 static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field) 224 { 225 QEMUTimer *v = pv; 226 timer_get(f, v); 227 return 0; 228 } 229 230 static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field, 231 QJSON *vmdesc) 232 { 233 QEMUTimer *v = pv; 234 timer_put(f, v); 235 236 return 0; 237 } 238 239 const VMStateInfo vmstate_info_timer = { 240 .name = "timer", 241 .get = get_timer, 242 .put = put_timer, 243 }; 244 245 246 typedef struct CompatEntry { 247 char idstr[256]; 248 int instance_id; 249 } CompatEntry; 250 251 typedef struct SaveStateEntry { 252 QTAILQ_ENTRY(SaveStateEntry) entry; 253 char idstr[256]; 254 int instance_id; 255 int alias_id; 256 int version_id; 257 int section_id; 258 SaveVMHandlers *ops; 259 const VMStateDescription *vmsd; 260 void *opaque; 261 CompatEntry *compat; 262 int is_ram; 263 } SaveStateEntry; 264 265 typedef struct SaveState { 266 QTAILQ_HEAD(, SaveStateEntry) handlers; 267 int global_section_id; 268 bool skip_configuration; 269 uint32_t len; 270 const char *name; 271 uint32_t target_page_bits; 272 } SaveState; 273 274 static SaveState savevm_state = { 275 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 276 .global_section_id = 0, 277 .skip_configuration = false, 278 }; 279 280 void savevm_skip_configuration(void) 281 { 282 savevm_state.skip_configuration = true; 283 } 284 285 286 static void configuration_pre_save(void *opaque) 287 { 288 SaveState *state = opaque; 289 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 290 291 state->len = strlen(current_name); 292 state->name = current_name; 293 state->target_page_bits = TARGET_PAGE_BITS; 294 } 295 296 static int configuration_pre_load(void *opaque) 297 { 298 SaveState *state = opaque; 299 300 /* If there is no target-page-bits subsection it means the source 301 * predates the variable-target-page-bits support and is using the 302 * minimum possible value for this CPU. 303 */ 304 state->target_page_bits = TARGET_PAGE_BITS_MIN; 305 return 0; 306 } 307 308 static int configuration_post_load(void *opaque, int version_id) 309 { 310 SaveState *state = opaque; 311 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 312 313 if (strncmp(state->name, current_name, state->len) != 0) { 314 error_report("Machine type received is '%.*s' and local is '%s'", 315 (int) state->len, state->name, current_name); 316 return -EINVAL; 317 } 318 319 if (state->target_page_bits != TARGET_PAGE_BITS) { 320 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 321 state->target_page_bits, TARGET_PAGE_BITS); 322 return -EINVAL; 323 } 324 325 return 0; 326 } 327 328 /* The target-page-bits subsection is present only if the 329 * target page size is not the same as the default (ie the 330 * minimum page size for a variable-page-size guest CPU). 331 * If it is present then it contains the actual target page 332 * bits for the machine, and migration will fail if the 333 * two ends don't agree about it. 334 */ 335 static bool vmstate_target_page_bits_needed(void *opaque) 336 { 337 return TARGET_PAGE_BITS > TARGET_PAGE_BITS_MIN; 338 } 339 340 static const VMStateDescription vmstate_target_page_bits = { 341 .name = "configuration/target-page-bits", 342 .version_id = 1, 343 .minimum_version_id = 1, 344 .needed = vmstate_target_page_bits_needed, 345 .fields = (VMStateField[]) { 346 VMSTATE_UINT32(target_page_bits, SaveState), 347 VMSTATE_END_OF_LIST() 348 } 349 }; 350 351 static const VMStateDescription vmstate_configuration = { 352 .name = "configuration", 353 .version_id = 1, 354 .pre_load = configuration_pre_load, 355 .post_load = configuration_post_load, 356 .pre_save = configuration_pre_save, 357 .fields = (VMStateField[]) { 358 VMSTATE_UINT32(len, SaveState), 359 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, 0, len), 360 VMSTATE_END_OF_LIST() 361 }, 362 .subsections = (const VMStateDescription*[]) { 363 &vmstate_target_page_bits, 364 NULL 365 } 366 }; 367 368 static void dump_vmstate_vmsd(FILE *out_file, 369 const VMStateDescription *vmsd, int indent, 370 bool is_subsection); 371 372 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 373 int indent) 374 { 375 fprintf(out_file, "%*s{\n", indent, ""); 376 indent += 2; 377 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 378 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 379 field->version_id); 380 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 381 field->field_exists ? "true" : "false"); 382 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 383 if (field->vmsd != NULL) { 384 fprintf(out_file, ",\n"); 385 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 386 } 387 fprintf(out_file, "\n%*s}", indent - 2, ""); 388 } 389 390 static void dump_vmstate_vmss(FILE *out_file, 391 const VMStateDescription **subsection, 392 int indent) 393 { 394 if (*subsection != NULL) { 395 dump_vmstate_vmsd(out_file, *subsection, indent, true); 396 } 397 } 398 399 static void dump_vmstate_vmsd(FILE *out_file, 400 const VMStateDescription *vmsd, int indent, 401 bool is_subsection) 402 { 403 if (is_subsection) { 404 fprintf(out_file, "%*s{\n", indent, ""); 405 } else { 406 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 407 } 408 indent += 2; 409 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 410 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 411 vmsd->version_id); 412 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 413 vmsd->minimum_version_id); 414 if (vmsd->fields != NULL) { 415 const VMStateField *field = vmsd->fields; 416 bool first; 417 418 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 419 first = true; 420 while (field->name != NULL) { 421 if (field->flags & VMS_MUST_EXIST) { 422 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 423 field++; 424 continue; 425 } 426 if (!first) { 427 fprintf(out_file, ",\n"); 428 } 429 dump_vmstate_vmsf(out_file, field, indent + 2); 430 field++; 431 first = false; 432 } 433 fprintf(out_file, "\n%*s]", indent, ""); 434 } 435 if (vmsd->subsections != NULL) { 436 const VMStateDescription **subsection = vmsd->subsections; 437 bool first; 438 439 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 440 first = true; 441 while (*subsection != NULL) { 442 if (!first) { 443 fprintf(out_file, ",\n"); 444 } 445 dump_vmstate_vmss(out_file, subsection, indent + 2); 446 subsection++; 447 first = false; 448 } 449 fprintf(out_file, "\n%*s]", indent, ""); 450 } 451 fprintf(out_file, "\n%*s}", indent - 2, ""); 452 } 453 454 static void dump_machine_type(FILE *out_file) 455 { 456 MachineClass *mc; 457 458 mc = MACHINE_GET_CLASS(current_machine); 459 460 fprintf(out_file, " \"vmschkmachine\": {\n"); 461 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 462 fprintf(out_file, " },\n"); 463 } 464 465 void dump_vmstate_json_to_file(FILE *out_file) 466 { 467 GSList *list, *elt; 468 bool first; 469 470 fprintf(out_file, "{\n"); 471 dump_machine_type(out_file); 472 473 first = true; 474 list = object_class_get_list(TYPE_DEVICE, true); 475 for (elt = list; elt; elt = elt->next) { 476 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 477 TYPE_DEVICE); 478 const char *name; 479 int indent = 2; 480 481 if (!dc->vmsd) { 482 continue; 483 } 484 485 if (!first) { 486 fprintf(out_file, ",\n"); 487 } 488 name = object_class_get_name(OBJECT_CLASS(dc)); 489 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 490 indent += 2; 491 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 492 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 493 dc->vmsd->version_id); 494 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 495 dc->vmsd->minimum_version_id); 496 497 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 498 499 fprintf(out_file, "\n%*s}", indent - 2, ""); 500 first = false; 501 } 502 fprintf(out_file, "\n}\n"); 503 fclose(out_file); 504 } 505 506 static int calculate_new_instance_id(const char *idstr) 507 { 508 SaveStateEntry *se; 509 int instance_id = 0; 510 511 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 512 if (strcmp(idstr, se->idstr) == 0 513 && instance_id <= se->instance_id) { 514 instance_id = se->instance_id + 1; 515 } 516 } 517 return instance_id; 518 } 519 520 static int calculate_compat_instance_id(const char *idstr) 521 { 522 SaveStateEntry *se; 523 int instance_id = 0; 524 525 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 526 if (!se->compat) { 527 continue; 528 } 529 530 if (strcmp(idstr, se->compat->idstr) == 0 531 && instance_id <= se->compat->instance_id) { 532 instance_id = se->compat->instance_id + 1; 533 } 534 } 535 return instance_id; 536 } 537 538 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 539 { 540 if (se->vmsd) { 541 return se->vmsd->priority; 542 } 543 return MIG_PRI_DEFAULT; 544 } 545 546 static void savevm_state_handler_insert(SaveStateEntry *nse) 547 { 548 MigrationPriority priority = save_state_priority(nse); 549 SaveStateEntry *se; 550 551 assert(priority <= MIG_PRI_MAX); 552 553 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 554 if (save_state_priority(se) < priority) { 555 break; 556 } 557 } 558 559 if (se) { 560 QTAILQ_INSERT_BEFORE(se, nse, entry); 561 } else { 562 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 563 } 564 } 565 566 /* TODO: Individual devices generally have very little idea about the rest 567 of the system, so instance_id should be removed/replaced. 568 Meanwhile pass -1 as instance_id if you do not already have a clearly 569 distinguishing id for all instances of your device class. */ 570 int register_savevm_live(DeviceState *dev, 571 const char *idstr, 572 int instance_id, 573 int version_id, 574 SaveVMHandlers *ops, 575 void *opaque) 576 { 577 SaveStateEntry *se; 578 579 se = g_new0(SaveStateEntry, 1); 580 se->version_id = version_id; 581 se->section_id = savevm_state.global_section_id++; 582 se->ops = ops; 583 se->opaque = opaque; 584 se->vmsd = NULL; 585 /* if this is a live_savem then set is_ram */ 586 if (ops->save_live_setup != NULL) { 587 se->is_ram = 1; 588 } 589 590 if (dev) { 591 char *id = qdev_get_dev_path(dev); 592 if (id) { 593 pstrcpy(se->idstr, sizeof(se->idstr), id); 594 pstrcat(se->idstr, sizeof(se->idstr), "/"); 595 g_free(id); 596 597 se->compat = g_new0(CompatEntry, 1); 598 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 599 se->compat->instance_id = instance_id == -1 ? 600 calculate_compat_instance_id(idstr) : instance_id; 601 instance_id = -1; 602 } 603 } 604 pstrcat(se->idstr, sizeof(se->idstr), idstr); 605 606 if (instance_id == -1) { 607 se->instance_id = calculate_new_instance_id(se->idstr); 608 } else { 609 se->instance_id = instance_id; 610 } 611 assert(!se->compat || se->instance_id == 0); 612 savevm_state_handler_insert(se); 613 return 0; 614 } 615 616 int register_savevm(DeviceState *dev, 617 const char *idstr, 618 int instance_id, 619 int version_id, 620 SaveStateHandler *save_state, 621 LoadStateHandler *load_state, 622 void *opaque) 623 { 624 SaveVMHandlers *ops = g_new0(SaveVMHandlers, 1); 625 ops->save_state = save_state; 626 ops->load_state = load_state; 627 return register_savevm_live(dev, idstr, instance_id, version_id, 628 ops, opaque); 629 } 630 631 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 632 { 633 SaveStateEntry *se, *new_se; 634 char id[256] = ""; 635 636 if (dev) { 637 char *path = qdev_get_dev_path(dev); 638 if (path) { 639 pstrcpy(id, sizeof(id), path); 640 pstrcat(id, sizeof(id), "/"); 641 g_free(path); 642 } 643 } 644 pstrcat(id, sizeof(id), idstr); 645 646 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 647 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 648 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 649 g_free(se->compat); 650 g_free(se->ops); 651 g_free(se); 652 } 653 } 654 } 655 656 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 657 const VMStateDescription *vmsd, 658 void *opaque, int alias_id, 659 int required_for_version, 660 Error **errp) 661 { 662 SaveStateEntry *se; 663 664 /* If this triggers, alias support can be dropped for the vmsd. */ 665 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 666 667 se = g_new0(SaveStateEntry, 1); 668 se->version_id = vmsd->version_id; 669 se->section_id = savevm_state.global_section_id++; 670 se->opaque = opaque; 671 se->vmsd = vmsd; 672 se->alias_id = alias_id; 673 674 if (dev) { 675 char *id = qdev_get_dev_path(dev); 676 if (id) { 677 pstrcpy(se->idstr, sizeof(se->idstr), id); 678 pstrcat(se->idstr, sizeof(se->idstr), "/"); 679 g_free(id); 680 681 se->compat = g_new0(CompatEntry, 1); 682 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 683 se->compat->instance_id = instance_id == -1 ? 684 calculate_compat_instance_id(vmsd->name) : instance_id; 685 instance_id = -1; 686 } 687 } 688 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 689 690 if (instance_id == -1) { 691 se->instance_id = calculate_new_instance_id(se->idstr); 692 } else { 693 se->instance_id = instance_id; 694 } 695 assert(!se->compat || se->instance_id == 0); 696 savevm_state_handler_insert(se); 697 return 0; 698 } 699 700 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 701 void *opaque) 702 { 703 SaveStateEntry *se, *new_se; 704 705 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 706 if (se->vmsd == vmsd && se->opaque == opaque) { 707 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 708 g_free(se->compat); 709 g_free(se); 710 } 711 } 712 } 713 714 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id) 715 { 716 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 717 if (!se->vmsd) { /* Old style */ 718 return se->ops->load_state(f, se->opaque, version_id); 719 } 720 return vmstate_load_state(f, se->vmsd, se->opaque, version_id); 721 } 722 723 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 724 { 725 int64_t old_offset, size; 726 727 old_offset = qemu_ftell_fast(f); 728 se->ops->save_state(f, se->opaque); 729 size = qemu_ftell_fast(f) - old_offset; 730 731 if (vmdesc) { 732 json_prop_int(vmdesc, "size", size); 733 json_start_array(vmdesc, "fields"); 734 json_start_object(vmdesc, NULL); 735 json_prop_str(vmdesc, "name", "data"); 736 json_prop_int(vmdesc, "size", size); 737 json_prop_str(vmdesc, "type", "buffer"); 738 json_end_object(vmdesc); 739 json_end_array(vmdesc); 740 } 741 } 742 743 static void vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 744 { 745 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 746 if (!se->vmsd) { 747 vmstate_save_old_style(f, se, vmdesc); 748 return; 749 } 750 vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 751 } 752 753 void savevm_skip_section_footers(void) 754 { 755 skip_section_footers = true; 756 } 757 758 /* 759 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 760 */ 761 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 762 uint8_t section_type) 763 { 764 qemu_put_byte(f, section_type); 765 qemu_put_be32(f, se->section_id); 766 767 if (section_type == QEMU_VM_SECTION_FULL || 768 section_type == QEMU_VM_SECTION_START) { 769 /* ID string */ 770 size_t len = strlen(se->idstr); 771 qemu_put_byte(f, len); 772 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 773 774 qemu_put_be32(f, se->instance_id); 775 qemu_put_be32(f, se->version_id); 776 } 777 } 778 779 /* 780 * Write a footer onto device sections that catches cases misformatted device 781 * sections. 782 */ 783 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 784 { 785 if (!skip_section_footers) { 786 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 787 qemu_put_be32(f, se->section_id); 788 } 789 } 790 791 /** 792 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 793 * command and associated data. 794 * 795 * @f: File to send command on 796 * @command: Command type to send 797 * @len: Length of associated data 798 * @data: Data associated with command. 799 */ 800 void qemu_savevm_command_send(QEMUFile *f, 801 enum qemu_vm_cmd command, 802 uint16_t len, 803 uint8_t *data) 804 { 805 trace_savevm_command_send(command, len); 806 qemu_put_byte(f, QEMU_VM_COMMAND); 807 qemu_put_be16(f, (uint16_t)command); 808 qemu_put_be16(f, len); 809 qemu_put_buffer(f, data, len); 810 qemu_fflush(f); 811 } 812 813 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 814 { 815 uint32_t buf; 816 817 trace_savevm_send_ping(value); 818 buf = cpu_to_be32(value); 819 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 820 } 821 822 void qemu_savevm_send_open_return_path(QEMUFile *f) 823 { 824 trace_savevm_send_open_return_path(); 825 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 826 } 827 828 /* We have a buffer of data to send; we don't want that all to be loaded 829 * by the command itself, so the command contains just the length of the 830 * extra buffer that we then send straight after it. 831 * TODO: Must be a better way to organise that 832 * 833 * Returns: 834 * 0 on success 835 * -ve on error 836 */ 837 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 838 { 839 uint32_t tmp; 840 841 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 842 error_report("%s: Unreasonably large packaged state: %zu", 843 __func__, len); 844 return -1; 845 } 846 847 tmp = cpu_to_be32(len); 848 849 trace_qemu_savevm_send_packaged(); 850 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 851 852 qemu_put_buffer(f, buf, len); 853 854 return 0; 855 } 856 857 /* Send prior to any postcopy transfer */ 858 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 859 { 860 uint64_t tmp[2]; 861 tmp[0] = cpu_to_be64(getpagesize()); 862 tmp[1] = cpu_to_be64(1ul << qemu_target_page_bits()); 863 864 trace_qemu_savevm_send_postcopy_advise(); 865 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 16, (uint8_t *)tmp); 866 } 867 868 /* Sent prior to starting the destination running in postcopy, discard pages 869 * that have already been sent but redirtied on the source. 870 * CMD_POSTCOPY_RAM_DISCARD consist of: 871 * byte version (0) 872 * byte Length of name field (not including 0) 873 * n x byte RAM block name 874 * byte 0 terminator (just for safety) 875 * n x Byte ranges within the named RAMBlock 876 * be64 Start of the range 877 * be64 Length 878 * 879 * name: RAMBlock name that these entries are part of 880 * len: Number of page entries 881 * start_list: 'len' addresses 882 * length_list: 'len' addresses 883 * 884 */ 885 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 886 uint16_t len, 887 uint64_t *start_list, 888 uint64_t *length_list) 889 { 890 uint8_t *buf; 891 uint16_t tmplen; 892 uint16_t t; 893 size_t name_len = strlen(name); 894 895 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 896 assert(name_len < 256); 897 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 898 buf[0] = postcopy_ram_discard_version; 899 buf[1] = name_len; 900 memcpy(buf + 2, name, name_len); 901 tmplen = 2 + name_len; 902 buf[tmplen++] = '\0'; 903 904 for (t = 0; t < len; t++) { 905 stq_be_p(buf + tmplen, start_list[t]); 906 tmplen += 8; 907 stq_be_p(buf + tmplen, length_list[t]); 908 tmplen += 8; 909 } 910 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 911 g_free(buf); 912 } 913 914 /* Get the destination into a state where it can receive postcopy data. */ 915 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 916 { 917 trace_savevm_send_postcopy_listen(); 918 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 919 } 920 921 /* Kick the destination into running */ 922 void qemu_savevm_send_postcopy_run(QEMUFile *f) 923 { 924 trace_savevm_send_postcopy_run(); 925 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 926 } 927 928 bool qemu_savevm_state_blocked(Error **errp) 929 { 930 SaveStateEntry *se; 931 932 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 933 if (se->vmsd && se->vmsd->unmigratable) { 934 error_setg(errp, "State blocked by non-migratable device '%s'", 935 se->idstr); 936 return true; 937 } 938 } 939 return false; 940 } 941 942 static bool enforce_config_section(void) 943 { 944 MachineState *machine = MACHINE(qdev_get_machine()); 945 return machine->enforce_config_section; 946 } 947 948 void qemu_savevm_state_header(QEMUFile *f) 949 { 950 trace_savevm_state_header(); 951 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 952 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 953 954 if (!savevm_state.skip_configuration || enforce_config_section()) { 955 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 956 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 957 } 958 959 } 960 961 void qemu_savevm_state_begin(QEMUFile *f, 962 const MigrationParams *params) 963 { 964 SaveStateEntry *se; 965 int ret; 966 967 trace_savevm_state_begin(); 968 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 969 if (!se->ops || !se->ops->set_params) { 970 continue; 971 } 972 se->ops->set_params(params, se->opaque); 973 } 974 975 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 976 if (!se->ops || !se->ops->save_live_setup) { 977 continue; 978 } 979 if (se->ops && se->ops->is_active) { 980 if (!se->ops->is_active(se->opaque)) { 981 continue; 982 } 983 } 984 save_section_header(f, se, QEMU_VM_SECTION_START); 985 986 ret = se->ops->save_live_setup(f, se->opaque); 987 save_section_footer(f, se); 988 if (ret < 0) { 989 qemu_file_set_error(f, ret); 990 break; 991 } 992 } 993 } 994 995 /* 996 * this function has three return values: 997 * negative: there was one error, and we have -errno. 998 * 0 : We haven't finished, caller have to go again 999 * 1 : We have finished, we can go to complete phase 1000 */ 1001 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 1002 { 1003 SaveStateEntry *se; 1004 int ret = 1; 1005 1006 trace_savevm_state_iterate(); 1007 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1008 if (!se->ops || !se->ops->save_live_iterate) { 1009 continue; 1010 } 1011 if (se->ops && se->ops->is_active) { 1012 if (!se->ops->is_active(se->opaque)) { 1013 continue; 1014 } 1015 } 1016 /* 1017 * In the postcopy phase, any device that doesn't know how to 1018 * do postcopy should have saved it's state in the _complete 1019 * call that's already run, it might get confused if we call 1020 * iterate afterwards. 1021 */ 1022 if (postcopy && !se->ops->save_live_complete_postcopy) { 1023 continue; 1024 } 1025 if (qemu_file_rate_limit(f)) { 1026 return 0; 1027 } 1028 trace_savevm_section_start(se->idstr, se->section_id); 1029 1030 save_section_header(f, se, QEMU_VM_SECTION_PART); 1031 1032 ret = se->ops->save_live_iterate(f, se->opaque); 1033 trace_savevm_section_end(se->idstr, se->section_id, ret); 1034 save_section_footer(f, se); 1035 1036 if (ret < 0) { 1037 qemu_file_set_error(f, ret); 1038 } 1039 if (ret <= 0) { 1040 /* Do not proceed to the next vmstate before this one reported 1041 completion of the current stage. This serializes the migration 1042 and reduces the probability that a faster changing state is 1043 synchronized over and over again. */ 1044 break; 1045 } 1046 } 1047 return ret; 1048 } 1049 1050 static bool should_send_vmdesc(void) 1051 { 1052 MachineState *machine = MACHINE(qdev_get_machine()); 1053 bool in_postcopy = migration_in_postcopy(migrate_get_current()); 1054 return !machine->suppress_vmdesc && !in_postcopy; 1055 } 1056 1057 /* 1058 * Calls the save_live_complete_postcopy methods 1059 * causing the last few pages to be sent immediately and doing any associated 1060 * cleanup. 1061 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1062 * all the other devices, but that happens at the point we switch to postcopy. 1063 */ 1064 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1065 { 1066 SaveStateEntry *se; 1067 int ret; 1068 1069 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1070 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1071 continue; 1072 } 1073 if (se->ops && se->ops->is_active) { 1074 if (!se->ops->is_active(se->opaque)) { 1075 continue; 1076 } 1077 } 1078 trace_savevm_section_start(se->idstr, se->section_id); 1079 /* Section type */ 1080 qemu_put_byte(f, QEMU_VM_SECTION_END); 1081 qemu_put_be32(f, se->section_id); 1082 1083 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1084 trace_savevm_section_end(se->idstr, se->section_id, ret); 1085 save_section_footer(f, se); 1086 if (ret < 0) { 1087 qemu_file_set_error(f, ret); 1088 return; 1089 } 1090 } 1091 1092 qemu_put_byte(f, QEMU_VM_EOF); 1093 qemu_fflush(f); 1094 } 1095 1096 void qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only) 1097 { 1098 QJSON *vmdesc; 1099 int vmdesc_len; 1100 SaveStateEntry *se; 1101 int ret; 1102 bool in_postcopy = migration_in_postcopy(migrate_get_current()); 1103 1104 trace_savevm_state_complete_precopy(); 1105 1106 cpu_synchronize_all_states(); 1107 1108 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1109 if (!se->ops || 1110 (in_postcopy && se->ops->save_live_complete_postcopy) || 1111 (in_postcopy && !iterable_only) || 1112 !se->ops->save_live_complete_precopy) { 1113 continue; 1114 } 1115 1116 if (se->ops && se->ops->is_active) { 1117 if (!se->ops->is_active(se->opaque)) { 1118 continue; 1119 } 1120 } 1121 trace_savevm_section_start(se->idstr, se->section_id); 1122 1123 save_section_header(f, se, QEMU_VM_SECTION_END); 1124 1125 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1126 trace_savevm_section_end(se->idstr, se->section_id, ret); 1127 save_section_footer(f, se); 1128 if (ret < 0) { 1129 qemu_file_set_error(f, ret); 1130 return; 1131 } 1132 } 1133 1134 if (iterable_only) { 1135 return; 1136 } 1137 1138 vmdesc = qjson_new(); 1139 json_prop_int(vmdesc, "page_size", TARGET_PAGE_SIZE); 1140 json_start_array(vmdesc, "devices"); 1141 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1142 1143 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1144 continue; 1145 } 1146 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1147 trace_savevm_section_skip(se->idstr, se->section_id); 1148 continue; 1149 } 1150 1151 trace_savevm_section_start(se->idstr, se->section_id); 1152 1153 json_start_object(vmdesc, NULL); 1154 json_prop_str(vmdesc, "name", se->idstr); 1155 json_prop_int(vmdesc, "instance_id", se->instance_id); 1156 1157 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1158 vmstate_save(f, se, vmdesc); 1159 trace_savevm_section_end(se->idstr, se->section_id, 0); 1160 save_section_footer(f, se); 1161 1162 json_end_object(vmdesc); 1163 } 1164 1165 if (!in_postcopy) { 1166 /* Postcopy stream will still be going */ 1167 qemu_put_byte(f, QEMU_VM_EOF); 1168 } 1169 1170 json_end_array(vmdesc); 1171 qjson_finish(vmdesc); 1172 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1173 1174 if (should_send_vmdesc()) { 1175 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1176 qemu_put_be32(f, vmdesc_len); 1177 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1178 } 1179 qjson_destroy(vmdesc); 1180 1181 qemu_fflush(f); 1182 } 1183 1184 /* Give an estimate of the amount left to be transferred, 1185 * the result is split into the amount for units that can and 1186 * for units that can't do postcopy. 1187 */ 1188 void qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size, 1189 uint64_t *res_non_postcopiable, 1190 uint64_t *res_postcopiable) 1191 { 1192 SaveStateEntry *se; 1193 1194 *res_non_postcopiable = 0; 1195 *res_postcopiable = 0; 1196 1197 1198 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1199 if (!se->ops || !se->ops->save_live_pending) { 1200 continue; 1201 } 1202 if (se->ops && se->ops->is_active) { 1203 if (!se->ops->is_active(se->opaque)) { 1204 continue; 1205 } 1206 } 1207 se->ops->save_live_pending(f, se->opaque, max_size, 1208 res_non_postcopiable, res_postcopiable); 1209 } 1210 } 1211 1212 void qemu_savevm_state_cleanup(void) 1213 { 1214 SaveStateEntry *se; 1215 1216 trace_savevm_state_cleanup(); 1217 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1218 if (se->ops && se->ops->cleanup) { 1219 se->ops->cleanup(se->opaque); 1220 } 1221 } 1222 } 1223 1224 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1225 { 1226 int ret; 1227 MigrationParams params = { 1228 .blk = 0, 1229 .shared = 0 1230 }; 1231 MigrationState *ms = migrate_init(¶ms); 1232 MigrationStatus status; 1233 ms->to_dst_file = f; 1234 1235 if (migration_is_blocked(errp)) { 1236 ret = -EINVAL; 1237 goto done; 1238 } 1239 1240 qemu_mutex_unlock_iothread(); 1241 qemu_savevm_state_header(f); 1242 qemu_savevm_state_begin(f, ¶ms); 1243 qemu_mutex_lock_iothread(); 1244 1245 while (qemu_file_get_error(f) == 0) { 1246 if (qemu_savevm_state_iterate(f, false) > 0) { 1247 break; 1248 } 1249 } 1250 1251 ret = qemu_file_get_error(f); 1252 if (ret == 0) { 1253 qemu_savevm_state_complete_precopy(f, false); 1254 ret = qemu_file_get_error(f); 1255 } 1256 qemu_savevm_state_cleanup(); 1257 if (ret != 0) { 1258 error_setg_errno(errp, -ret, "Error while writing VM state"); 1259 } 1260 1261 done: 1262 if (ret != 0) { 1263 status = MIGRATION_STATUS_FAILED; 1264 } else { 1265 status = MIGRATION_STATUS_COMPLETED; 1266 } 1267 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1268 return ret; 1269 } 1270 1271 static int qemu_save_device_state(QEMUFile *f) 1272 { 1273 SaveStateEntry *se; 1274 1275 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1276 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1277 1278 cpu_synchronize_all_states(); 1279 1280 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1281 if (se->is_ram) { 1282 continue; 1283 } 1284 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1285 continue; 1286 } 1287 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1288 continue; 1289 } 1290 1291 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1292 1293 vmstate_save(f, se, NULL); 1294 1295 save_section_footer(f, se); 1296 } 1297 1298 qemu_put_byte(f, QEMU_VM_EOF); 1299 1300 return qemu_file_get_error(f); 1301 } 1302 1303 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1304 { 1305 SaveStateEntry *se; 1306 1307 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1308 if (!strcmp(se->idstr, idstr) && 1309 (instance_id == se->instance_id || 1310 instance_id == se->alias_id)) 1311 return se; 1312 /* Migrating from an older version? */ 1313 if (strstr(se->idstr, idstr) && se->compat) { 1314 if (!strcmp(se->compat->idstr, idstr) && 1315 (instance_id == se->compat->instance_id || 1316 instance_id == se->alias_id)) 1317 return se; 1318 } 1319 } 1320 return NULL; 1321 } 1322 1323 enum LoadVMExitCodes { 1324 /* Allow a command to quit all layers of nested loadvm loops */ 1325 LOADVM_QUIT = 1, 1326 }; 1327 1328 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1329 1330 /* ------ incoming postcopy messages ------ */ 1331 /* 'advise' arrives before any transfers just to tell us that a postcopy 1332 * *might* happen - it might be skipped if precopy transferred everything 1333 * quickly. 1334 */ 1335 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis) 1336 { 1337 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1338 uint64_t remote_hps, remote_tps; 1339 1340 trace_loadvm_postcopy_handle_advise(); 1341 if (ps != POSTCOPY_INCOMING_NONE) { 1342 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1343 return -1; 1344 } 1345 1346 if (!postcopy_ram_supported_by_host()) { 1347 return -1; 1348 } 1349 1350 remote_hps = qemu_get_be64(mis->from_src_file); 1351 if (remote_hps != getpagesize()) { 1352 /* 1353 * Some combinations of mismatch are probably possible but it gets 1354 * a bit more complicated. In particular we need to place whole 1355 * host pages on the dest at once, and we need to ensure that we 1356 * handle dirtying to make sure we never end up sending part of 1357 * a hostpage on it's own. 1358 */ 1359 error_report("Postcopy needs matching host page sizes (s=%d d=%d)", 1360 (int)remote_hps, getpagesize()); 1361 return -1; 1362 } 1363 1364 remote_tps = qemu_get_be64(mis->from_src_file); 1365 if (remote_tps != (1ul << qemu_target_page_bits())) { 1366 /* 1367 * Again, some differences could be dealt with, but for now keep it 1368 * simple. 1369 */ 1370 error_report("Postcopy needs matching target page sizes (s=%d d=%d)", 1371 (int)remote_tps, 1 << qemu_target_page_bits()); 1372 return -1; 1373 } 1374 1375 if (ram_postcopy_incoming_init(mis)) { 1376 return -1; 1377 } 1378 1379 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1380 1381 return 0; 1382 } 1383 1384 /* After postcopy we will be told to throw some pages away since they're 1385 * dirty and will have to be demand fetched. Must happen before CPU is 1386 * started. 1387 * There can be 0..many of these messages, each encoding multiple pages. 1388 */ 1389 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1390 uint16_t len) 1391 { 1392 int tmp; 1393 char ramid[256]; 1394 PostcopyState ps = postcopy_state_get(); 1395 1396 trace_loadvm_postcopy_ram_handle_discard(); 1397 1398 switch (ps) { 1399 case POSTCOPY_INCOMING_ADVISE: 1400 /* 1st discard */ 1401 tmp = postcopy_ram_prepare_discard(mis); 1402 if (tmp) { 1403 return tmp; 1404 } 1405 break; 1406 1407 case POSTCOPY_INCOMING_DISCARD: 1408 /* Expected state */ 1409 break; 1410 1411 default: 1412 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1413 ps); 1414 return -1; 1415 } 1416 /* We're expecting a 1417 * Version (0) 1418 * a RAM ID string (length byte, name, 0 term) 1419 * then at least 1 16 byte chunk 1420 */ 1421 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1422 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1423 return -1; 1424 } 1425 1426 tmp = qemu_get_byte(mis->from_src_file); 1427 if (tmp != postcopy_ram_discard_version) { 1428 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1429 return -1; 1430 } 1431 1432 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1433 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1434 return -1; 1435 } 1436 tmp = qemu_get_byte(mis->from_src_file); 1437 if (tmp != 0) { 1438 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1439 return -1; 1440 } 1441 1442 len -= 3 + strlen(ramid); 1443 if (len % 16) { 1444 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1445 return -1; 1446 } 1447 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1448 while (len) { 1449 uint64_t start_addr, block_length; 1450 start_addr = qemu_get_be64(mis->from_src_file); 1451 block_length = qemu_get_be64(mis->from_src_file); 1452 1453 len -= 16; 1454 int ret = ram_discard_range(mis, ramid, start_addr, 1455 block_length); 1456 if (ret) { 1457 return ret; 1458 } 1459 } 1460 trace_loadvm_postcopy_ram_handle_discard_end(); 1461 1462 return 0; 1463 } 1464 1465 /* 1466 * Triggered by a postcopy_listen command; this thread takes over reading 1467 * the input stream, leaving the main thread free to carry on loading the rest 1468 * of the device state (from RAM). 1469 * (TODO:This could do with being in a postcopy file - but there again it's 1470 * just another input loop, not that postcopy specific) 1471 */ 1472 static void *postcopy_ram_listen_thread(void *opaque) 1473 { 1474 QEMUFile *f = opaque; 1475 MigrationIncomingState *mis = migration_incoming_get_current(); 1476 int load_res; 1477 1478 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1479 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1480 qemu_sem_post(&mis->listen_thread_sem); 1481 trace_postcopy_ram_listen_thread_start(); 1482 1483 /* 1484 * Because we're a thread and not a coroutine we can't yield 1485 * in qemu_file, and thus we must be blocking now. 1486 */ 1487 qemu_file_set_blocking(f, true); 1488 load_res = qemu_loadvm_state_main(f, mis); 1489 /* And non-blocking again so we don't block in any cleanup */ 1490 qemu_file_set_blocking(f, false); 1491 1492 trace_postcopy_ram_listen_thread_exit(); 1493 if (load_res < 0) { 1494 error_report("%s: loadvm failed: %d", __func__, load_res); 1495 qemu_file_set_error(f, load_res); 1496 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1497 MIGRATION_STATUS_FAILED); 1498 } else { 1499 /* 1500 * This looks good, but it's possible that the device loading in the 1501 * main thread hasn't finished yet, and so we might not be in 'RUN' 1502 * state yet; wait for the end of the main thread. 1503 */ 1504 qemu_event_wait(&mis->main_thread_load_event); 1505 } 1506 postcopy_ram_incoming_cleanup(mis); 1507 1508 if (load_res < 0) { 1509 /* 1510 * If something went wrong then we have a bad state so exit; 1511 * depending how far we got it might be possible at this point 1512 * to leave the guest running and fire MCEs for pages that never 1513 * arrived as a desperate recovery step. 1514 */ 1515 exit(EXIT_FAILURE); 1516 } 1517 1518 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1519 MIGRATION_STATUS_COMPLETED); 1520 /* 1521 * If everything has worked fine, then the main thread has waited 1522 * for us to start, and we're the last use of the mis. 1523 * (If something broke then qemu will have to exit anyway since it's 1524 * got a bad migration state). 1525 */ 1526 migration_incoming_state_destroy(); 1527 1528 1529 return NULL; 1530 } 1531 1532 /* After this message we must be able to immediately receive postcopy data */ 1533 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1534 { 1535 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1536 trace_loadvm_postcopy_handle_listen(); 1537 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1538 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1539 return -1; 1540 } 1541 if (ps == POSTCOPY_INCOMING_ADVISE) { 1542 /* 1543 * A rare case, we entered listen without having to do any discards, 1544 * so do the setup that's normally done at the time of the 1st discard. 1545 */ 1546 postcopy_ram_prepare_discard(mis); 1547 } 1548 1549 /* 1550 * Sensitise RAM - can now generate requests for blocks that don't exist 1551 * However, at this point the CPU shouldn't be running, and the IO 1552 * shouldn't be doing anything yet so don't actually expect requests 1553 */ 1554 if (postcopy_ram_enable_notify(mis)) { 1555 return -1; 1556 } 1557 1558 if (mis->have_listen_thread) { 1559 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1560 return -1; 1561 } 1562 1563 mis->have_listen_thread = true; 1564 /* Start up the listening thread and wait for it to signal ready */ 1565 qemu_sem_init(&mis->listen_thread_sem, 0); 1566 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1567 postcopy_ram_listen_thread, mis->from_src_file, 1568 QEMU_THREAD_DETACHED); 1569 qemu_sem_wait(&mis->listen_thread_sem); 1570 qemu_sem_destroy(&mis->listen_thread_sem); 1571 1572 return 0; 1573 } 1574 1575 1576 typedef struct { 1577 QEMUBH *bh; 1578 } HandleRunBhData; 1579 1580 static void loadvm_postcopy_handle_run_bh(void *opaque) 1581 { 1582 Error *local_err = NULL; 1583 HandleRunBhData *data = opaque; 1584 1585 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1586 * in migration.c 1587 */ 1588 cpu_synchronize_all_post_init(); 1589 1590 qemu_announce_self(); 1591 1592 /* Make sure all file formats flush their mutable metadata */ 1593 bdrv_invalidate_cache_all(&local_err); 1594 if (local_err) { 1595 error_report_err(local_err); 1596 } 1597 1598 trace_loadvm_postcopy_handle_run_cpu_sync(); 1599 cpu_synchronize_all_post_init(); 1600 1601 trace_loadvm_postcopy_handle_run_vmstart(); 1602 1603 if (autostart) { 1604 /* Hold onto your hats, starting the CPU */ 1605 vm_start(); 1606 } else { 1607 /* leave it paused and let management decide when to start the CPU */ 1608 runstate_set(RUN_STATE_PAUSED); 1609 } 1610 1611 qemu_bh_delete(data->bh); 1612 g_free(data); 1613 } 1614 1615 /* After all discards we can start running and asking for pages */ 1616 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1617 { 1618 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1619 HandleRunBhData *data; 1620 1621 trace_loadvm_postcopy_handle_run(); 1622 if (ps != POSTCOPY_INCOMING_LISTENING) { 1623 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1624 return -1; 1625 } 1626 1627 data = g_new(HandleRunBhData, 1); 1628 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1629 qemu_bh_schedule(data->bh); 1630 1631 /* We need to finish reading the stream from the package 1632 * and also stop reading anything more from the stream that loaded the 1633 * package (since it's now being read by the listener thread). 1634 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1635 */ 1636 return LOADVM_QUIT; 1637 } 1638 1639 /** 1640 * Immediately following this command is a blob of data containing an embedded 1641 * chunk of migration stream; read it and load it. 1642 * 1643 * @mis: Incoming state 1644 * @length: Length of packaged data to read 1645 * 1646 * Returns: Negative values on error 1647 * 1648 */ 1649 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1650 { 1651 int ret; 1652 size_t length; 1653 QIOChannelBuffer *bioc; 1654 1655 length = qemu_get_be32(mis->from_src_file); 1656 trace_loadvm_handle_cmd_packaged(length); 1657 1658 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1659 error_report("Unreasonably large packaged state: %zu", length); 1660 return -1; 1661 } 1662 1663 bioc = qio_channel_buffer_new(length); 1664 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 1665 ret = qemu_get_buffer(mis->from_src_file, 1666 bioc->data, 1667 length); 1668 if (ret != length) { 1669 object_unref(OBJECT(bioc)); 1670 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1671 ret, length); 1672 return (ret < 0) ? ret : -EAGAIN; 1673 } 1674 bioc->usage += length; 1675 trace_loadvm_handle_cmd_packaged_received(ret); 1676 1677 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1678 1679 ret = qemu_loadvm_state_main(packf, mis); 1680 trace_loadvm_handle_cmd_packaged_main(ret); 1681 qemu_fclose(packf); 1682 object_unref(OBJECT(bioc)); 1683 1684 return ret; 1685 } 1686 1687 /* 1688 * Process an incoming 'QEMU_VM_COMMAND' 1689 * 0 just a normal return 1690 * LOADVM_QUIT All good, but exit the loop 1691 * <0 Error 1692 */ 1693 static int loadvm_process_command(QEMUFile *f) 1694 { 1695 MigrationIncomingState *mis = migration_incoming_get_current(); 1696 uint16_t cmd; 1697 uint16_t len; 1698 uint32_t tmp32; 1699 1700 cmd = qemu_get_be16(f); 1701 len = qemu_get_be16(f); 1702 1703 trace_loadvm_process_command(cmd, len); 1704 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1705 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1706 return -EINVAL; 1707 } 1708 1709 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1710 error_report("%s received with bad length - expecting %zu, got %d", 1711 mig_cmd_args[cmd].name, 1712 (size_t)mig_cmd_args[cmd].len, len); 1713 return -ERANGE; 1714 } 1715 1716 switch (cmd) { 1717 case MIG_CMD_OPEN_RETURN_PATH: 1718 if (mis->to_src_file) { 1719 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1720 /* Not really a problem, so don't give up */ 1721 return 0; 1722 } 1723 mis->to_src_file = qemu_file_get_return_path(f); 1724 if (!mis->to_src_file) { 1725 error_report("CMD_OPEN_RETURN_PATH failed"); 1726 return -1; 1727 } 1728 break; 1729 1730 case MIG_CMD_PING: 1731 tmp32 = qemu_get_be32(f); 1732 trace_loadvm_process_command_ping(tmp32); 1733 if (!mis->to_src_file) { 1734 error_report("CMD_PING (0x%x) received with no return path", 1735 tmp32); 1736 return -1; 1737 } 1738 migrate_send_rp_pong(mis, tmp32); 1739 break; 1740 1741 case MIG_CMD_PACKAGED: 1742 return loadvm_handle_cmd_packaged(mis); 1743 1744 case MIG_CMD_POSTCOPY_ADVISE: 1745 return loadvm_postcopy_handle_advise(mis); 1746 1747 case MIG_CMD_POSTCOPY_LISTEN: 1748 return loadvm_postcopy_handle_listen(mis); 1749 1750 case MIG_CMD_POSTCOPY_RUN: 1751 return loadvm_postcopy_handle_run(mis); 1752 1753 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1754 return loadvm_postcopy_ram_handle_discard(mis, len); 1755 } 1756 1757 return 0; 1758 } 1759 1760 struct LoadStateEntry { 1761 QLIST_ENTRY(LoadStateEntry) entry; 1762 SaveStateEntry *se; 1763 int section_id; 1764 int version_id; 1765 }; 1766 1767 /* 1768 * Read a footer off the wire and check that it matches the expected section 1769 * 1770 * Returns: true if the footer was good 1771 * false if there is a problem (and calls error_report to say why) 1772 */ 1773 static bool check_section_footer(QEMUFile *f, LoadStateEntry *le) 1774 { 1775 uint8_t read_mark; 1776 uint32_t read_section_id; 1777 1778 if (skip_section_footers) { 1779 /* No footer to check */ 1780 return true; 1781 } 1782 1783 read_mark = qemu_get_byte(f); 1784 1785 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1786 error_report("Missing section footer for %s", le->se->idstr); 1787 return false; 1788 } 1789 1790 read_section_id = qemu_get_be32(f); 1791 if (read_section_id != le->section_id) { 1792 error_report("Mismatched section id in footer for %s -" 1793 " read 0x%x expected 0x%x", 1794 le->se->idstr, read_section_id, le->section_id); 1795 return false; 1796 } 1797 1798 /* All good */ 1799 return true; 1800 } 1801 1802 void loadvm_free_handlers(MigrationIncomingState *mis) 1803 { 1804 LoadStateEntry *le, *new_le; 1805 1806 QLIST_FOREACH_SAFE(le, &mis->loadvm_handlers, entry, new_le) { 1807 QLIST_REMOVE(le, entry); 1808 g_free(le); 1809 } 1810 } 1811 1812 static int 1813 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1814 { 1815 uint32_t instance_id, version_id, section_id; 1816 SaveStateEntry *se; 1817 LoadStateEntry *le; 1818 char idstr[256]; 1819 int ret; 1820 1821 /* Read section start */ 1822 section_id = qemu_get_be32(f); 1823 if (!qemu_get_counted_string(f, idstr)) { 1824 error_report("Unable to read ID string for section %u", 1825 section_id); 1826 return -EINVAL; 1827 } 1828 instance_id = qemu_get_be32(f); 1829 version_id = qemu_get_be32(f); 1830 1831 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1832 instance_id, version_id); 1833 /* Find savevm section */ 1834 se = find_se(idstr, instance_id); 1835 if (se == NULL) { 1836 error_report("Unknown savevm section or instance '%s' %d", 1837 idstr, instance_id); 1838 return -EINVAL; 1839 } 1840 1841 /* Validate version */ 1842 if (version_id > se->version_id) { 1843 error_report("savevm: unsupported version %d for '%s' v%d", 1844 version_id, idstr, se->version_id); 1845 return -EINVAL; 1846 } 1847 1848 /* Validate if it is a device's state */ 1849 if (xen_enabled() && se->is_ram) { 1850 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1851 return -EINVAL; 1852 } 1853 1854 /* Add entry */ 1855 le = g_malloc0(sizeof(*le)); 1856 1857 le->se = se; 1858 le->section_id = section_id; 1859 le->version_id = version_id; 1860 QLIST_INSERT_HEAD(&mis->loadvm_handlers, le, entry); 1861 1862 ret = vmstate_load(f, le->se, le->version_id); 1863 if (ret < 0) { 1864 error_report("error while loading state for instance 0x%x of" 1865 " device '%s'", instance_id, idstr); 1866 return ret; 1867 } 1868 if (!check_section_footer(f, le)) { 1869 return -EINVAL; 1870 } 1871 1872 return 0; 1873 } 1874 1875 static int 1876 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1877 { 1878 uint32_t section_id; 1879 LoadStateEntry *le; 1880 int ret; 1881 1882 section_id = qemu_get_be32(f); 1883 1884 trace_qemu_loadvm_state_section_partend(section_id); 1885 QLIST_FOREACH(le, &mis->loadvm_handlers, entry) { 1886 if (le->section_id == section_id) { 1887 break; 1888 } 1889 } 1890 if (le == NULL) { 1891 error_report("Unknown savevm section %d", section_id); 1892 return -EINVAL; 1893 } 1894 1895 ret = vmstate_load(f, le->se, le->version_id); 1896 if (ret < 0) { 1897 error_report("error while loading state section id %d(%s)", 1898 section_id, le->se->idstr); 1899 return ret; 1900 } 1901 if (!check_section_footer(f, le)) { 1902 return -EINVAL; 1903 } 1904 1905 return 0; 1906 } 1907 1908 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 1909 { 1910 uint8_t section_type; 1911 int ret = 0; 1912 1913 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { 1914 ret = 0; 1915 trace_qemu_loadvm_state_section(section_type); 1916 switch (section_type) { 1917 case QEMU_VM_SECTION_START: 1918 case QEMU_VM_SECTION_FULL: 1919 ret = qemu_loadvm_section_start_full(f, mis); 1920 if (ret < 0) { 1921 goto out; 1922 } 1923 break; 1924 case QEMU_VM_SECTION_PART: 1925 case QEMU_VM_SECTION_END: 1926 ret = qemu_loadvm_section_part_end(f, mis); 1927 if (ret < 0) { 1928 goto out; 1929 } 1930 break; 1931 case QEMU_VM_COMMAND: 1932 ret = loadvm_process_command(f); 1933 trace_qemu_loadvm_state_section_command(ret); 1934 if ((ret < 0) || (ret & LOADVM_QUIT)) { 1935 goto out; 1936 } 1937 break; 1938 default: 1939 error_report("Unknown savevm section type %d", section_type); 1940 ret = -EINVAL; 1941 goto out; 1942 } 1943 } 1944 1945 out: 1946 if (ret < 0) { 1947 qemu_file_set_error(f, ret); 1948 } 1949 return ret; 1950 } 1951 1952 int qemu_loadvm_state(QEMUFile *f) 1953 { 1954 MigrationIncomingState *mis = migration_incoming_get_current(); 1955 Error *local_err = NULL; 1956 unsigned int v; 1957 int ret; 1958 1959 if (qemu_savevm_state_blocked(&local_err)) { 1960 error_report_err(local_err); 1961 return -EINVAL; 1962 } 1963 1964 v = qemu_get_be32(f); 1965 if (v != QEMU_VM_FILE_MAGIC) { 1966 error_report("Not a migration stream"); 1967 return -EINVAL; 1968 } 1969 1970 v = qemu_get_be32(f); 1971 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 1972 error_report("SaveVM v2 format is obsolete and don't work anymore"); 1973 return -ENOTSUP; 1974 } 1975 if (v != QEMU_VM_FILE_VERSION) { 1976 error_report("Unsupported migration stream version"); 1977 return -ENOTSUP; 1978 } 1979 1980 if (!savevm_state.skip_configuration || enforce_config_section()) { 1981 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 1982 error_report("Configuration section missing"); 1983 return -EINVAL; 1984 } 1985 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 1986 1987 if (ret) { 1988 return ret; 1989 } 1990 } 1991 1992 ret = qemu_loadvm_state_main(f, mis); 1993 qemu_event_set(&mis->main_thread_load_event); 1994 1995 trace_qemu_loadvm_state_post_main(ret); 1996 1997 if (mis->have_listen_thread) { 1998 /* Listen thread still going, can't clean up yet */ 1999 return ret; 2000 } 2001 2002 if (ret == 0) { 2003 ret = qemu_file_get_error(f); 2004 } 2005 2006 /* 2007 * Try to read in the VMDESC section as well, so that dumping tools that 2008 * intercept our migration stream have the chance to see it. 2009 */ 2010 2011 /* We've got to be careful; if we don't read the data and just shut the fd 2012 * then the sender can error if we close while it's still sending. 2013 * We also mustn't read data that isn't there; some transports (RDMA) 2014 * will stall waiting for that data when the source has already closed. 2015 */ 2016 if (ret == 0 && should_send_vmdesc()) { 2017 uint8_t *buf; 2018 uint32_t size; 2019 uint8_t section_type = qemu_get_byte(f); 2020 2021 if (section_type != QEMU_VM_VMDESCRIPTION) { 2022 error_report("Expected vmdescription section, but got %d", 2023 section_type); 2024 /* 2025 * It doesn't seem worth failing at this point since 2026 * we apparently have an otherwise valid VM state 2027 */ 2028 } else { 2029 buf = g_malloc(0x1000); 2030 size = qemu_get_be32(f); 2031 2032 while (size > 0) { 2033 uint32_t read_chunk = MIN(size, 0x1000); 2034 qemu_get_buffer(f, buf, read_chunk); 2035 size -= read_chunk; 2036 } 2037 g_free(buf); 2038 } 2039 } 2040 2041 cpu_synchronize_all_post_init(); 2042 2043 return ret; 2044 } 2045 2046 int save_vmstate(Monitor *mon, const char *name) 2047 { 2048 BlockDriverState *bs, *bs1; 2049 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 2050 int ret = -1; 2051 QEMUFile *f; 2052 int saved_vm_running; 2053 uint64_t vm_state_size; 2054 qemu_timeval tv; 2055 struct tm tm; 2056 Error *local_err = NULL; 2057 AioContext *aio_context; 2058 2059 if (!bdrv_all_can_snapshot(&bs)) { 2060 monitor_printf(mon, "Device '%s' is writable but does not " 2061 "support snapshots.\n", bdrv_get_device_name(bs)); 2062 return ret; 2063 } 2064 2065 /* Delete old snapshots of the same name */ 2066 if (name) { 2067 ret = bdrv_all_delete_snapshot(name, &bs1, &local_err); 2068 if (ret < 0) { 2069 error_reportf_err(local_err, 2070 "Error while deleting snapshot on device '%s': ", 2071 bdrv_get_device_name(bs1)); 2072 return ret; 2073 } 2074 } 2075 2076 bs = bdrv_all_find_vmstate_bs(); 2077 if (bs == NULL) { 2078 monitor_printf(mon, "No block device can accept snapshots\n"); 2079 return ret; 2080 } 2081 aio_context = bdrv_get_aio_context(bs); 2082 2083 saved_vm_running = runstate_is_running(); 2084 2085 ret = global_state_store(); 2086 if (ret) { 2087 monitor_printf(mon, "Error saving global state\n"); 2088 return ret; 2089 } 2090 vm_stop(RUN_STATE_SAVE_VM); 2091 2092 aio_context_acquire(aio_context); 2093 2094 memset(sn, 0, sizeof(*sn)); 2095 2096 /* fill auxiliary fields */ 2097 qemu_gettimeofday(&tv); 2098 sn->date_sec = tv.tv_sec; 2099 sn->date_nsec = tv.tv_usec * 1000; 2100 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2101 2102 if (name) { 2103 ret = bdrv_snapshot_find(bs, old_sn, name); 2104 if (ret >= 0) { 2105 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2106 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2107 } else { 2108 pstrcpy(sn->name, sizeof(sn->name), name); 2109 } 2110 } else { 2111 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2112 localtime_r((const time_t *)&tv.tv_sec, &tm); 2113 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2114 } 2115 2116 /* save the VM state */ 2117 f = qemu_fopen_bdrv(bs, 1); 2118 if (!f) { 2119 monitor_printf(mon, "Could not open VM state file\n"); 2120 goto the_end; 2121 } 2122 ret = qemu_savevm_state(f, &local_err); 2123 vm_state_size = qemu_ftell(f); 2124 qemu_fclose(f); 2125 if (ret < 0) { 2126 error_report_err(local_err); 2127 goto the_end; 2128 } 2129 2130 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2131 if (ret < 0) { 2132 monitor_printf(mon, "Error while creating snapshot on '%s'\n", 2133 bdrv_get_device_name(bs)); 2134 goto the_end; 2135 } 2136 2137 ret = 0; 2138 2139 the_end: 2140 aio_context_release(aio_context); 2141 if (saved_vm_running) { 2142 vm_start(); 2143 } 2144 return ret; 2145 } 2146 2147 void hmp_savevm(Monitor *mon, const QDict *qdict) 2148 { 2149 save_vmstate(mon, qdict_get_try_str(qdict, "name")); 2150 } 2151 2152 void qmp_xen_save_devices_state(const char *filename, Error **errp) 2153 { 2154 QEMUFile *f; 2155 QIOChannelFile *ioc; 2156 int saved_vm_running; 2157 int ret; 2158 2159 saved_vm_running = runstate_is_running(); 2160 vm_stop(RUN_STATE_SAVE_VM); 2161 global_state_store_running(); 2162 2163 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2164 if (!ioc) { 2165 goto the_end; 2166 } 2167 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 2168 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2169 ret = qemu_save_device_state(f); 2170 qemu_fclose(f); 2171 if (ret < 0) { 2172 error_setg(errp, QERR_IO_ERROR); 2173 } 2174 2175 the_end: 2176 if (saved_vm_running) { 2177 vm_start(); 2178 } 2179 } 2180 2181 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2182 { 2183 QEMUFile *f; 2184 QIOChannelFile *ioc; 2185 int ret; 2186 2187 /* Guest must be paused before loading the device state; the RAM state 2188 * will already have been loaded by xc 2189 */ 2190 if (runstate_is_running()) { 2191 error_setg(errp, "Cannot update device state while vm is running"); 2192 return; 2193 } 2194 vm_stop(RUN_STATE_RESTORE_VM); 2195 2196 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2197 if (!ioc) { 2198 return; 2199 } 2200 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 2201 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2202 2203 ret = qemu_loadvm_state(f); 2204 qemu_fclose(f); 2205 if (ret < 0) { 2206 error_setg(errp, QERR_IO_ERROR); 2207 } 2208 migration_incoming_state_destroy(); 2209 } 2210 2211 int load_vmstate(const char *name) 2212 { 2213 BlockDriverState *bs, *bs_vm_state; 2214 QEMUSnapshotInfo sn; 2215 QEMUFile *f; 2216 int ret; 2217 AioContext *aio_context; 2218 MigrationIncomingState *mis = migration_incoming_get_current(); 2219 2220 if (!bdrv_all_can_snapshot(&bs)) { 2221 error_report("Device '%s' is writable but does not support snapshots.", 2222 bdrv_get_device_name(bs)); 2223 return -ENOTSUP; 2224 } 2225 ret = bdrv_all_find_snapshot(name, &bs); 2226 if (ret < 0) { 2227 error_report("Device '%s' does not have the requested snapshot '%s'", 2228 bdrv_get_device_name(bs), name); 2229 return ret; 2230 } 2231 2232 bs_vm_state = bdrv_all_find_vmstate_bs(); 2233 if (!bs_vm_state) { 2234 error_report("No block device supports snapshots"); 2235 return -ENOTSUP; 2236 } 2237 aio_context = bdrv_get_aio_context(bs_vm_state); 2238 2239 /* Don't even try to load empty VM states */ 2240 aio_context_acquire(aio_context); 2241 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2242 aio_context_release(aio_context); 2243 if (ret < 0) { 2244 return ret; 2245 } else if (sn.vm_state_size == 0) { 2246 error_report("This is a disk-only snapshot. Revert to it offline " 2247 "using qemu-img."); 2248 return -EINVAL; 2249 } 2250 2251 /* Flush all IO requests so they don't interfere with the new state. */ 2252 bdrv_drain_all(); 2253 2254 ret = bdrv_all_goto_snapshot(name, &bs); 2255 if (ret < 0) { 2256 error_report("Error %d while activating snapshot '%s' on '%s'", 2257 ret, name, bdrv_get_device_name(bs)); 2258 return ret; 2259 } 2260 2261 /* restore the VM state */ 2262 f = qemu_fopen_bdrv(bs_vm_state, 0); 2263 if (!f) { 2264 error_report("Could not open VM state file"); 2265 return -EINVAL; 2266 } 2267 2268 qemu_system_reset(VMRESET_SILENT); 2269 mis->from_src_file = f; 2270 2271 aio_context_acquire(aio_context); 2272 ret = qemu_loadvm_state(f); 2273 qemu_fclose(f); 2274 aio_context_release(aio_context); 2275 2276 migration_incoming_state_destroy(); 2277 if (ret < 0) { 2278 error_report("Error %d while loading VM state", ret); 2279 return ret; 2280 } 2281 2282 return 0; 2283 } 2284 2285 void hmp_delvm(Monitor *mon, const QDict *qdict) 2286 { 2287 BlockDriverState *bs; 2288 Error *err; 2289 const char *name = qdict_get_str(qdict, "name"); 2290 2291 if (bdrv_all_delete_snapshot(name, &bs, &err) < 0) { 2292 error_reportf_err(err, 2293 "Error while deleting snapshot on device '%s': ", 2294 bdrv_get_device_name(bs)); 2295 } 2296 } 2297 2298 void hmp_info_snapshots(Monitor *mon, const QDict *qdict) 2299 { 2300 BlockDriverState *bs, *bs1; 2301 BdrvNextIterator it1; 2302 QEMUSnapshotInfo *sn_tab, *sn; 2303 bool no_snapshot = true; 2304 int nb_sns, i; 2305 int total; 2306 int *global_snapshots; 2307 AioContext *aio_context; 2308 2309 typedef struct SnapshotEntry { 2310 QEMUSnapshotInfo sn; 2311 QTAILQ_ENTRY(SnapshotEntry) next; 2312 } SnapshotEntry; 2313 2314 typedef struct ImageEntry { 2315 const char *imagename; 2316 QTAILQ_ENTRY(ImageEntry) next; 2317 QTAILQ_HEAD(, SnapshotEntry) snapshots; 2318 } ImageEntry; 2319 2320 QTAILQ_HEAD(, ImageEntry) image_list = 2321 QTAILQ_HEAD_INITIALIZER(image_list); 2322 2323 ImageEntry *image_entry, *next_ie; 2324 SnapshotEntry *snapshot_entry; 2325 2326 bs = bdrv_all_find_vmstate_bs(); 2327 if (!bs) { 2328 monitor_printf(mon, "No available block device supports snapshots\n"); 2329 return; 2330 } 2331 aio_context = bdrv_get_aio_context(bs); 2332 2333 aio_context_acquire(aio_context); 2334 nb_sns = bdrv_snapshot_list(bs, &sn_tab); 2335 aio_context_release(aio_context); 2336 2337 if (nb_sns < 0) { 2338 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns); 2339 return; 2340 } 2341 2342 for (bs1 = bdrv_first(&it1); bs1; bs1 = bdrv_next(&it1)) { 2343 int bs1_nb_sns = 0; 2344 ImageEntry *ie; 2345 SnapshotEntry *se; 2346 AioContext *ctx = bdrv_get_aio_context(bs1); 2347 2348 aio_context_acquire(ctx); 2349 if (bdrv_can_snapshot(bs1)) { 2350 sn = NULL; 2351 bs1_nb_sns = bdrv_snapshot_list(bs1, &sn); 2352 if (bs1_nb_sns > 0) { 2353 no_snapshot = false; 2354 ie = g_new0(ImageEntry, 1); 2355 ie->imagename = bdrv_get_device_name(bs1); 2356 QTAILQ_INIT(&ie->snapshots); 2357 QTAILQ_INSERT_TAIL(&image_list, ie, next); 2358 for (i = 0; i < bs1_nb_sns; i++) { 2359 se = g_new0(SnapshotEntry, 1); 2360 se->sn = sn[i]; 2361 QTAILQ_INSERT_TAIL(&ie->snapshots, se, next); 2362 } 2363 } 2364 g_free(sn); 2365 } 2366 aio_context_release(ctx); 2367 } 2368 2369 if (no_snapshot) { 2370 monitor_printf(mon, "There is no snapshot available.\n"); 2371 return; 2372 } 2373 2374 global_snapshots = g_new0(int, nb_sns); 2375 total = 0; 2376 for (i = 0; i < nb_sns; i++) { 2377 SnapshotEntry *next_sn; 2378 if (bdrv_all_find_snapshot(sn_tab[i].name, &bs1) == 0) { 2379 global_snapshots[total] = i; 2380 total++; 2381 QTAILQ_FOREACH(image_entry, &image_list, next) { 2382 QTAILQ_FOREACH_SAFE(snapshot_entry, &image_entry->snapshots, 2383 next, next_sn) { 2384 if (!strcmp(sn_tab[i].name, snapshot_entry->sn.name)) { 2385 QTAILQ_REMOVE(&image_entry->snapshots, snapshot_entry, 2386 next); 2387 g_free(snapshot_entry); 2388 } 2389 } 2390 } 2391 } 2392 } 2393 2394 monitor_printf(mon, "List of snapshots present on all disks:\n"); 2395 2396 if (total > 0) { 2397 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL); 2398 monitor_printf(mon, "\n"); 2399 for (i = 0; i < total; i++) { 2400 sn = &sn_tab[global_snapshots[i]]; 2401 /* The ID is not guaranteed to be the same on all images, so 2402 * overwrite it. 2403 */ 2404 pstrcpy(sn->id_str, sizeof(sn->id_str), "--"); 2405 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, sn); 2406 monitor_printf(mon, "\n"); 2407 } 2408 } else { 2409 monitor_printf(mon, "None\n"); 2410 } 2411 2412 QTAILQ_FOREACH(image_entry, &image_list, next) { 2413 if (QTAILQ_EMPTY(&image_entry->snapshots)) { 2414 continue; 2415 } 2416 monitor_printf(mon, 2417 "\nList of partial (non-loadable) snapshots on '%s':\n", 2418 image_entry->imagename); 2419 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL); 2420 monitor_printf(mon, "\n"); 2421 QTAILQ_FOREACH(snapshot_entry, &image_entry->snapshots, next) { 2422 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, 2423 &snapshot_entry->sn); 2424 monitor_printf(mon, "\n"); 2425 } 2426 } 2427 2428 QTAILQ_FOREACH_SAFE(image_entry, &image_list, next, next_ie) { 2429 SnapshotEntry *next_sn; 2430 QTAILQ_FOREACH_SAFE(snapshot_entry, &image_entry->snapshots, next, 2431 next_sn) { 2432 g_free(snapshot_entry); 2433 } 2434 g_free(image_entry); 2435 } 2436 g_free(sn_tab); 2437 g_free(global_snapshots); 2438 2439 } 2440 2441 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2442 { 2443 qemu_ram_set_idstr(mr->ram_block, 2444 memory_region_name(mr), dev); 2445 } 2446 2447 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2448 { 2449 qemu_ram_unset_idstr(mr->ram_block); 2450 } 2451 2452 void vmstate_register_ram_global(MemoryRegion *mr) 2453 { 2454 vmstate_register_ram(mr, NULL); 2455 } 2456