1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include "hw/boards.h" 32 #include "hw/hw.h" 33 #include "hw/qdev.h" 34 #include "hw/xen/xen.h" 35 #include "net/net.h" 36 #include "monitor/monitor.h" 37 #include "sysemu/sysemu.h" 38 #include "qemu/timer.h" 39 #include "audio/audio.h" 40 #include "migration/migration.h" 41 #include "migration/postcopy-ram.h" 42 #include "qapi/qmp/qerror.h" 43 #include "qemu/error-report.h" 44 #include "qemu/sockets.h" 45 #include "qemu/queue.h" 46 #include "sysemu/cpus.h" 47 #include "exec/memory.h" 48 #include "qmp-commands.h" 49 #include "trace.h" 50 #include "qemu/bitops.h" 51 #include "qemu/iov.h" 52 #include "block/snapshot.h" 53 #include "block/qapi.h" 54 #include "qemu/cutils.h" 55 #include "io/channel-buffer.h" 56 #include "io/channel-file.h" 57 58 #ifndef ETH_P_RARP 59 #define ETH_P_RARP 0x8035 60 #endif 61 #define ARP_HTYPE_ETH 0x0001 62 #define ARP_PTYPE_IP 0x0800 63 #define ARP_OP_REQUEST_REV 0x3 64 65 const unsigned int postcopy_ram_discard_version = 0; 66 67 static bool skip_section_footers; 68 69 static struct mig_cmd_args { 70 ssize_t len; /* -1 = variable */ 71 const char *name; 72 } mig_cmd_args[] = { 73 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 74 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 75 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 76 [MIG_CMD_POSTCOPY_ADVISE] = { .len = 16, .name = "POSTCOPY_ADVISE" }, 77 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 78 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 79 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 80 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 81 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 82 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 83 }; 84 85 static int announce_self_create(uint8_t *buf, 86 uint8_t *mac_addr) 87 { 88 /* Ethernet header. */ 89 memset(buf, 0xff, 6); /* destination MAC addr */ 90 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 91 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 92 93 /* RARP header. */ 94 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 95 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 96 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 97 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 98 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 99 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 100 memset(buf + 28, 0x00, 4); /* source protocol addr */ 101 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 102 memset(buf + 38, 0x00, 4); /* target protocol addr */ 103 104 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 105 memset(buf + 42, 0x00, 18); 106 107 return 60; /* len (FCS will be added by hardware) */ 108 } 109 110 static void qemu_announce_self_iter(NICState *nic, void *opaque) 111 { 112 uint8_t buf[60]; 113 int len; 114 115 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 116 len = announce_self_create(buf, nic->conf->macaddr.a); 117 118 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 119 } 120 121 122 static void qemu_announce_self_once(void *opaque) 123 { 124 static int count = SELF_ANNOUNCE_ROUNDS; 125 QEMUTimer *timer = *(QEMUTimer **)opaque; 126 127 qemu_foreach_nic(qemu_announce_self_iter, NULL); 128 129 if (--count) { 130 /* delay 50ms, 150ms, 250ms, ... */ 131 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 132 self_announce_delay(count)); 133 } else { 134 timer_del(timer); 135 timer_free(timer); 136 } 137 } 138 139 void qemu_announce_self(void) 140 { 141 static QEMUTimer *timer; 142 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 143 qemu_announce_self_once(&timer); 144 } 145 146 /***********************************************************/ 147 /* savevm/loadvm support */ 148 149 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 150 int64_t pos) 151 { 152 int ret; 153 QEMUIOVector qiov; 154 155 qemu_iovec_init_external(&qiov, iov, iovcnt); 156 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 157 if (ret < 0) { 158 return ret; 159 } 160 161 return qiov.size; 162 } 163 164 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 165 size_t size) 166 { 167 return bdrv_load_vmstate(opaque, buf, pos, size); 168 } 169 170 static int bdrv_fclose(void *opaque) 171 { 172 return bdrv_flush(opaque); 173 } 174 175 static const QEMUFileOps bdrv_read_ops = { 176 .get_buffer = block_get_buffer, 177 .close = bdrv_fclose 178 }; 179 180 static const QEMUFileOps bdrv_write_ops = { 181 .writev_buffer = block_writev_buffer, 182 .close = bdrv_fclose 183 }; 184 185 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 186 { 187 if (is_writable) { 188 return qemu_fopen_ops(bs, &bdrv_write_ops); 189 } 190 return qemu_fopen_ops(bs, &bdrv_read_ops); 191 } 192 193 194 /* QEMUFile timer support. 195 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 196 */ 197 198 void timer_put(QEMUFile *f, QEMUTimer *ts) 199 { 200 uint64_t expire_time; 201 202 expire_time = timer_expire_time_ns(ts); 203 qemu_put_be64(f, expire_time); 204 } 205 206 void timer_get(QEMUFile *f, QEMUTimer *ts) 207 { 208 uint64_t expire_time; 209 210 expire_time = qemu_get_be64(f); 211 if (expire_time != -1) { 212 timer_mod_ns(ts, expire_time); 213 } else { 214 timer_del(ts); 215 } 216 } 217 218 219 /* VMState timer support. 220 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 221 */ 222 223 static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field) 224 { 225 QEMUTimer *v = pv; 226 timer_get(f, v); 227 return 0; 228 } 229 230 static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field, 231 QJSON *vmdesc) 232 { 233 QEMUTimer *v = pv; 234 timer_put(f, v); 235 236 return 0; 237 } 238 239 const VMStateInfo vmstate_info_timer = { 240 .name = "timer", 241 .get = get_timer, 242 .put = put_timer, 243 }; 244 245 246 typedef struct CompatEntry { 247 char idstr[256]; 248 int instance_id; 249 } CompatEntry; 250 251 typedef struct SaveStateEntry { 252 QTAILQ_ENTRY(SaveStateEntry) entry; 253 char idstr[256]; 254 int instance_id; 255 int alias_id; 256 int version_id; 257 int section_id; 258 SaveVMHandlers *ops; 259 const VMStateDescription *vmsd; 260 void *opaque; 261 CompatEntry *compat; 262 int is_ram; 263 } SaveStateEntry; 264 265 typedef struct SaveState { 266 QTAILQ_HEAD(, SaveStateEntry) handlers; 267 int global_section_id; 268 bool skip_configuration; 269 uint32_t len; 270 const char *name; 271 uint32_t target_page_bits; 272 } SaveState; 273 274 static SaveState savevm_state = { 275 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 276 .global_section_id = 0, 277 .skip_configuration = false, 278 }; 279 280 void savevm_skip_configuration(void) 281 { 282 savevm_state.skip_configuration = true; 283 } 284 285 286 static void configuration_pre_save(void *opaque) 287 { 288 SaveState *state = opaque; 289 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 290 291 state->len = strlen(current_name); 292 state->name = current_name; 293 state->target_page_bits = TARGET_PAGE_BITS; 294 } 295 296 static int configuration_pre_load(void *opaque) 297 { 298 SaveState *state = opaque; 299 300 /* If there is no target-page-bits subsection it means the source 301 * predates the variable-target-page-bits support and is using the 302 * minimum possible value for this CPU. 303 */ 304 state->target_page_bits = TARGET_PAGE_BITS_MIN; 305 return 0; 306 } 307 308 static int configuration_post_load(void *opaque, int version_id) 309 { 310 SaveState *state = opaque; 311 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 312 313 if (strncmp(state->name, current_name, state->len) != 0) { 314 error_report("Machine type received is '%.*s' and local is '%s'", 315 (int) state->len, state->name, current_name); 316 return -EINVAL; 317 } 318 319 if (state->target_page_bits != TARGET_PAGE_BITS) { 320 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 321 state->target_page_bits, TARGET_PAGE_BITS); 322 return -EINVAL; 323 } 324 325 return 0; 326 } 327 328 /* The target-page-bits subsection is present only if the 329 * target page size is not the same as the default (ie the 330 * minimum page size for a variable-page-size guest CPU). 331 * If it is present then it contains the actual target page 332 * bits for the machine, and migration will fail if the 333 * two ends don't agree about it. 334 */ 335 static bool vmstate_target_page_bits_needed(void *opaque) 336 { 337 return TARGET_PAGE_BITS > TARGET_PAGE_BITS_MIN; 338 } 339 340 static const VMStateDescription vmstate_target_page_bits = { 341 .name = "configuration/target-page-bits", 342 .version_id = 1, 343 .minimum_version_id = 1, 344 .needed = vmstate_target_page_bits_needed, 345 .fields = (VMStateField[]) { 346 VMSTATE_UINT32(target_page_bits, SaveState), 347 VMSTATE_END_OF_LIST() 348 } 349 }; 350 351 static const VMStateDescription vmstate_configuration = { 352 .name = "configuration", 353 .version_id = 1, 354 .pre_load = configuration_pre_load, 355 .post_load = configuration_post_load, 356 .pre_save = configuration_pre_save, 357 .fields = (VMStateField[]) { 358 VMSTATE_UINT32(len, SaveState), 359 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len), 360 VMSTATE_END_OF_LIST() 361 }, 362 .subsections = (const VMStateDescription*[]) { 363 &vmstate_target_page_bits, 364 NULL 365 } 366 }; 367 368 static void dump_vmstate_vmsd(FILE *out_file, 369 const VMStateDescription *vmsd, int indent, 370 bool is_subsection); 371 372 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 373 int indent) 374 { 375 fprintf(out_file, "%*s{\n", indent, ""); 376 indent += 2; 377 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 378 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 379 field->version_id); 380 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 381 field->field_exists ? "true" : "false"); 382 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 383 if (field->vmsd != NULL) { 384 fprintf(out_file, ",\n"); 385 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 386 } 387 fprintf(out_file, "\n%*s}", indent - 2, ""); 388 } 389 390 static void dump_vmstate_vmss(FILE *out_file, 391 const VMStateDescription **subsection, 392 int indent) 393 { 394 if (*subsection != NULL) { 395 dump_vmstate_vmsd(out_file, *subsection, indent, true); 396 } 397 } 398 399 static void dump_vmstate_vmsd(FILE *out_file, 400 const VMStateDescription *vmsd, int indent, 401 bool is_subsection) 402 { 403 if (is_subsection) { 404 fprintf(out_file, "%*s{\n", indent, ""); 405 } else { 406 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 407 } 408 indent += 2; 409 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 410 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 411 vmsd->version_id); 412 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 413 vmsd->minimum_version_id); 414 if (vmsd->fields != NULL) { 415 const VMStateField *field = vmsd->fields; 416 bool first; 417 418 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 419 first = true; 420 while (field->name != NULL) { 421 if (field->flags & VMS_MUST_EXIST) { 422 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 423 field++; 424 continue; 425 } 426 if (!first) { 427 fprintf(out_file, ",\n"); 428 } 429 dump_vmstate_vmsf(out_file, field, indent + 2); 430 field++; 431 first = false; 432 } 433 fprintf(out_file, "\n%*s]", indent, ""); 434 } 435 if (vmsd->subsections != NULL) { 436 const VMStateDescription **subsection = vmsd->subsections; 437 bool first; 438 439 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 440 first = true; 441 while (*subsection != NULL) { 442 if (!first) { 443 fprintf(out_file, ",\n"); 444 } 445 dump_vmstate_vmss(out_file, subsection, indent + 2); 446 subsection++; 447 first = false; 448 } 449 fprintf(out_file, "\n%*s]", indent, ""); 450 } 451 fprintf(out_file, "\n%*s}", indent - 2, ""); 452 } 453 454 static void dump_machine_type(FILE *out_file) 455 { 456 MachineClass *mc; 457 458 mc = MACHINE_GET_CLASS(current_machine); 459 460 fprintf(out_file, " \"vmschkmachine\": {\n"); 461 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 462 fprintf(out_file, " },\n"); 463 } 464 465 void dump_vmstate_json_to_file(FILE *out_file) 466 { 467 GSList *list, *elt; 468 bool first; 469 470 fprintf(out_file, "{\n"); 471 dump_machine_type(out_file); 472 473 first = true; 474 list = object_class_get_list(TYPE_DEVICE, true); 475 for (elt = list; elt; elt = elt->next) { 476 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 477 TYPE_DEVICE); 478 const char *name; 479 int indent = 2; 480 481 if (!dc->vmsd) { 482 continue; 483 } 484 485 if (!first) { 486 fprintf(out_file, ",\n"); 487 } 488 name = object_class_get_name(OBJECT_CLASS(dc)); 489 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 490 indent += 2; 491 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 492 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 493 dc->vmsd->version_id); 494 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 495 dc->vmsd->minimum_version_id); 496 497 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 498 499 fprintf(out_file, "\n%*s}", indent - 2, ""); 500 first = false; 501 } 502 fprintf(out_file, "\n}\n"); 503 fclose(out_file); 504 } 505 506 static int calculate_new_instance_id(const char *idstr) 507 { 508 SaveStateEntry *se; 509 int instance_id = 0; 510 511 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 512 if (strcmp(idstr, se->idstr) == 0 513 && instance_id <= se->instance_id) { 514 instance_id = se->instance_id + 1; 515 } 516 } 517 return instance_id; 518 } 519 520 static int calculate_compat_instance_id(const char *idstr) 521 { 522 SaveStateEntry *se; 523 int instance_id = 0; 524 525 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 526 if (!se->compat) { 527 continue; 528 } 529 530 if (strcmp(idstr, se->compat->idstr) == 0 531 && instance_id <= se->compat->instance_id) { 532 instance_id = se->compat->instance_id + 1; 533 } 534 } 535 return instance_id; 536 } 537 538 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 539 { 540 if (se->vmsd) { 541 return se->vmsd->priority; 542 } 543 return MIG_PRI_DEFAULT; 544 } 545 546 static void savevm_state_handler_insert(SaveStateEntry *nse) 547 { 548 MigrationPriority priority = save_state_priority(nse); 549 SaveStateEntry *se; 550 551 assert(priority <= MIG_PRI_MAX); 552 553 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 554 if (save_state_priority(se) < priority) { 555 break; 556 } 557 } 558 559 if (se) { 560 QTAILQ_INSERT_BEFORE(se, nse, entry); 561 } else { 562 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 563 } 564 } 565 566 /* TODO: Individual devices generally have very little idea about the rest 567 of the system, so instance_id should be removed/replaced. 568 Meanwhile pass -1 as instance_id if you do not already have a clearly 569 distinguishing id for all instances of your device class. */ 570 int register_savevm_live(DeviceState *dev, 571 const char *idstr, 572 int instance_id, 573 int version_id, 574 SaveVMHandlers *ops, 575 void *opaque) 576 { 577 SaveStateEntry *se; 578 579 se = g_new0(SaveStateEntry, 1); 580 se->version_id = version_id; 581 se->section_id = savevm_state.global_section_id++; 582 se->ops = ops; 583 se->opaque = opaque; 584 se->vmsd = NULL; 585 /* if this is a live_savem then set is_ram */ 586 if (ops->save_live_setup != NULL) { 587 se->is_ram = 1; 588 } 589 590 if (dev) { 591 char *id = qdev_get_dev_path(dev); 592 if (id) { 593 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 594 sizeof(se->idstr)) { 595 error_report("Path too long for VMState (%s)", id); 596 g_free(id); 597 g_free(se); 598 599 return -1; 600 } 601 g_free(id); 602 603 se->compat = g_new0(CompatEntry, 1); 604 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 605 se->compat->instance_id = instance_id == -1 ? 606 calculate_compat_instance_id(idstr) : instance_id; 607 instance_id = -1; 608 } 609 } 610 pstrcat(se->idstr, sizeof(se->idstr), idstr); 611 612 if (instance_id == -1) { 613 se->instance_id = calculate_new_instance_id(se->idstr); 614 } else { 615 se->instance_id = instance_id; 616 } 617 assert(!se->compat || se->instance_id == 0); 618 savevm_state_handler_insert(se); 619 return 0; 620 } 621 622 int register_savevm(DeviceState *dev, 623 const char *idstr, 624 int instance_id, 625 int version_id, 626 SaveStateHandler *save_state, 627 LoadStateHandler *load_state, 628 void *opaque) 629 { 630 SaveVMHandlers *ops = g_new0(SaveVMHandlers, 1); 631 ops->save_state = save_state; 632 ops->load_state = load_state; 633 return register_savevm_live(dev, idstr, instance_id, version_id, 634 ops, opaque); 635 } 636 637 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 638 { 639 SaveStateEntry *se, *new_se; 640 char id[256] = ""; 641 642 if (dev) { 643 char *path = qdev_get_dev_path(dev); 644 if (path) { 645 pstrcpy(id, sizeof(id), path); 646 pstrcat(id, sizeof(id), "/"); 647 g_free(path); 648 } 649 } 650 pstrcat(id, sizeof(id), idstr); 651 652 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 653 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 654 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 655 g_free(se->compat); 656 g_free(se->ops); 657 g_free(se); 658 } 659 } 660 } 661 662 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 663 const VMStateDescription *vmsd, 664 void *opaque, int alias_id, 665 int required_for_version, 666 Error **errp) 667 { 668 SaveStateEntry *se; 669 670 /* If this triggers, alias support can be dropped for the vmsd. */ 671 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 672 673 se = g_new0(SaveStateEntry, 1); 674 se->version_id = vmsd->version_id; 675 se->section_id = savevm_state.global_section_id++; 676 se->opaque = opaque; 677 se->vmsd = vmsd; 678 se->alias_id = alias_id; 679 680 if (dev) { 681 char *id = qdev_get_dev_path(dev); 682 if (id) { 683 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 684 sizeof(se->idstr)) { 685 error_setg(errp, "Path too long for VMState (%s)", id); 686 g_free(id); 687 g_free(se); 688 689 return -1; 690 } 691 g_free(id); 692 693 se->compat = g_new0(CompatEntry, 1); 694 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 695 se->compat->instance_id = instance_id == -1 ? 696 calculate_compat_instance_id(vmsd->name) : instance_id; 697 instance_id = -1; 698 } 699 } 700 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 701 702 if (instance_id == -1) { 703 se->instance_id = calculate_new_instance_id(se->idstr); 704 } else { 705 se->instance_id = instance_id; 706 } 707 assert(!se->compat || se->instance_id == 0); 708 savevm_state_handler_insert(se); 709 return 0; 710 } 711 712 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 713 void *opaque) 714 { 715 SaveStateEntry *se, *new_se; 716 717 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 718 if (se->vmsd == vmsd && se->opaque == opaque) { 719 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 720 g_free(se->compat); 721 g_free(se); 722 } 723 } 724 } 725 726 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id) 727 { 728 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 729 if (!se->vmsd) { /* Old style */ 730 return se->ops->load_state(f, se->opaque, version_id); 731 } 732 return vmstate_load_state(f, se->vmsd, se->opaque, version_id); 733 } 734 735 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 736 { 737 int64_t old_offset, size; 738 739 old_offset = qemu_ftell_fast(f); 740 se->ops->save_state(f, se->opaque); 741 size = qemu_ftell_fast(f) - old_offset; 742 743 if (vmdesc) { 744 json_prop_int(vmdesc, "size", size); 745 json_start_array(vmdesc, "fields"); 746 json_start_object(vmdesc, NULL); 747 json_prop_str(vmdesc, "name", "data"); 748 json_prop_int(vmdesc, "size", size); 749 json_prop_str(vmdesc, "type", "buffer"); 750 json_end_object(vmdesc); 751 json_end_array(vmdesc); 752 } 753 } 754 755 static void vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 756 { 757 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 758 if (!se->vmsd) { 759 vmstate_save_old_style(f, se, vmdesc); 760 return; 761 } 762 vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 763 } 764 765 void savevm_skip_section_footers(void) 766 { 767 skip_section_footers = true; 768 } 769 770 /* 771 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 772 */ 773 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 774 uint8_t section_type) 775 { 776 qemu_put_byte(f, section_type); 777 qemu_put_be32(f, se->section_id); 778 779 if (section_type == QEMU_VM_SECTION_FULL || 780 section_type == QEMU_VM_SECTION_START) { 781 /* ID string */ 782 size_t len = strlen(se->idstr); 783 qemu_put_byte(f, len); 784 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 785 786 qemu_put_be32(f, se->instance_id); 787 qemu_put_be32(f, se->version_id); 788 } 789 } 790 791 /* 792 * Write a footer onto device sections that catches cases misformatted device 793 * sections. 794 */ 795 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 796 { 797 if (!skip_section_footers) { 798 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 799 qemu_put_be32(f, se->section_id); 800 } 801 } 802 803 /** 804 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 805 * command and associated data. 806 * 807 * @f: File to send command on 808 * @command: Command type to send 809 * @len: Length of associated data 810 * @data: Data associated with command. 811 */ 812 void qemu_savevm_command_send(QEMUFile *f, 813 enum qemu_vm_cmd command, 814 uint16_t len, 815 uint8_t *data) 816 { 817 trace_savevm_command_send(command, len); 818 qemu_put_byte(f, QEMU_VM_COMMAND); 819 qemu_put_be16(f, (uint16_t)command); 820 qemu_put_be16(f, len); 821 qemu_put_buffer(f, data, len); 822 qemu_fflush(f); 823 } 824 825 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 826 { 827 uint32_t buf; 828 829 trace_savevm_send_ping(value); 830 buf = cpu_to_be32(value); 831 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 832 } 833 834 void qemu_savevm_send_open_return_path(QEMUFile *f) 835 { 836 trace_savevm_send_open_return_path(); 837 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 838 } 839 840 /* We have a buffer of data to send; we don't want that all to be loaded 841 * by the command itself, so the command contains just the length of the 842 * extra buffer that we then send straight after it. 843 * TODO: Must be a better way to organise that 844 * 845 * Returns: 846 * 0 on success 847 * -ve on error 848 */ 849 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 850 { 851 uint32_t tmp; 852 853 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 854 error_report("%s: Unreasonably large packaged state: %zu", 855 __func__, len); 856 return -1; 857 } 858 859 tmp = cpu_to_be32(len); 860 861 trace_qemu_savevm_send_packaged(); 862 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 863 864 qemu_put_buffer(f, buf, len); 865 866 return 0; 867 } 868 869 /* Send prior to any postcopy transfer */ 870 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 871 { 872 uint64_t tmp[2]; 873 tmp[0] = cpu_to_be64(ram_pagesize_summary()); 874 tmp[1] = cpu_to_be64(qemu_target_page_size()); 875 876 trace_qemu_savevm_send_postcopy_advise(); 877 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 16, (uint8_t *)tmp); 878 } 879 880 /* Sent prior to starting the destination running in postcopy, discard pages 881 * that have already been sent but redirtied on the source. 882 * CMD_POSTCOPY_RAM_DISCARD consist of: 883 * byte version (0) 884 * byte Length of name field (not including 0) 885 * n x byte RAM block name 886 * byte 0 terminator (just for safety) 887 * n x Byte ranges within the named RAMBlock 888 * be64 Start of the range 889 * be64 Length 890 * 891 * name: RAMBlock name that these entries are part of 892 * len: Number of page entries 893 * start_list: 'len' addresses 894 * length_list: 'len' addresses 895 * 896 */ 897 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 898 uint16_t len, 899 uint64_t *start_list, 900 uint64_t *length_list) 901 { 902 uint8_t *buf; 903 uint16_t tmplen; 904 uint16_t t; 905 size_t name_len = strlen(name); 906 907 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 908 assert(name_len < 256); 909 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 910 buf[0] = postcopy_ram_discard_version; 911 buf[1] = name_len; 912 memcpy(buf + 2, name, name_len); 913 tmplen = 2 + name_len; 914 buf[tmplen++] = '\0'; 915 916 for (t = 0; t < len; t++) { 917 stq_be_p(buf + tmplen, start_list[t]); 918 tmplen += 8; 919 stq_be_p(buf + tmplen, length_list[t]); 920 tmplen += 8; 921 } 922 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 923 g_free(buf); 924 } 925 926 /* Get the destination into a state where it can receive postcopy data. */ 927 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 928 { 929 trace_savevm_send_postcopy_listen(); 930 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 931 } 932 933 /* Kick the destination into running */ 934 void qemu_savevm_send_postcopy_run(QEMUFile *f) 935 { 936 trace_savevm_send_postcopy_run(); 937 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 938 } 939 940 bool qemu_savevm_state_blocked(Error **errp) 941 { 942 SaveStateEntry *se; 943 944 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 945 if (se->vmsd && se->vmsd->unmigratable) { 946 error_setg(errp, "State blocked by non-migratable device '%s'", 947 se->idstr); 948 return true; 949 } 950 } 951 return false; 952 } 953 954 static bool enforce_config_section(void) 955 { 956 MachineState *machine = MACHINE(qdev_get_machine()); 957 return machine->enforce_config_section; 958 } 959 960 void qemu_savevm_state_header(QEMUFile *f) 961 { 962 trace_savevm_state_header(); 963 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 964 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 965 966 if (!savevm_state.skip_configuration || enforce_config_section()) { 967 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 968 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 969 } 970 971 } 972 973 void qemu_savevm_state_begin(QEMUFile *f, 974 const MigrationParams *params) 975 { 976 SaveStateEntry *se; 977 int ret; 978 979 trace_savevm_state_begin(); 980 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 981 if (!se->ops || !se->ops->set_params) { 982 continue; 983 } 984 se->ops->set_params(params, se->opaque); 985 } 986 987 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 988 if (!se->ops || !se->ops->save_live_setup) { 989 continue; 990 } 991 if (se->ops && se->ops->is_active) { 992 if (!se->ops->is_active(se->opaque)) { 993 continue; 994 } 995 } 996 save_section_header(f, se, QEMU_VM_SECTION_START); 997 998 ret = se->ops->save_live_setup(f, se->opaque); 999 save_section_footer(f, se); 1000 if (ret < 0) { 1001 qemu_file_set_error(f, ret); 1002 break; 1003 } 1004 } 1005 } 1006 1007 /* 1008 * this function has three return values: 1009 * negative: there was one error, and we have -errno. 1010 * 0 : We haven't finished, caller have to go again 1011 * 1 : We have finished, we can go to complete phase 1012 */ 1013 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 1014 { 1015 SaveStateEntry *se; 1016 int ret = 1; 1017 1018 trace_savevm_state_iterate(); 1019 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1020 if (!se->ops || !se->ops->save_live_iterate) { 1021 continue; 1022 } 1023 if (se->ops && se->ops->is_active) { 1024 if (!se->ops->is_active(se->opaque)) { 1025 continue; 1026 } 1027 } 1028 /* 1029 * In the postcopy phase, any device that doesn't know how to 1030 * do postcopy should have saved it's state in the _complete 1031 * call that's already run, it might get confused if we call 1032 * iterate afterwards. 1033 */ 1034 if (postcopy && !se->ops->save_live_complete_postcopy) { 1035 continue; 1036 } 1037 if (qemu_file_rate_limit(f)) { 1038 return 0; 1039 } 1040 trace_savevm_section_start(se->idstr, se->section_id); 1041 1042 save_section_header(f, se, QEMU_VM_SECTION_PART); 1043 1044 ret = se->ops->save_live_iterate(f, se->opaque); 1045 trace_savevm_section_end(se->idstr, se->section_id, ret); 1046 save_section_footer(f, se); 1047 1048 if (ret < 0) { 1049 qemu_file_set_error(f, ret); 1050 } 1051 if (ret <= 0) { 1052 /* Do not proceed to the next vmstate before this one reported 1053 completion of the current stage. This serializes the migration 1054 and reduces the probability that a faster changing state is 1055 synchronized over and over again. */ 1056 break; 1057 } 1058 } 1059 return ret; 1060 } 1061 1062 static bool should_send_vmdesc(void) 1063 { 1064 MachineState *machine = MACHINE(qdev_get_machine()); 1065 bool in_postcopy = migration_in_postcopy(); 1066 return !machine->suppress_vmdesc && !in_postcopy; 1067 } 1068 1069 /* 1070 * Calls the save_live_complete_postcopy methods 1071 * causing the last few pages to be sent immediately and doing any associated 1072 * cleanup. 1073 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1074 * all the other devices, but that happens at the point we switch to postcopy. 1075 */ 1076 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1077 { 1078 SaveStateEntry *se; 1079 int ret; 1080 1081 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1082 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1083 continue; 1084 } 1085 if (se->ops && se->ops->is_active) { 1086 if (!se->ops->is_active(se->opaque)) { 1087 continue; 1088 } 1089 } 1090 trace_savevm_section_start(se->idstr, se->section_id); 1091 /* Section type */ 1092 qemu_put_byte(f, QEMU_VM_SECTION_END); 1093 qemu_put_be32(f, se->section_id); 1094 1095 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1096 trace_savevm_section_end(se->idstr, se->section_id, ret); 1097 save_section_footer(f, se); 1098 if (ret < 0) { 1099 qemu_file_set_error(f, ret); 1100 return; 1101 } 1102 } 1103 1104 qemu_put_byte(f, QEMU_VM_EOF); 1105 qemu_fflush(f); 1106 } 1107 1108 void qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only) 1109 { 1110 QJSON *vmdesc; 1111 int vmdesc_len; 1112 SaveStateEntry *se; 1113 int ret; 1114 bool in_postcopy = migration_in_postcopy(); 1115 1116 trace_savevm_state_complete_precopy(); 1117 1118 cpu_synchronize_all_states(); 1119 1120 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1121 if (!se->ops || 1122 (in_postcopy && se->ops->save_live_complete_postcopy) || 1123 (in_postcopy && !iterable_only) || 1124 !se->ops->save_live_complete_precopy) { 1125 continue; 1126 } 1127 1128 if (se->ops && se->ops->is_active) { 1129 if (!se->ops->is_active(se->opaque)) { 1130 continue; 1131 } 1132 } 1133 trace_savevm_section_start(se->idstr, se->section_id); 1134 1135 save_section_header(f, se, QEMU_VM_SECTION_END); 1136 1137 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1138 trace_savevm_section_end(se->idstr, se->section_id, ret); 1139 save_section_footer(f, se); 1140 if (ret < 0) { 1141 qemu_file_set_error(f, ret); 1142 return; 1143 } 1144 } 1145 1146 if (iterable_only) { 1147 return; 1148 } 1149 1150 vmdesc = qjson_new(); 1151 json_prop_int(vmdesc, "page_size", TARGET_PAGE_SIZE); 1152 json_start_array(vmdesc, "devices"); 1153 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1154 1155 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1156 continue; 1157 } 1158 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1159 trace_savevm_section_skip(se->idstr, se->section_id); 1160 continue; 1161 } 1162 1163 trace_savevm_section_start(se->idstr, se->section_id); 1164 1165 json_start_object(vmdesc, NULL); 1166 json_prop_str(vmdesc, "name", se->idstr); 1167 json_prop_int(vmdesc, "instance_id", se->instance_id); 1168 1169 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1170 vmstate_save(f, se, vmdesc); 1171 trace_savevm_section_end(se->idstr, se->section_id, 0); 1172 save_section_footer(f, se); 1173 1174 json_end_object(vmdesc); 1175 } 1176 1177 if (!in_postcopy) { 1178 /* Postcopy stream will still be going */ 1179 qemu_put_byte(f, QEMU_VM_EOF); 1180 } 1181 1182 json_end_array(vmdesc); 1183 qjson_finish(vmdesc); 1184 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1185 1186 if (should_send_vmdesc()) { 1187 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1188 qemu_put_be32(f, vmdesc_len); 1189 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1190 } 1191 qjson_destroy(vmdesc); 1192 1193 qemu_fflush(f); 1194 } 1195 1196 /* Give an estimate of the amount left to be transferred, 1197 * the result is split into the amount for units that can and 1198 * for units that can't do postcopy. 1199 */ 1200 void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size, 1201 uint64_t *res_non_postcopiable, 1202 uint64_t *res_postcopiable) 1203 { 1204 SaveStateEntry *se; 1205 1206 *res_non_postcopiable = 0; 1207 *res_postcopiable = 0; 1208 1209 1210 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1211 if (!se->ops || !se->ops->save_live_pending) { 1212 continue; 1213 } 1214 if (se->ops && se->ops->is_active) { 1215 if (!se->ops->is_active(se->opaque)) { 1216 continue; 1217 } 1218 } 1219 se->ops->save_live_pending(f, se->opaque, threshold_size, 1220 res_non_postcopiable, res_postcopiable); 1221 } 1222 } 1223 1224 void qemu_savevm_state_cleanup(void) 1225 { 1226 SaveStateEntry *se; 1227 1228 trace_savevm_state_cleanup(); 1229 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1230 if (se->ops && se->ops->cleanup) { 1231 se->ops->cleanup(se->opaque); 1232 } 1233 } 1234 } 1235 1236 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1237 { 1238 int ret; 1239 MigrationParams params = { 1240 .blk = 0, 1241 .shared = 0 1242 }; 1243 MigrationState *ms = migrate_init(¶ms); 1244 MigrationStatus status; 1245 ms->to_dst_file = f; 1246 1247 if (migration_is_blocked(errp)) { 1248 ret = -EINVAL; 1249 goto done; 1250 } 1251 1252 qemu_mutex_unlock_iothread(); 1253 qemu_savevm_state_header(f); 1254 qemu_savevm_state_begin(f, ¶ms); 1255 qemu_mutex_lock_iothread(); 1256 1257 while (qemu_file_get_error(f) == 0) { 1258 if (qemu_savevm_state_iterate(f, false) > 0) { 1259 break; 1260 } 1261 } 1262 1263 ret = qemu_file_get_error(f); 1264 if (ret == 0) { 1265 qemu_savevm_state_complete_precopy(f, false); 1266 ret = qemu_file_get_error(f); 1267 } 1268 qemu_savevm_state_cleanup(); 1269 if (ret != 0) { 1270 error_setg_errno(errp, -ret, "Error while writing VM state"); 1271 } 1272 1273 done: 1274 if (ret != 0) { 1275 status = MIGRATION_STATUS_FAILED; 1276 } else { 1277 status = MIGRATION_STATUS_COMPLETED; 1278 } 1279 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1280 1281 /* f is outer parameter, it should not stay in global migration state after 1282 * this function finished */ 1283 ms->to_dst_file = NULL; 1284 1285 return ret; 1286 } 1287 1288 static int qemu_save_device_state(QEMUFile *f) 1289 { 1290 SaveStateEntry *se; 1291 1292 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1293 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1294 1295 cpu_synchronize_all_states(); 1296 1297 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1298 if (se->is_ram) { 1299 continue; 1300 } 1301 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1302 continue; 1303 } 1304 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1305 continue; 1306 } 1307 1308 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1309 1310 vmstate_save(f, se, NULL); 1311 1312 save_section_footer(f, se); 1313 } 1314 1315 qemu_put_byte(f, QEMU_VM_EOF); 1316 1317 return qemu_file_get_error(f); 1318 } 1319 1320 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1321 { 1322 SaveStateEntry *se; 1323 1324 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1325 if (!strcmp(se->idstr, idstr) && 1326 (instance_id == se->instance_id || 1327 instance_id == se->alias_id)) 1328 return se; 1329 /* Migrating from an older version? */ 1330 if (strstr(se->idstr, idstr) && se->compat) { 1331 if (!strcmp(se->compat->idstr, idstr) && 1332 (instance_id == se->compat->instance_id || 1333 instance_id == se->alias_id)) 1334 return se; 1335 } 1336 } 1337 return NULL; 1338 } 1339 1340 enum LoadVMExitCodes { 1341 /* Allow a command to quit all layers of nested loadvm loops */ 1342 LOADVM_QUIT = 1, 1343 }; 1344 1345 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1346 1347 /* ------ incoming postcopy messages ------ */ 1348 /* 'advise' arrives before any transfers just to tell us that a postcopy 1349 * *might* happen - it might be skipped if precopy transferred everything 1350 * quickly. 1351 */ 1352 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis) 1353 { 1354 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1355 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps; 1356 1357 trace_loadvm_postcopy_handle_advise(); 1358 if (ps != POSTCOPY_INCOMING_NONE) { 1359 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1360 return -1; 1361 } 1362 1363 if (!postcopy_ram_supported_by_host()) { 1364 postcopy_state_set(POSTCOPY_INCOMING_NONE); 1365 return -1; 1366 } 1367 1368 remote_pagesize_summary = qemu_get_be64(mis->from_src_file); 1369 local_pagesize_summary = ram_pagesize_summary(); 1370 1371 if (remote_pagesize_summary != local_pagesize_summary) { 1372 /* 1373 * This detects two potential causes of mismatch: 1374 * a) A mismatch in host page sizes 1375 * Some combinations of mismatch are probably possible but it gets 1376 * a bit more complicated. In particular we need to place whole 1377 * host pages on the dest at once, and we need to ensure that we 1378 * handle dirtying to make sure we never end up sending part of 1379 * a hostpage on it's own. 1380 * b) The use of different huge page sizes on source/destination 1381 * a more fine grain test is performed during RAM block migration 1382 * but this test here causes a nice early clear failure, and 1383 * also fails when passed to an older qemu that doesn't 1384 * do huge pages. 1385 */ 1386 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64 1387 " d=%" PRIx64 ")", 1388 remote_pagesize_summary, local_pagesize_summary); 1389 return -1; 1390 } 1391 1392 remote_tps = qemu_get_be64(mis->from_src_file); 1393 if (remote_tps != qemu_target_page_size()) { 1394 /* 1395 * Again, some differences could be dealt with, but for now keep it 1396 * simple. 1397 */ 1398 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)", 1399 (int)remote_tps, qemu_target_page_size()); 1400 return -1; 1401 } 1402 1403 if (ram_postcopy_incoming_init(mis)) { 1404 return -1; 1405 } 1406 1407 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1408 1409 return 0; 1410 } 1411 1412 /* After postcopy we will be told to throw some pages away since they're 1413 * dirty and will have to be demand fetched. Must happen before CPU is 1414 * started. 1415 * There can be 0..many of these messages, each encoding multiple pages. 1416 */ 1417 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1418 uint16_t len) 1419 { 1420 int tmp; 1421 char ramid[256]; 1422 PostcopyState ps = postcopy_state_get(); 1423 1424 trace_loadvm_postcopy_ram_handle_discard(); 1425 1426 switch (ps) { 1427 case POSTCOPY_INCOMING_ADVISE: 1428 /* 1st discard */ 1429 tmp = postcopy_ram_prepare_discard(mis); 1430 if (tmp) { 1431 return tmp; 1432 } 1433 break; 1434 1435 case POSTCOPY_INCOMING_DISCARD: 1436 /* Expected state */ 1437 break; 1438 1439 default: 1440 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1441 ps); 1442 return -1; 1443 } 1444 /* We're expecting a 1445 * Version (0) 1446 * a RAM ID string (length byte, name, 0 term) 1447 * then at least 1 16 byte chunk 1448 */ 1449 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1450 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1451 return -1; 1452 } 1453 1454 tmp = qemu_get_byte(mis->from_src_file); 1455 if (tmp != postcopy_ram_discard_version) { 1456 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1457 return -1; 1458 } 1459 1460 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1461 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1462 return -1; 1463 } 1464 tmp = qemu_get_byte(mis->from_src_file); 1465 if (tmp != 0) { 1466 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1467 return -1; 1468 } 1469 1470 len -= 3 + strlen(ramid); 1471 if (len % 16) { 1472 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1473 return -1; 1474 } 1475 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1476 while (len) { 1477 uint64_t start_addr, block_length; 1478 start_addr = qemu_get_be64(mis->from_src_file); 1479 block_length = qemu_get_be64(mis->from_src_file); 1480 1481 len -= 16; 1482 int ret = ram_discard_range(ramid, start_addr, block_length); 1483 if (ret) { 1484 return ret; 1485 } 1486 } 1487 trace_loadvm_postcopy_ram_handle_discard_end(); 1488 1489 return 0; 1490 } 1491 1492 /* 1493 * Triggered by a postcopy_listen command; this thread takes over reading 1494 * the input stream, leaving the main thread free to carry on loading the rest 1495 * of the device state (from RAM). 1496 * (TODO:This could do with being in a postcopy file - but there again it's 1497 * just another input loop, not that postcopy specific) 1498 */ 1499 static void *postcopy_ram_listen_thread(void *opaque) 1500 { 1501 QEMUFile *f = opaque; 1502 MigrationIncomingState *mis = migration_incoming_get_current(); 1503 int load_res; 1504 1505 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1506 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1507 qemu_sem_post(&mis->listen_thread_sem); 1508 trace_postcopy_ram_listen_thread_start(); 1509 1510 /* 1511 * Because we're a thread and not a coroutine we can't yield 1512 * in qemu_file, and thus we must be blocking now. 1513 */ 1514 qemu_file_set_blocking(f, true); 1515 load_res = qemu_loadvm_state_main(f, mis); 1516 /* And non-blocking again so we don't block in any cleanup */ 1517 qemu_file_set_blocking(f, false); 1518 1519 trace_postcopy_ram_listen_thread_exit(); 1520 if (load_res < 0) { 1521 error_report("%s: loadvm failed: %d", __func__, load_res); 1522 qemu_file_set_error(f, load_res); 1523 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1524 MIGRATION_STATUS_FAILED); 1525 } else { 1526 /* 1527 * This looks good, but it's possible that the device loading in the 1528 * main thread hasn't finished yet, and so we might not be in 'RUN' 1529 * state yet; wait for the end of the main thread. 1530 */ 1531 qemu_event_wait(&mis->main_thread_load_event); 1532 } 1533 postcopy_ram_incoming_cleanup(mis); 1534 1535 if (load_res < 0) { 1536 /* 1537 * If something went wrong then we have a bad state so exit; 1538 * depending how far we got it might be possible at this point 1539 * to leave the guest running and fire MCEs for pages that never 1540 * arrived as a desperate recovery step. 1541 */ 1542 exit(EXIT_FAILURE); 1543 } 1544 1545 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1546 MIGRATION_STATUS_COMPLETED); 1547 /* 1548 * If everything has worked fine, then the main thread has waited 1549 * for us to start, and we're the last use of the mis. 1550 * (If something broke then qemu will have to exit anyway since it's 1551 * got a bad migration state). 1552 */ 1553 migration_incoming_state_destroy(); 1554 1555 1556 return NULL; 1557 } 1558 1559 /* After this message we must be able to immediately receive postcopy data */ 1560 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1561 { 1562 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1563 trace_loadvm_postcopy_handle_listen(); 1564 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1565 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1566 return -1; 1567 } 1568 if (ps == POSTCOPY_INCOMING_ADVISE) { 1569 /* 1570 * A rare case, we entered listen without having to do any discards, 1571 * so do the setup that's normally done at the time of the 1st discard. 1572 */ 1573 postcopy_ram_prepare_discard(mis); 1574 } 1575 1576 /* 1577 * Sensitise RAM - can now generate requests for blocks that don't exist 1578 * However, at this point the CPU shouldn't be running, and the IO 1579 * shouldn't be doing anything yet so don't actually expect requests 1580 */ 1581 if (postcopy_ram_enable_notify(mis)) { 1582 return -1; 1583 } 1584 1585 if (mis->have_listen_thread) { 1586 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1587 return -1; 1588 } 1589 1590 mis->have_listen_thread = true; 1591 /* Start up the listening thread and wait for it to signal ready */ 1592 qemu_sem_init(&mis->listen_thread_sem, 0); 1593 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1594 postcopy_ram_listen_thread, mis->from_src_file, 1595 QEMU_THREAD_DETACHED); 1596 qemu_sem_wait(&mis->listen_thread_sem); 1597 qemu_sem_destroy(&mis->listen_thread_sem); 1598 1599 return 0; 1600 } 1601 1602 1603 typedef struct { 1604 QEMUBH *bh; 1605 } HandleRunBhData; 1606 1607 static void loadvm_postcopy_handle_run_bh(void *opaque) 1608 { 1609 Error *local_err = NULL; 1610 HandleRunBhData *data = opaque; 1611 1612 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1613 * in migration.c 1614 */ 1615 cpu_synchronize_all_post_init(); 1616 1617 qemu_announce_self(); 1618 1619 /* Make sure all file formats flush their mutable metadata */ 1620 bdrv_invalidate_cache_all(&local_err); 1621 if (local_err) { 1622 error_report_err(local_err); 1623 } 1624 1625 trace_loadvm_postcopy_handle_run_cpu_sync(); 1626 cpu_synchronize_all_post_init(); 1627 1628 trace_loadvm_postcopy_handle_run_vmstart(); 1629 1630 if (autostart) { 1631 /* Hold onto your hats, starting the CPU */ 1632 vm_start(); 1633 } else { 1634 /* leave it paused and let management decide when to start the CPU */ 1635 runstate_set(RUN_STATE_PAUSED); 1636 } 1637 1638 qemu_bh_delete(data->bh); 1639 g_free(data); 1640 } 1641 1642 /* After all discards we can start running and asking for pages */ 1643 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1644 { 1645 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1646 HandleRunBhData *data; 1647 1648 trace_loadvm_postcopy_handle_run(); 1649 if (ps != POSTCOPY_INCOMING_LISTENING) { 1650 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1651 return -1; 1652 } 1653 1654 data = g_new(HandleRunBhData, 1); 1655 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1656 qemu_bh_schedule(data->bh); 1657 1658 /* We need to finish reading the stream from the package 1659 * and also stop reading anything more from the stream that loaded the 1660 * package (since it's now being read by the listener thread). 1661 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1662 */ 1663 return LOADVM_QUIT; 1664 } 1665 1666 /** 1667 * Immediately following this command is a blob of data containing an embedded 1668 * chunk of migration stream; read it and load it. 1669 * 1670 * @mis: Incoming state 1671 * @length: Length of packaged data to read 1672 * 1673 * Returns: Negative values on error 1674 * 1675 */ 1676 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1677 { 1678 int ret; 1679 size_t length; 1680 QIOChannelBuffer *bioc; 1681 1682 length = qemu_get_be32(mis->from_src_file); 1683 trace_loadvm_handle_cmd_packaged(length); 1684 1685 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1686 error_report("Unreasonably large packaged state: %zu", length); 1687 return -1; 1688 } 1689 1690 bioc = qio_channel_buffer_new(length); 1691 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 1692 ret = qemu_get_buffer(mis->from_src_file, 1693 bioc->data, 1694 length); 1695 if (ret != length) { 1696 object_unref(OBJECT(bioc)); 1697 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1698 ret, length); 1699 return (ret < 0) ? ret : -EAGAIN; 1700 } 1701 bioc->usage += length; 1702 trace_loadvm_handle_cmd_packaged_received(ret); 1703 1704 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1705 1706 ret = qemu_loadvm_state_main(packf, mis); 1707 trace_loadvm_handle_cmd_packaged_main(ret); 1708 qemu_fclose(packf); 1709 object_unref(OBJECT(bioc)); 1710 1711 return ret; 1712 } 1713 1714 /* 1715 * Process an incoming 'QEMU_VM_COMMAND' 1716 * 0 just a normal return 1717 * LOADVM_QUIT All good, but exit the loop 1718 * <0 Error 1719 */ 1720 static int loadvm_process_command(QEMUFile *f) 1721 { 1722 MigrationIncomingState *mis = migration_incoming_get_current(); 1723 uint16_t cmd; 1724 uint16_t len; 1725 uint32_t tmp32; 1726 1727 cmd = qemu_get_be16(f); 1728 len = qemu_get_be16(f); 1729 1730 trace_loadvm_process_command(cmd, len); 1731 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1732 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1733 return -EINVAL; 1734 } 1735 1736 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1737 error_report("%s received with bad length - expecting %zu, got %d", 1738 mig_cmd_args[cmd].name, 1739 (size_t)mig_cmd_args[cmd].len, len); 1740 return -ERANGE; 1741 } 1742 1743 switch (cmd) { 1744 case MIG_CMD_OPEN_RETURN_PATH: 1745 if (mis->to_src_file) { 1746 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1747 /* Not really a problem, so don't give up */ 1748 return 0; 1749 } 1750 mis->to_src_file = qemu_file_get_return_path(f); 1751 if (!mis->to_src_file) { 1752 error_report("CMD_OPEN_RETURN_PATH failed"); 1753 return -1; 1754 } 1755 break; 1756 1757 case MIG_CMD_PING: 1758 tmp32 = qemu_get_be32(f); 1759 trace_loadvm_process_command_ping(tmp32); 1760 if (!mis->to_src_file) { 1761 error_report("CMD_PING (0x%x) received with no return path", 1762 tmp32); 1763 return -1; 1764 } 1765 migrate_send_rp_pong(mis, tmp32); 1766 break; 1767 1768 case MIG_CMD_PACKAGED: 1769 return loadvm_handle_cmd_packaged(mis); 1770 1771 case MIG_CMD_POSTCOPY_ADVISE: 1772 return loadvm_postcopy_handle_advise(mis); 1773 1774 case MIG_CMD_POSTCOPY_LISTEN: 1775 return loadvm_postcopy_handle_listen(mis); 1776 1777 case MIG_CMD_POSTCOPY_RUN: 1778 return loadvm_postcopy_handle_run(mis); 1779 1780 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1781 return loadvm_postcopy_ram_handle_discard(mis, len); 1782 } 1783 1784 return 0; 1785 } 1786 1787 struct LoadStateEntry { 1788 QLIST_ENTRY(LoadStateEntry) entry; 1789 SaveStateEntry *se; 1790 int section_id; 1791 int version_id; 1792 }; 1793 1794 /* 1795 * Read a footer off the wire and check that it matches the expected section 1796 * 1797 * Returns: true if the footer was good 1798 * false if there is a problem (and calls error_report to say why) 1799 */ 1800 static bool check_section_footer(QEMUFile *f, LoadStateEntry *le) 1801 { 1802 uint8_t read_mark; 1803 uint32_t read_section_id; 1804 1805 if (skip_section_footers) { 1806 /* No footer to check */ 1807 return true; 1808 } 1809 1810 read_mark = qemu_get_byte(f); 1811 1812 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1813 error_report("Missing section footer for %s", le->se->idstr); 1814 return false; 1815 } 1816 1817 read_section_id = qemu_get_be32(f); 1818 if (read_section_id != le->section_id) { 1819 error_report("Mismatched section id in footer for %s -" 1820 " read 0x%x expected 0x%x", 1821 le->se->idstr, read_section_id, le->section_id); 1822 return false; 1823 } 1824 1825 /* All good */ 1826 return true; 1827 } 1828 1829 void loadvm_free_handlers(MigrationIncomingState *mis) 1830 { 1831 LoadStateEntry *le, *new_le; 1832 1833 QLIST_FOREACH_SAFE(le, &mis->loadvm_handlers, entry, new_le) { 1834 QLIST_REMOVE(le, entry); 1835 g_free(le); 1836 } 1837 } 1838 1839 static int 1840 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1841 { 1842 uint32_t instance_id, version_id, section_id; 1843 SaveStateEntry *se; 1844 LoadStateEntry *le; 1845 char idstr[256]; 1846 int ret; 1847 1848 /* Read section start */ 1849 section_id = qemu_get_be32(f); 1850 if (!qemu_get_counted_string(f, idstr)) { 1851 error_report("Unable to read ID string for section %u", 1852 section_id); 1853 return -EINVAL; 1854 } 1855 instance_id = qemu_get_be32(f); 1856 version_id = qemu_get_be32(f); 1857 1858 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1859 instance_id, version_id); 1860 /* Find savevm section */ 1861 se = find_se(idstr, instance_id); 1862 if (se == NULL) { 1863 error_report("Unknown savevm section or instance '%s' %d", 1864 idstr, instance_id); 1865 return -EINVAL; 1866 } 1867 1868 /* Validate version */ 1869 if (version_id > se->version_id) { 1870 error_report("savevm: unsupported version %d for '%s' v%d", 1871 version_id, idstr, se->version_id); 1872 return -EINVAL; 1873 } 1874 1875 /* Validate if it is a device's state */ 1876 if (xen_enabled() && se->is_ram) { 1877 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1878 return -EINVAL; 1879 } 1880 1881 /* Add entry */ 1882 le = g_malloc0(sizeof(*le)); 1883 1884 le->se = se; 1885 le->section_id = section_id; 1886 le->version_id = version_id; 1887 QLIST_INSERT_HEAD(&mis->loadvm_handlers, le, entry); 1888 1889 ret = vmstate_load(f, le->se, le->version_id); 1890 if (ret < 0) { 1891 error_report("error while loading state for instance 0x%x of" 1892 " device '%s'", instance_id, idstr); 1893 return ret; 1894 } 1895 if (!check_section_footer(f, le)) { 1896 return -EINVAL; 1897 } 1898 1899 return 0; 1900 } 1901 1902 static int 1903 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1904 { 1905 uint32_t section_id; 1906 LoadStateEntry *le; 1907 int ret; 1908 1909 section_id = qemu_get_be32(f); 1910 1911 trace_qemu_loadvm_state_section_partend(section_id); 1912 QLIST_FOREACH(le, &mis->loadvm_handlers, entry) { 1913 if (le->section_id == section_id) { 1914 break; 1915 } 1916 } 1917 if (le == NULL) { 1918 error_report("Unknown savevm section %d", section_id); 1919 return -EINVAL; 1920 } 1921 1922 ret = vmstate_load(f, le->se, le->version_id); 1923 if (ret < 0) { 1924 error_report("error while loading state section id %d(%s)", 1925 section_id, le->se->idstr); 1926 return ret; 1927 } 1928 if (!check_section_footer(f, le)) { 1929 return -EINVAL; 1930 } 1931 1932 return 0; 1933 } 1934 1935 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 1936 { 1937 uint8_t section_type; 1938 int ret = 0; 1939 1940 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { 1941 ret = 0; 1942 trace_qemu_loadvm_state_section(section_type); 1943 switch (section_type) { 1944 case QEMU_VM_SECTION_START: 1945 case QEMU_VM_SECTION_FULL: 1946 ret = qemu_loadvm_section_start_full(f, mis); 1947 if (ret < 0) { 1948 goto out; 1949 } 1950 break; 1951 case QEMU_VM_SECTION_PART: 1952 case QEMU_VM_SECTION_END: 1953 ret = qemu_loadvm_section_part_end(f, mis); 1954 if (ret < 0) { 1955 goto out; 1956 } 1957 break; 1958 case QEMU_VM_COMMAND: 1959 ret = loadvm_process_command(f); 1960 trace_qemu_loadvm_state_section_command(ret); 1961 if ((ret < 0) || (ret & LOADVM_QUIT)) { 1962 goto out; 1963 } 1964 break; 1965 default: 1966 error_report("Unknown savevm section type %d", section_type); 1967 ret = -EINVAL; 1968 goto out; 1969 } 1970 } 1971 1972 out: 1973 if (ret < 0) { 1974 qemu_file_set_error(f, ret); 1975 } 1976 return ret; 1977 } 1978 1979 int qemu_loadvm_state(QEMUFile *f) 1980 { 1981 MigrationIncomingState *mis = migration_incoming_get_current(); 1982 Error *local_err = NULL; 1983 unsigned int v; 1984 int ret; 1985 1986 if (qemu_savevm_state_blocked(&local_err)) { 1987 error_report_err(local_err); 1988 return -EINVAL; 1989 } 1990 1991 v = qemu_get_be32(f); 1992 if (v != QEMU_VM_FILE_MAGIC) { 1993 error_report("Not a migration stream"); 1994 return -EINVAL; 1995 } 1996 1997 v = qemu_get_be32(f); 1998 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 1999 error_report("SaveVM v2 format is obsolete and don't work anymore"); 2000 return -ENOTSUP; 2001 } 2002 if (v != QEMU_VM_FILE_VERSION) { 2003 error_report("Unsupported migration stream version"); 2004 return -ENOTSUP; 2005 } 2006 2007 if (!savevm_state.skip_configuration || enforce_config_section()) { 2008 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 2009 error_report("Configuration section missing"); 2010 return -EINVAL; 2011 } 2012 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 2013 2014 if (ret) { 2015 return ret; 2016 } 2017 } 2018 2019 ret = qemu_loadvm_state_main(f, mis); 2020 qemu_event_set(&mis->main_thread_load_event); 2021 2022 trace_qemu_loadvm_state_post_main(ret); 2023 2024 if (mis->have_listen_thread) { 2025 /* Listen thread still going, can't clean up yet */ 2026 return ret; 2027 } 2028 2029 if (ret == 0) { 2030 ret = qemu_file_get_error(f); 2031 } 2032 2033 /* 2034 * Try to read in the VMDESC section as well, so that dumping tools that 2035 * intercept our migration stream have the chance to see it. 2036 */ 2037 2038 /* We've got to be careful; if we don't read the data and just shut the fd 2039 * then the sender can error if we close while it's still sending. 2040 * We also mustn't read data that isn't there; some transports (RDMA) 2041 * will stall waiting for that data when the source has already closed. 2042 */ 2043 if (ret == 0 && should_send_vmdesc()) { 2044 uint8_t *buf; 2045 uint32_t size; 2046 uint8_t section_type = qemu_get_byte(f); 2047 2048 if (section_type != QEMU_VM_VMDESCRIPTION) { 2049 error_report("Expected vmdescription section, but got %d", 2050 section_type); 2051 /* 2052 * It doesn't seem worth failing at this point since 2053 * we apparently have an otherwise valid VM state 2054 */ 2055 } else { 2056 buf = g_malloc(0x1000); 2057 size = qemu_get_be32(f); 2058 2059 while (size > 0) { 2060 uint32_t read_chunk = MIN(size, 0x1000); 2061 qemu_get_buffer(f, buf, read_chunk); 2062 size -= read_chunk; 2063 } 2064 g_free(buf); 2065 } 2066 } 2067 2068 cpu_synchronize_all_post_init(); 2069 2070 return ret; 2071 } 2072 2073 int save_vmstate(Monitor *mon, const char *name) 2074 { 2075 BlockDriverState *bs, *bs1; 2076 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 2077 int ret = -1; 2078 QEMUFile *f; 2079 int saved_vm_running; 2080 uint64_t vm_state_size; 2081 qemu_timeval tv; 2082 struct tm tm; 2083 Error *local_err = NULL; 2084 AioContext *aio_context; 2085 2086 if (!bdrv_all_can_snapshot(&bs)) { 2087 monitor_printf(mon, "Device '%s' is writable but does not " 2088 "support snapshots.\n", bdrv_get_device_name(bs)); 2089 return ret; 2090 } 2091 2092 /* Delete old snapshots of the same name */ 2093 if (name) { 2094 ret = bdrv_all_delete_snapshot(name, &bs1, &local_err); 2095 if (ret < 0) { 2096 error_reportf_err(local_err, 2097 "Error while deleting snapshot on device '%s': ", 2098 bdrv_get_device_name(bs1)); 2099 return ret; 2100 } 2101 } 2102 2103 bs = bdrv_all_find_vmstate_bs(); 2104 if (bs == NULL) { 2105 monitor_printf(mon, "No block device can accept snapshots\n"); 2106 return ret; 2107 } 2108 aio_context = bdrv_get_aio_context(bs); 2109 2110 saved_vm_running = runstate_is_running(); 2111 2112 ret = global_state_store(); 2113 if (ret) { 2114 monitor_printf(mon, "Error saving global state\n"); 2115 return ret; 2116 } 2117 vm_stop(RUN_STATE_SAVE_VM); 2118 2119 aio_context_acquire(aio_context); 2120 2121 memset(sn, 0, sizeof(*sn)); 2122 2123 /* fill auxiliary fields */ 2124 qemu_gettimeofday(&tv); 2125 sn->date_sec = tv.tv_sec; 2126 sn->date_nsec = tv.tv_usec * 1000; 2127 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2128 2129 if (name) { 2130 ret = bdrv_snapshot_find(bs, old_sn, name); 2131 if (ret >= 0) { 2132 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2133 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2134 } else { 2135 pstrcpy(sn->name, sizeof(sn->name), name); 2136 } 2137 } else { 2138 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2139 localtime_r((const time_t *)&tv.tv_sec, &tm); 2140 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2141 } 2142 2143 /* save the VM state */ 2144 f = qemu_fopen_bdrv(bs, 1); 2145 if (!f) { 2146 monitor_printf(mon, "Could not open VM state file\n"); 2147 goto the_end; 2148 } 2149 ret = qemu_savevm_state(f, &local_err); 2150 vm_state_size = qemu_ftell(f); 2151 qemu_fclose(f); 2152 if (ret < 0) { 2153 error_report_err(local_err); 2154 goto the_end; 2155 } 2156 2157 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2158 if (ret < 0) { 2159 monitor_printf(mon, "Error while creating snapshot on '%s'\n", 2160 bdrv_get_device_name(bs)); 2161 goto the_end; 2162 } 2163 2164 ret = 0; 2165 2166 the_end: 2167 aio_context_release(aio_context); 2168 if (saved_vm_running) { 2169 vm_start(); 2170 } 2171 return ret; 2172 } 2173 2174 void hmp_savevm(Monitor *mon, const QDict *qdict) 2175 { 2176 save_vmstate(mon, qdict_get_try_str(qdict, "name")); 2177 } 2178 2179 void qmp_xen_save_devices_state(const char *filename, Error **errp) 2180 { 2181 QEMUFile *f; 2182 QIOChannelFile *ioc; 2183 int saved_vm_running; 2184 int ret; 2185 2186 saved_vm_running = runstate_is_running(); 2187 vm_stop(RUN_STATE_SAVE_VM); 2188 global_state_store_running(); 2189 2190 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2191 if (!ioc) { 2192 goto the_end; 2193 } 2194 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 2195 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2196 ret = qemu_save_device_state(f); 2197 qemu_fclose(f); 2198 if (ret < 0) { 2199 error_setg(errp, QERR_IO_ERROR); 2200 } 2201 2202 the_end: 2203 if (saved_vm_running) { 2204 vm_start(); 2205 } 2206 } 2207 2208 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2209 { 2210 QEMUFile *f; 2211 QIOChannelFile *ioc; 2212 int ret; 2213 2214 /* Guest must be paused before loading the device state; the RAM state 2215 * will already have been loaded by xc 2216 */ 2217 if (runstate_is_running()) { 2218 error_setg(errp, "Cannot update device state while vm is running"); 2219 return; 2220 } 2221 vm_stop(RUN_STATE_RESTORE_VM); 2222 2223 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2224 if (!ioc) { 2225 return; 2226 } 2227 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 2228 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2229 2230 ret = qemu_loadvm_state(f); 2231 qemu_fclose(f); 2232 if (ret < 0) { 2233 error_setg(errp, QERR_IO_ERROR); 2234 } 2235 migration_incoming_state_destroy(); 2236 } 2237 2238 int load_vmstate(const char *name) 2239 { 2240 BlockDriverState *bs, *bs_vm_state; 2241 QEMUSnapshotInfo sn; 2242 QEMUFile *f; 2243 int ret; 2244 AioContext *aio_context; 2245 MigrationIncomingState *mis = migration_incoming_get_current(); 2246 2247 if (!bdrv_all_can_snapshot(&bs)) { 2248 error_report("Device '%s' is writable but does not support snapshots.", 2249 bdrv_get_device_name(bs)); 2250 return -ENOTSUP; 2251 } 2252 ret = bdrv_all_find_snapshot(name, &bs); 2253 if (ret < 0) { 2254 error_report("Device '%s' does not have the requested snapshot '%s'", 2255 bdrv_get_device_name(bs), name); 2256 return ret; 2257 } 2258 2259 bs_vm_state = bdrv_all_find_vmstate_bs(); 2260 if (!bs_vm_state) { 2261 error_report("No block device supports snapshots"); 2262 return -ENOTSUP; 2263 } 2264 aio_context = bdrv_get_aio_context(bs_vm_state); 2265 2266 /* Don't even try to load empty VM states */ 2267 aio_context_acquire(aio_context); 2268 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2269 aio_context_release(aio_context); 2270 if (ret < 0) { 2271 return ret; 2272 } else if (sn.vm_state_size == 0) { 2273 error_report("This is a disk-only snapshot. Revert to it offline " 2274 "using qemu-img."); 2275 return -EINVAL; 2276 } 2277 2278 /* Flush all IO requests so they don't interfere with the new state. */ 2279 bdrv_drain_all(); 2280 2281 ret = bdrv_all_goto_snapshot(name, &bs); 2282 if (ret < 0) { 2283 error_report("Error %d while activating snapshot '%s' on '%s'", 2284 ret, name, bdrv_get_device_name(bs)); 2285 return ret; 2286 } 2287 2288 /* restore the VM state */ 2289 f = qemu_fopen_bdrv(bs_vm_state, 0); 2290 if (!f) { 2291 error_report("Could not open VM state file"); 2292 return -EINVAL; 2293 } 2294 2295 qemu_system_reset(VMRESET_SILENT); 2296 mis->from_src_file = f; 2297 2298 aio_context_acquire(aio_context); 2299 ret = qemu_loadvm_state(f); 2300 qemu_fclose(f); 2301 aio_context_release(aio_context); 2302 2303 migration_incoming_state_destroy(); 2304 if (ret < 0) { 2305 error_report("Error %d while loading VM state", ret); 2306 return ret; 2307 } 2308 2309 return 0; 2310 } 2311 2312 void hmp_delvm(Monitor *mon, const QDict *qdict) 2313 { 2314 BlockDriverState *bs; 2315 Error *err; 2316 const char *name = qdict_get_str(qdict, "name"); 2317 2318 if (bdrv_all_delete_snapshot(name, &bs, &err) < 0) { 2319 error_reportf_err(err, 2320 "Error while deleting snapshot on device '%s': ", 2321 bdrv_get_device_name(bs)); 2322 } 2323 } 2324 2325 void hmp_info_snapshots(Monitor *mon, const QDict *qdict) 2326 { 2327 BlockDriverState *bs, *bs1; 2328 BdrvNextIterator it1; 2329 QEMUSnapshotInfo *sn_tab, *sn; 2330 bool no_snapshot = true; 2331 int nb_sns, i; 2332 int total; 2333 int *global_snapshots; 2334 AioContext *aio_context; 2335 2336 typedef struct SnapshotEntry { 2337 QEMUSnapshotInfo sn; 2338 QTAILQ_ENTRY(SnapshotEntry) next; 2339 } SnapshotEntry; 2340 2341 typedef struct ImageEntry { 2342 const char *imagename; 2343 QTAILQ_ENTRY(ImageEntry) next; 2344 QTAILQ_HEAD(, SnapshotEntry) snapshots; 2345 } ImageEntry; 2346 2347 QTAILQ_HEAD(, ImageEntry) image_list = 2348 QTAILQ_HEAD_INITIALIZER(image_list); 2349 2350 ImageEntry *image_entry, *next_ie; 2351 SnapshotEntry *snapshot_entry; 2352 2353 bs = bdrv_all_find_vmstate_bs(); 2354 if (!bs) { 2355 monitor_printf(mon, "No available block device supports snapshots\n"); 2356 return; 2357 } 2358 aio_context = bdrv_get_aio_context(bs); 2359 2360 aio_context_acquire(aio_context); 2361 nb_sns = bdrv_snapshot_list(bs, &sn_tab); 2362 aio_context_release(aio_context); 2363 2364 if (nb_sns < 0) { 2365 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns); 2366 return; 2367 } 2368 2369 for (bs1 = bdrv_first(&it1); bs1; bs1 = bdrv_next(&it1)) { 2370 int bs1_nb_sns = 0; 2371 ImageEntry *ie; 2372 SnapshotEntry *se; 2373 AioContext *ctx = bdrv_get_aio_context(bs1); 2374 2375 aio_context_acquire(ctx); 2376 if (bdrv_can_snapshot(bs1)) { 2377 sn = NULL; 2378 bs1_nb_sns = bdrv_snapshot_list(bs1, &sn); 2379 if (bs1_nb_sns > 0) { 2380 no_snapshot = false; 2381 ie = g_new0(ImageEntry, 1); 2382 ie->imagename = bdrv_get_device_name(bs1); 2383 QTAILQ_INIT(&ie->snapshots); 2384 QTAILQ_INSERT_TAIL(&image_list, ie, next); 2385 for (i = 0; i < bs1_nb_sns; i++) { 2386 se = g_new0(SnapshotEntry, 1); 2387 se->sn = sn[i]; 2388 QTAILQ_INSERT_TAIL(&ie->snapshots, se, next); 2389 } 2390 } 2391 g_free(sn); 2392 } 2393 aio_context_release(ctx); 2394 } 2395 2396 if (no_snapshot) { 2397 monitor_printf(mon, "There is no snapshot available.\n"); 2398 return; 2399 } 2400 2401 global_snapshots = g_new0(int, nb_sns); 2402 total = 0; 2403 for (i = 0; i < nb_sns; i++) { 2404 SnapshotEntry *next_sn; 2405 if (bdrv_all_find_snapshot(sn_tab[i].name, &bs1) == 0) { 2406 global_snapshots[total] = i; 2407 total++; 2408 QTAILQ_FOREACH(image_entry, &image_list, next) { 2409 QTAILQ_FOREACH_SAFE(snapshot_entry, &image_entry->snapshots, 2410 next, next_sn) { 2411 if (!strcmp(sn_tab[i].name, snapshot_entry->sn.name)) { 2412 QTAILQ_REMOVE(&image_entry->snapshots, snapshot_entry, 2413 next); 2414 g_free(snapshot_entry); 2415 } 2416 } 2417 } 2418 } 2419 } 2420 2421 monitor_printf(mon, "List of snapshots present on all disks:\n"); 2422 2423 if (total > 0) { 2424 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL); 2425 monitor_printf(mon, "\n"); 2426 for (i = 0; i < total; i++) { 2427 sn = &sn_tab[global_snapshots[i]]; 2428 /* The ID is not guaranteed to be the same on all images, so 2429 * overwrite it. 2430 */ 2431 pstrcpy(sn->id_str, sizeof(sn->id_str), "--"); 2432 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, sn); 2433 monitor_printf(mon, "\n"); 2434 } 2435 } else { 2436 monitor_printf(mon, "None\n"); 2437 } 2438 2439 QTAILQ_FOREACH(image_entry, &image_list, next) { 2440 if (QTAILQ_EMPTY(&image_entry->snapshots)) { 2441 continue; 2442 } 2443 monitor_printf(mon, 2444 "\nList of partial (non-loadable) snapshots on '%s':\n", 2445 image_entry->imagename); 2446 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL); 2447 monitor_printf(mon, "\n"); 2448 QTAILQ_FOREACH(snapshot_entry, &image_entry->snapshots, next) { 2449 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, 2450 &snapshot_entry->sn); 2451 monitor_printf(mon, "\n"); 2452 } 2453 } 2454 2455 QTAILQ_FOREACH_SAFE(image_entry, &image_list, next, next_ie) { 2456 SnapshotEntry *next_sn; 2457 QTAILQ_FOREACH_SAFE(snapshot_entry, &image_entry->snapshots, next, 2458 next_sn) { 2459 g_free(snapshot_entry); 2460 } 2461 g_free(image_entry); 2462 } 2463 g_free(sn_tab); 2464 g_free(global_snapshots); 2465 2466 } 2467 2468 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2469 { 2470 qemu_ram_set_idstr(mr->ram_block, 2471 memory_region_name(mr), dev); 2472 } 2473 2474 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2475 { 2476 qemu_ram_unset_idstr(mr->ram_block); 2477 } 2478 2479 void vmstate_register_ram_global(MemoryRegion *mr) 2480 { 2481 vmstate_register_ram(mr, NULL); 2482 } 2483