1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/boards.h" 31 #include "hw/xen/xen.h" 32 #include "net/net.h" 33 #include "migration.h" 34 #include "migration/snapshot.h" 35 #include "migration/misc.h" 36 #include "migration/register.h" 37 #include "migration/global_state.h" 38 #include "ram.h" 39 #include "qemu-file-channel.h" 40 #include "qemu-file.h" 41 #include "savevm.h" 42 #include "postcopy-ram.h" 43 #include "qapi/qmp/qerror.h" 44 #include "qemu/error-report.h" 45 #include "sysemu/cpus.h" 46 #include "exec/memory.h" 47 #include "exec/target_page.h" 48 #include "qmp-commands.h" 49 #include "trace.h" 50 #include "qemu/iov.h" 51 #include "block/snapshot.h" 52 #include "qemu/cutils.h" 53 #include "io/channel-buffer.h" 54 #include "io/channel-file.h" 55 56 #ifndef ETH_P_RARP 57 #define ETH_P_RARP 0x8035 58 #endif 59 #define ARP_HTYPE_ETH 0x0001 60 #define ARP_PTYPE_IP 0x0800 61 #define ARP_OP_REQUEST_REV 0x3 62 63 const unsigned int postcopy_ram_discard_version = 0; 64 65 /* Subcommands for QEMU_VM_COMMAND */ 66 enum qemu_vm_cmd { 67 MIG_CMD_INVALID = 0, /* Must be 0 */ 68 MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */ 69 MIG_CMD_PING, /* Request a PONG on the RP */ 70 71 MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just 72 warn we might want to do PC */ 73 MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming 74 pages as it's running. */ 75 MIG_CMD_POSTCOPY_RUN, /* Start execution */ 76 77 MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that 78 were previously sent during 79 precopy but are dirty. */ 80 MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */ 81 MIG_CMD_MAX 82 }; 83 84 #define MAX_VM_CMD_PACKAGED_SIZE (1ul << 24) 85 static struct mig_cmd_args { 86 ssize_t len; /* -1 = variable */ 87 const char *name; 88 } mig_cmd_args[] = { 89 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 90 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 91 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 92 [MIG_CMD_POSTCOPY_ADVISE] = { .len = 16, .name = "POSTCOPY_ADVISE" }, 93 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 94 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 95 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 96 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 97 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 98 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 99 }; 100 101 static int announce_self_create(uint8_t *buf, 102 uint8_t *mac_addr) 103 { 104 /* Ethernet header. */ 105 memset(buf, 0xff, 6); /* destination MAC addr */ 106 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 107 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 108 109 /* RARP header. */ 110 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 111 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 112 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 113 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 114 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 115 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 116 memset(buf + 28, 0x00, 4); /* source protocol addr */ 117 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 118 memset(buf + 38, 0x00, 4); /* target protocol addr */ 119 120 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 121 memset(buf + 42, 0x00, 18); 122 123 return 60; /* len (FCS will be added by hardware) */ 124 } 125 126 static void qemu_announce_self_iter(NICState *nic, void *opaque) 127 { 128 uint8_t buf[60]; 129 int len; 130 131 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 132 len = announce_self_create(buf, nic->conf->macaddr.a); 133 134 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 135 } 136 137 138 static void qemu_announce_self_once(void *opaque) 139 { 140 static int count = SELF_ANNOUNCE_ROUNDS; 141 QEMUTimer *timer = *(QEMUTimer **)opaque; 142 143 qemu_foreach_nic(qemu_announce_self_iter, NULL); 144 145 if (--count) { 146 /* delay 50ms, 150ms, 250ms, ... */ 147 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 148 self_announce_delay(count)); 149 } else { 150 timer_del(timer); 151 timer_free(timer); 152 } 153 } 154 155 void qemu_announce_self(void) 156 { 157 static QEMUTimer *timer; 158 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 159 qemu_announce_self_once(&timer); 160 } 161 162 /***********************************************************/ 163 /* savevm/loadvm support */ 164 165 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 166 int64_t pos) 167 { 168 int ret; 169 QEMUIOVector qiov; 170 171 qemu_iovec_init_external(&qiov, iov, iovcnt); 172 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 173 if (ret < 0) { 174 return ret; 175 } 176 177 return qiov.size; 178 } 179 180 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 181 size_t size) 182 { 183 return bdrv_load_vmstate(opaque, buf, pos, size); 184 } 185 186 static int bdrv_fclose(void *opaque) 187 { 188 return bdrv_flush(opaque); 189 } 190 191 static const QEMUFileOps bdrv_read_ops = { 192 .get_buffer = block_get_buffer, 193 .close = bdrv_fclose 194 }; 195 196 static const QEMUFileOps bdrv_write_ops = { 197 .writev_buffer = block_writev_buffer, 198 .close = bdrv_fclose 199 }; 200 201 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 202 { 203 if (is_writable) { 204 return qemu_fopen_ops(bs, &bdrv_write_ops); 205 } 206 return qemu_fopen_ops(bs, &bdrv_read_ops); 207 } 208 209 210 /* QEMUFile timer support. 211 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 212 */ 213 214 void timer_put(QEMUFile *f, QEMUTimer *ts) 215 { 216 uint64_t expire_time; 217 218 expire_time = timer_expire_time_ns(ts); 219 qemu_put_be64(f, expire_time); 220 } 221 222 void timer_get(QEMUFile *f, QEMUTimer *ts) 223 { 224 uint64_t expire_time; 225 226 expire_time = qemu_get_be64(f); 227 if (expire_time != -1) { 228 timer_mod_ns(ts, expire_time); 229 } else { 230 timer_del(ts); 231 } 232 } 233 234 235 /* VMState timer support. 236 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 237 */ 238 239 static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field) 240 { 241 QEMUTimer *v = pv; 242 timer_get(f, v); 243 return 0; 244 } 245 246 static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field, 247 QJSON *vmdesc) 248 { 249 QEMUTimer *v = pv; 250 timer_put(f, v); 251 252 return 0; 253 } 254 255 const VMStateInfo vmstate_info_timer = { 256 .name = "timer", 257 .get = get_timer, 258 .put = put_timer, 259 }; 260 261 262 typedef struct CompatEntry { 263 char idstr[256]; 264 int instance_id; 265 } CompatEntry; 266 267 typedef struct SaveStateEntry { 268 QTAILQ_ENTRY(SaveStateEntry) entry; 269 char idstr[256]; 270 int instance_id; 271 int alias_id; 272 int version_id; 273 /* version id read from the stream */ 274 int load_version_id; 275 int section_id; 276 /* section id read from the stream */ 277 int load_section_id; 278 SaveVMHandlers *ops; 279 const VMStateDescription *vmsd; 280 void *opaque; 281 CompatEntry *compat; 282 int is_ram; 283 } SaveStateEntry; 284 285 typedef struct SaveState { 286 QTAILQ_HEAD(, SaveStateEntry) handlers; 287 int global_section_id; 288 uint32_t len; 289 const char *name; 290 uint32_t target_page_bits; 291 } SaveState; 292 293 static SaveState savevm_state = { 294 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 295 .global_section_id = 0, 296 }; 297 298 static void configuration_pre_save(void *opaque) 299 { 300 SaveState *state = opaque; 301 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 302 303 state->len = strlen(current_name); 304 state->name = current_name; 305 state->target_page_bits = qemu_target_page_bits(); 306 } 307 308 static int configuration_pre_load(void *opaque) 309 { 310 SaveState *state = opaque; 311 312 /* If there is no target-page-bits subsection it means the source 313 * predates the variable-target-page-bits support and is using the 314 * minimum possible value for this CPU. 315 */ 316 state->target_page_bits = qemu_target_page_bits_min(); 317 return 0; 318 } 319 320 static int configuration_post_load(void *opaque, int version_id) 321 { 322 SaveState *state = opaque; 323 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 324 325 if (strncmp(state->name, current_name, state->len) != 0) { 326 error_report("Machine type received is '%.*s' and local is '%s'", 327 (int) state->len, state->name, current_name); 328 return -EINVAL; 329 } 330 331 if (state->target_page_bits != qemu_target_page_bits()) { 332 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 333 state->target_page_bits, qemu_target_page_bits()); 334 return -EINVAL; 335 } 336 337 return 0; 338 } 339 340 /* The target-page-bits subsection is present only if the 341 * target page size is not the same as the default (ie the 342 * minimum page size for a variable-page-size guest CPU). 343 * If it is present then it contains the actual target page 344 * bits for the machine, and migration will fail if the 345 * two ends don't agree about it. 346 */ 347 static bool vmstate_target_page_bits_needed(void *opaque) 348 { 349 return qemu_target_page_bits() 350 > qemu_target_page_bits_min(); 351 } 352 353 static const VMStateDescription vmstate_target_page_bits = { 354 .name = "configuration/target-page-bits", 355 .version_id = 1, 356 .minimum_version_id = 1, 357 .needed = vmstate_target_page_bits_needed, 358 .fields = (VMStateField[]) { 359 VMSTATE_UINT32(target_page_bits, SaveState), 360 VMSTATE_END_OF_LIST() 361 } 362 }; 363 364 static const VMStateDescription vmstate_configuration = { 365 .name = "configuration", 366 .version_id = 1, 367 .pre_load = configuration_pre_load, 368 .post_load = configuration_post_load, 369 .pre_save = configuration_pre_save, 370 .fields = (VMStateField[]) { 371 VMSTATE_UINT32(len, SaveState), 372 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len), 373 VMSTATE_END_OF_LIST() 374 }, 375 .subsections = (const VMStateDescription*[]) { 376 &vmstate_target_page_bits, 377 NULL 378 } 379 }; 380 381 static void dump_vmstate_vmsd(FILE *out_file, 382 const VMStateDescription *vmsd, int indent, 383 bool is_subsection); 384 385 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 386 int indent) 387 { 388 fprintf(out_file, "%*s{\n", indent, ""); 389 indent += 2; 390 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 391 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 392 field->version_id); 393 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 394 field->field_exists ? "true" : "false"); 395 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 396 if (field->vmsd != NULL) { 397 fprintf(out_file, ",\n"); 398 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 399 } 400 fprintf(out_file, "\n%*s}", indent - 2, ""); 401 } 402 403 static void dump_vmstate_vmss(FILE *out_file, 404 const VMStateDescription **subsection, 405 int indent) 406 { 407 if (*subsection != NULL) { 408 dump_vmstate_vmsd(out_file, *subsection, indent, true); 409 } 410 } 411 412 static void dump_vmstate_vmsd(FILE *out_file, 413 const VMStateDescription *vmsd, int indent, 414 bool is_subsection) 415 { 416 if (is_subsection) { 417 fprintf(out_file, "%*s{\n", indent, ""); 418 } else { 419 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 420 } 421 indent += 2; 422 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 423 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 424 vmsd->version_id); 425 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 426 vmsd->minimum_version_id); 427 if (vmsd->fields != NULL) { 428 const VMStateField *field = vmsd->fields; 429 bool first; 430 431 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 432 first = true; 433 while (field->name != NULL) { 434 if (field->flags & VMS_MUST_EXIST) { 435 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 436 field++; 437 continue; 438 } 439 if (!first) { 440 fprintf(out_file, ",\n"); 441 } 442 dump_vmstate_vmsf(out_file, field, indent + 2); 443 field++; 444 first = false; 445 } 446 fprintf(out_file, "\n%*s]", indent, ""); 447 } 448 if (vmsd->subsections != NULL) { 449 const VMStateDescription **subsection = vmsd->subsections; 450 bool first; 451 452 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 453 first = true; 454 while (*subsection != NULL) { 455 if (!first) { 456 fprintf(out_file, ",\n"); 457 } 458 dump_vmstate_vmss(out_file, subsection, indent + 2); 459 subsection++; 460 first = false; 461 } 462 fprintf(out_file, "\n%*s]", indent, ""); 463 } 464 fprintf(out_file, "\n%*s}", indent - 2, ""); 465 } 466 467 static void dump_machine_type(FILE *out_file) 468 { 469 MachineClass *mc; 470 471 mc = MACHINE_GET_CLASS(current_machine); 472 473 fprintf(out_file, " \"vmschkmachine\": {\n"); 474 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 475 fprintf(out_file, " },\n"); 476 } 477 478 void dump_vmstate_json_to_file(FILE *out_file) 479 { 480 GSList *list, *elt; 481 bool first; 482 483 fprintf(out_file, "{\n"); 484 dump_machine_type(out_file); 485 486 first = true; 487 list = object_class_get_list(TYPE_DEVICE, true); 488 for (elt = list; elt; elt = elt->next) { 489 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 490 TYPE_DEVICE); 491 const char *name; 492 int indent = 2; 493 494 if (!dc->vmsd) { 495 continue; 496 } 497 498 if (!first) { 499 fprintf(out_file, ",\n"); 500 } 501 name = object_class_get_name(OBJECT_CLASS(dc)); 502 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 503 indent += 2; 504 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 505 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 506 dc->vmsd->version_id); 507 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 508 dc->vmsd->minimum_version_id); 509 510 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 511 512 fprintf(out_file, "\n%*s}", indent - 2, ""); 513 first = false; 514 } 515 fprintf(out_file, "\n}\n"); 516 fclose(out_file); 517 } 518 519 static int calculate_new_instance_id(const char *idstr) 520 { 521 SaveStateEntry *se; 522 int instance_id = 0; 523 524 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 525 if (strcmp(idstr, se->idstr) == 0 526 && instance_id <= se->instance_id) { 527 instance_id = se->instance_id + 1; 528 } 529 } 530 return instance_id; 531 } 532 533 static int calculate_compat_instance_id(const char *idstr) 534 { 535 SaveStateEntry *se; 536 int instance_id = 0; 537 538 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 539 if (!se->compat) { 540 continue; 541 } 542 543 if (strcmp(idstr, se->compat->idstr) == 0 544 && instance_id <= se->compat->instance_id) { 545 instance_id = se->compat->instance_id + 1; 546 } 547 } 548 return instance_id; 549 } 550 551 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 552 { 553 if (se->vmsd) { 554 return se->vmsd->priority; 555 } 556 return MIG_PRI_DEFAULT; 557 } 558 559 static void savevm_state_handler_insert(SaveStateEntry *nse) 560 { 561 MigrationPriority priority = save_state_priority(nse); 562 SaveStateEntry *se; 563 564 assert(priority <= MIG_PRI_MAX); 565 566 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 567 if (save_state_priority(se) < priority) { 568 break; 569 } 570 } 571 572 if (se) { 573 QTAILQ_INSERT_BEFORE(se, nse, entry); 574 } else { 575 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 576 } 577 } 578 579 /* TODO: Individual devices generally have very little idea about the rest 580 of the system, so instance_id should be removed/replaced. 581 Meanwhile pass -1 as instance_id if you do not already have a clearly 582 distinguishing id for all instances of your device class. */ 583 int register_savevm_live(DeviceState *dev, 584 const char *idstr, 585 int instance_id, 586 int version_id, 587 SaveVMHandlers *ops, 588 void *opaque) 589 { 590 SaveStateEntry *se; 591 592 se = g_new0(SaveStateEntry, 1); 593 se->version_id = version_id; 594 se->section_id = savevm_state.global_section_id++; 595 se->ops = ops; 596 se->opaque = opaque; 597 se->vmsd = NULL; 598 /* if this is a live_savem then set is_ram */ 599 if (ops->save_setup != NULL) { 600 se->is_ram = 1; 601 } 602 603 if (dev) { 604 char *id = qdev_get_dev_path(dev); 605 if (id) { 606 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 607 sizeof(se->idstr)) { 608 error_report("Path too long for VMState (%s)", id); 609 g_free(id); 610 g_free(se); 611 612 return -1; 613 } 614 g_free(id); 615 616 se->compat = g_new0(CompatEntry, 1); 617 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 618 se->compat->instance_id = instance_id == -1 ? 619 calculate_compat_instance_id(idstr) : instance_id; 620 instance_id = -1; 621 } 622 } 623 pstrcat(se->idstr, sizeof(se->idstr), idstr); 624 625 if (instance_id == -1) { 626 se->instance_id = calculate_new_instance_id(se->idstr); 627 } else { 628 se->instance_id = instance_id; 629 } 630 assert(!se->compat || se->instance_id == 0); 631 savevm_state_handler_insert(se); 632 return 0; 633 } 634 635 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 636 { 637 SaveStateEntry *se, *new_se; 638 char id[256] = ""; 639 640 if (dev) { 641 char *path = qdev_get_dev_path(dev); 642 if (path) { 643 pstrcpy(id, sizeof(id), path); 644 pstrcat(id, sizeof(id), "/"); 645 g_free(path); 646 } 647 } 648 pstrcat(id, sizeof(id), idstr); 649 650 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 651 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 652 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 653 g_free(se->compat); 654 g_free(se); 655 } 656 } 657 } 658 659 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 660 const VMStateDescription *vmsd, 661 void *opaque, int alias_id, 662 int required_for_version, 663 Error **errp) 664 { 665 SaveStateEntry *se; 666 667 /* If this triggers, alias support can be dropped for the vmsd. */ 668 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 669 670 se = g_new0(SaveStateEntry, 1); 671 se->version_id = vmsd->version_id; 672 se->section_id = savevm_state.global_section_id++; 673 se->opaque = opaque; 674 se->vmsd = vmsd; 675 se->alias_id = alias_id; 676 677 if (dev) { 678 char *id = qdev_get_dev_path(dev); 679 if (id) { 680 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 681 sizeof(se->idstr)) { 682 error_setg(errp, "Path too long for VMState (%s)", id); 683 g_free(id); 684 g_free(se); 685 686 return -1; 687 } 688 g_free(id); 689 690 se->compat = g_new0(CompatEntry, 1); 691 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 692 se->compat->instance_id = instance_id == -1 ? 693 calculate_compat_instance_id(vmsd->name) : instance_id; 694 instance_id = -1; 695 } 696 } 697 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 698 699 if (instance_id == -1) { 700 se->instance_id = calculate_new_instance_id(se->idstr); 701 } else { 702 se->instance_id = instance_id; 703 } 704 assert(!se->compat || se->instance_id == 0); 705 savevm_state_handler_insert(se); 706 return 0; 707 } 708 709 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 710 void *opaque) 711 { 712 SaveStateEntry *se, *new_se; 713 714 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 715 if (se->vmsd == vmsd && se->opaque == opaque) { 716 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 717 g_free(se->compat); 718 g_free(se); 719 } 720 } 721 } 722 723 static int vmstate_load(QEMUFile *f, SaveStateEntry *se) 724 { 725 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 726 if (!se->vmsd) { /* Old style */ 727 return se->ops->load_state(f, se->opaque, se->load_version_id); 728 } 729 return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id); 730 } 731 732 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 733 { 734 int64_t old_offset, size; 735 736 old_offset = qemu_ftell_fast(f); 737 se->ops->save_state(f, se->opaque); 738 size = qemu_ftell_fast(f) - old_offset; 739 740 if (vmdesc) { 741 json_prop_int(vmdesc, "size", size); 742 json_start_array(vmdesc, "fields"); 743 json_start_object(vmdesc, NULL); 744 json_prop_str(vmdesc, "name", "data"); 745 json_prop_int(vmdesc, "size", size); 746 json_prop_str(vmdesc, "type", "buffer"); 747 json_end_object(vmdesc); 748 json_end_array(vmdesc); 749 } 750 } 751 752 static void vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 753 { 754 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 755 if (!se->vmsd) { 756 vmstate_save_old_style(f, se, vmdesc); 757 return; 758 } 759 vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 760 } 761 762 /* 763 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 764 */ 765 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 766 uint8_t section_type) 767 { 768 qemu_put_byte(f, section_type); 769 qemu_put_be32(f, se->section_id); 770 771 if (section_type == QEMU_VM_SECTION_FULL || 772 section_type == QEMU_VM_SECTION_START) { 773 /* ID string */ 774 size_t len = strlen(se->idstr); 775 qemu_put_byte(f, len); 776 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 777 778 qemu_put_be32(f, se->instance_id); 779 qemu_put_be32(f, se->version_id); 780 } 781 } 782 783 /* 784 * Write a footer onto device sections that catches cases misformatted device 785 * sections. 786 */ 787 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 788 { 789 if (migrate_get_current()->send_section_footer) { 790 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 791 qemu_put_be32(f, se->section_id); 792 } 793 } 794 795 /** 796 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 797 * command and associated data. 798 * 799 * @f: File to send command on 800 * @command: Command type to send 801 * @len: Length of associated data 802 * @data: Data associated with command. 803 */ 804 static void qemu_savevm_command_send(QEMUFile *f, 805 enum qemu_vm_cmd command, 806 uint16_t len, 807 uint8_t *data) 808 { 809 trace_savevm_command_send(command, len); 810 qemu_put_byte(f, QEMU_VM_COMMAND); 811 qemu_put_be16(f, (uint16_t)command); 812 qemu_put_be16(f, len); 813 qemu_put_buffer(f, data, len); 814 qemu_fflush(f); 815 } 816 817 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 818 { 819 uint32_t buf; 820 821 trace_savevm_send_ping(value); 822 buf = cpu_to_be32(value); 823 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 824 } 825 826 void qemu_savevm_send_open_return_path(QEMUFile *f) 827 { 828 trace_savevm_send_open_return_path(); 829 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 830 } 831 832 /* We have a buffer of data to send; we don't want that all to be loaded 833 * by the command itself, so the command contains just the length of the 834 * extra buffer that we then send straight after it. 835 * TODO: Must be a better way to organise that 836 * 837 * Returns: 838 * 0 on success 839 * -ve on error 840 */ 841 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 842 { 843 uint32_t tmp; 844 845 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 846 error_report("%s: Unreasonably large packaged state: %zu", 847 __func__, len); 848 return -1; 849 } 850 851 tmp = cpu_to_be32(len); 852 853 trace_qemu_savevm_send_packaged(); 854 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 855 856 qemu_put_buffer(f, buf, len); 857 858 return 0; 859 } 860 861 /* Send prior to any postcopy transfer */ 862 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 863 { 864 uint64_t tmp[2]; 865 tmp[0] = cpu_to_be64(ram_pagesize_summary()); 866 tmp[1] = cpu_to_be64(qemu_target_page_size()); 867 868 trace_qemu_savevm_send_postcopy_advise(); 869 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 16, (uint8_t *)tmp); 870 } 871 872 /* Sent prior to starting the destination running in postcopy, discard pages 873 * that have already been sent but redirtied on the source. 874 * CMD_POSTCOPY_RAM_DISCARD consist of: 875 * byte version (0) 876 * byte Length of name field (not including 0) 877 * n x byte RAM block name 878 * byte 0 terminator (just for safety) 879 * n x Byte ranges within the named RAMBlock 880 * be64 Start of the range 881 * be64 Length 882 * 883 * name: RAMBlock name that these entries are part of 884 * len: Number of page entries 885 * start_list: 'len' addresses 886 * length_list: 'len' addresses 887 * 888 */ 889 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 890 uint16_t len, 891 uint64_t *start_list, 892 uint64_t *length_list) 893 { 894 uint8_t *buf; 895 uint16_t tmplen; 896 uint16_t t; 897 size_t name_len = strlen(name); 898 899 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 900 assert(name_len < 256); 901 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 902 buf[0] = postcopy_ram_discard_version; 903 buf[1] = name_len; 904 memcpy(buf + 2, name, name_len); 905 tmplen = 2 + name_len; 906 buf[tmplen++] = '\0'; 907 908 for (t = 0; t < len; t++) { 909 stq_be_p(buf + tmplen, start_list[t]); 910 tmplen += 8; 911 stq_be_p(buf + tmplen, length_list[t]); 912 tmplen += 8; 913 } 914 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 915 g_free(buf); 916 } 917 918 /* Get the destination into a state where it can receive postcopy data. */ 919 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 920 { 921 trace_savevm_send_postcopy_listen(); 922 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 923 } 924 925 /* Kick the destination into running */ 926 void qemu_savevm_send_postcopy_run(QEMUFile *f) 927 { 928 trace_savevm_send_postcopy_run(); 929 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 930 } 931 932 bool qemu_savevm_state_blocked(Error **errp) 933 { 934 SaveStateEntry *se; 935 936 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 937 if (se->vmsd && se->vmsd->unmigratable) { 938 error_setg(errp, "State blocked by non-migratable device '%s'", 939 se->idstr); 940 return true; 941 } 942 } 943 return false; 944 } 945 946 void qemu_savevm_state_header(QEMUFile *f) 947 { 948 trace_savevm_state_header(); 949 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 950 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 951 952 if (migrate_get_current()->send_configuration) { 953 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 954 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 955 } 956 } 957 958 void qemu_savevm_state_setup(QEMUFile *f) 959 { 960 SaveStateEntry *se; 961 int ret; 962 963 trace_savevm_state_setup(); 964 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 965 if (!se->ops || !se->ops->save_setup) { 966 continue; 967 } 968 if (se->ops && se->ops->is_active) { 969 if (!se->ops->is_active(se->opaque)) { 970 continue; 971 } 972 } 973 save_section_header(f, se, QEMU_VM_SECTION_START); 974 975 ret = se->ops->save_setup(f, se->opaque); 976 save_section_footer(f, se); 977 if (ret < 0) { 978 qemu_file_set_error(f, ret); 979 break; 980 } 981 } 982 } 983 984 /* 985 * this function has three return values: 986 * negative: there was one error, and we have -errno. 987 * 0 : We haven't finished, caller have to go again 988 * 1 : We have finished, we can go to complete phase 989 */ 990 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 991 { 992 SaveStateEntry *se; 993 int ret = 1; 994 995 trace_savevm_state_iterate(); 996 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 997 if (!se->ops || !se->ops->save_live_iterate) { 998 continue; 999 } 1000 if (se->ops && se->ops->is_active) { 1001 if (!se->ops->is_active(se->opaque)) { 1002 continue; 1003 } 1004 } 1005 /* 1006 * In the postcopy phase, any device that doesn't know how to 1007 * do postcopy should have saved it's state in the _complete 1008 * call that's already run, it might get confused if we call 1009 * iterate afterwards. 1010 */ 1011 if (postcopy && !se->ops->save_live_complete_postcopy) { 1012 continue; 1013 } 1014 if (qemu_file_rate_limit(f)) { 1015 return 0; 1016 } 1017 trace_savevm_section_start(se->idstr, se->section_id); 1018 1019 save_section_header(f, se, QEMU_VM_SECTION_PART); 1020 1021 ret = se->ops->save_live_iterate(f, se->opaque); 1022 trace_savevm_section_end(se->idstr, se->section_id, ret); 1023 save_section_footer(f, se); 1024 1025 if (ret < 0) { 1026 qemu_file_set_error(f, ret); 1027 } 1028 if (ret <= 0) { 1029 /* Do not proceed to the next vmstate before this one reported 1030 completion of the current stage. This serializes the migration 1031 and reduces the probability that a faster changing state is 1032 synchronized over and over again. */ 1033 break; 1034 } 1035 } 1036 return ret; 1037 } 1038 1039 static bool should_send_vmdesc(void) 1040 { 1041 MachineState *machine = MACHINE(qdev_get_machine()); 1042 bool in_postcopy = migration_in_postcopy(); 1043 return !machine->suppress_vmdesc && !in_postcopy; 1044 } 1045 1046 /* 1047 * Calls the save_live_complete_postcopy methods 1048 * causing the last few pages to be sent immediately and doing any associated 1049 * cleanup. 1050 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1051 * all the other devices, but that happens at the point we switch to postcopy. 1052 */ 1053 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1054 { 1055 SaveStateEntry *se; 1056 int ret; 1057 1058 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1059 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1060 continue; 1061 } 1062 if (se->ops && se->ops->is_active) { 1063 if (!se->ops->is_active(se->opaque)) { 1064 continue; 1065 } 1066 } 1067 trace_savevm_section_start(se->idstr, se->section_id); 1068 /* Section type */ 1069 qemu_put_byte(f, QEMU_VM_SECTION_END); 1070 qemu_put_be32(f, se->section_id); 1071 1072 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1073 trace_savevm_section_end(se->idstr, se->section_id, ret); 1074 save_section_footer(f, se); 1075 if (ret < 0) { 1076 qemu_file_set_error(f, ret); 1077 return; 1078 } 1079 } 1080 1081 qemu_put_byte(f, QEMU_VM_EOF); 1082 qemu_fflush(f); 1083 } 1084 1085 int qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only, 1086 bool inactivate_disks) 1087 { 1088 QJSON *vmdesc; 1089 int vmdesc_len; 1090 SaveStateEntry *se; 1091 int ret; 1092 bool in_postcopy = migration_in_postcopy(); 1093 1094 trace_savevm_state_complete_precopy(); 1095 1096 cpu_synchronize_all_states(); 1097 1098 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1099 if (!se->ops || 1100 (in_postcopy && se->ops->save_live_complete_postcopy) || 1101 (in_postcopy && !iterable_only) || 1102 !se->ops->save_live_complete_precopy) { 1103 continue; 1104 } 1105 1106 if (se->ops && se->ops->is_active) { 1107 if (!se->ops->is_active(se->opaque)) { 1108 continue; 1109 } 1110 } 1111 trace_savevm_section_start(se->idstr, se->section_id); 1112 1113 save_section_header(f, se, QEMU_VM_SECTION_END); 1114 1115 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1116 trace_savevm_section_end(se->idstr, se->section_id, ret); 1117 save_section_footer(f, se); 1118 if (ret < 0) { 1119 qemu_file_set_error(f, ret); 1120 return -1; 1121 } 1122 } 1123 1124 if (iterable_only) { 1125 return 0; 1126 } 1127 1128 vmdesc = qjson_new(); 1129 json_prop_int(vmdesc, "page_size", qemu_target_page_size()); 1130 json_start_array(vmdesc, "devices"); 1131 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1132 1133 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1134 continue; 1135 } 1136 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1137 trace_savevm_section_skip(se->idstr, se->section_id); 1138 continue; 1139 } 1140 1141 trace_savevm_section_start(se->idstr, se->section_id); 1142 1143 json_start_object(vmdesc, NULL); 1144 json_prop_str(vmdesc, "name", se->idstr); 1145 json_prop_int(vmdesc, "instance_id", se->instance_id); 1146 1147 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1148 vmstate_save(f, se, vmdesc); 1149 trace_savevm_section_end(se->idstr, se->section_id, 0); 1150 save_section_footer(f, se); 1151 1152 json_end_object(vmdesc); 1153 } 1154 1155 if (inactivate_disks) { 1156 /* Inactivate before sending QEMU_VM_EOF so that the 1157 * bdrv_invalidate_cache_all() on the other end won't fail. */ 1158 ret = bdrv_inactivate_all(); 1159 if (ret) { 1160 error_report("%s: bdrv_inactivate_all() failed (%d)", 1161 __func__, ret); 1162 qemu_file_set_error(f, ret); 1163 return ret; 1164 } 1165 } 1166 if (!in_postcopy) { 1167 /* Postcopy stream will still be going */ 1168 qemu_put_byte(f, QEMU_VM_EOF); 1169 } 1170 1171 json_end_array(vmdesc); 1172 qjson_finish(vmdesc); 1173 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1174 1175 if (should_send_vmdesc()) { 1176 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1177 qemu_put_be32(f, vmdesc_len); 1178 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1179 } 1180 qjson_destroy(vmdesc); 1181 1182 qemu_fflush(f); 1183 return 0; 1184 } 1185 1186 /* Give an estimate of the amount left to be transferred, 1187 * the result is split into the amount for units that can and 1188 * for units that can't do postcopy. 1189 */ 1190 void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size, 1191 uint64_t *res_non_postcopiable, 1192 uint64_t *res_postcopiable) 1193 { 1194 SaveStateEntry *se; 1195 1196 *res_non_postcopiable = 0; 1197 *res_postcopiable = 0; 1198 1199 1200 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1201 if (!se->ops || !se->ops->save_live_pending) { 1202 continue; 1203 } 1204 if (se->ops && se->ops->is_active) { 1205 if (!se->ops->is_active(se->opaque)) { 1206 continue; 1207 } 1208 } 1209 se->ops->save_live_pending(f, se->opaque, threshold_size, 1210 res_non_postcopiable, res_postcopiable); 1211 } 1212 } 1213 1214 void qemu_savevm_state_cleanup(void) 1215 { 1216 SaveStateEntry *se; 1217 1218 trace_savevm_state_cleanup(); 1219 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1220 if (se->ops && se->ops->save_cleanup) { 1221 se->ops->save_cleanup(se->opaque); 1222 } 1223 } 1224 } 1225 1226 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1227 { 1228 int ret; 1229 MigrationState *ms = migrate_init(); 1230 MigrationStatus status; 1231 ms->to_dst_file = f; 1232 1233 if (migration_is_blocked(errp)) { 1234 ret = -EINVAL; 1235 goto done; 1236 } 1237 1238 if (migrate_use_block()) { 1239 error_setg(errp, "Block migration and snapshots are incompatible"); 1240 ret = -EINVAL; 1241 goto done; 1242 } 1243 1244 qemu_mutex_unlock_iothread(); 1245 qemu_savevm_state_header(f); 1246 qemu_savevm_state_setup(f); 1247 qemu_mutex_lock_iothread(); 1248 1249 while (qemu_file_get_error(f) == 0) { 1250 if (qemu_savevm_state_iterate(f, false) > 0) { 1251 break; 1252 } 1253 } 1254 1255 ret = qemu_file_get_error(f); 1256 if (ret == 0) { 1257 qemu_savevm_state_complete_precopy(f, false, false); 1258 ret = qemu_file_get_error(f); 1259 } 1260 qemu_savevm_state_cleanup(); 1261 if (ret != 0) { 1262 error_setg_errno(errp, -ret, "Error while writing VM state"); 1263 } 1264 1265 done: 1266 if (ret != 0) { 1267 status = MIGRATION_STATUS_FAILED; 1268 } else { 1269 status = MIGRATION_STATUS_COMPLETED; 1270 } 1271 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1272 1273 /* f is outer parameter, it should not stay in global migration state after 1274 * this function finished */ 1275 ms->to_dst_file = NULL; 1276 1277 return ret; 1278 } 1279 1280 static int qemu_save_device_state(QEMUFile *f) 1281 { 1282 SaveStateEntry *se; 1283 1284 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1285 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1286 1287 cpu_synchronize_all_states(); 1288 1289 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1290 if (se->is_ram) { 1291 continue; 1292 } 1293 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1294 continue; 1295 } 1296 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1297 continue; 1298 } 1299 1300 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1301 1302 vmstate_save(f, se, NULL); 1303 1304 save_section_footer(f, se); 1305 } 1306 1307 qemu_put_byte(f, QEMU_VM_EOF); 1308 1309 return qemu_file_get_error(f); 1310 } 1311 1312 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1313 { 1314 SaveStateEntry *se; 1315 1316 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1317 if (!strcmp(se->idstr, idstr) && 1318 (instance_id == se->instance_id || 1319 instance_id == se->alias_id)) 1320 return se; 1321 /* Migrating from an older version? */ 1322 if (strstr(se->idstr, idstr) && se->compat) { 1323 if (!strcmp(se->compat->idstr, idstr) && 1324 (instance_id == se->compat->instance_id || 1325 instance_id == se->alias_id)) 1326 return se; 1327 } 1328 } 1329 return NULL; 1330 } 1331 1332 enum LoadVMExitCodes { 1333 /* Allow a command to quit all layers of nested loadvm loops */ 1334 LOADVM_QUIT = 1, 1335 }; 1336 1337 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1338 1339 /* ------ incoming postcopy messages ------ */ 1340 /* 'advise' arrives before any transfers just to tell us that a postcopy 1341 * *might* happen - it might be skipped if precopy transferred everything 1342 * quickly. 1343 */ 1344 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis) 1345 { 1346 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1347 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps; 1348 1349 trace_loadvm_postcopy_handle_advise(); 1350 if (ps != POSTCOPY_INCOMING_NONE) { 1351 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1352 return -1; 1353 } 1354 1355 if (!postcopy_ram_supported_by_host()) { 1356 postcopy_state_set(POSTCOPY_INCOMING_NONE); 1357 return -1; 1358 } 1359 1360 remote_pagesize_summary = qemu_get_be64(mis->from_src_file); 1361 local_pagesize_summary = ram_pagesize_summary(); 1362 1363 if (remote_pagesize_summary != local_pagesize_summary) { 1364 /* 1365 * This detects two potential causes of mismatch: 1366 * a) A mismatch in host page sizes 1367 * Some combinations of mismatch are probably possible but it gets 1368 * a bit more complicated. In particular we need to place whole 1369 * host pages on the dest at once, and we need to ensure that we 1370 * handle dirtying to make sure we never end up sending part of 1371 * a hostpage on it's own. 1372 * b) The use of different huge page sizes on source/destination 1373 * a more fine grain test is performed during RAM block migration 1374 * but this test here causes a nice early clear failure, and 1375 * also fails when passed to an older qemu that doesn't 1376 * do huge pages. 1377 */ 1378 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64 1379 " d=%" PRIx64 ")", 1380 remote_pagesize_summary, local_pagesize_summary); 1381 return -1; 1382 } 1383 1384 remote_tps = qemu_get_be64(mis->from_src_file); 1385 if (remote_tps != qemu_target_page_size()) { 1386 /* 1387 * Again, some differences could be dealt with, but for now keep it 1388 * simple. 1389 */ 1390 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)", 1391 (int)remote_tps, qemu_target_page_size()); 1392 return -1; 1393 } 1394 1395 if (ram_postcopy_incoming_init(mis)) { 1396 return -1; 1397 } 1398 1399 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1400 1401 return 0; 1402 } 1403 1404 /* After postcopy we will be told to throw some pages away since they're 1405 * dirty and will have to be demand fetched. Must happen before CPU is 1406 * started. 1407 * There can be 0..many of these messages, each encoding multiple pages. 1408 */ 1409 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1410 uint16_t len) 1411 { 1412 int tmp; 1413 char ramid[256]; 1414 PostcopyState ps = postcopy_state_get(); 1415 1416 trace_loadvm_postcopy_ram_handle_discard(); 1417 1418 switch (ps) { 1419 case POSTCOPY_INCOMING_ADVISE: 1420 /* 1st discard */ 1421 tmp = postcopy_ram_prepare_discard(mis); 1422 if (tmp) { 1423 return tmp; 1424 } 1425 break; 1426 1427 case POSTCOPY_INCOMING_DISCARD: 1428 /* Expected state */ 1429 break; 1430 1431 default: 1432 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1433 ps); 1434 return -1; 1435 } 1436 /* We're expecting a 1437 * Version (0) 1438 * a RAM ID string (length byte, name, 0 term) 1439 * then at least 1 16 byte chunk 1440 */ 1441 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1442 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1443 return -1; 1444 } 1445 1446 tmp = qemu_get_byte(mis->from_src_file); 1447 if (tmp != postcopy_ram_discard_version) { 1448 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1449 return -1; 1450 } 1451 1452 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1453 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1454 return -1; 1455 } 1456 tmp = qemu_get_byte(mis->from_src_file); 1457 if (tmp != 0) { 1458 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1459 return -1; 1460 } 1461 1462 len -= 3 + strlen(ramid); 1463 if (len % 16) { 1464 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1465 return -1; 1466 } 1467 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1468 while (len) { 1469 uint64_t start_addr, block_length; 1470 start_addr = qemu_get_be64(mis->from_src_file); 1471 block_length = qemu_get_be64(mis->from_src_file); 1472 1473 len -= 16; 1474 int ret = ram_discard_range(ramid, start_addr, block_length); 1475 if (ret) { 1476 return ret; 1477 } 1478 } 1479 trace_loadvm_postcopy_ram_handle_discard_end(); 1480 1481 return 0; 1482 } 1483 1484 /* 1485 * Triggered by a postcopy_listen command; this thread takes over reading 1486 * the input stream, leaving the main thread free to carry on loading the rest 1487 * of the device state (from RAM). 1488 * (TODO:This could do with being in a postcopy file - but there again it's 1489 * just another input loop, not that postcopy specific) 1490 */ 1491 static void *postcopy_ram_listen_thread(void *opaque) 1492 { 1493 QEMUFile *f = opaque; 1494 MigrationIncomingState *mis = migration_incoming_get_current(); 1495 int load_res; 1496 1497 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1498 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1499 qemu_sem_post(&mis->listen_thread_sem); 1500 trace_postcopy_ram_listen_thread_start(); 1501 1502 /* 1503 * Because we're a thread and not a coroutine we can't yield 1504 * in qemu_file, and thus we must be blocking now. 1505 */ 1506 qemu_file_set_blocking(f, true); 1507 load_res = qemu_loadvm_state_main(f, mis); 1508 /* And non-blocking again so we don't block in any cleanup */ 1509 qemu_file_set_blocking(f, false); 1510 1511 trace_postcopy_ram_listen_thread_exit(); 1512 if (load_res < 0) { 1513 error_report("%s: loadvm failed: %d", __func__, load_res); 1514 qemu_file_set_error(f, load_res); 1515 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1516 MIGRATION_STATUS_FAILED); 1517 } else { 1518 /* 1519 * This looks good, but it's possible that the device loading in the 1520 * main thread hasn't finished yet, and so we might not be in 'RUN' 1521 * state yet; wait for the end of the main thread. 1522 */ 1523 qemu_event_wait(&mis->main_thread_load_event); 1524 } 1525 postcopy_ram_incoming_cleanup(mis); 1526 1527 if (load_res < 0) { 1528 /* 1529 * If something went wrong then we have a bad state so exit; 1530 * depending how far we got it might be possible at this point 1531 * to leave the guest running and fire MCEs for pages that never 1532 * arrived as a desperate recovery step. 1533 */ 1534 exit(EXIT_FAILURE); 1535 } 1536 1537 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1538 MIGRATION_STATUS_COMPLETED); 1539 /* 1540 * If everything has worked fine, then the main thread has waited 1541 * for us to start, and we're the last use of the mis. 1542 * (If something broke then qemu will have to exit anyway since it's 1543 * got a bad migration state). 1544 */ 1545 migration_incoming_state_destroy(); 1546 qemu_loadvm_state_cleanup(); 1547 1548 return NULL; 1549 } 1550 1551 /* After this message we must be able to immediately receive postcopy data */ 1552 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1553 { 1554 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1555 trace_loadvm_postcopy_handle_listen(); 1556 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1557 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1558 return -1; 1559 } 1560 if (ps == POSTCOPY_INCOMING_ADVISE) { 1561 /* 1562 * A rare case, we entered listen without having to do any discards, 1563 * so do the setup that's normally done at the time of the 1st discard. 1564 */ 1565 postcopy_ram_prepare_discard(mis); 1566 } 1567 1568 /* 1569 * Sensitise RAM - can now generate requests for blocks that don't exist 1570 * However, at this point the CPU shouldn't be running, and the IO 1571 * shouldn't be doing anything yet so don't actually expect requests 1572 */ 1573 if (postcopy_ram_enable_notify(mis)) { 1574 return -1; 1575 } 1576 1577 if (mis->have_listen_thread) { 1578 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1579 return -1; 1580 } 1581 1582 mis->have_listen_thread = true; 1583 /* Start up the listening thread and wait for it to signal ready */ 1584 qemu_sem_init(&mis->listen_thread_sem, 0); 1585 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1586 postcopy_ram_listen_thread, mis->from_src_file, 1587 QEMU_THREAD_DETACHED); 1588 qemu_sem_wait(&mis->listen_thread_sem); 1589 qemu_sem_destroy(&mis->listen_thread_sem); 1590 1591 return 0; 1592 } 1593 1594 1595 typedef struct { 1596 QEMUBH *bh; 1597 } HandleRunBhData; 1598 1599 static void loadvm_postcopy_handle_run_bh(void *opaque) 1600 { 1601 Error *local_err = NULL; 1602 HandleRunBhData *data = opaque; 1603 1604 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1605 * in migration.c 1606 */ 1607 cpu_synchronize_all_post_init(); 1608 1609 qemu_announce_self(); 1610 1611 /* Make sure all file formats flush their mutable metadata. 1612 * If we get an error here, just don't restart the VM yet. */ 1613 bdrv_invalidate_cache_all(&local_err); 1614 if (local_err) { 1615 error_report_err(local_err); 1616 local_err = NULL; 1617 autostart = false; 1618 } 1619 1620 trace_loadvm_postcopy_handle_run_cpu_sync(); 1621 cpu_synchronize_all_post_init(); 1622 1623 trace_loadvm_postcopy_handle_run_vmstart(); 1624 1625 if (autostart) { 1626 /* Hold onto your hats, starting the CPU */ 1627 vm_start(); 1628 } else { 1629 /* leave it paused and let management decide when to start the CPU */ 1630 runstate_set(RUN_STATE_PAUSED); 1631 } 1632 1633 qemu_bh_delete(data->bh); 1634 g_free(data); 1635 } 1636 1637 /* After all discards we can start running and asking for pages */ 1638 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1639 { 1640 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1641 HandleRunBhData *data; 1642 1643 trace_loadvm_postcopy_handle_run(); 1644 if (ps != POSTCOPY_INCOMING_LISTENING) { 1645 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1646 return -1; 1647 } 1648 1649 data = g_new(HandleRunBhData, 1); 1650 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1651 qemu_bh_schedule(data->bh); 1652 1653 /* We need to finish reading the stream from the package 1654 * and also stop reading anything more from the stream that loaded the 1655 * package (since it's now being read by the listener thread). 1656 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1657 */ 1658 return LOADVM_QUIT; 1659 } 1660 1661 /** 1662 * Immediately following this command is a blob of data containing an embedded 1663 * chunk of migration stream; read it and load it. 1664 * 1665 * @mis: Incoming state 1666 * @length: Length of packaged data to read 1667 * 1668 * Returns: Negative values on error 1669 * 1670 */ 1671 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1672 { 1673 int ret; 1674 size_t length; 1675 QIOChannelBuffer *bioc; 1676 1677 length = qemu_get_be32(mis->from_src_file); 1678 trace_loadvm_handle_cmd_packaged(length); 1679 1680 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1681 error_report("Unreasonably large packaged state: %zu", length); 1682 return -1; 1683 } 1684 1685 bioc = qio_channel_buffer_new(length); 1686 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 1687 ret = qemu_get_buffer(mis->from_src_file, 1688 bioc->data, 1689 length); 1690 if (ret != length) { 1691 object_unref(OBJECT(bioc)); 1692 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1693 ret, length); 1694 return (ret < 0) ? ret : -EAGAIN; 1695 } 1696 bioc->usage += length; 1697 trace_loadvm_handle_cmd_packaged_received(ret); 1698 1699 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1700 1701 ret = qemu_loadvm_state_main(packf, mis); 1702 trace_loadvm_handle_cmd_packaged_main(ret); 1703 qemu_fclose(packf); 1704 object_unref(OBJECT(bioc)); 1705 1706 return ret; 1707 } 1708 1709 /* 1710 * Process an incoming 'QEMU_VM_COMMAND' 1711 * 0 just a normal return 1712 * LOADVM_QUIT All good, but exit the loop 1713 * <0 Error 1714 */ 1715 static int loadvm_process_command(QEMUFile *f) 1716 { 1717 MigrationIncomingState *mis = migration_incoming_get_current(); 1718 uint16_t cmd; 1719 uint16_t len; 1720 uint32_t tmp32; 1721 1722 cmd = qemu_get_be16(f); 1723 len = qemu_get_be16(f); 1724 1725 trace_loadvm_process_command(cmd, len); 1726 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1727 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1728 return -EINVAL; 1729 } 1730 1731 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1732 error_report("%s received with bad length - expecting %zu, got %d", 1733 mig_cmd_args[cmd].name, 1734 (size_t)mig_cmd_args[cmd].len, len); 1735 return -ERANGE; 1736 } 1737 1738 switch (cmd) { 1739 case MIG_CMD_OPEN_RETURN_PATH: 1740 if (mis->to_src_file) { 1741 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1742 /* Not really a problem, so don't give up */ 1743 return 0; 1744 } 1745 mis->to_src_file = qemu_file_get_return_path(f); 1746 if (!mis->to_src_file) { 1747 error_report("CMD_OPEN_RETURN_PATH failed"); 1748 return -1; 1749 } 1750 break; 1751 1752 case MIG_CMD_PING: 1753 tmp32 = qemu_get_be32(f); 1754 trace_loadvm_process_command_ping(tmp32); 1755 if (!mis->to_src_file) { 1756 error_report("CMD_PING (0x%x) received with no return path", 1757 tmp32); 1758 return -1; 1759 } 1760 migrate_send_rp_pong(mis, tmp32); 1761 break; 1762 1763 case MIG_CMD_PACKAGED: 1764 return loadvm_handle_cmd_packaged(mis); 1765 1766 case MIG_CMD_POSTCOPY_ADVISE: 1767 return loadvm_postcopy_handle_advise(mis); 1768 1769 case MIG_CMD_POSTCOPY_LISTEN: 1770 return loadvm_postcopy_handle_listen(mis); 1771 1772 case MIG_CMD_POSTCOPY_RUN: 1773 return loadvm_postcopy_handle_run(mis); 1774 1775 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1776 return loadvm_postcopy_ram_handle_discard(mis, len); 1777 } 1778 1779 return 0; 1780 } 1781 1782 /* 1783 * Read a footer off the wire and check that it matches the expected section 1784 * 1785 * Returns: true if the footer was good 1786 * false if there is a problem (and calls error_report to say why) 1787 */ 1788 static bool check_section_footer(QEMUFile *f, SaveStateEntry *se) 1789 { 1790 uint8_t read_mark; 1791 uint32_t read_section_id; 1792 1793 if (!migrate_get_current()->send_section_footer) { 1794 /* No footer to check */ 1795 return true; 1796 } 1797 1798 read_mark = qemu_get_byte(f); 1799 1800 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1801 error_report("Missing section footer for %s", se->idstr); 1802 return false; 1803 } 1804 1805 read_section_id = qemu_get_be32(f); 1806 if (read_section_id != se->load_section_id) { 1807 error_report("Mismatched section id in footer for %s -" 1808 " read 0x%x expected 0x%x", 1809 se->idstr, read_section_id, se->load_section_id); 1810 return false; 1811 } 1812 1813 /* All good */ 1814 return true; 1815 } 1816 1817 static int 1818 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1819 { 1820 uint32_t instance_id, version_id, section_id; 1821 SaveStateEntry *se; 1822 char idstr[256]; 1823 int ret; 1824 1825 /* Read section start */ 1826 section_id = qemu_get_be32(f); 1827 if (!qemu_get_counted_string(f, idstr)) { 1828 error_report("Unable to read ID string for section %u", 1829 section_id); 1830 return -EINVAL; 1831 } 1832 instance_id = qemu_get_be32(f); 1833 version_id = qemu_get_be32(f); 1834 1835 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1836 instance_id, version_id); 1837 /* Find savevm section */ 1838 se = find_se(idstr, instance_id); 1839 if (se == NULL) { 1840 error_report("Unknown savevm section or instance '%s' %d", 1841 idstr, instance_id); 1842 return -EINVAL; 1843 } 1844 1845 /* Validate version */ 1846 if (version_id > se->version_id) { 1847 error_report("savevm: unsupported version %d for '%s' v%d", 1848 version_id, idstr, se->version_id); 1849 return -EINVAL; 1850 } 1851 se->load_version_id = version_id; 1852 se->load_section_id = section_id; 1853 1854 /* Validate if it is a device's state */ 1855 if (xen_enabled() && se->is_ram) { 1856 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1857 return -EINVAL; 1858 } 1859 1860 ret = vmstate_load(f, se); 1861 if (ret < 0) { 1862 error_report("error while loading state for instance 0x%x of" 1863 " device '%s'", instance_id, idstr); 1864 return ret; 1865 } 1866 if (!check_section_footer(f, se)) { 1867 return -EINVAL; 1868 } 1869 1870 return 0; 1871 } 1872 1873 static int 1874 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1875 { 1876 uint32_t section_id; 1877 SaveStateEntry *se; 1878 int ret; 1879 1880 section_id = qemu_get_be32(f); 1881 1882 trace_qemu_loadvm_state_section_partend(section_id); 1883 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1884 if (se->load_section_id == section_id) { 1885 break; 1886 } 1887 } 1888 if (se == NULL) { 1889 error_report("Unknown savevm section %d", section_id); 1890 return -EINVAL; 1891 } 1892 1893 ret = vmstate_load(f, se); 1894 if (ret < 0) { 1895 error_report("error while loading state section id %d(%s)", 1896 section_id, se->idstr); 1897 return ret; 1898 } 1899 if (!check_section_footer(f, se)) { 1900 return -EINVAL; 1901 } 1902 1903 return 0; 1904 } 1905 1906 static int qemu_loadvm_state_setup(QEMUFile *f) 1907 { 1908 SaveStateEntry *se; 1909 int ret; 1910 1911 trace_loadvm_state_setup(); 1912 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1913 if (!se->ops || !se->ops->load_setup) { 1914 continue; 1915 } 1916 if (se->ops && se->ops->is_active) { 1917 if (!se->ops->is_active(se->opaque)) { 1918 continue; 1919 } 1920 } 1921 1922 ret = se->ops->load_setup(f, se->opaque); 1923 if (ret < 0) { 1924 qemu_file_set_error(f, ret); 1925 error_report("Load state of device %s failed", se->idstr); 1926 return ret; 1927 } 1928 } 1929 return 0; 1930 } 1931 1932 void qemu_loadvm_state_cleanup(void) 1933 { 1934 SaveStateEntry *se; 1935 1936 trace_loadvm_state_cleanup(); 1937 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1938 if (se->ops && se->ops->load_cleanup) { 1939 se->ops->load_cleanup(se->opaque); 1940 } 1941 } 1942 } 1943 1944 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 1945 { 1946 uint8_t section_type; 1947 int ret = 0; 1948 1949 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { 1950 ret = 0; 1951 trace_qemu_loadvm_state_section(section_type); 1952 switch (section_type) { 1953 case QEMU_VM_SECTION_START: 1954 case QEMU_VM_SECTION_FULL: 1955 ret = qemu_loadvm_section_start_full(f, mis); 1956 if (ret < 0) { 1957 goto out; 1958 } 1959 break; 1960 case QEMU_VM_SECTION_PART: 1961 case QEMU_VM_SECTION_END: 1962 ret = qemu_loadvm_section_part_end(f, mis); 1963 if (ret < 0) { 1964 goto out; 1965 } 1966 break; 1967 case QEMU_VM_COMMAND: 1968 ret = loadvm_process_command(f); 1969 trace_qemu_loadvm_state_section_command(ret); 1970 if ((ret < 0) || (ret & LOADVM_QUIT)) { 1971 goto out; 1972 } 1973 break; 1974 default: 1975 error_report("Unknown savevm section type %d", section_type); 1976 ret = -EINVAL; 1977 goto out; 1978 } 1979 } 1980 1981 out: 1982 if (ret < 0) { 1983 qemu_file_set_error(f, ret); 1984 } 1985 return ret; 1986 } 1987 1988 int qemu_loadvm_state(QEMUFile *f) 1989 { 1990 MigrationIncomingState *mis = migration_incoming_get_current(); 1991 Error *local_err = NULL; 1992 unsigned int v; 1993 int ret; 1994 1995 if (qemu_savevm_state_blocked(&local_err)) { 1996 error_report_err(local_err); 1997 return -EINVAL; 1998 } 1999 2000 v = qemu_get_be32(f); 2001 if (v != QEMU_VM_FILE_MAGIC) { 2002 error_report("Not a migration stream"); 2003 return -EINVAL; 2004 } 2005 2006 v = qemu_get_be32(f); 2007 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 2008 error_report("SaveVM v2 format is obsolete and don't work anymore"); 2009 return -ENOTSUP; 2010 } 2011 if (v != QEMU_VM_FILE_VERSION) { 2012 error_report("Unsupported migration stream version"); 2013 return -ENOTSUP; 2014 } 2015 2016 if (qemu_loadvm_state_setup(f) != 0) { 2017 return -EINVAL; 2018 } 2019 2020 if (migrate_get_current()->send_configuration) { 2021 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 2022 error_report("Configuration section missing"); 2023 return -EINVAL; 2024 } 2025 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 2026 2027 if (ret) { 2028 return ret; 2029 } 2030 } 2031 2032 cpu_synchronize_all_pre_loadvm(); 2033 2034 ret = qemu_loadvm_state_main(f, mis); 2035 qemu_event_set(&mis->main_thread_load_event); 2036 2037 trace_qemu_loadvm_state_post_main(ret); 2038 2039 if (mis->have_listen_thread) { 2040 /* Listen thread still going, can't clean up yet */ 2041 return ret; 2042 } 2043 2044 if (ret == 0) { 2045 ret = qemu_file_get_error(f); 2046 } 2047 2048 /* 2049 * Try to read in the VMDESC section as well, so that dumping tools that 2050 * intercept our migration stream have the chance to see it. 2051 */ 2052 2053 /* We've got to be careful; if we don't read the data and just shut the fd 2054 * then the sender can error if we close while it's still sending. 2055 * We also mustn't read data that isn't there; some transports (RDMA) 2056 * will stall waiting for that data when the source has already closed. 2057 */ 2058 if (ret == 0 && should_send_vmdesc()) { 2059 uint8_t *buf; 2060 uint32_t size; 2061 uint8_t section_type = qemu_get_byte(f); 2062 2063 if (section_type != QEMU_VM_VMDESCRIPTION) { 2064 error_report("Expected vmdescription section, but got %d", 2065 section_type); 2066 /* 2067 * It doesn't seem worth failing at this point since 2068 * we apparently have an otherwise valid VM state 2069 */ 2070 } else { 2071 buf = g_malloc(0x1000); 2072 size = qemu_get_be32(f); 2073 2074 while (size > 0) { 2075 uint32_t read_chunk = MIN(size, 0x1000); 2076 qemu_get_buffer(f, buf, read_chunk); 2077 size -= read_chunk; 2078 } 2079 g_free(buf); 2080 } 2081 } 2082 2083 qemu_loadvm_state_cleanup(); 2084 cpu_synchronize_all_post_init(); 2085 2086 return ret; 2087 } 2088 2089 int save_snapshot(const char *name, Error **errp) 2090 { 2091 BlockDriverState *bs, *bs1; 2092 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 2093 int ret = -1; 2094 QEMUFile *f; 2095 int saved_vm_running; 2096 uint64_t vm_state_size; 2097 qemu_timeval tv; 2098 struct tm tm; 2099 AioContext *aio_context; 2100 2101 if (!bdrv_all_can_snapshot(&bs)) { 2102 error_setg(errp, "Device '%s' is writable but does not support " 2103 "snapshots", bdrv_get_device_name(bs)); 2104 return ret; 2105 } 2106 2107 /* Delete old snapshots of the same name */ 2108 if (name) { 2109 ret = bdrv_all_delete_snapshot(name, &bs1, errp); 2110 if (ret < 0) { 2111 error_prepend(errp, "Error while deleting snapshot on device " 2112 "'%s': ", bdrv_get_device_name(bs1)); 2113 return ret; 2114 } 2115 } 2116 2117 bs = bdrv_all_find_vmstate_bs(); 2118 if (bs == NULL) { 2119 error_setg(errp, "No block device can accept snapshots"); 2120 return ret; 2121 } 2122 aio_context = bdrv_get_aio_context(bs); 2123 2124 saved_vm_running = runstate_is_running(); 2125 2126 ret = global_state_store(); 2127 if (ret) { 2128 error_setg(errp, "Error saving global state"); 2129 return ret; 2130 } 2131 vm_stop(RUN_STATE_SAVE_VM); 2132 2133 bdrv_drain_all_begin(); 2134 2135 aio_context_acquire(aio_context); 2136 2137 memset(sn, 0, sizeof(*sn)); 2138 2139 /* fill auxiliary fields */ 2140 qemu_gettimeofday(&tv); 2141 sn->date_sec = tv.tv_sec; 2142 sn->date_nsec = tv.tv_usec * 1000; 2143 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2144 2145 if (name) { 2146 ret = bdrv_snapshot_find(bs, old_sn, name); 2147 if (ret >= 0) { 2148 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2149 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2150 } else { 2151 pstrcpy(sn->name, sizeof(sn->name), name); 2152 } 2153 } else { 2154 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2155 localtime_r((const time_t *)&tv.tv_sec, &tm); 2156 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2157 } 2158 2159 /* save the VM state */ 2160 f = qemu_fopen_bdrv(bs, 1); 2161 if (!f) { 2162 error_setg(errp, "Could not open VM state file"); 2163 goto the_end; 2164 } 2165 ret = qemu_savevm_state(f, errp); 2166 vm_state_size = qemu_ftell(f); 2167 qemu_fclose(f); 2168 if (ret < 0) { 2169 goto the_end; 2170 } 2171 2172 /* The bdrv_all_create_snapshot() call that follows acquires the AioContext 2173 * for itself. BDRV_POLL_WHILE() does not support nested locking because 2174 * it only releases the lock once. Therefore synchronous I/O will deadlock 2175 * unless we release the AioContext before bdrv_all_create_snapshot(). 2176 */ 2177 aio_context_release(aio_context); 2178 aio_context = NULL; 2179 2180 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2181 if (ret < 0) { 2182 error_setg(errp, "Error while creating snapshot on '%s'", 2183 bdrv_get_device_name(bs)); 2184 goto the_end; 2185 } 2186 2187 ret = 0; 2188 2189 the_end: 2190 if (aio_context) { 2191 aio_context_release(aio_context); 2192 } 2193 2194 bdrv_drain_all_end(); 2195 2196 if (saved_vm_running) { 2197 vm_start(); 2198 } 2199 return ret; 2200 } 2201 2202 void qmp_xen_save_devices_state(const char *filename, Error **errp) 2203 { 2204 QEMUFile *f; 2205 QIOChannelFile *ioc; 2206 int saved_vm_running; 2207 int ret; 2208 2209 saved_vm_running = runstate_is_running(); 2210 vm_stop(RUN_STATE_SAVE_VM); 2211 global_state_store_running(); 2212 2213 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2214 if (!ioc) { 2215 goto the_end; 2216 } 2217 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 2218 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2219 ret = qemu_save_device_state(f); 2220 qemu_fclose(f); 2221 if (ret < 0) { 2222 error_setg(errp, QERR_IO_ERROR); 2223 } 2224 2225 the_end: 2226 if (saved_vm_running) { 2227 vm_start(); 2228 } 2229 } 2230 2231 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2232 { 2233 QEMUFile *f; 2234 QIOChannelFile *ioc; 2235 int ret; 2236 2237 /* Guest must be paused before loading the device state; the RAM state 2238 * will already have been loaded by xc 2239 */ 2240 if (runstate_is_running()) { 2241 error_setg(errp, "Cannot update device state while vm is running"); 2242 return; 2243 } 2244 vm_stop(RUN_STATE_RESTORE_VM); 2245 2246 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2247 if (!ioc) { 2248 return; 2249 } 2250 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 2251 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2252 2253 ret = qemu_loadvm_state(f); 2254 qemu_fclose(f); 2255 if (ret < 0) { 2256 error_setg(errp, QERR_IO_ERROR); 2257 } 2258 migration_incoming_state_destroy(); 2259 } 2260 2261 int load_snapshot(const char *name, Error **errp) 2262 { 2263 BlockDriverState *bs, *bs_vm_state; 2264 QEMUSnapshotInfo sn; 2265 QEMUFile *f; 2266 int ret; 2267 AioContext *aio_context; 2268 MigrationIncomingState *mis = migration_incoming_get_current(); 2269 2270 if (!bdrv_all_can_snapshot(&bs)) { 2271 error_setg(errp, 2272 "Device '%s' is writable but does not support snapshots", 2273 bdrv_get_device_name(bs)); 2274 return -ENOTSUP; 2275 } 2276 ret = bdrv_all_find_snapshot(name, &bs); 2277 if (ret < 0) { 2278 error_setg(errp, 2279 "Device '%s' does not have the requested snapshot '%s'", 2280 bdrv_get_device_name(bs), name); 2281 return ret; 2282 } 2283 2284 bs_vm_state = bdrv_all_find_vmstate_bs(); 2285 if (!bs_vm_state) { 2286 error_setg(errp, "No block device supports snapshots"); 2287 return -ENOTSUP; 2288 } 2289 aio_context = bdrv_get_aio_context(bs_vm_state); 2290 2291 /* Don't even try to load empty VM states */ 2292 aio_context_acquire(aio_context); 2293 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2294 aio_context_release(aio_context); 2295 if (ret < 0) { 2296 return ret; 2297 } else if (sn.vm_state_size == 0) { 2298 error_setg(errp, "This is a disk-only snapshot. Revert to it " 2299 " offline using qemu-img"); 2300 return -EINVAL; 2301 } 2302 2303 /* Flush all IO requests so they don't interfere with the new state. */ 2304 bdrv_drain_all_begin(); 2305 2306 ret = bdrv_all_goto_snapshot(name, &bs); 2307 if (ret < 0) { 2308 error_setg(errp, "Error %d while activating snapshot '%s' on '%s'", 2309 ret, name, bdrv_get_device_name(bs)); 2310 goto err_drain; 2311 } 2312 2313 /* restore the VM state */ 2314 f = qemu_fopen_bdrv(bs_vm_state, 0); 2315 if (!f) { 2316 error_setg(errp, "Could not open VM state file"); 2317 ret = -EINVAL; 2318 goto err_drain; 2319 } 2320 2321 qemu_system_reset(SHUTDOWN_CAUSE_NONE); 2322 mis->from_src_file = f; 2323 2324 aio_context_acquire(aio_context); 2325 ret = qemu_loadvm_state(f); 2326 migration_incoming_state_destroy(); 2327 aio_context_release(aio_context); 2328 2329 bdrv_drain_all_end(); 2330 2331 if (ret < 0) { 2332 error_setg(errp, "Error %d while loading VM state", ret); 2333 return ret; 2334 } 2335 2336 return 0; 2337 2338 err_drain: 2339 bdrv_drain_all_end(); 2340 return ret; 2341 } 2342 2343 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2344 { 2345 qemu_ram_set_idstr(mr->ram_block, 2346 memory_region_name(mr), dev); 2347 } 2348 2349 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2350 { 2351 qemu_ram_unset_idstr(mr->ram_block); 2352 } 2353 2354 void vmstate_register_ram_global(MemoryRegion *mr) 2355 { 2356 vmstate_register_ram(mr, NULL); 2357 } 2358 2359 bool vmstate_check_only_migratable(const VMStateDescription *vmsd) 2360 { 2361 /* check needed if --only-migratable is specified */ 2362 if (!migrate_get_current()->only_migratable) { 2363 return true; 2364 } 2365 2366 return !(vmsd && vmsd->unmigratable); 2367 } 2368