1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/boards.h" 31 #include "hw/xen/xen.h" 32 #include "net/net.h" 33 #include "migration.h" 34 #include "migration/snapshot.h" 35 #include "migration/misc.h" 36 #include "migration/register.h" 37 #include "migration/global_state.h" 38 #include "ram.h" 39 #include "qemu-file-channel.h" 40 #include "qemu-file.h" 41 #include "savevm.h" 42 #include "postcopy-ram.h" 43 #include "qapi/error.h" 44 #include "qapi/qapi-commands-migration.h" 45 #include "qapi/qapi-commands-misc.h" 46 #include "qapi/qmp/qerror.h" 47 #include "qemu/error-report.h" 48 #include "sysemu/cpus.h" 49 #include "exec/memory.h" 50 #include "exec/target_page.h" 51 #include "trace.h" 52 #include "qemu/iov.h" 53 #include "block/snapshot.h" 54 #include "qemu/cutils.h" 55 #include "io/channel-buffer.h" 56 #include "io/channel-file.h" 57 58 #ifndef ETH_P_RARP 59 #define ETH_P_RARP 0x8035 60 #endif 61 #define ARP_HTYPE_ETH 0x0001 62 #define ARP_PTYPE_IP 0x0800 63 #define ARP_OP_REQUEST_REV 0x3 64 65 const unsigned int postcopy_ram_discard_version = 0; 66 67 /* Subcommands for QEMU_VM_COMMAND */ 68 enum qemu_vm_cmd { 69 MIG_CMD_INVALID = 0, /* Must be 0 */ 70 MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */ 71 MIG_CMD_PING, /* Request a PONG on the RP */ 72 73 MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just 74 warn we might want to do PC */ 75 MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming 76 pages as it's running. */ 77 MIG_CMD_POSTCOPY_RUN, /* Start execution */ 78 79 MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that 80 were previously sent during 81 precopy but are dirty. */ 82 MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */ 83 MIG_CMD_MAX 84 }; 85 86 #define MAX_VM_CMD_PACKAGED_SIZE UINT32_MAX 87 static struct mig_cmd_args { 88 ssize_t len; /* -1 = variable */ 89 const char *name; 90 } mig_cmd_args[] = { 91 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 92 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 93 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 94 [MIG_CMD_POSTCOPY_ADVISE] = { .len = -1, .name = "POSTCOPY_ADVISE" }, 95 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 96 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 97 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 98 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 99 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 100 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 101 }; 102 103 /* Note for MIG_CMD_POSTCOPY_ADVISE: 104 * The format of arguments is depending on postcopy mode: 105 * - postcopy RAM only 106 * uint64_t host page size 107 * uint64_t taget page size 108 * 109 * - postcopy RAM and postcopy dirty bitmaps 110 * format is the same as for postcopy RAM only 111 * 112 * - postcopy dirty bitmaps only 113 * Nothing. Command length field is 0. 114 * 115 * Be careful: adding a new postcopy entity with some other parameters should 116 * not break format self-description ability. Good way is to introduce some 117 * generic extendable format with an exception for two old entities. 118 */ 119 120 static int announce_self_create(uint8_t *buf, 121 uint8_t *mac_addr) 122 { 123 /* Ethernet header. */ 124 memset(buf, 0xff, 6); /* destination MAC addr */ 125 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 126 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 127 128 /* RARP header. */ 129 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 130 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 131 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 132 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 133 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 134 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 135 memset(buf + 28, 0x00, 4); /* source protocol addr */ 136 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 137 memset(buf + 38, 0x00, 4); /* target protocol addr */ 138 139 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 140 memset(buf + 42, 0x00, 18); 141 142 return 60; /* len (FCS will be added by hardware) */ 143 } 144 145 static void qemu_announce_self_iter(NICState *nic, void *opaque) 146 { 147 uint8_t buf[60]; 148 int len; 149 150 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 151 len = announce_self_create(buf, nic->conf->macaddr.a); 152 153 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 154 } 155 156 157 static void qemu_announce_self_once(void *opaque) 158 { 159 static int count = SELF_ANNOUNCE_ROUNDS; 160 QEMUTimer *timer = *(QEMUTimer **)opaque; 161 162 qemu_foreach_nic(qemu_announce_self_iter, NULL); 163 164 if (--count) { 165 /* delay 50ms, 150ms, 250ms, ... */ 166 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 167 self_announce_delay(count)); 168 } else { 169 timer_del(timer); 170 timer_free(timer); 171 } 172 } 173 174 void qemu_announce_self(void) 175 { 176 static QEMUTimer *timer; 177 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 178 qemu_announce_self_once(&timer); 179 } 180 181 /***********************************************************/ 182 /* savevm/loadvm support */ 183 184 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 185 int64_t pos) 186 { 187 int ret; 188 QEMUIOVector qiov; 189 190 qemu_iovec_init_external(&qiov, iov, iovcnt); 191 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 192 if (ret < 0) { 193 return ret; 194 } 195 196 return qiov.size; 197 } 198 199 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 200 size_t size) 201 { 202 return bdrv_load_vmstate(opaque, buf, pos, size); 203 } 204 205 static int bdrv_fclose(void *opaque) 206 { 207 return bdrv_flush(opaque); 208 } 209 210 static const QEMUFileOps bdrv_read_ops = { 211 .get_buffer = block_get_buffer, 212 .close = bdrv_fclose 213 }; 214 215 static const QEMUFileOps bdrv_write_ops = { 216 .writev_buffer = block_writev_buffer, 217 .close = bdrv_fclose 218 }; 219 220 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 221 { 222 if (is_writable) { 223 return qemu_fopen_ops(bs, &bdrv_write_ops); 224 } 225 return qemu_fopen_ops(bs, &bdrv_read_ops); 226 } 227 228 229 /* QEMUFile timer support. 230 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 231 */ 232 233 void timer_put(QEMUFile *f, QEMUTimer *ts) 234 { 235 uint64_t expire_time; 236 237 expire_time = timer_expire_time_ns(ts); 238 qemu_put_be64(f, expire_time); 239 } 240 241 void timer_get(QEMUFile *f, QEMUTimer *ts) 242 { 243 uint64_t expire_time; 244 245 expire_time = qemu_get_be64(f); 246 if (expire_time != -1) { 247 timer_mod_ns(ts, expire_time); 248 } else { 249 timer_del(ts); 250 } 251 } 252 253 254 /* VMState timer support. 255 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 256 */ 257 258 static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field) 259 { 260 QEMUTimer *v = pv; 261 timer_get(f, v); 262 return 0; 263 } 264 265 static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field, 266 QJSON *vmdesc) 267 { 268 QEMUTimer *v = pv; 269 timer_put(f, v); 270 271 return 0; 272 } 273 274 const VMStateInfo vmstate_info_timer = { 275 .name = "timer", 276 .get = get_timer, 277 .put = put_timer, 278 }; 279 280 281 typedef struct CompatEntry { 282 char idstr[256]; 283 int instance_id; 284 } CompatEntry; 285 286 typedef struct SaveStateEntry { 287 QTAILQ_ENTRY(SaveStateEntry) entry; 288 char idstr[256]; 289 int instance_id; 290 int alias_id; 291 int version_id; 292 /* version id read from the stream */ 293 int load_version_id; 294 int section_id; 295 /* section id read from the stream */ 296 int load_section_id; 297 SaveVMHandlers *ops; 298 const VMStateDescription *vmsd; 299 void *opaque; 300 CompatEntry *compat; 301 int is_ram; 302 } SaveStateEntry; 303 304 typedef struct SaveState { 305 QTAILQ_HEAD(, SaveStateEntry) handlers; 306 int global_section_id; 307 uint32_t len; 308 const char *name; 309 uint32_t target_page_bits; 310 } SaveState; 311 312 static SaveState savevm_state = { 313 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 314 .global_section_id = 0, 315 }; 316 317 static int configuration_pre_save(void *opaque) 318 { 319 SaveState *state = opaque; 320 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 321 322 state->len = strlen(current_name); 323 state->name = current_name; 324 state->target_page_bits = qemu_target_page_bits(); 325 326 return 0; 327 } 328 329 static int configuration_pre_load(void *opaque) 330 { 331 SaveState *state = opaque; 332 333 /* If there is no target-page-bits subsection it means the source 334 * predates the variable-target-page-bits support and is using the 335 * minimum possible value for this CPU. 336 */ 337 state->target_page_bits = qemu_target_page_bits_min(); 338 return 0; 339 } 340 341 static int configuration_post_load(void *opaque, int version_id) 342 { 343 SaveState *state = opaque; 344 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 345 346 if (strncmp(state->name, current_name, state->len) != 0) { 347 error_report("Machine type received is '%.*s' and local is '%s'", 348 (int) state->len, state->name, current_name); 349 return -EINVAL; 350 } 351 352 if (state->target_page_bits != qemu_target_page_bits()) { 353 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 354 state->target_page_bits, qemu_target_page_bits()); 355 return -EINVAL; 356 } 357 358 return 0; 359 } 360 361 /* The target-page-bits subsection is present only if the 362 * target page size is not the same as the default (ie the 363 * minimum page size for a variable-page-size guest CPU). 364 * If it is present then it contains the actual target page 365 * bits for the machine, and migration will fail if the 366 * two ends don't agree about it. 367 */ 368 static bool vmstate_target_page_bits_needed(void *opaque) 369 { 370 return qemu_target_page_bits() 371 > qemu_target_page_bits_min(); 372 } 373 374 static const VMStateDescription vmstate_target_page_bits = { 375 .name = "configuration/target-page-bits", 376 .version_id = 1, 377 .minimum_version_id = 1, 378 .needed = vmstate_target_page_bits_needed, 379 .fields = (VMStateField[]) { 380 VMSTATE_UINT32(target_page_bits, SaveState), 381 VMSTATE_END_OF_LIST() 382 } 383 }; 384 385 static const VMStateDescription vmstate_configuration = { 386 .name = "configuration", 387 .version_id = 1, 388 .pre_load = configuration_pre_load, 389 .post_load = configuration_post_load, 390 .pre_save = configuration_pre_save, 391 .fields = (VMStateField[]) { 392 VMSTATE_UINT32(len, SaveState), 393 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len), 394 VMSTATE_END_OF_LIST() 395 }, 396 .subsections = (const VMStateDescription*[]) { 397 &vmstate_target_page_bits, 398 NULL 399 } 400 }; 401 402 static void dump_vmstate_vmsd(FILE *out_file, 403 const VMStateDescription *vmsd, int indent, 404 bool is_subsection); 405 406 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 407 int indent) 408 { 409 fprintf(out_file, "%*s{\n", indent, ""); 410 indent += 2; 411 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 412 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 413 field->version_id); 414 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 415 field->field_exists ? "true" : "false"); 416 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 417 if (field->vmsd != NULL) { 418 fprintf(out_file, ",\n"); 419 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 420 } 421 fprintf(out_file, "\n%*s}", indent - 2, ""); 422 } 423 424 static void dump_vmstate_vmss(FILE *out_file, 425 const VMStateDescription **subsection, 426 int indent) 427 { 428 if (*subsection != NULL) { 429 dump_vmstate_vmsd(out_file, *subsection, indent, true); 430 } 431 } 432 433 static void dump_vmstate_vmsd(FILE *out_file, 434 const VMStateDescription *vmsd, int indent, 435 bool is_subsection) 436 { 437 if (is_subsection) { 438 fprintf(out_file, "%*s{\n", indent, ""); 439 } else { 440 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 441 } 442 indent += 2; 443 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 444 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 445 vmsd->version_id); 446 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 447 vmsd->minimum_version_id); 448 if (vmsd->fields != NULL) { 449 const VMStateField *field = vmsd->fields; 450 bool first; 451 452 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 453 first = true; 454 while (field->name != NULL) { 455 if (field->flags & VMS_MUST_EXIST) { 456 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 457 field++; 458 continue; 459 } 460 if (!first) { 461 fprintf(out_file, ",\n"); 462 } 463 dump_vmstate_vmsf(out_file, field, indent + 2); 464 field++; 465 first = false; 466 } 467 fprintf(out_file, "\n%*s]", indent, ""); 468 } 469 if (vmsd->subsections != NULL) { 470 const VMStateDescription **subsection = vmsd->subsections; 471 bool first; 472 473 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 474 first = true; 475 while (*subsection != NULL) { 476 if (!first) { 477 fprintf(out_file, ",\n"); 478 } 479 dump_vmstate_vmss(out_file, subsection, indent + 2); 480 subsection++; 481 first = false; 482 } 483 fprintf(out_file, "\n%*s]", indent, ""); 484 } 485 fprintf(out_file, "\n%*s}", indent - 2, ""); 486 } 487 488 static void dump_machine_type(FILE *out_file) 489 { 490 MachineClass *mc; 491 492 mc = MACHINE_GET_CLASS(current_machine); 493 494 fprintf(out_file, " \"vmschkmachine\": {\n"); 495 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 496 fprintf(out_file, " },\n"); 497 } 498 499 void dump_vmstate_json_to_file(FILE *out_file) 500 { 501 GSList *list, *elt; 502 bool first; 503 504 fprintf(out_file, "{\n"); 505 dump_machine_type(out_file); 506 507 first = true; 508 list = object_class_get_list(TYPE_DEVICE, true); 509 for (elt = list; elt; elt = elt->next) { 510 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 511 TYPE_DEVICE); 512 const char *name; 513 int indent = 2; 514 515 if (!dc->vmsd) { 516 continue; 517 } 518 519 if (!first) { 520 fprintf(out_file, ",\n"); 521 } 522 name = object_class_get_name(OBJECT_CLASS(dc)); 523 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 524 indent += 2; 525 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 526 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 527 dc->vmsd->version_id); 528 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 529 dc->vmsd->minimum_version_id); 530 531 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 532 533 fprintf(out_file, "\n%*s}", indent - 2, ""); 534 first = false; 535 } 536 fprintf(out_file, "\n}\n"); 537 fclose(out_file); 538 } 539 540 static int calculate_new_instance_id(const char *idstr) 541 { 542 SaveStateEntry *se; 543 int instance_id = 0; 544 545 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 546 if (strcmp(idstr, se->idstr) == 0 547 && instance_id <= se->instance_id) { 548 instance_id = se->instance_id + 1; 549 } 550 } 551 return instance_id; 552 } 553 554 static int calculate_compat_instance_id(const char *idstr) 555 { 556 SaveStateEntry *se; 557 int instance_id = 0; 558 559 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 560 if (!se->compat) { 561 continue; 562 } 563 564 if (strcmp(idstr, se->compat->idstr) == 0 565 && instance_id <= se->compat->instance_id) { 566 instance_id = se->compat->instance_id + 1; 567 } 568 } 569 return instance_id; 570 } 571 572 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 573 { 574 if (se->vmsd) { 575 return se->vmsd->priority; 576 } 577 return MIG_PRI_DEFAULT; 578 } 579 580 static void savevm_state_handler_insert(SaveStateEntry *nse) 581 { 582 MigrationPriority priority = save_state_priority(nse); 583 SaveStateEntry *se; 584 585 assert(priority <= MIG_PRI_MAX); 586 587 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 588 if (save_state_priority(se) < priority) { 589 break; 590 } 591 } 592 593 if (se) { 594 QTAILQ_INSERT_BEFORE(se, nse, entry); 595 } else { 596 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 597 } 598 } 599 600 /* TODO: Individual devices generally have very little idea about the rest 601 of the system, so instance_id should be removed/replaced. 602 Meanwhile pass -1 as instance_id if you do not already have a clearly 603 distinguishing id for all instances of your device class. */ 604 int register_savevm_live(DeviceState *dev, 605 const char *idstr, 606 int instance_id, 607 int version_id, 608 SaveVMHandlers *ops, 609 void *opaque) 610 { 611 SaveStateEntry *se; 612 613 se = g_new0(SaveStateEntry, 1); 614 se->version_id = version_id; 615 se->section_id = savevm_state.global_section_id++; 616 se->ops = ops; 617 se->opaque = opaque; 618 se->vmsd = NULL; 619 /* if this is a live_savem then set is_ram */ 620 if (ops->save_setup != NULL) { 621 se->is_ram = 1; 622 } 623 624 if (dev) { 625 char *id = qdev_get_dev_path(dev); 626 if (id) { 627 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 628 sizeof(se->idstr)) { 629 error_report("Path too long for VMState (%s)", id); 630 g_free(id); 631 g_free(se); 632 633 return -1; 634 } 635 g_free(id); 636 637 se->compat = g_new0(CompatEntry, 1); 638 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 639 se->compat->instance_id = instance_id == -1 ? 640 calculate_compat_instance_id(idstr) : instance_id; 641 instance_id = -1; 642 } 643 } 644 pstrcat(se->idstr, sizeof(se->idstr), idstr); 645 646 if (instance_id == -1) { 647 se->instance_id = calculate_new_instance_id(se->idstr); 648 } else { 649 se->instance_id = instance_id; 650 } 651 assert(!se->compat || se->instance_id == 0); 652 savevm_state_handler_insert(se); 653 return 0; 654 } 655 656 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 657 { 658 SaveStateEntry *se, *new_se; 659 char id[256] = ""; 660 661 if (dev) { 662 char *path = qdev_get_dev_path(dev); 663 if (path) { 664 pstrcpy(id, sizeof(id), path); 665 pstrcat(id, sizeof(id), "/"); 666 g_free(path); 667 } 668 } 669 pstrcat(id, sizeof(id), idstr); 670 671 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 672 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 673 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 674 g_free(se->compat); 675 g_free(se); 676 } 677 } 678 } 679 680 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 681 const VMStateDescription *vmsd, 682 void *opaque, int alias_id, 683 int required_for_version, 684 Error **errp) 685 { 686 SaveStateEntry *se; 687 688 /* If this triggers, alias support can be dropped for the vmsd. */ 689 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 690 691 se = g_new0(SaveStateEntry, 1); 692 se->version_id = vmsd->version_id; 693 se->section_id = savevm_state.global_section_id++; 694 se->opaque = opaque; 695 se->vmsd = vmsd; 696 se->alias_id = alias_id; 697 698 if (dev) { 699 char *id = qdev_get_dev_path(dev); 700 if (id) { 701 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 702 sizeof(se->idstr)) { 703 error_setg(errp, "Path too long for VMState (%s)", id); 704 g_free(id); 705 g_free(se); 706 707 return -1; 708 } 709 g_free(id); 710 711 se->compat = g_new0(CompatEntry, 1); 712 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 713 se->compat->instance_id = instance_id == -1 ? 714 calculate_compat_instance_id(vmsd->name) : instance_id; 715 instance_id = -1; 716 } 717 } 718 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 719 720 if (instance_id == -1) { 721 se->instance_id = calculate_new_instance_id(se->idstr); 722 } else { 723 se->instance_id = instance_id; 724 } 725 assert(!se->compat || se->instance_id == 0); 726 savevm_state_handler_insert(se); 727 return 0; 728 } 729 730 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 731 void *opaque) 732 { 733 SaveStateEntry *se, *new_se; 734 735 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 736 if (se->vmsd == vmsd && se->opaque == opaque) { 737 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 738 g_free(se->compat); 739 g_free(se); 740 } 741 } 742 } 743 744 static int vmstate_load(QEMUFile *f, SaveStateEntry *se) 745 { 746 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 747 if (!se->vmsd) { /* Old style */ 748 return se->ops->load_state(f, se->opaque, se->load_version_id); 749 } 750 return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id); 751 } 752 753 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 754 { 755 int64_t old_offset, size; 756 757 old_offset = qemu_ftell_fast(f); 758 se->ops->save_state(f, se->opaque); 759 size = qemu_ftell_fast(f) - old_offset; 760 761 if (vmdesc) { 762 json_prop_int(vmdesc, "size", size); 763 json_start_array(vmdesc, "fields"); 764 json_start_object(vmdesc, NULL); 765 json_prop_str(vmdesc, "name", "data"); 766 json_prop_int(vmdesc, "size", size); 767 json_prop_str(vmdesc, "type", "buffer"); 768 json_end_object(vmdesc); 769 json_end_array(vmdesc); 770 } 771 } 772 773 static int vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 774 { 775 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 776 if (!se->vmsd) { 777 vmstate_save_old_style(f, se, vmdesc); 778 return 0; 779 } 780 return vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 781 } 782 783 /* 784 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 785 */ 786 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 787 uint8_t section_type) 788 { 789 qemu_put_byte(f, section_type); 790 qemu_put_be32(f, se->section_id); 791 792 if (section_type == QEMU_VM_SECTION_FULL || 793 section_type == QEMU_VM_SECTION_START) { 794 /* ID string */ 795 size_t len = strlen(se->idstr); 796 qemu_put_byte(f, len); 797 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 798 799 qemu_put_be32(f, se->instance_id); 800 qemu_put_be32(f, se->version_id); 801 } 802 } 803 804 /* 805 * Write a footer onto device sections that catches cases misformatted device 806 * sections. 807 */ 808 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 809 { 810 if (migrate_get_current()->send_section_footer) { 811 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 812 qemu_put_be32(f, se->section_id); 813 } 814 } 815 816 /** 817 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 818 * command and associated data. 819 * 820 * @f: File to send command on 821 * @command: Command type to send 822 * @len: Length of associated data 823 * @data: Data associated with command. 824 */ 825 static void qemu_savevm_command_send(QEMUFile *f, 826 enum qemu_vm_cmd command, 827 uint16_t len, 828 uint8_t *data) 829 { 830 trace_savevm_command_send(command, len); 831 qemu_put_byte(f, QEMU_VM_COMMAND); 832 qemu_put_be16(f, (uint16_t)command); 833 qemu_put_be16(f, len); 834 qemu_put_buffer(f, data, len); 835 qemu_fflush(f); 836 } 837 838 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 839 { 840 uint32_t buf; 841 842 trace_savevm_send_ping(value); 843 buf = cpu_to_be32(value); 844 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 845 } 846 847 void qemu_savevm_send_open_return_path(QEMUFile *f) 848 { 849 trace_savevm_send_open_return_path(); 850 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 851 } 852 853 /* We have a buffer of data to send; we don't want that all to be loaded 854 * by the command itself, so the command contains just the length of the 855 * extra buffer that we then send straight after it. 856 * TODO: Must be a better way to organise that 857 * 858 * Returns: 859 * 0 on success 860 * -ve on error 861 */ 862 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 863 { 864 uint32_t tmp; 865 866 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 867 error_report("%s: Unreasonably large packaged state: %zu", 868 __func__, len); 869 return -1; 870 } 871 872 tmp = cpu_to_be32(len); 873 874 trace_qemu_savevm_send_packaged(); 875 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 876 877 qemu_put_buffer(f, buf, len); 878 879 return 0; 880 } 881 882 /* Send prior to any postcopy transfer */ 883 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 884 { 885 if (migrate_postcopy_ram()) { 886 uint64_t tmp[2]; 887 tmp[0] = cpu_to_be64(ram_pagesize_summary()); 888 tmp[1] = cpu_to_be64(qemu_target_page_size()); 889 890 trace_qemu_savevm_send_postcopy_advise(); 891 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 892 16, (uint8_t *)tmp); 893 } else { 894 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 0, NULL); 895 } 896 } 897 898 /* Sent prior to starting the destination running in postcopy, discard pages 899 * that have already been sent but redirtied on the source. 900 * CMD_POSTCOPY_RAM_DISCARD consist of: 901 * byte version (0) 902 * byte Length of name field (not including 0) 903 * n x byte RAM block name 904 * byte 0 terminator (just for safety) 905 * n x Byte ranges within the named RAMBlock 906 * be64 Start of the range 907 * be64 Length 908 * 909 * name: RAMBlock name that these entries are part of 910 * len: Number of page entries 911 * start_list: 'len' addresses 912 * length_list: 'len' addresses 913 * 914 */ 915 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 916 uint16_t len, 917 uint64_t *start_list, 918 uint64_t *length_list) 919 { 920 uint8_t *buf; 921 uint16_t tmplen; 922 uint16_t t; 923 size_t name_len = strlen(name); 924 925 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 926 assert(name_len < 256); 927 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 928 buf[0] = postcopy_ram_discard_version; 929 buf[1] = name_len; 930 memcpy(buf + 2, name, name_len); 931 tmplen = 2 + name_len; 932 buf[tmplen++] = '\0'; 933 934 for (t = 0; t < len; t++) { 935 stq_be_p(buf + tmplen, start_list[t]); 936 tmplen += 8; 937 stq_be_p(buf + tmplen, length_list[t]); 938 tmplen += 8; 939 } 940 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 941 g_free(buf); 942 } 943 944 /* Get the destination into a state where it can receive postcopy data. */ 945 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 946 { 947 trace_savevm_send_postcopy_listen(); 948 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 949 } 950 951 /* Kick the destination into running */ 952 void qemu_savevm_send_postcopy_run(QEMUFile *f) 953 { 954 trace_savevm_send_postcopy_run(); 955 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 956 } 957 958 bool qemu_savevm_state_blocked(Error **errp) 959 { 960 SaveStateEntry *se; 961 962 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 963 if (se->vmsd && se->vmsd->unmigratable) { 964 error_setg(errp, "State blocked by non-migratable device '%s'", 965 se->idstr); 966 return true; 967 } 968 } 969 return false; 970 } 971 972 void qemu_savevm_state_header(QEMUFile *f) 973 { 974 trace_savevm_state_header(); 975 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 976 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 977 978 if (migrate_get_current()->send_configuration) { 979 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 980 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 981 } 982 } 983 984 void qemu_savevm_state_setup(QEMUFile *f) 985 { 986 SaveStateEntry *se; 987 int ret; 988 989 trace_savevm_state_setup(); 990 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 991 if (!se->ops || !se->ops->save_setup) { 992 continue; 993 } 994 if (se->ops && se->ops->is_active) { 995 if (!se->ops->is_active(se->opaque)) { 996 continue; 997 } 998 } 999 save_section_header(f, se, QEMU_VM_SECTION_START); 1000 1001 ret = se->ops->save_setup(f, se->opaque); 1002 save_section_footer(f, se); 1003 if (ret < 0) { 1004 qemu_file_set_error(f, ret); 1005 break; 1006 } 1007 } 1008 } 1009 1010 /* 1011 * this function has three return values: 1012 * negative: there was one error, and we have -errno. 1013 * 0 : We haven't finished, caller have to go again 1014 * 1 : We have finished, we can go to complete phase 1015 */ 1016 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 1017 { 1018 SaveStateEntry *se; 1019 int ret = 1; 1020 1021 trace_savevm_state_iterate(); 1022 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1023 if (!se->ops || !se->ops->save_live_iterate) { 1024 continue; 1025 } 1026 if (se->ops && se->ops->is_active) { 1027 if (!se->ops->is_active(se->opaque)) { 1028 continue; 1029 } 1030 } 1031 /* 1032 * In the postcopy phase, any device that doesn't know how to 1033 * do postcopy should have saved it's state in the _complete 1034 * call that's already run, it might get confused if we call 1035 * iterate afterwards. 1036 */ 1037 if (postcopy && 1038 !(se->ops->has_postcopy && se->ops->has_postcopy(se->opaque))) { 1039 continue; 1040 } 1041 if (qemu_file_rate_limit(f)) { 1042 return 0; 1043 } 1044 trace_savevm_section_start(se->idstr, se->section_id); 1045 1046 save_section_header(f, se, QEMU_VM_SECTION_PART); 1047 1048 ret = se->ops->save_live_iterate(f, se->opaque); 1049 trace_savevm_section_end(se->idstr, se->section_id, ret); 1050 save_section_footer(f, se); 1051 1052 if (ret < 0) { 1053 qemu_file_set_error(f, ret); 1054 } 1055 if (ret <= 0) { 1056 /* Do not proceed to the next vmstate before this one reported 1057 completion of the current stage. This serializes the migration 1058 and reduces the probability that a faster changing state is 1059 synchronized over and over again. */ 1060 break; 1061 } 1062 } 1063 return ret; 1064 } 1065 1066 static bool should_send_vmdesc(void) 1067 { 1068 MachineState *machine = MACHINE(qdev_get_machine()); 1069 bool in_postcopy = migration_in_postcopy(); 1070 return !machine->suppress_vmdesc && !in_postcopy; 1071 } 1072 1073 /* 1074 * Calls the save_live_complete_postcopy methods 1075 * causing the last few pages to be sent immediately and doing any associated 1076 * cleanup. 1077 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1078 * all the other devices, but that happens at the point we switch to postcopy. 1079 */ 1080 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1081 { 1082 SaveStateEntry *se; 1083 int ret; 1084 1085 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1086 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1087 continue; 1088 } 1089 if (se->ops && se->ops->is_active) { 1090 if (!se->ops->is_active(se->opaque)) { 1091 continue; 1092 } 1093 } 1094 trace_savevm_section_start(se->idstr, se->section_id); 1095 /* Section type */ 1096 qemu_put_byte(f, QEMU_VM_SECTION_END); 1097 qemu_put_be32(f, se->section_id); 1098 1099 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1100 trace_savevm_section_end(se->idstr, se->section_id, ret); 1101 save_section_footer(f, se); 1102 if (ret < 0) { 1103 qemu_file_set_error(f, ret); 1104 return; 1105 } 1106 } 1107 1108 qemu_put_byte(f, QEMU_VM_EOF); 1109 qemu_fflush(f); 1110 } 1111 1112 int qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only, 1113 bool inactivate_disks) 1114 { 1115 QJSON *vmdesc; 1116 int vmdesc_len; 1117 SaveStateEntry *se; 1118 int ret; 1119 bool in_postcopy = migration_in_postcopy(); 1120 1121 trace_savevm_state_complete_precopy(); 1122 1123 cpu_synchronize_all_states(); 1124 1125 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1126 if (!se->ops || 1127 (in_postcopy && se->ops->has_postcopy && 1128 se->ops->has_postcopy(se->opaque)) || 1129 (in_postcopy && !iterable_only) || 1130 !se->ops->save_live_complete_precopy) { 1131 continue; 1132 } 1133 1134 if (se->ops && se->ops->is_active) { 1135 if (!se->ops->is_active(se->opaque)) { 1136 continue; 1137 } 1138 } 1139 trace_savevm_section_start(se->idstr, se->section_id); 1140 1141 save_section_header(f, se, QEMU_VM_SECTION_END); 1142 1143 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1144 trace_savevm_section_end(se->idstr, se->section_id, ret); 1145 save_section_footer(f, se); 1146 if (ret < 0) { 1147 qemu_file_set_error(f, ret); 1148 return -1; 1149 } 1150 } 1151 1152 if (iterable_only) { 1153 return 0; 1154 } 1155 1156 vmdesc = qjson_new(); 1157 json_prop_int(vmdesc, "page_size", qemu_target_page_size()); 1158 json_start_array(vmdesc, "devices"); 1159 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1160 1161 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1162 continue; 1163 } 1164 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1165 trace_savevm_section_skip(se->idstr, se->section_id); 1166 continue; 1167 } 1168 1169 trace_savevm_section_start(se->idstr, se->section_id); 1170 1171 json_start_object(vmdesc, NULL); 1172 json_prop_str(vmdesc, "name", se->idstr); 1173 json_prop_int(vmdesc, "instance_id", se->instance_id); 1174 1175 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1176 ret = vmstate_save(f, se, vmdesc); 1177 if (ret) { 1178 qemu_file_set_error(f, ret); 1179 return ret; 1180 } 1181 trace_savevm_section_end(se->idstr, se->section_id, 0); 1182 save_section_footer(f, se); 1183 1184 json_end_object(vmdesc); 1185 } 1186 1187 if (inactivate_disks) { 1188 /* Inactivate before sending QEMU_VM_EOF so that the 1189 * bdrv_invalidate_cache_all() on the other end won't fail. */ 1190 ret = bdrv_inactivate_all(); 1191 if (ret) { 1192 error_report("%s: bdrv_inactivate_all() failed (%d)", 1193 __func__, ret); 1194 qemu_file_set_error(f, ret); 1195 return ret; 1196 } 1197 } 1198 if (!in_postcopy) { 1199 /* Postcopy stream will still be going */ 1200 qemu_put_byte(f, QEMU_VM_EOF); 1201 } 1202 1203 json_end_array(vmdesc); 1204 qjson_finish(vmdesc); 1205 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1206 1207 if (should_send_vmdesc()) { 1208 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1209 qemu_put_be32(f, vmdesc_len); 1210 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1211 } 1212 qjson_destroy(vmdesc); 1213 1214 qemu_fflush(f); 1215 return 0; 1216 } 1217 1218 /* Give an estimate of the amount left to be transferred, 1219 * the result is split into the amount for units that can and 1220 * for units that can't do postcopy. 1221 */ 1222 void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size, 1223 uint64_t *res_non_postcopiable, 1224 uint64_t *res_postcopiable) 1225 { 1226 SaveStateEntry *se; 1227 1228 *res_non_postcopiable = 0; 1229 *res_postcopiable = 0; 1230 1231 1232 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1233 if (!se->ops || !se->ops->save_live_pending) { 1234 continue; 1235 } 1236 if (se->ops && se->ops->is_active) { 1237 if (!se->ops->is_active(se->opaque)) { 1238 continue; 1239 } 1240 } 1241 se->ops->save_live_pending(f, se->opaque, threshold_size, 1242 res_non_postcopiable, res_postcopiable); 1243 } 1244 } 1245 1246 void qemu_savevm_state_cleanup(void) 1247 { 1248 SaveStateEntry *se; 1249 1250 trace_savevm_state_cleanup(); 1251 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1252 if (se->ops && se->ops->save_cleanup) { 1253 se->ops->save_cleanup(se->opaque); 1254 } 1255 } 1256 } 1257 1258 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1259 { 1260 int ret; 1261 MigrationState *ms = migrate_get_current(); 1262 MigrationStatus status; 1263 1264 migrate_init(ms); 1265 1266 ms->to_dst_file = f; 1267 1268 if (migration_is_blocked(errp)) { 1269 ret = -EINVAL; 1270 goto done; 1271 } 1272 1273 if (migrate_use_block()) { 1274 error_setg(errp, "Block migration and snapshots are incompatible"); 1275 ret = -EINVAL; 1276 goto done; 1277 } 1278 1279 qemu_mutex_unlock_iothread(); 1280 qemu_savevm_state_header(f); 1281 qemu_savevm_state_setup(f); 1282 qemu_mutex_lock_iothread(); 1283 1284 while (qemu_file_get_error(f) == 0) { 1285 if (qemu_savevm_state_iterate(f, false) > 0) { 1286 break; 1287 } 1288 } 1289 1290 ret = qemu_file_get_error(f); 1291 if (ret == 0) { 1292 qemu_savevm_state_complete_precopy(f, false, false); 1293 ret = qemu_file_get_error(f); 1294 } 1295 qemu_savevm_state_cleanup(); 1296 if (ret != 0) { 1297 error_setg_errno(errp, -ret, "Error while writing VM state"); 1298 } 1299 1300 done: 1301 if (ret != 0) { 1302 status = MIGRATION_STATUS_FAILED; 1303 } else { 1304 status = MIGRATION_STATUS_COMPLETED; 1305 } 1306 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1307 1308 /* f is outer parameter, it should not stay in global migration state after 1309 * this function finished */ 1310 ms->to_dst_file = NULL; 1311 1312 return ret; 1313 } 1314 1315 static int qemu_save_device_state(QEMUFile *f) 1316 { 1317 SaveStateEntry *se; 1318 1319 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1320 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1321 1322 cpu_synchronize_all_states(); 1323 1324 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1325 int ret; 1326 1327 if (se->is_ram) { 1328 continue; 1329 } 1330 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1331 continue; 1332 } 1333 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1334 continue; 1335 } 1336 1337 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1338 1339 ret = vmstate_save(f, se, NULL); 1340 if (ret) { 1341 return ret; 1342 } 1343 1344 save_section_footer(f, se); 1345 } 1346 1347 qemu_put_byte(f, QEMU_VM_EOF); 1348 1349 return qemu_file_get_error(f); 1350 } 1351 1352 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1353 { 1354 SaveStateEntry *se; 1355 1356 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1357 if (!strcmp(se->idstr, idstr) && 1358 (instance_id == se->instance_id || 1359 instance_id == se->alias_id)) 1360 return se; 1361 /* Migrating from an older version? */ 1362 if (strstr(se->idstr, idstr) && se->compat) { 1363 if (!strcmp(se->compat->idstr, idstr) && 1364 (instance_id == se->compat->instance_id || 1365 instance_id == se->alias_id)) 1366 return se; 1367 } 1368 } 1369 return NULL; 1370 } 1371 1372 enum LoadVMExitCodes { 1373 /* Allow a command to quit all layers of nested loadvm loops */ 1374 LOADVM_QUIT = 1, 1375 }; 1376 1377 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1378 1379 /* ------ incoming postcopy messages ------ */ 1380 /* 'advise' arrives before any transfers just to tell us that a postcopy 1381 * *might* happen - it might be skipped if precopy transferred everything 1382 * quickly. 1383 */ 1384 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis, 1385 uint16_t len) 1386 { 1387 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1388 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps; 1389 1390 trace_loadvm_postcopy_handle_advise(); 1391 if (ps != POSTCOPY_INCOMING_NONE) { 1392 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1393 return -1; 1394 } 1395 1396 switch (len) { 1397 case 0: 1398 if (migrate_postcopy_ram()) { 1399 error_report("RAM postcopy is enabled but have 0 byte advise"); 1400 return -EINVAL; 1401 } 1402 return 0; 1403 case 8 + 8: 1404 if (!migrate_postcopy_ram()) { 1405 error_report("RAM postcopy is disabled but have 16 byte advise"); 1406 return -EINVAL; 1407 } 1408 break; 1409 default: 1410 error_report("CMD_POSTCOPY_ADVISE invalid length (%d)", len); 1411 return -EINVAL; 1412 } 1413 1414 if (!postcopy_ram_supported_by_host(mis)) { 1415 postcopy_state_set(POSTCOPY_INCOMING_NONE); 1416 return -1; 1417 } 1418 1419 remote_pagesize_summary = qemu_get_be64(mis->from_src_file); 1420 local_pagesize_summary = ram_pagesize_summary(); 1421 1422 if (remote_pagesize_summary != local_pagesize_summary) { 1423 /* 1424 * This detects two potential causes of mismatch: 1425 * a) A mismatch in host page sizes 1426 * Some combinations of mismatch are probably possible but it gets 1427 * a bit more complicated. In particular we need to place whole 1428 * host pages on the dest at once, and we need to ensure that we 1429 * handle dirtying to make sure we never end up sending part of 1430 * a hostpage on it's own. 1431 * b) The use of different huge page sizes on source/destination 1432 * a more fine grain test is performed during RAM block migration 1433 * but this test here causes a nice early clear failure, and 1434 * also fails when passed to an older qemu that doesn't 1435 * do huge pages. 1436 */ 1437 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64 1438 " d=%" PRIx64 ")", 1439 remote_pagesize_summary, local_pagesize_summary); 1440 return -1; 1441 } 1442 1443 remote_tps = qemu_get_be64(mis->from_src_file); 1444 if (remote_tps != qemu_target_page_size()) { 1445 /* 1446 * Again, some differences could be dealt with, but for now keep it 1447 * simple. 1448 */ 1449 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)", 1450 (int)remote_tps, qemu_target_page_size()); 1451 return -1; 1452 } 1453 1454 if (ram_postcopy_incoming_init(mis)) { 1455 return -1; 1456 } 1457 1458 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1459 1460 return 0; 1461 } 1462 1463 /* After postcopy we will be told to throw some pages away since they're 1464 * dirty and will have to be demand fetched. Must happen before CPU is 1465 * started. 1466 * There can be 0..many of these messages, each encoding multiple pages. 1467 */ 1468 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1469 uint16_t len) 1470 { 1471 int tmp; 1472 char ramid[256]; 1473 PostcopyState ps = postcopy_state_get(); 1474 1475 trace_loadvm_postcopy_ram_handle_discard(); 1476 1477 switch (ps) { 1478 case POSTCOPY_INCOMING_ADVISE: 1479 /* 1st discard */ 1480 tmp = postcopy_ram_prepare_discard(mis); 1481 if (tmp) { 1482 return tmp; 1483 } 1484 break; 1485 1486 case POSTCOPY_INCOMING_DISCARD: 1487 /* Expected state */ 1488 break; 1489 1490 default: 1491 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1492 ps); 1493 return -1; 1494 } 1495 /* We're expecting a 1496 * Version (0) 1497 * a RAM ID string (length byte, name, 0 term) 1498 * then at least 1 16 byte chunk 1499 */ 1500 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1501 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1502 return -1; 1503 } 1504 1505 tmp = qemu_get_byte(mis->from_src_file); 1506 if (tmp != postcopy_ram_discard_version) { 1507 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1508 return -1; 1509 } 1510 1511 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1512 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1513 return -1; 1514 } 1515 tmp = qemu_get_byte(mis->from_src_file); 1516 if (tmp != 0) { 1517 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1518 return -1; 1519 } 1520 1521 len -= 3 + strlen(ramid); 1522 if (len % 16) { 1523 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1524 return -1; 1525 } 1526 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1527 while (len) { 1528 uint64_t start_addr, block_length; 1529 start_addr = qemu_get_be64(mis->from_src_file); 1530 block_length = qemu_get_be64(mis->from_src_file); 1531 1532 len -= 16; 1533 int ret = ram_discard_range(ramid, start_addr, block_length); 1534 if (ret) { 1535 return ret; 1536 } 1537 } 1538 trace_loadvm_postcopy_ram_handle_discard_end(); 1539 1540 return 0; 1541 } 1542 1543 /* 1544 * Triggered by a postcopy_listen command; this thread takes over reading 1545 * the input stream, leaving the main thread free to carry on loading the rest 1546 * of the device state (from RAM). 1547 * (TODO:This could do with being in a postcopy file - but there again it's 1548 * just another input loop, not that postcopy specific) 1549 */ 1550 static void *postcopy_ram_listen_thread(void *opaque) 1551 { 1552 QEMUFile *f = opaque; 1553 MigrationIncomingState *mis = migration_incoming_get_current(); 1554 int load_res; 1555 1556 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1557 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1558 qemu_sem_post(&mis->listen_thread_sem); 1559 trace_postcopy_ram_listen_thread_start(); 1560 1561 /* 1562 * Because we're a thread and not a coroutine we can't yield 1563 * in qemu_file, and thus we must be blocking now. 1564 */ 1565 qemu_file_set_blocking(f, true); 1566 load_res = qemu_loadvm_state_main(f, mis); 1567 /* And non-blocking again so we don't block in any cleanup */ 1568 qemu_file_set_blocking(f, false); 1569 1570 trace_postcopy_ram_listen_thread_exit(); 1571 if (load_res < 0) { 1572 error_report("%s: loadvm failed: %d", __func__, load_res); 1573 qemu_file_set_error(f, load_res); 1574 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1575 MIGRATION_STATUS_FAILED); 1576 } else { 1577 /* 1578 * This looks good, but it's possible that the device loading in the 1579 * main thread hasn't finished yet, and so we might not be in 'RUN' 1580 * state yet; wait for the end of the main thread. 1581 */ 1582 qemu_event_wait(&mis->main_thread_load_event); 1583 } 1584 postcopy_ram_incoming_cleanup(mis); 1585 1586 if (load_res < 0) { 1587 /* 1588 * If something went wrong then we have a bad state so exit; 1589 * depending how far we got it might be possible at this point 1590 * to leave the guest running and fire MCEs for pages that never 1591 * arrived as a desperate recovery step. 1592 */ 1593 exit(EXIT_FAILURE); 1594 } 1595 1596 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1597 MIGRATION_STATUS_COMPLETED); 1598 /* 1599 * If everything has worked fine, then the main thread has waited 1600 * for us to start, and we're the last use of the mis. 1601 * (If something broke then qemu will have to exit anyway since it's 1602 * got a bad migration state). 1603 */ 1604 migration_incoming_state_destroy(); 1605 qemu_loadvm_state_cleanup(); 1606 1607 return NULL; 1608 } 1609 1610 /* After this message we must be able to immediately receive postcopy data */ 1611 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1612 { 1613 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1614 trace_loadvm_postcopy_handle_listen(); 1615 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1616 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1617 return -1; 1618 } 1619 if (ps == POSTCOPY_INCOMING_ADVISE) { 1620 /* 1621 * A rare case, we entered listen without having to do any discards, 1622 * so do the setup that's normally done at the time of the 1st discard. 1623 */ 1624 if (migrate_postcopy_ram()) { 1625 postcopy_ram_prepare_discard(mis); 1626 } 1627 } 1628 1629 /* 1630 * Sensitise RAM - can now generate requests for blocks that don't exist 1631 * However, at this point the CPU shouldn't be running, and the IO 1632 * shouldn't be doing anything yet so don't actually expect requests 1633 */ 1634 if (migrate_postcopy_ram()) { 1635 if (postcopy_ram_enable_notify(mis)) { 1636 return -1; 1637 } 1638 } 1639 1640 if (mis->have_listen_thread) { 1641 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1642 return -1; 1643 } 1644 1645 mis->have_listen_thread = true; 1646 /* Start up the listening thread and wait for it to signal ready */ 1647 qemu_sem_init(&mis->listen_thread_sem, 0); 1648 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1649 postcopy_ram_listen_thread, mis->from_src_file, 1650 QEMU_THREAD_DETACHED); 1651 qemu_sem_wait(&mis->listen_thread_sem); 1652 qemu_sem_destroy(&mis->listen_thread_sem); 1653 1654 return 0; 1655 } 1656 1657 1658 typedef struct { 1659 QEMUBH *bh; 1660 } HandleRunBhData; 1661 1662 static void loadvm_postcopy_handle_run_bh(void *opaque) 1663 { 1664 Error *local_err = NULL; 1665 HandleRunBhData *data = opaque; 1666 1667 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1668 * in migration.c 1669 */ 1670 cpu_synchronize_all_post_init(); 1671 1672 qemu_announce_self(); 1673 1674 /* Make sure all file formats flush their mutable metadata. 1675 * If we get an error here, just don't restart the VM yet. */ 1676 bdrv_invalidate_cache_all(&local_err); 1677 if (local_err) { 1678 error_report_err(local_err); 1679 local_err = NULL; 1680 autostart = false; 1681 } 1682 1683 trace_loadvm_postcopy_handle_run_cpu_sync(); 1684 cpu_synchronize_all_post_init(); 1685 1686 trace_loadvm_postcopy_handle_run_vmstart(); 1687 1688 if (autostart) { 1689 /* Hold onto your hats, starting the CPU */ 1690 vm_start(); 1691 } else { 1692 /* leave it paused and let management decide when to start the CPU */ 1693 runstate_set(RUN_STATE_PAUSED); 1694 } 1695 1696 qemu_bh_delete(data->bh); 1697 g_free(data); 1698 } 1699 1700 /* After all discards we can start running and asking for pages */ 1701 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1702 { 1703 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1704 HandleRunBhData *data; 1705 1706 trace_loadvm_postcopy_handle_run(); 1707 if (ps != POSTCOPY_INCOMING_LISTENING) { 1708 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1709 return -1; 1710 } 1711 1712 data = g_new(HandleRunBhData, 1); 1713 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1714 qemu_bh_schedule(data->bh); 1715 1716 /* We need to finish reading the stream from the package 1717 * and also stop reading anything more from the stream that loaded the 1718 * package (since it's now being read by the listener thread). 1719 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1720 */ 1721 return LOADVM_QUIT; 1722 } 1723 1724 /** 1725 * Immediately following this command is a blob of data containing an embedded 1726 * chunk of migration stream; read it and load it. 1727 * 1728 * @mis: Incoming state 1729 * @length: Length of packaged data to read 1730 * 1731 * Returns: Negative values on error 1732 * 1733 */ 1734 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1735 { 1736 int ret; 1737 size_t length; 1738 QIOChannelBuffer *bioc; 1739 1740 length = qemu_get_be32(mis->from_src_file); 1741 trace_loadvm_handle_cmd_packaged(length); 1742 1743 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1744 error_report("Unreasonably large packaged state: %zu", length); 1745 return -1; 1746 } 1747 1748 bioc = qio_channel_buffer_new(length); 1749 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 1750 ret = qemu_get_buffer(mis->from_src_file, 1751 bioc->data, 1752 length); 1753 if (ret != length) { 1754 object_unref(OBJECT(bioc)); 1755 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1756 ret, length); 1757 return (ret < 0) ? ret : -EAGAIN; 1758 } 1759 bioc->usage += length; 1760 trace_loadvm_handle_cmd_packaged_received(ret); 1761 1762 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1763 1764 ret = qemu_loadvm_state_main(packf, mis); 1765 trace_loadvm_handle_cmd_packaged_main(ret); 1766 qemu_fclose(packf); 1767 object_unref(OBJECT(bioc)); 1768 1769 return ret; 1770 } 1771 1772 /* 1773 * Process an incoming 'QEMU_VM_COMMAND' 1774 * 0 just a normal return 1775 * LOADVM_QUIT All good, but exit the loop 1776 * <0 Error 1777 */ 1778 static int loadvm_process_command(QEMUFile *f) 1779 { 1780 MigrationIncomingState *mis = migration_incoming_get_current(); 1781 uint16_t cmd; 1782 uint16_t len; 1783 uint32_t tmp32; 1784 1785 cmd = qemu_get_be16(f); 1786 len = qemu_get_be16(f); 1787 1788 /* Check validity before continue processing of cmds */ 1789 if (qemu_file_get_error(f)) { 1790 return qemu_file_get_error(f); 1791 } 1792 1793 trace_loadvm_process_command(cmd, len); 1794 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1795 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1796 return -EINVAL; 1797 } 1798 1799 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1800 error_report("%s received with bad length - expecting %zu, got %d", 1801 mig_cmd_args[cmd].name, 1802 (size_t)mig_cmd_args[cmd].len, len); 1803 return -ERANGE; 1804 } 1805 1806 switch (cmd) { 1807 case MIG_CMD_OPEN_RETURN_PATH: 1808 if (mis->to_src_file) { 1809 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1810 /* Not really a problem, so don't give up */ 1811 return 0; 1812 } 1813 mis->to_src_file = qemu_file_get_return_path(f); 1814 if (!mis->to_src_file) { 1815 error_report("CMD_OPEN_RETURN_PATH failed"); 1816 return -1; 1817 } 1818 break; 1819 1820 case MIG_CMD_PING: 1821 tmp32 = qemu_get_be32(f); 1822 trace_loadvm_process_command_ping(tmp32); 1823 if (!mis->to_src_file) { 1824 error_report("CMD_PING (0x%x) received with no return path", 1825 tmp32); 1826 return -1; 1827 } 1828 migrate_send_rp_pong(mis, tmp32); 1829 break; 1830 1831 case MIG_CMD_PACKAGED: 1832 return loadvm_handle_cmd_packaged(mis); 1833 1834 case MIG_CMD_POSTCOPY_ADVISE: 1835 return loadvm_postcopy_handle_advise(mis, len); 1836 1837 case MIG_CMD_POSTCOPY_LISTEN: 1838 return loadvm_postcopy_handle_listen(mis); 1839 1840 case MIG_CMD_POSTCOPY_RUN: 1841 return loadvm_postcopy_handle_run(mis); 1842 1843 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1844 return loadvm_postcopy_ram_handle_discard(mis, len); 1845 } 1846 1847 return 0; 1848 } 1849 1850 /* 1851 * Read a footer off the wire and check that it matches the expected section 1852 * 1853 * Returns: true if the footer was good 1854 * false if there is a problem (and calls error_report to say why) 1855 */ 1856 static bool check_section_footer(QEMUFile *f, SaveStateEntry *se) 1857 { 1858 int ret; 1859 uint8_t read_mark; 1860 uint32_t read_section_id; 1861 1862 if (!migrate_get_current()->send_section_footer) { 1863 /* No footer to check */ 1864 return true; 1865 } 1866 1867 read_mark = qemu_get_byte(f); 1868 1869 ret = qemu_file_get_error(f); 1870 if (ret) { 1871 error_report("%s: Read section footer failed: %d", 1872 __func__, ret); 1873 return false; 1874 } 1875 1876 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1877 error_report("Missing section footer for %s", se->idstr); 1878 return false; 1879 } 1880 1881 read_section_id = qemu_get_be32(f); 1882 if (read_section_id != se->load_section_id) { 1883 error_report("Mismatched section id in footer for %s -" 1884 " read 0x%x expected 0x%x", 1885 se->idstr, read_section_id, se->load_section_id); 1886 return false; 1887 } 1888 1889 /* All good */ 1890 return true; 1891 } 1892 1893 static int 1894 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1895 { 1896 uint32_t instance_id, version_id, section_id; 1897 SaveStateEntry *se; 1898 char idstr[256]; 1899 int ret; 1900 1901 /* Read section start */ 1902 section_id = qemu_get_be32(f); 1903 if (!qemu_get_counted_string(f, idstr)) { 1904 error_report("Unable to read ID string for section %u", 1905 section_id); 1906 return -EINVAL; 1907 } 1908 instance_id = qemu_get_be32(f); 1909 version_id = qemu_get_be32(f); 1910 1911 ret = qemu_file_get_error(f); 1912 if (ret) { 1913 error_report("%s: Failed to read instance/version ID: %d", 1914 __func__, ret); 1915 return ret; 1916 } 1917 1918 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1919 instance_id, version_id); 1920 /* Find savevm section */ 1921 se = find_se(idstr, instance_id); 1922 if (se == NULL) { 1923 error_report("Unknown savevm section or instance '%s' %d", 1924 idstr, instance_id); 1925 return -EINVAL; 1926 } 1927 1928 /* Validate version */ 1929 if (version_id > se->version_id) { 1930 error_report("savevm: unsupported version %d for '%s' v%d", 1931 version_id, idstr, se->version_id); 1932 return -EINVAL; 1933 } 1934 se->load_version_id = version_id; 1935 se->load_section_id = section_id; 1936 1937 /* Validate if it is a device's state */ 1938 if (xen_enabled() && se->is_ram) { 1939 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1940 return -EINVAL; 1941 } 1942 1943 ret = vmstate_load(f, se); 1944 if (ret < 0) { 1945 error_report("error while loading state for instance 0x%x of" 1946 " device '%s'", instance_id, idstr); 1947 return ret; 1948 } 1949 if (!check_section_footer(f, se)) { 1950 return -EINVAL; 1951 } 1952 1953 return 0; 1954 } 1955 1956 static int 1957 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1958 { 1959 uint32_t section_id; 1960 SaveStateEntry *se; 1961 int ret; 1962 1963 section_id = qemu_get_be32(f); 1964 1965 ret = qemu_file_get_error(f); 1966 if (ret) { 1967 error_report("%s: Failed to read section ID: %d", 1968 __func__, ret); 1969 return ret; 1970 } 1971 1972 trace_qemu_loadvm_state_section_partend(section_id); 1973 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1974 if (se->load_section_id == section_id) { 1975 break; 1976 } 1977 } 1978 if (se == NULL) { 1979 error_report("Unknown savevm section %d", section_id); 1980 return -EINVAL; 1981 } 1982 1983 ret = vmstate_load(f, se); 1984 if (ret < 0) { 1985 error_report("error while loading state section id %d(%s)", 1986 section_id, se->idstr); 1987 return ret; 1988 } 1989 if (!check_section_footer(f, se)) { 1990 return -EINVAL; 1991 } 1992 1993 return 0; 1994 } 1995 1996 static int qemu_loadvm_state_setup(QEMUFile *f) 1997 { 1998 SaveStateEntry *se; 1999 int ret; 2000 2001 trace_loadvm_state_setup(); 2002 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 2003 if (!se->ops || !se->ops->load_setup) { 2004 continue; 2005 } 2006 if (se->ops && se->ops->is_active) { 2007 if (!se->ops->is_active(se->opaque)) { 2008 continue; 2009 } 2010 } 2011 2012 ret = se->ops->load_setup(f, se->opaque); 2013 if (ret < 0) { 2014 qemu_file_set_error(f, ret); 2015 error_report("Load state of device %s failed", se->idstr); 2016 return ret; 2017 } 2018 } 2019 return 0; 2020 } 2021 2022 void qemu_loadvm_state_cleanup(void) 2023 { 2024 SaveStateEntry *se; 2025 2026 trace_loadvm_state_cleanup(); 2027 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 2028 if (se->ops && se->ops->load_cleanup) { 2029 se->ops->load_cleanup(se->opaque); 2030 } 2031 } 2032 } 2033 2034 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 2035 { 2036 uint8_t section_type; 2037 int ret = 0; 2038 2039 while (true) { 2040 section_type = qemu_get_byte(f); 2041 2042 if (qemu_file_get_error(f)) { 2043 ret = qemu_file_get_error(f); 2044 break; 2045 } 2046 2047 trace_qemu_loadvm_state_section(section_type); 2048 switch (section_type) { 2049 case QEMU_VM_SECTION_START: 2050 case QEMU_VM_SECTION_FULL: 2051 ret = qemu_loadvm_section_start_full(f, mis); 2052 if (ret < 0) { 2053 goto out; 2054 } 2055 break; 2056 case QEMU_VM_SECTION_PART: 2057 case QEMU_VM_SECTION_END: 2058 ret = qemu_loadvm_section_part_end(f, mis); 2059 if (ret < 0) { 2060 goto out; 2061 } 2062 break; 2063 case QEMU_VM_COMMAND: 2064 ret = loadvm_process_command(f); 2065 trace_qemu_loadvm_state_section_command(ret); 2066 if ((ret < 0) || (ret & LOADVM_QUIT)) { 2067 goto out; 2068 } 2069 break; 2070 case QEMU_VM_EOF: 2071 /* This is the end of migration */ 2072 goto out; 2073 default: 2074 error_report("Unknown savevm section type %d", section_type); 2075 ret = -EINVAL; 2076 goto out; 2077 } 2078 } 2079 2080 out: 2081 if (ret < 0) { 2082 qemu_file_set_error(f, ret); 2083 } 2084 return ret; 2085 } 2086 2087 int qemu_loadvm_state(QEMUFile *f) 2088 { 2089 MigrationIncomingState *mis = migration_incoming_get_current(); 2090 Error *local_err = NULL; 2091 unsigned int v; 2092 int ret; 2093 2094 if (qemu_savevm_state_blocked(&local_err)) { 2095 error_report_err(local_err); 2096 return -EINVAL; 2097 } 2098 2099 v = qemu_get_be32(f); 2100 if (v != QEMU_VM_FILE_MAGIC) { 2101 error_report("Not a migration stream"); 2102 return -EINVAL; 2103 } 2104 2105 v = qemu_get_be32(f); 2106 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 2107 error_report("SaveVM v2 format is obsolete and don't work anymore"); 2108 return -ENOTSUP; 2109 } 2110 if (v != QEMU_VM_FILE_VERSION) { 2111 error_report("Unsupported migration stream version"); 2112 return -ENOTSUP; 2113 } 2114 2115 if (qemu_loadvm_state_setup(f) != 0) { 2116 return -EINVAL; 2117 } 2118 2119 if (migrate_get_current()->send_configuration) { 2120 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 2121 error_report("Configuration section missing"); 2122 return -EINVAL; 2123 } 2124 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 2125 2126 if (ret) { 2127 return ret; 2128 } 2129 } 2130 2131 cpu_synchronize_all_pre_loadvm(); 2132 2133 ret = qemu_loadvm_state_main(f, mis); 2134 qemu_event_set(&mis->main_thread_load_event); 2135 2136 trace_qemu_loadvm_state_post_main(ret); 2137 2138 if (mis->have_listen_thread) { 2139 /* Listen thread still going, can't clean up yet */ 2140 return ret; 2141 } 2142 2143 if (ret == 0) { 2144 ret = qemu_file_get_error(f); 2145 } 2146 2147 /* 2148 * Try to read in the VMDESC section as well, so that dumping tools that 2149 * intercept our migration stream have the chance to see it. 2150 */ 2151 2152 /* We've got to be careful; if we don't read the data and just shut the fd 2153 * then the sender can error if we close while it's still sending. 2154 * We also mustn't read data that isn't there; some transports (RDMA) 2155 * will stall waiting for that data when the source has already closed. 2156 */ 2157 if (ret == 0 && should_send_vmdesc()) { 2158 uint8_t *buf; 2159 uint32_t size; 2160 uint8_t section_type = qemu_get_byte(f); 2161 2162 if (section_type != QEMU_VM_VMDESCRIPTION) { 2163 error_report("Expected vmdescription section, but got %d", 2164 section_type); 2165 /* 2166 * It doesn't seem worth failing at this point since 2167 * we apparently have an otherwise valid VM state 2168 */ 2169 } else { 2170 buf = g_malloc(0x1000); 2171 size = qemu_get_be32(f); 2172 2173 while (size > 0) { 2174 uint32_t read_chunk = MIN(size, 0x1000); 2175 qemu_get_buffer(f, buf, read_chunk); 2176 size -= read_chunk; 2177 } 2178 g_free(buf); 2179 } 2180 } 2181 2182 qemu_loadvm_state_cleanup(); 2183 cpu_synchronize_all_post_init(); 2184 2185 return ret; 2186 } 2187 2188 int save_snapshot(const char *name, Error **errp) 2189 { 2190 BlockDriverState *bs, *bs1; 2191 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 2192 int ret = -1; 2193 QEMUFile *f; 2194 int saved_vm_running; 2195 uint64_t vm_state_size; 2196 qemu_timeval tv; 2197 struct tm tm; 2198 AioContext *aio_context; 2199 2200 if (!bdrv_all_can_snapshot(&bs)) { 2201 error_setg(errp, "Device '%s' is writable but does not support " 2202 "snapshots", bdrv_get_device_name(bs)); 2203 return ret; 2204 } 2205 2206 /* Delete old snapshots of the same name */ 2207 if (name) { 2208 ret = bdrv_all_delete_snapshot(name, &bs1, errp); 2209 if (ret < 0) { 2210 error_prepend(errp, "Error while deleting snapshot on device " 2211 "'%s': ", bdrv_get_device_name(bs1)); 2212 return ret; 2213 } 2214 } 2215 2216 bs = bdrv_all_find_vmstate_bs(); 2217 if (bs == NULL) { 2218 error_setg(errp, "No block device can accept snapshots"); 2219 return ret; 2220 } 2221 aio_context = bdrv_get_aio_context(bs); 2222 2223 saved_vm_running = runstate_is_running(); 2224 2225 ret = global_state_store(); 2226 if (ret) { 2227 error_setg(errp, "Error saving global state"); 2228 return ret; 2229 } 2230 vm_stop(RUN_STATE_SAVE_VM); 2231 2232 bdrv_drain_all_begin(); 2233 2234 aio_context_acquire(aio_context); 2235 2236 memset(sn, 0, sizeof(*sn)); 2237 2238 /* fill auxiliary fields */ 2239 qemu_gettimeofday(&tv); 2240 sn->date_sec = tv.tv_sec; 2241 sn->date_nsec = tv.tv_usec * 1000; 2242 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2243 2244 if (name) { 2245 ret = bdrv_snapshot_find(bs, old_sn, name); 2246 if (ret >= 0) { 2247 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2248 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2249 } else { 2250 pstrcpy(sn->name, sizeof(sn->name), name); 2251 } 2252 } else { 2253 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2254 localtime_r((const time_t *)&tv.tv_sec, &tm); 2255 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2256 } 2257 2258 /* save the VM state */ 2259 f = qemu_fopen_bdrv(bs, 1); 2260 if (!f) { 2261 error_setg(errp, "Could not open VM state file"); 2262 goto the_end; 2263 } 2264 ret = qemu_savevm_state(f, errp); 2265 vm_state_size = qemu_ftell(f); 2266 qemu_fclose(f); 2267 if (ret < 0) { 2268 goto the_end; 2269 } 2270 2271 /* The bdrv_all_create_snapshot() call that follows acquires the AioContext 2272 * for itself. BDRV_POLL_WHILE() does not support nested locking because 2273 * it only releases the lock once. Therefore synchronous I/O will deadlock 2274 * unless we release the AioContext before bdrv_all_create_snapshot(). 2275 */ 2276 aio_context_release(aio_context); 2277 aio_context = NULL; 2278 2279 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2280 if (ret < 0) { 2281 error_setg(errp, "Error while creating snapshot on '%s'", 2282 bdrv_get_device_name(bs)); 2283 goto the_end; 2284 } 2285 2286 ret = 0; 2287 2288 the_end: 2289 if (aio_context) { 2290 aio_context_release(aio_context); 2291 } 2292 2293 bdrv_drain_all_end(); 2294 2295 if (saved_vm_running) { 2296 vm_start(); 2297 } 2298 return ret; 2299 } 2300 2301 void qmp_xen_save_devices_state(const char *filename, bool has_live, bool live, 2302 Error **errp) 2303 { 2304 QEMUFile *f; 2305 QIOChannelFile *ioc; 2306 int saved_vm_running; 2307 int ret; 2308 2309 if (!has_live) { 2310 /* live default to true so old version of Xen tool stack can have a 2311 * successfull live migration */ 2312 live = true; 2313 } 2314 2315 saved_vm_running = runstate_is_running(); 2316 vm_stop(RUN_STATE_SAVE_VM); 2317 global_state_store_running(); 2318 2319 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2320 if (!ioc) { 2321 goto the_end; 2322 } 2323 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 2324 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2325 object_unref(OBJECT(ioc)); 2326 ret = qemu_save_device_state(f); 2327 if (ret < 0 || qemu_fclose(f) < 0) { 2328 error_setg(errp, QERR_IO_ERROR); 2329 } else { 2330 /* libxl calls the QMP command "stop" before calling 2331 * "xen-save-devices-state" and in case of migration failure, libxl 2332 * would call "cont". 2333 * So call bdrv_inactivate_all (release locks) here to let the other 2334 * side of the migration take controle of the images. 2335 */ 2336 if (live && !saved_vm_running) { 2337 ret = bdrv_inactivate_all(); 2338 if (ret) { 2339 error_setg(errp, "%s: bdrv_inactivate_all() failed (%d)", 2340 __func__, ret); 2341 } 2342 } 2343 } 2344 2345 the_end: 2346 if (saved_vm_running) { 2347 vm_start(); 2348 } 2349 } 2350 2351 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2352 { 2353 QEMUFile *f; 2354 QIOChannelFile *ioc; 2355 int ret; 2356 2357 /* Guest must be paused before loading the device state; the RAM state 2358 * will already have been loaded by xc 2359 */ 2360 if (runstate_is_running()) { 2361 error_setg(errp, "Cannot update device state while vm is running"); 2362 return; 2363 } 2364 vm_stop(RUN_STATE_RESTORE_VM); 2365 2366 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2367 if (!ioc) { 2368 return; 2369 } 2370 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 2371 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2372 object_unref(OBJECT(ioc)); 2373 2374 ret = qemu_loadvm_state(f); 2375 qemu_fclose(f); 2376 if (ret < 0) { 2377 error_setg(errp, QERR_IO_ERROR); 2378 } 2379 migration_incoming_state_destroy(); 2380 } 2381 2382 int load_snapshot(const char *name, Error **errp) 2383 { 2384 BlockDriverState *bs, *bs_vm_state; 2385 QEMUSnapshotInfo sn; 2386 QEMUFile *f; 2387 int ret; 2388 AioContext *aio_context; 2389 MigrationIncomingState *mis = migration_incoming_get_current(); 2390 2391 if (!bdrv_all_can_snapshot(&bs)) { 2392 error_setg(errp, 2393 "Device '%s' is writable but does not support snapshots", 2394 bdrv_get_device_name(bs)); 2395 return -ENOTSUP; 2396 } 2397 ret = bdrv_all_find_snapshot(name, &bs); 2398 if (ret < 0) { 2399 error_setg(errp, 2400 "Device '%s' does not have the requested snapshot '%s'", 2401 bdrv_get_device_name(bs), name); 2402 return ret; 2403 } 2404 2405 bs_vm_state = bdrv_all_find_vmstate_bs(); 2406 if (!bs_vm_state) { 2407 error_setg(errp, "No block device supports snapshots"); 2408 return -ENOTSUP; 2409 } 2410 aio_context = bdrv_get_aio_context(bs_vm_state); 2411 2412 /* Don't even try to load empty VM states */ 2413 aio_context_acquire(aio_context); 2414 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2415 aio_context_release(aio_context); 2416 if (ret < 0) { 2417 return ret; 2418 } else if (sn.vm_state_size == 0) { 2419 error_setg(errp, "This is a disk-only snapshot. Revert to it " 2420 " offline using qemu-img"); 2421 return -EINVAL; 2422 } 2423 2424 /* Flush all IO requests so they don't interfere with the new state. */ 2425 bdrv_drain_all_begin(); 2426 2427 ret = bdrv_all_goto_snapshot(name, &bs, errp); 2428 if (ret < 0) { 2429 error_prepend(errp, "Could not load snapshot '%s' on '%s': ", 2430 name, bdrv_get_device_name(bs)); 2431 goto err_drain; 2432 } 2433 2434 /* restore the VM state */ 2435 f = qemu_fopen_bdrv(bs_vm_state, 0); 2436 if (!f) { 2437 error_setg(errp, "Could not open VM state file"); 2438 ret = -EINVAL; 2439 goto err_drain; 2440 } 2441 2442 qemu_system_reset(SHUTDOWN_CAUSE_NONE); 2443 mis->from_src_file = f; 2444 2445 aio_context_acquire(aio_context); 2446 ret = qemu_loadvm_state(f); 2447 migration_incoming_state_destroy(); 2448 aio_context_release(aio_context); 2449 2450 bdrv_drain_all_end(); 2451 2452 if (ret < 0) { 2453 error_setg(errp, "Error %d while loading VM state", ret); 2454 return ret; 2455 } 2456 2457 return 0; 2458 2459 err_drain: 2460 bdrv_drain_all_end(); 2461 return ret; 2462 } 2463 2464 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2465 { 2466 qemu_ram_set_idstr(mr->ram_block, 2467 memory_region_name(mr), dev); 2468 } 2469 2470 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2471 { 2472 qemu_ram_unset_idstr(mr->ram_block); 2473 } 2474 2475 void vmstate_register_ram_global(MemoryRegion *mr) 2476 { 2477 vmstate_register_ram(mr, NULL); 2478 } 2479 2480 bool vmstate_check_only_migratable(const VMStateDescription *vmsd) 2481 { 2482 /* check needed if --only-migratable is specified */ 2483 if (!migrate_get_current()->only_migratable) { 2484 return true; 2485 } 2486 2487 return !(vmsd && vmsd->unmigratable); 2488 } 2489