1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/boards.h" 31 #include "hw/xen/xen.h" 32 #include "net/net.h" 33 #include "migration.h" 34 #include "migration/snapshot.h" 35 #include "migration/misc.h" 36 #include "migration/register.h" 37 #include "migration/global_state.h" 38 #include "ram.h" 39 #include "qemu-file-channel.h" 40 #include "qemu-file.h" 41 #include "savevm.h" 42 #include "postcopy-ram.h" 43 #include "qapi/error.h" 44 #include "qapi/qmp/qerror.h" 45 #include "qemu/error-report.h" 46 #include "sysemu/cpus.h" 47 #include "exec/memory.h" 48 #include "exec/target_page.h" 49 #include "qmp-commands.h" 50 #include "trace.h" 51 #include "qemu/iov.h" 52 #include "block/snapshot.h" 53 #include "qemu/cutils.h" 54 #include "io/channel-buffer.h" 55 #include "io/channel-file.h" 56 57 #ifndef ETH_P_RARP 58 #define ETH_P_RARP 0x8035 59 #endif 60 #define ARP_HTYPE_ETH 0x0001 61 #define ARP_PTYPE_IP 0x0800 62 #define ARP_OP_REQUEST_REV 0x3 63 64 const unsigned int postcopy_ram_discard_version = 0; 65 66 /* Subcommands for QEMU_VM_COMMAND */ 67 enum qemu_vm_cmd { 68 MIG_CMD_INVALID = 0, /* Must be 0 */ 69 MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */ 70 MIG_CMD_PING, /* Request a PONG on the RP */ 71 72 MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just 73 warn we might want to do PC */ 74 MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming 75 pages as it's running. */ 76 MIG_CMD_POSTCOPY_RUN, /* Start execution */ 77 78 MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that 79 were previously sent during 80 precopy but are dirty. */ 81 MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */ 82 MIG_CMD_MAX 83 }; 84 85 #define MAX_VM_CMD_PACKAGED_SIZE UINT32_MAX 86 static struct mig_cmd_args { 87 ssize_t len; /* -1 = variable */ 88 const char *name; 89 } mig_cmd_args[] = { 90 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 91 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 92 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 93 [MIG_CMD_POSTCOPY_ADVISE] = { .len = -1, .name = "POSTCOPY_ADVISE" }, 94 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 95 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 96 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 97 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 98 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 99 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 100 }; 101 102 /* Note for MIG_CMD_POSTCOPY_ADVISE: 103 * The format of arguments is depending on postcopy mode: 104 * - postcopy RAM only 105 * uint64_t host page size 106 * uint64_t taget page size 107 * 108 * - postcopy RAM and postcopy dirty bitmaps 109 * format is the same as for postcopy RAM only 110 * 111 * - postcopy dirty bitmaps only 112 * Nothing. Command length field is 0. 113 * 114 * Be careful: adding a new postcopy entity with some other parameters should 115 * not break format self-description ability. Good way is to introduce some 116 * generic extendable format with an exception for two old entities. 117 */ 118 119 static int announce_self_create(uint8_t *buf, 120 uint8_t *mac_addr) 121 { 122 /* Ethernet header. */ 123 memset(buf, 0xff, 6); /* destination MAC addr */ 124 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 125 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 126 127 /* RARP header. */ 128 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 129 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 130 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 131 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 132 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 133 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 134 memset(buf + 28, 0x00, 4); /* source protocol addr */ 135 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 136 memset(buf + 38, 0x00, 4); /* target protocol addr */ 137 138 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 139 memset(buf + 42, 0x00, 18); 140 141 return 60; /* len (FCS will be added by hardware) */ 142 } 143 144 static void qemu_announce_self_iter(NICState *nic, void *opaque) 145 { 146 uint8_t buf[60]; 147 int len; 148 149 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 150 len = announce_self_create(buf, nic->conf->macaddr.a); 151 152 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 153 } 154 155 156 static void qemu_announce_self_once(void *opaque) 157 { 158 static int count = SELF_ANNOUNCE_ROUNDS; 159 QEMUTimer *timer = *(QEMUTimer **)opaque; 160 161 qemu_foreach_nic(qemu_announce_self_iter, NULL); 162 163 if (--count) { 164 /* delay 50ms, 150ms, 250ms, ... */ 165 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 166 self_announce_delay(count)); 167 } else { 168 timer_del(timer); 169 timer_free(timer); 170 } 171 } 172 173 void qemu_announce_self(void) 174 { 175 static QEMUTimer *timer; 176 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 177 qemu_announce_self_once(&timer); 178 } 179 180 /***********************************************************/ 181 /* savevm/loadvm support */ 182 183 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 184 int64_t pos) 185 { 186 int ret; 187 QEMUIOVector qiov; 188 189 qemu_iovec_init_external(&qiov, iov, iovcnt); 190 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 191 if (ret < 0) { 192 return ret; 193 } 194 195 return qiov.size; 196 } 197 198 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 199 size_t size) 200 { 201 return bdrv_load_vmstate(opaque, buf, pos, size); 202 } 203 204 static int bdrv_fclose(void *opaque) 205 { 206 return bdrv_flush(opaque); 207 } 208 209 static const QEMUFileOps bdrv_read_ops = { 210 .get_buffer = block_get_buffer, 211 .close = bdrv_fclose 212 }; 213 214 static const QEMUFileOps bdrv_write_ops = { 215 .writev_buffer = block_writev_buffer, 216 .close = bdrv_fclose 217 }; 218 219 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 220 { 221 if (is_writable) { 222 return qemu_fopen_ops(bs, &bdrv_write_ops); 223 } 224 return qemu_fopen_ops(bs, &bdrv_read_ops); 225 } 226 227 228 /* QEMUFile timer support. 229 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 230 */ 231 232 void timer_put(QEMUFile *f, QEMUTimer *ts) 233 { 234 uint64_t expire_time; 235 236 expire_time = timer_expire_time_ns(ts); 237 qemu_put_be64(f, expire_time); 238 } 239 240 void timer_get(QEMUFile *f, QEMUTimer *ts) 241 { 242 uint64_t expire_time; 243 244 expire_time = qemu_get_be64(f); 245 if (expire_time != -1) { 246 timer_mod_ns(ts, expire_time); 247 } else { 248 timer_del(ts); 249 } 250 } 251 252 253 /* VMState timer support. 254 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 255 */ 256 257 static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field) 258 { 259 QEMUTimer *v = pv; 260 timer_get(f, v); 261 return 0; 262 } 263 264 static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field, 265 QJSON *vmdesc) 266 { 267 QEMUTimer *v = pv; 268 timer_put(f, v); 269 270 return 0; 271 } 272 273 const VMStateInfo vmstate_info_timer = { 274 .name = "timer", 275 .get = get_timer, 276 .put = put_timer, 277 }; 278 279 280 typedef struct CompatEntry { 281 char idstr[256]; 282 int instance_id; 283 } CompatEntry; 284 285 typedef struct SaveStateEntry { 286 QTAILQ_ENTRY(SaveStateEntry) entry; 287 char idstr[256]; 288 int instance_id; 289 int alias_id; 290 int version_id; 291 /* version id read from the stream */ 292 int load_version_id; 293 int section_id; 294 /* section id read from the stream */ 295 int load_section_id; 296 SaveVMHandlers *ops; 297 const VMStateDescription *vmsd; 298 void *opaque; 299 CompatEntry *compat; 300 int is_ram; 301 } SaveStateEntry; 302 303 typedef struct SaveState { 304 QTAILQ_HEAD(, SaveStateEntry) handlers; 305 int global_section_id; 306 uint32_t len; 307 const char *name; 308 uint32_t target_page_bits; 309 } SaveState; 310 311 static SaveState savevm_state = { 312 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 313 .global_section_id = 0, 314 }; 315 316 static int configuration_pre_save(void *opaque) 317 { 318 SaveState *state = opaque; 319 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 320 321 state->len = strlen(current_name); 322 state->name = current_name; 323 state->target_page_bits = qemu_target_page_bits(); 324 325 return 0; 326 } 327 328 static int configuration_pre_load(void *opaque) 329 { 330 SaveState *state = opaque; 331 332 /* If there is no target-page-bits subsection it means the source 333 * predates the variable-target-page-bits support and is using the 334 * minimum possible value for this CPU. 335 */ 336 state->target_page_bits = qemu_target_page_bits_min(); 337 return 0; 338 } 339 340 static int configuration_post_load(void *opaque, int version_id) 341 { 342 SaveState *state = opaque; 343 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 344 345 if (strncmp(state->name, current_name, state->len) != 0) { 346 error_report("Machine type received is '%.*s' and local is '%s'", 347 (int) state->len, state->name, current_name); 348 return -EINVAL; 349 } 350 351 if (state->target_page_bits != qemu_target_page_bits()) { 352 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 353 state->target_page_bits, qemu_target_page_bits()); 354 return -EINVAL; 355 } 356 357 return 0; 358 } 359 360 /* The target-page-bits subsection is present only if the 361 * target page size is not the same as the default (ie the 362 * minimum page size for a variable-page-size guest CPU). 363 * If it is present then it contains the actual target page 364 * bits for the machine, and migration will fail if the 365 * two ends don't agree about it. 366 */ 367 static bool vmstate_target_page_bits_needed(void *opaque) 368 { 369 return qemu_target_page_bits() 370 > qemu_target_page_bits_min(); 371 } 372 373 static const VMStateDescription vmstate_target_page_bits = { 374 .name = "configuration/target-page-bits", 375 .version_id = 1, 376 .minimum_version_id = 1, 377 .needed = vmstate_target_page_bits_needed, 378 .fields = (VMStateField[]) { 379 VMSTATE_UINT32(target_page_bits, SaveState), 380 VMSTATE_END_OF_LIST() 381 } 382 }; 383 384 static const VMStateDescription vmstate_configuration = { 385 .name = "configuration", 386 .version_id = 1, 387 .pre_load = configuration_pre_load, 388 .post_load = configuration_post_load, 389 .pre_save = configuration_pre_save, 390 .fields = (VMStateField[]) { 391 VMSTATE_UINT32(len, SaveState), 392 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len), 393 VMSTATE_END_OF_LIST() 394 }, 395 .subsections = (const VMStateDescription*[]) { 396 &vmstate_target_page_bits, 397 NULL 398 } 399 }; 400 401 static void dump_vmstate_vmsd(FILE *out_file, 402 const VMStateDescription *vmsd, int indent, 403 bool is_subsection); 404 405 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 406 int indent) 407 { 408 fprintf(out_file, "%*s{\n", indent, ""); 409 indent += 2; 410 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 411 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 412 field->version_id); 413 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 414 field->field_exists ? "true" : "false"); 415 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 416 if (field->vmsd != NULL) { 417 fprintf(out_file, ",\n"); 418 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 419 } 420 fprintf(out_file, "\n%*s}", indent - 2, ""); 421 } 422 423 static void dump_vmstate_vmss(FILE *out_file, 424 const VMStateDescription **subsection, 425 int indent) 426 { 427 if (*subsection != NULL) { 428 dump_vmstate_vmsd(out_file, *subsection, indent, true); 429 } 430 } 431 432 static void dump_vmstate_vmsd(FILE *out_file, 433 const VMStateDescription *vmsd, int indent, 434 bool is_subsection) 435 { 436 if (is_subsection) { 437 fprintf(out_file, "%*s{\n", indent, ""); 438 } else { 439 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 440 } 441 indent += 2; 442 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 443 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 444 vmsd->version_id); 445 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 446 vmsd->minimum_version_id); 447 if (vmsd->fields != NULL) { 448 const VMStateField *field = vmsd->fields; 449 bool first; 450 451 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 452 first = true; 453 while (field->name != NULL) { 454 if (field->flags & VMS_MUST_EXIST) { 455 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 456 field++; 457 continue; 458 } 459 if (!first) { 460 fprintf(out_file, ",\n"); 461 } 462 dump_vmstate_vmsf(out_file, field, indent + 2); 463 field++; 464 first = false; 465 } 466 fprintf(out_file, "\n%*s]", indent, ""); 467 } 468 if (vmsd->subsections != NULL) { 469 const VMStateDescription **subsection = vmsd->subsections; 470 bool first; 471 472 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 473 first = true; 474 while (*subsection != NULL) { 475 if (!first) { 476 fprintf(out_file, ",\n"); 477 } 478 dump_vmstate_vmss(out_file, subsection, indent + 2); 479 subsection++; 480 first = false; 481 } 482 fprintf(out_file, "\n%*s]", indent, ""); 483 } 484 fprintf(out_file, "\n%*s}", indent - 2, ""); 485 } 486 487 static void dump_machine_type(FILE *out_file) 488 { 489 MachineClass *mc; 490 491 mc = MACHINE_GET_CLASS(current_machine); 492 493 fprintf(out_file, " \"vmschkmachine\": {\n"); 494 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 495 fprintf(out_file, " },\n"); 496 } 497 498 void dump_vmstate_json_to_file(FILE *out_file) 499 { 500 GSList *list, *elt; 501 bool first; 502 503 fprintf(out_file, "{\n"); 504 dump_machine_type(out_file); 505 506 first = true; 507 list = object_class_get_list(TYPE_DEVICE, true); 508 for (elt = list; elt; elt = elt->next) { 509 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 510 TYPE_DEVICE); 511 const char *name; 512 int indent = 2; 513 514 if (!dc->vmsd) { 515 continue; 516 } 517 518 if (!first) { 519 fprintf(out_file, ",\n"); 520 } 521 name = object_class_get_name(OBJECT_CLASS(dc)); 522 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 523 indent += 2; 524 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 525 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 526 dc->vmsd->version_id); 527 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 528 dc->vmsd->minimum_version_id); 529 530 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 531 532 fprintf(out_file, "\n%*s}", indent - 2, ""); 533 first = false; 534 } 535 fprintf(out_file, "\n}\n"); 536 fclose(out_file); 537 } 538 539 static int calculate_new_instance_id(const char *idstr) 540 { 541 SaveStateEntry *se; 542 int instance_id = 0; 543 544 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 545 if (strcmp(idstr, se->idstr) == 0 546 && instance_id <= se->instance_id) { 547 instance_id = se->instance_id + 1; 548 } 549 } 550 return instance_id; 551 } 552 553 static int calculate_compat_instance_id(const char *idstr) 554 { 555 SaveStateEntry *se; 556 int instance_id = 0; 557 558 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 559 if (!se->compat) { 560 continue; 561 } 562 563 if (strcmp(idstr, se->compat->idstr) == 0 564 && instance_id <= se->compat->instance_id) { 565 instance_id = se->compat->instance_id + 1; 566 } 567 } 568 return instance_id; 569 } 570 571 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 572 { 573 if (se->vmsd) { 574 return se->vmsd->priority; 575 } 576 return MIG_PRI_DEFAULT; 577 } 578 579 static void savevm_state_handler_insert(SaveStateEntry *nse) 580 { 581 MigrationPriority priority = save_state_priority(nse); 582 SaveStateEntry *se; 583 584 assert(priority <= MIG_PRI_MAX); 585 586 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 587 if (save_state_priority(se) < priority) { 588 break; 589 } 590 } 591 592 if (se) { 593 QTAILQ_INSERT_BEFORE(se, nse, entry); 594 } else { 595 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 596 } 597 } 598 599 /* TODO: Individual devices generally have very little idea about the rest 600 of the system, so instance_id should be removed/replaced. 601 Meanwhile pass -1 as instance_id if you do not already have a clearly 602 distinguishing id for all instances of your device class. */ 603 int register_savevm_live(DeviceState *dev, 604 const char *idstr, 605 int instance_id, 606 int version_id, 607 SaveVMHandlers *ops, 608 void *opaque) 609 { 610 SaveStateEntry *se; 611 612 se = g_new0(SaveStateEntry, 1); 613 se->version_id = version_id; 614 se->section_id = savevm_state.global_section_id++; 615 se->ops = ops; 616 se->opaque = opaque; 617 se->vmsd = NULL; 618 /* if this is a live_savem then set is_ram */ 619 if (ops->save_setup != NULL) { 620 se->is_ram = 1; 621 } 622 623 if (dev) { 624 char *id = qdev_get_dev_path(dev); 625 if (id) { 626 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 627 sizeof(se->idstr)) { 628 error_report("Path too long for VMState (%s)", id); 629 g_free(id); 630 g_free(se); 631 632 return -1; 633 } 634 g_free(id); 635 636 se->compat = g_new0(CompatEntry, 1); 637 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 638 se->compat->instance_id = instance_id == -1 ? 639 calculate_compat_instance_id(idstr) : instance_id; 640 instance_id = -1; 641 } 642 } 643 pstrcat(se->idstr, sizeof(se->idstr), idstr); 644 645 if (instance_id == -1) { 646 se->instance_id = calculate_new_instance_id(se->idstr); 647 } else { 648 se->instance_id = instance_id; 649 } 650 assert(!se->compat || se->instance_id == 0); 651 savevm_state_handler_insert(se); 652 return 0; 653 } 654 655 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 656 { 657 SaveStateEntry *se, *new_se; 658 char id[256] = ""; 659 660 if (dev) { 661 char *path = qdev_get_dev_path(dev); 662 if (path) { 663 pstrcpy(id, sizeof(id), path); 664 pstrcat(id, sizeof(id), "/"); 665 g_free(path); 666 } 667 } 668 pstrcat(id, sizeof(id), idstr); 669 670 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 671 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 672 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 673 g_free(se->compat); 674 g_free(se); 675 } 676 } 677 } 678 679 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 680 const VMStateDescription *vmsd, 681 void *opaque, int alias_id, 682 int required_for_version, 683 Error **errp) 684 { 685 SaveStateEntry *se; 686 687 /* If this triggers, alias support can be dropped for the vmsd. */ 688 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 689 690 se = g_new0(SaveStateEntry, 1); 691 se->version_id = vmsd->version_id; 692 se->section_id = savevm_state.global_section_id++; 693 se->opaque = opaque; 694 se->vmsd = vmsd; 695 se->alias_id = alias_id; 696 697 if (dev) { 698 char *id = qdev_get_dev_path(dev); 699 if (id) { 700 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 701 sizeof(se->idstr)) { 702 error_setg(errp, "Path too long for VMState (%s)", id); 703 g_free(id); 704 g_free(se); 705 706 return -1; 707 } 708 g_free(id); 709 710 se->compat = g_new0(CompatEntry, 1); 711 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 712 se->compat->instance_id = instance_id == -1 ? 713 calculate_compat_instance_id(vmsd->name) : instance_id; 714 instance_id = -1; 715 } 716 } 717 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 718 719 if (instance_id == -1) { 720 se->instance_id = calculate_new_instance_id(se->idstr); 721 } else { 722 se->instance_id = instance_id; 723 } 724 assert(!se->compat || se->instance_id == 0); 725 savevm_state_handler_insert(se); 726 return 0; 727 } 728 729 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 730 void *opaque) 731 { 732 SaveStateEntry *se, *new_se; 733 734 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 735 if (se->vmsd == vmsd && se->opaque == opaque) { 736 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 737 g_free(se->compat); 738 g_free(se); 739 } 740 } 741 } 742 743 static int vmstate_load(QEMUFile *f, SaveStateEntry *se) 744 { 745 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 746 if (!se->vmsd) { /* Old style */ 747 return se->ops->load_state(f, se->opaque, se->load_version_id); 748 } 749 return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id); 750 } 751 752 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 753 { 754 int64_t old_offset, size; 755 756 old_offset = qemu_ftell_fast(f); 757 se->ops->save_state(f, se->opaque); 758 size = qemu_ftell_fast(f) - old_offset; 759 760 if (vmdesc) { 761 json_prop_int(vmdesc, "size", size); 762 json_start_array(vmdesc, "fields"); 763 json_start_object(vmdesc, NULL); 764 json_prop_str(vmdesc, "name", "data"); 765 json_prop_int(vmdesc, "size", size); 766 json_prop_str(vmdesc, "type", "buffer"); 767 json_end_object(vmdesc); 768 json_end_array(vmdesc); 769 } 770 } 771 772 static int vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 773 { 774 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 775 if (!se->vmsd) { 776 vmstate_save_old_style(f, se, vmdesc); 777 return 0; 778 } 779 return vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 780 } 781 782 /* 783 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 784 */ 785 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 786 uint8_t section_type) 787 { 788 qemu_put_byte(f, section_type); 789 qemu_put_be32(f, se->section_id); 790 791 if (section_type == QEMU_VM_SECTION_FULL || 792 section_type == QEMU_VM_SECTION_START) { 793 /* ID string */ 794 size_t len = strlen(se->idstr); 795 qemu_put_byte(f, len); 796 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 797 798 qemu_put_be32(f, se->instance_id); 799 qemu_put_be32(f, se->version_id); 800 } 801 } 802 803 /* 804 * Write a footer onto device sections that catches cases misformatted device 805 * sections. 806 */ 807 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 808 { 809 if (migrate_get_current()->send_section_footer) { 810 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 811 qemu_put_be32(f, se->section_id); 812 } 813 } 814 815 /** 816 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 817 * command and associated data. 818 * 819 * @f: File to send command on 820 * @command: Command type to send 821 * @len: Length of associated data 822 * @data: Data associated with command. 823 */ 824 static void qemu_savevm_command_send(QEMUFile *f, 825 enum qemu_vm_cmd command, 826 uint16_t len, 827 uint8_t *data) 828 { 829 trace_savevm_command_send(command, len); 830 qemu_put_byte(f, QEMU_VM_COMMAND); 831 qemu_put_be16(f, (uint16_t)command); 832 qemu_put_be16(f, len); 833 qemu_put_buffer(f, data, len); 834 qemu_fflush(f); 835 } 836 837 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 838 { 839 uint32_t buf; 840 841 trace_savevm_send_ping(value); 842 buf = cpu_to_be32(value); 843 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 844 } 845 846 void qemu_savevm_send_open_return_path(QEMUFile *f) 847 { 848 trace_savevm_send_open_return_path(); 849 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 850 } 851 852 /* We have a buffer of data to send; we don't want that all to be loaded 853 * by the command itself, so the command contains just the length of the 854 * extra buffer that we then send straight after it. 855 * TODO: Must be a better way to organise that 856 * 857 * Returns: 858 * 0 on success 859 * -ve on error 860 */ 861 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 862 { 863 uint32_t tmp; 864 865 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 866 error_report("%s: Unreasonably large packaged state: %zu", 867 __func__, len); 868 return -1; 869 } 870 871 tmp = cpu_to_be32(len); 872 873 trace_qemu_savevm_send_packaged(); 874 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 875 876 qemu_put_buffer(f, buf, len); 877 878 return 0; 879 } 880 881 /* Send prior to any postcopy transfer */ 882 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 883 { 884 if (migrate_postcopy_ram()) { 885 uint64_t tmp[2]; 886 tmp[0] = cpu_to_be64(ram_pagesize_summary()); 887 tmp[1] = cpu_to_be64(qemu_target_page_size()); 888 889 trace_qemu_savevm_send_postcopy_advise(); 890 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 891 16, (uint8_t *)tmp); 892 } else { 893 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 0, NULL); 894 } 895 } 896 897 /* Sent prior to starting the destination running in postcopy, discard pages 898 * that have already been sent but redirtied on the source. 899 * CMD_POSTCOPY_RAM_DISCARD consist of: 900 * byte version (0) 901 * byte Length of name field (not including 0) 902 * n x byte RAM block name 903 * byte 0 terminator (just for safety) 904 * n x Byte ranges within the named RAMBlock 905 * be64 Start of the range 906 * be64 Length 907 * 908 * name: RAMBlock name that these entries are part of 909 * len: Number of page entries 910 * start_list: 'len' addresses 911 * length_list: 'len' addresses 912 * 913 */ 914 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 915 uint16_t len, 916 uint64_t *start_list, 917 uint64_t *length_list) 918 { 919 uint8_t *buf; 920 uint16_t tmplen; 921 uint16_t t; 922 size_t name_len = strlen(name); 923 924 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 925 assert(name_len < 256); 926 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 927 buf[0] = postcopy_ram_discard_version; 928 buf[1] = name_len; 929 memcpy(buf + 2, name, name_len); 930 tmplen = 2 + name_len; 931 buf[tmplen++] = '\0'; 932 933 for (t = 0; t < len; t++) { 934 stq_be_p(buf + tmplen, start_list[t]); 935 tmplen += 8; 936 stq_be_p(buf + tmplen, length_list[t]); 937 tmplen += 8; 938 } 939 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 940 g_free(buf); 941 } 942 943 /* Get the destination into a state where it can receive postcopy data. */ 944 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 945 { 946 trace_savevm_send_postcopy_listen(); 947 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 948 } 949 950 /* Kick the destination into running */ 951 void qemu_savevm_send_postcopy_run(QEMUFile *f) 952 { 953 trace_savevm_send_postcopy_run(); 954 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 955 } 956 957 bool qemu_savevm_state_blocked(Error **errp) 958 { 959 SaveStateEntry *se; 960 961 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 962 if (se->vmsd && se->vmsd->unmigratable) { 963 error_setg(errp, "State blocked by non-migratable device '%s'", 964 se->idstr); 965 return true; 966 } 967 } 968 return false; 969 } 970 971 void qemu_savevm_state_header(QEMUFile *f) 972 { 973 trace_savevm_state_header(); 974 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 975 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 976 977 if (migrate_get_current()->send_configuration) { 978 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 979 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 980 } 981 } 982 983 void qemu_savevm_state_setup(QEMUFile *f) 984 { 985 SaveStateEntry *se; 986 int ret; 987 988 trace_savevm_state_setup(); 989 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 990 if (!se->ops || !se->ops->save_setup) { 991 continue; 992 } 993 if (se->ops && se->ops->is_active) { 994 if (!se->ops->is_active(se->opaque)) { 995 continue; 996 } 997 } 998 save_section_header(f, se, QEMU_VM_SECTION_START); 999 1000 ret = se->ops->save_setup(f, se->opaque); 1001 save_section_footer(f, se); 1002 if (ret < 0) { 1003 qemu_file_set_error(f, ret); 1004 break; 1005 } 1006 } 1007 } 1008 1009 /* 1010 * this function has three return values: 1011 * negative: there was one error, and we have -errno. 1012 * 0 : We haven't finished, caller have to go again 1013 * 1 : We have finished, we can go to complete phase 1014 */ 1015 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 1016 { 1017 SaveStateEntry *se; 1018 int ret = 1; 1019 1020 trace_savevm_state_iterate(); 1021 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1022 if (!se->ops || !se->ops->save_live_iterate) { 1023 continue; 1024 } 1025 if (se->ops && se->ops->is_active) { 1026 if (!se->ops->is_active(se->opaque)) { 1027 continue; 1028 } 1029 } 1030 /* 1031 * In the postcopy phase, any device that doesn't know how to 1032 * do postcopy should have saved it's state in the _complete 1033 * call that's already run, it might get confused if we call 1034 * iterate afterwards. 1035 */ 1036 if (postcopy && 1037 !(se->ops->has_postcopy && se->ops->has_postcopy(se->opaque))) { 1038 continue; 1039 } 1040 if (qemu_file_rate_limit(f)) { 1041 return 0; 1042 } 1043 trace_savevm_section_start(se->idstr, se->section_id); 1044 1045 save_section_header(f, se, QEMU_VM_SECTION_PART); 1046 1047 ret = se->ops->save_live_iterate(f, se->opaque); 1048 trace_savevm_section_end(se->idstr, se->section_id, ret); 1049 save_section_footer(f, se); 1050 1051 if (ret < 0) { 1052 qemu_file_set_error(f, ret); 1053 } 1054 if (ret <= 0) { 1055 /* Do not proceed to the next vmstate before this one reported 1056 completion of the current stage. This serializes the migration 1057 and reduces the probability that a faster changing state is 1058 synchronized over and over again. */ 1059 break; 1060 } 1061 } 1062 return ret; 1063 } 1064 1065 static bool should_send_vmdesc(void) 1066 { 1067 MachineState *machine = MACHINE(qdev_get_machine()); 1068 bool in_postcopy = migration_in_postcopy(); 1069 return !machine->suppress_vmdesc && !in_postcopy; 1070 } 1071 1072 /* 1073 * Calls the save_live_complete_postcopy methods 1074 * causing the last few pages to be sent immediately and doing any associated 1075 * cleanup. 1076 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1077 * all the other devices, but that happens at the point we switch to postcopy. 1078 */ 1079 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1080 { 1081 SaveStateEntry *se; 1082 int ret; 1083 1084 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1085 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1086 continue; 1087 } 1088 if (se->ops && se->ops->is_active) { 1089 if (!se->ops->is_active(se->opaque)) { 1090 continue; 1091 } 1092 } 1093 trace_savevm_section_start(se->idstr, se->section_id); 1094 /* Section type */ 1095 qemu_put_byte(f, QEMU_VM_SECTION_END); 1096 qemu_put_be32(f, se->section_id); 1097 1098 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1099 trace_savevm_section_end(se->idstr, se->section_id, ret); 1100 save_section_footer(f, se); 1101 if (ret < 0) { 1102 qemu_file_set_error(f, ret); 1103 return; 1104 } 1105 } 1106 1107 qemu_put_byte(f, QEMU_VM_EOF); 1108 qemu_fflush(f); 1109 } 1110 1111 int qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only, 1112 bool inactivate_disks) 1113 { 1114 QJSON *vmdesc; 1115 int vmdesc_len; 1116 SaveStateEntry *se; 1117 int ret; 1118 bool in_postcopy = migration_in_postcopy(); 1119 1120 trace_savevm_state_complete_precopy(); 1121 1122 cpu_synchronize_all_states(); 1123 1124 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1125 if (!se->ops || 1126 (in_postcopy && se->ops->has_postcopy && 1127 se->ops->has_postcopy(se->opaque)) || 1128 (in_postcopy && !iterable_only) || 1129 !se->ops->save_live_complete_precopy) { 1130 continue; 1131 } 1132 1133 if (se->ops && se->ops->is_active) { 1134 if (!se->ops->is_active(se->opaque)) { 1135 continue; 1136 } 1137 } 1138 trace_savevm_section_start(se->idstr, se->section_id); 1139 1140 save_section_header(f, se, QEMU_VM_SECTION_END); 1141 1142 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1143 trace_savevm_section_end(se->idstr, se->section_id, ret); 1144 save_section_footer(f, se); 1145 if (ret < 0) { 1146 qemu_file_set_error(f, ret); 1147 return -1; 1148 } 1149 } 1150 1151 if (iterable_only) { 1152 return 0; 1153 } 1154 1155 vmdesc = qjson_new(); 1156 json_prop_int(vmdesc, "page_size", qemu_target_page_size()); 1157 json_start_array(vmdesc, "devices"); 1158 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1159 1160 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1161 continue; 1162 } 1163 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1164 trace_savevm_section_skip(se->idstr, se->section_id); 1165 continue; 1166 } 1167 1168 trace_savevm_section_start(se->idstr, se->section_id); 1169 1170 json_start_object(vmdesc, NULL); 1171 json_prop_str(vmdesc, "name", se->idstr); 1172 json_prop_int(vmdesc, "instance_id", se->instance_id); 1173 1174 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1175 ret = vmstate_save(f, se, vmdesc); 1176 if (ret) { 1177 qemu_file_set_error(f, ret); 1178 return ret; 1179 } 1180 trace_savevm_section_end(se->idstr, se->section_id, 0); 1181 save_section_footer(f, se); 1182 1183 json_end_object(vmdesc); 1184 } 1185 1186 if (inactivate_disks) { 1187 /* Inactivate before sending QEMU_VM_EOF so that the 1188 * bdrv_invalidate_cache_all() on the other end won't fail. */ 1189 ret = bdrv_inactivate_all(); 1190 if (ret) { 1191 error_report("%s: bdrv_inactivate_all() failed (%d)", 1192 __func__, ret); 1193 qemu_file_set_error(f, ret); 1194 return ret; 1195 } 1196 } 1197 if (!in_postcopy) { 1198 /* Postcopy stream will still be going */ 1199 qemu_put_byte(f, QEMU_VM_EOF); 1200 } 1201 1202 json_end_array(vmdesc); 1203 qjson_finish(vmdesc); 1204 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1205 1206 if (should_send_vmdesc()) { 1207 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1208 qemu_put_be32(f, vmdesc_len); 1209 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1210 } 1211 qjson_destroy(vmdesc); 1212 1213 qemu_fflush(f); 1214 return 0; 1215 } 1216 1217 /* Give an estimate of the amount left to be transferred, 1218 * the result is split into the amount for units that can and 1219 * for units that can't do postcopy. 1220 */ 1221 void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size, 1222 uint64_t *res_non_postcopiable, 1223 uint64_t *res_postcopiable) 1224 { 1225 SaveStateEntry *se; 1226 1227 *res_non_postcopiable = 0; 1228 *res_postcopiable = 0; 1229 1230 1231 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1232 if (!se->ops || !se->ops->save_live_pending) { 1233 continue; 1234 } 1235 if (se->ops && se->ops->is_active) { 1236 if (!se->ops->is_active(se->opaque)) { 1237 continue; 1238 } 1239 } 1240 se->ops->save_live_pending(f, se->opaque, threshold_size, 1241 res_non_postcopiable, res_postcopiable); 1242 } 1243 } 1244 1245 void qemu_savevm_state_cleanup(void) 1246 { 1247 SaveStateEntry *se; 1248 1249 trace_savevm_state_cleanup(); 1250 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1251 if (se->ops && se->ops->save_cleanup) { 1252 se->ops->save_cleanup(se->opaque); 1253 } 1254 } 1255 } 1256 1257 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1258 { 1259 int ret; 1260 MigrationState *ms = migrate_get_current(); 1261 MigrationStatus status; 1262 1263 migrate_init(ms); 1264 1265 ms->to_dst_file = f; 1266 1267 if (migration_is_blocked(errp)) { 1268 ret = -EINVAL; 1269 goto done; 1270 } 1271 1272 if (migrate_use_block()) { 1273 error_setg(errp, "Block migration and snapshots are incompatible"); 1274 ret = -EINVAL; 1275 goto done; 1276 } 1277 1278 qemu_mutex_unlock_iothread(); 1279 qemu_savevm_state_header(f); 1280 qemu_savevm_state_setup(f); 1281 qemu_mutex_lock_iothread(); 1282 1283 while (qemu_file_get_error(f) == 0) { 1284 if (qemu_savevm_state_iterate(f, false) > 0) { 1285 break; 1286 } 1287 } 1288 1289 ret = qemu_file_get_error(f); 1290 if (ret == 0) { 1291 qemu_savevm_state_complete_precopy(f, false, false); 1292 ret = qemu_file_get_error(f); 1293 } 1294 qemu_savevm_state_cleanup(); 1295 if (ret != 0) { 1296 error_setg_errno(errp, -ret, "Error while writing VM state"); 1297 } 1298 1299 done: 1300 if (ret != 0) { 1301 status = MIGRATION_STATUS_FAILED; 1302 } else { 1303 status = MIGRATION_STATUS_COMPLETED; 1304 } 1305 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1306 1307 /* f is outer parameter, it should not stay in global migration state after 1308 * this function finished */ 1309 ms->to_dst_file = NULL; 1310 1311 return ret; 1312 } 1313 1314 static int qemu_save_device_state(QEMUFile *f) 1315 { 1316 SaveStateEntry *se; 1317 1318 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1319 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1320 1321 cpu_synchronize_all_states(); 1322 1323 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1324 int ret; 1325 1326 if (se->is_ram) { 1327 continue; 1328 } 1329 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1330 continue; 1331 } 1332 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1333 continue; 1334 } 1335 1336 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1337 1338 ret = vmstate_save(f, se, NULL); 1339 if (ret) { 1340 return ret; 1341 } 1342 1343 save_section_footer(f, se); 1344 } 1345 1346 qemu_put_byte(f, QEMU_VM_EOF); 1347 1348 return qemu_file_get_error(f); 1349 } 1350 1351 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1352 { 1353 SaveStateEntry *se; 1354 1355 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1356 if (!strcmp(se->idstr, idstr) && 1357 (instance_id == se->instance_id || 1358 instance_id == se->alias_id)) 1359 return se; 1360 /* Migrating from an older version? */ 1361 if (strstr(se->idstr, idstr) && se->compat) { 1362 if (!strcmp(se->compat->idstr, idstr) && 1363 (instance_id == se->compat->instance_id || 1364 instance_id == se->alias_id)) 1365 return se; 1366 } 1367 } 1368 return NULL; 1369 } 1370 1371 enum LoadVMExitCodes { 1372 /* Allow a command to quit all layers of nested loadvm loops */ 1373 LOADVM_QUIT = 1, 1374 }; 1375 1376 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1377 1378 /* ------ incoming postcopy messages ------ */ 1379 /* 'advise' arrives before any transfers just to tell us that a postcopy 1380 * *might* happen - it might be skipped if precopy transferred everything 1381 * quickly. 1382 */ 1383 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis, 1384 uint16_t len) 1385 { 1386 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1387 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps; 1388 1389 trace_loadvm_postcopy_handle_advise(); 1390 if (ps != POSTCOPY_INCOMING_NONE) { 1391 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1392 return -1; 1393 } 1394 1395 switch (len) { 1396 case 0: 1397 if (migrate_postcopy_ram()) { 1398 error_report("RAM postcopy is enabled but have 0 byte advise"); 1399 return -EINVAL; 1400 } 1401 return 0; 1402 case 8 + 8: 1403 if (!migrate_postcopy_ram()) { 1404 error_report("RAM postcopy is disabled but have 16 byte advise"); 1405 return -EINVAL; 1406 } 1407 break; 1408 default: 1409 error_report("CMD_POSTCOPY_ADVISE invalid length (%d)", len); 1410 return -EINVAL; 1411 } 1412 1413 if (!postcopy_ram_supported_by_host(mis)) { 1414 postcopy_state_set(POSTCOPY_INCOMING_NONE); 1415 return -1; 1416 } 1417 1418 remote_pagesize_summary = qemu_get_be64(mis->from_src_file); 1419 local_pagesize_summary = ram_pagesize_summary(); 1420 1421 if (remote_pagesize_summary != local_pagesize_summary) { 1422 /* 1423 * This detects two potential causes of mismatch: 1424 * a) A mismatch in host page sizes 1425 * Some combinations of mismatch are probably possible but it gets 1426 * a bit more complicated. In particular we need to place whole 1427 * host pages on the dest at once, and we need to ensure that we 1428 * handle dirtying to make sure we never end up sending part of 1429 * a hostpage on it's own. 1430 * b) The use of different huge page sizes on source/destination 1431 * a more fine grain test is performed during RAM block migration 1432 * but this test here causes a nice early clear failure, and 1433 * also fails when passed to an older qemu that doesn't 1434 * do huge pages. 1435 */ 1436 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64 1437 " d=%" PRIx64 ")", 1438 remote_pagesize_summary, local_pagesize_summary); 1439 return -1; 1440 } 1441 1442 remote_tps = qemu_get_be64(mis->from_src_file); 1443 if (remote_tps != qemu_target_page_size()) { 1444 /* 1445 * Again, some differences could be dealt with, but for now keep it 1446 * simple. 1447 */ 1448 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)", 1449 (int)remote_tps, qemu_target_page_size()); 1450 return -1; 1451 } 1452 1453 if (ram_postcopy_incoming_init(mis)) { 1454 return -1; 1455 } 1456 1457 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1458 1459 return 0; 1460 } 1461 1462 /* After postcopy we will be told to throw some pages away since they're 1463 * dirty and will have to be demand fetched. Must happen before CPU is 1464 * started. 1465 * There can be 0..many of these messages, each encoding multiple pages. 1466 */ 1467 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1468 uint16_t len) 1469 { 1470 int tmp; 1471 char ramid[256]; 1472 PostcopyState ps = postcopy_state_get(); 1473 1474 trace_loadvm_postcopy_ram_handle_discard(); 1475 1476 switch (ps) { 1477 case POSTCOPY_INCOMING_ADVISE: 1478 /* 1st discard */ 1479 tmp = postcopy_ram_prepare_discard(mis); 1480 if (tmp) { 1481 return tmp; 1482 } 1483 break; 1484 1485 case POSTCOPY_INCOMING_DISCARD: 1486 /* Expected state */ 1487 break; 1488 1489 default: 1490 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1491 ps); 1492 return -1; 1493 } 1494 /* We're expecting a 1495 * Version (0) 1496 * a RAM ID string (length byte, name, 0 term) 1497 * then at least 1 16 byte chunk 1498 */ 1499 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1500 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1501 return -1; 1502 } 1503 1504 tmp = qemu_get_byte(mis->from_src_file); 1505 if (tmp != postcopy_ram_discard_version) { 1506 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1507 return -1; 1508 } 1509 1510 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1511 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1512 return -1; 1513 } 1514 tmp = qemu_get_byte(mis->from_src_file); 1515 if (tmp != 0) { 1516 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1517 return -1; 1518 } 1519 1520 len -= 3 + strlen(ramid); 1521 if (len % 16) { 1522 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1523 return -1; 1524 } 1525 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1526 while (len) { 1527 uint64_t start_addr, block_length; 1528 start_addr = qemu_get_be64(mis->from_src_file); 1529 block_length = qemu_get_be64(mis->from_src_file); 1530 1531 len -= 16; 1532 int ret = ram_discard_range(ramid, start_addr, block_length); 1533 if (ret) { 1534 return ret; 1535 } 1536 } 1537 trace_loadvm_postcopy_ram_handle_discard_end(); 1538 1539 return 0; 1540 } 1541 1542 /* 1543 * Triggered by a postcopy_listen command; this thread takes over reading 1544 * the input stream, leaving the main thread free to carry on loading the rest 1545 * of the device state (from RAM). 1546 * (TODO:This could do with being in a postcopy file - but there again it's 1547 * just another input loop, not that postcopy specific) 1548 */ 1549 static void *postcopy_ram_listen_thread(void *opaque) 1550 { 1551 QEMUFile *f = opaque; 1552 MigrationIncomingState *mis = migration_incoming_get_current(); 1553 int load_res; 1554 1555 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1556 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1557 qemu_sem_post(&mis->listen_thread_sem); 1558 trace_postcopy_ram_listen_thread_start(); 1559 1560 /* 1561 * Because we're a thread and not a coroutine we can't yield 1562 * in qemu_file, and thus we must be blocking now. 1563 */ 1564 qemu_file_set_blocking(f, true); 1565 load_res = qemu_loadvm_state_main(f, mis); 1566 /* And non-blocking again so we don't block in any cleanup */ 1567 qemu_file_set_blocking(f, false); 1568 1569 trace_postcopy_ram_listen_thread_exit(); 1570 if (load_res < 0) { 1571 error_report("%s: loadvm failed: %d", __func__, load_res); 1572 qemu_file_set_error(f, load_res); 1573 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1574 MIGRATION_STATUS_FAILED); 1575 } else { 1576 /* 1577 * This looks good, but it's possible that the device loading in the 1578 * main thread hasn't finished yet, and so we might not be in 'RUN' 1579 * state yet; wait for the end of the main thread. 1580 */ 1581 qemu_event_wait(&mis->main_thread_load_event); 1582 } 1583 postcopy_ram_incoming_cleanup(mis); 1584 1585 if (load_res < 0) { 1586 /* 1587 * If something went wrong then we have a bad state so exit; 1588 * depending how far we got it might be possible at this point 1589 * to leave the guest running and fire MCEs for pages that never 1590 * arrived as a desperate recovery step. 1591 */ 1592 exit(EXIT_FAILURE); 1593 } 1594 1595 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1596 MIGRATION_STATUS_COMPLETED); 1597 /* 1598 * If everything has worked fine, then the main thread has waited 1599 * for us to start, and we're the last use of the mis. 1600 * (If something broke then qemu will have to exit anyway since it's 1601 * got a bad migration state). 1602 */ 1603 migration_incoming_state_destroy(); 1604 qemu_loadvm_state_cleanup(); 1605 1606 return NULL; 1607 } 1608 1609 /* After this message we must be able to immediately receive postcopy data */ 1610 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1611 { 1612 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1613 trace_loadvm_postcopy_handle_listen(); 1614 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1615 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1616 return -1; 1617 } 1618 if (ps == POSTCOPY_INCOMING_ADVISE) { 1619 /* 1620 * A rare case, we entered listen without having to do any discards, 1621 * so do the setup that's normally done at the time of the 1st discard. 1622 */ 1623 if (migrate_postcopy_ram()) { 1624 postcopy_ram_prepare_discard(mis); 1625 } 1626 } 1627 1628 /* 1629 * Sensitise RAM - can now generate requests for blocks that don't exist 1630 * However, at this point the CPU shouldn't be running, and the IO 1631 * shouldn't be doing anything yet so don't actually expect requests 1632 */ 1633 if (migrate_postcopy_ram()) { 1634 if (postcopy_ram_enable_notify(mis)) { 1635 return -1; 1636 } 1637 } 1638 1639 if (mis->have_listen_thread) { 1640 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1641 return -1; 1642 } 1643 1644 mis->have_listen_thread = true; 1645 /* Start up the listening thread and wait for it to signal ready */ 1646 qemu_sem_init(&mis->listen_thread_sem, 0); 1647 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1648 postcopy_ram_listen_thread, mis->from_src_file, 1649 QEMU_THREAD_DETACHED); 1650 qemu_sem_wait(&mis->listen_thread_sem); 1651 qemu_sem_destroy(&mis->listen_thread_sem); 1652 1653 return 0; 1654 } 1655 1656 1657 typedef struct { 1658 QEMUBH *bh; 1659 } HandleRunBhData; 1660 1661 static void loadvm_postcopy_handle_run_bh(void *opaque) 1662 { 1663 Error *local_err = NULL; 1664 HandleRunBhData *data = opaque; 1665 1666 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1667 * in migration.c 1668 */ 1669 cpu_synchronize_all_post_init(); 1670 1671 qemu_announce_self(); 1672 1673 /* Make sure all file formats flush their mutable metadata. 1674 * If we get an error here, just don't restart the VM yet. */ 1675 bdrv_invalidate_cache_all(&local_err); 1676 if (local_err) { 1677 error_report_err(local_err); 1678 local_err = NULL; 1679 autostart = false; 1680 } 1681 1682 trace_loadvm_postcopy_handle_run_cpu_sync(); 1683 cpu_synchronize_all_post_init(); 1684 1685 trace_loadvm_postcopy_handle_run_vmstart(); 1686 1687 if (autostart) { 1688 /* Hold onto your hats, starting the CPU */ 1689 vm_start(); 1690 } else { 1691 /* leave it paused and let management decide when to start the CPU */ 1692 runstate_set(RUN_STATE_PAUSED); 1693 } 1694 1695 qemu_bh_delete(data->bh); 1696 g_free(data); 1697 } 1698 1699 /* After all discards we can start running and asking for pages */ 1700 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1701 { 1702 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1703 HandleRunBhData *data; 1704 1705 trace_loadvm_postcopy_handle_run(); 1706 if (ps != POSTCOPY_INCOMING_LISTENING) { 1707 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1708 return -1; 1709 } 1710 1711 data = g_new(HandleRunBhData, 1); 1712 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1713 qemu_bh_schedule(data->bh); 1714 1715 /* We need to finish reading the stream from the package 1716 * and also stop reading anything more from the stream that loaded the 1717 * package (since it's now being read by the listener thread). 1718 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1719 */ 1720 return LOADVM_QUIT; 1721 } 1722 1723 /** 1724 * Immediately following this command is a blob of data containing an embedded 1725 * chunk of migration stream; read it and load it. 1726 * 1727 * @mis: Incoming state 1728 * @length: Length of packaged data to read 1729 * 1730 * Returns: Negative values on error 1731 * 1732 */ 1733 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1734 { 1735 int ret; 1736 size_t length; 1737 QIOChannelBuffer *bioc; 1738 1739 length = qemu_get_be32(mis->from_src_file); 1740 trace_loadvm_handle_cmd_packaged(length); 1741 1742 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1743 error_report("Unreasonably large packaged state: %zu", length); 1744 return -1; 1745 } 1746 1747 bioc = qio_channel_buffer_new(length); 1748 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 1749 ret = qemu_get_buffer(mis->from_src_file, 1750 bioc->data, 1751 length); 1752 if (ret != length) { 1753 object_unref(OBJECT(bioc)); 1754 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1755 ret, length); 1756 return (ret < 0) ? ret : -EAGAIN; 1757 } 1758 bioc->usage += length; 1759 trace_loadvm_handle_cmd_packaged_received(ret); 1760 1761 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1762 1763 ret = qemu_loadvm_state_main(packf, mis); 1764 trace_loadvm_handle_cmd_packaged_main(ret); 1765 qemu_fclose(packf); 1766 object_unref(OBJECT(bioc)); 1767 1768 return ret; 1769 } 1770 1771 /* 1772 * Process an incoming 'QEMU_VM_COMMAND' 1773 * 0 just a normal return 1774 * LOADVM_QUIT All good, but exit the loop 1775 * <0 Error 1776 */ 1777 static int loadvm_process_command(QEMUFile *f) 1778 { 1779 MigrationIncomingState *mis = migration_incoming_get_current(); 1780 uint16_t cmd; 1781 uint16_t len; 1782 uint32_t tmp32; 1783 1784 cmd = qemu_get_be16(f); 1785 len = qemu_get_be16(f); 1786 1787 /* Check validity before continue processing of cmds */ 1788 if (qemu_file_get_error(f)) { 1789 return qemu_file_get_error(f); 1790 } 1791 1792 trace_loadvm_process_command(cmd, len); 1793 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1794 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1795 return -EINVAL; 1796 } 1797 1798 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1799 error_report("%s received with bad length - expecting %zu, got %d", 1800 mig_cmd_args[cmd].name, 1801 (size_t)mig_cmd_args[cmd].len, len); 1802 return -ERANGE; 1803 } 1804 1805 switch (cmd) { 1806 case MIG_CMD_OPEN_RETURN_PATH: 1807 if (mis->to_src_file) { 1808 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1809 /* Not really a problem, so don't give up */ 1810 return 0; 1811 } 1812 mis->to_src_file = qemu_file_get_return_path(f); 1813 if (!mis->to_src_file) { 1814 error_report("CMD_OPEN_RETURN_PATH failed"); 1815 return -1; 1816 } 1817 break; 1818 1819 case MIG_CMD_PING: 1820 tmp32 = qemu_get_be32(f); 1821 trace_loadvm_process_command_ping(tmp32); 1822 if (!mis->to_src_file) { 1823 error_report("CMD_PING (0x%x) received with no return path", 1824 tmp32); 1825 return -1; 1826 } 1827 migrate_send_rp_pong(mis, tmp32); 1828 break; 1829 1830 case MIG_CMD_PACKAGED: 1831 return loadvm_handle_cmd_packaged(mis); 1832 1833 case MIG_CMD_POSTCOPY_ADVISE: 1834 return loadvm_postcopy_handle_advise(mis, len); 1835 1836 case MIG_CMD_POSTCOPY_LISTEN: 1837 return loadvm_postcopy_handle_listen(mis); 1838 1839 case MIG_CMD_POSTCOPY_RUN: 1840 return loadvm_postcopy_handle_run(mis); 1841 1842 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1843 return loadvm_postcopy_ram_handle_discard(mis, len); 1844 } 1845 1846 return 0; 1847 } 1848 1849 /* 1850 * Read a footer off the wire and check that it matches the expected section 1851 * 1852 * Returns: true if the footer was good 1853 * false if there is a problem (and calls error_report to say why) 1854 */ 1855 static bool check_section_footer(QEMUFile *f, SaveStateEntry *se) 1856 { 1857 int ret; 1858 uint8_t read_mark; 1859 uint32_t read_section_id; 1860 1861 if (!migrate_get_current()->send_section_footer) { 1862 /* No footer to check */ 1863 return true; 1864 } 1865 1866 read_mark = qemu_get_byte(f); 1867 1868 ret = qemu_file_get_error(f); 1869 if (ret) { 1870 error_report("%s: Read section footer failed: %d", 1871 __func__, ret); 1872 return false; 1873 } 1874 1875 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1876 error_report("Missing section footer for %s", se->idstr); 1877 return false; 1878 } 1879 1880 read_section_id = qemu_get_be32(f); 1881 if (read_section_id != se->load_section_id) { 1882 error_report("Mismatched section id in footer for %s -" 1883 " read 0x%x expected 0x%x", 1884 se->idstr, read_section_id, se->load_section_id); 1885 return false; 1886 } 1887 1888 /* All good */ 1889 return true; 1890 } 1891 1892 static int 1893 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1894 { 1895 uint32_t instance_id, version_id, section_id; 1896 SaveStateEntry *se; 1897 char idstr[256]; 1898 int ret; 1899 1900 /* Read section start */ 1901 section_id = qemu_get_be32(f); 1902 if (!qemu_get_counted_string(f, idstr)) { 1903 error_report("Unable to read ID string for section %u", 1904 section_id); 1905 return -EINVAL; 1906 } 1907 instance_id = qemu_get_be32(f); 1908 version_id = qemu_get_be32(f); 1909 1910 ret = qemu_file_get_error(f); 1911 if (ret) { 1912 error_report("%s: Failed to read instance/version ID: %d", 1913 __func__, ret); 1914 return ret; 1915 } 1916 1917 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1918 instance_id, version_id); 1919 /* Find savevm section */ 1920 se = find_se(idstr, instance_id); 1921 if (se == NULL) { 1922 error_report("Unknown savevm section or instance '%s' %d", 1923 idstr, instance_id); 1924 return -EINVAL; 1925 } 1926 1927 /* Validate version */ 1928 if (version_id > se->version_id) { 1929 error_report("savevm: unsupported version %d for '%s' v%d", 1930 version_id, idstr, se->version_id); 1931 return -EINVAL; 1932 } 1933 se->load_version_id = version_id; 1934 se->load_section_id = section_id; 1935 1936 /* Validate if it is a device's state */ 1937 if (xen_enabled() && se->is_ram) { 1938 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1939 return -EINVAL; 1940 } 1941 1942 ret = vmstate_load(f, se); 1943 if (ret < 0) { 1944 error_report("error while loading state for instance 0x%x of" 1945 " device '%s'", instance_id, idstr); 1946 return ret; 1947 } 1948 if (!check_section_footer(f, se)) { 1949 return -EINVAL; 1950 } 1951 1952 return 0; 1953 } 1954 1955 static int 1956 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1957 { 1958 uint32_t section_id; 1959 SaveStateEntry *se; 1960 int ret; 1961 1962 section_id = qemu_get_be32(f); 1963 1964 ret = qemu_file_get_error(f); 1965 if (ret) { 1966 error_report("%s: Failed to read section ID: %d", 1967 __func__, ret); 1968 return ret; 1969 } 1970 1971 trace_qemu_loadvm_state_section_partend(section_id); 1972 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1973 if (se->load_section_id == section_id) { 1974 break; 1975 } 1976 } 1977 if (se == NULL) { 1978 error_report("Unknown savevm section %d", section_id); 1979 return -EINVAL; 1980 } 1981 1982 ret = vmstate_load(f, se); 1983 if (ret < 0) { 1984 error_report("error while loading state section id %d(%s)", 1985 section_id, se->idstr); 1986 return ret; 1987 } 1988 if (!check_section_footer(f, se)) { 1989 return -EINVAL; 1990 } 1991 1992 return 0; 1993 } 1994 1995 static int qemu_loadvm_state_setup(QEMUFile *f) 1996 { 1997 SaveStateEntry *se; 1998 int ret; 1999 2000 trace_loadvm_state_setup(); 2001 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 2002 if (!se->ops || !se->ops->load_setup) { 2003 continue; 2004 } 2005 if (se->ops && se->ops->is_active) { 2006 if (!se->ops->is_active(se->opaque)) { 2007 continue; 2008 } 2009 } 2010 2011 ret = se->ops->load_setup(f, se->opaque); 2012 if (ret < 0) { 2013 qemu_file_set_error(f, ret); 2014 error_report("Load state of device %s failed", se->idstr); 2015 return ret; 2016 } 2017 } 2018 return 0; 2019 } 2020 2021 void qemu_loadvm_state_cleanup(void) 2022 { 2023 SaveStateEntry *se; 2024 2025 trace_loadvm_state_cleanup(); 2026 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 2027 if (se->ops && se->ops->load_cleanup) { 2028 se->ops->load_cleanup(se->opaque); 2029 } 2030 } 2031 } 2032 2033 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 2034 { 2035 uint8_t section_type; 2036 int ret = 0; 2037 2038 while (true) { 2039 section_type = qemu_get_byte(f); 2040 2041 if (qemu_file_get_error(f)) { 2042 ret = qemu_file_get_error(f); 2043 break; 2044 } 2045 2046 trace_qemu_loadvm_state_section(section_type); 2047 switch (section_type) { 2048 case QEMU_VM_SECTION_START: 2049 case QEMU_VM_SECTION_FULL: 2050 ret = qemu_loadvm_section_start_full(f, mis); 2051 if (ret < 0) { 2052 goto out; 2053 } 2054 break; 2055 case QEMU_VM_SECTION_PART: 2056 case QEMU_VM_SECTION_END: 2057 ret = qemu_loadvm_section_part_end(f, mis); 2058 if (ret < 0) { 2059 goto out; 2060 } 2061 break; 2062 case QEMU_VM_COMMAND: 2063 ret = loadvm_process_command(f); 2064 trace_qemu_loadvm_state_section_command(ret); 2065 if ((ret < 0) || (ret & LOADVM_QUIT)) { 2066 goto out; 2067 } 2068 break; 2069 case QEMU_VM_EOF: 2070 /* This is the end of migration */ 2071 goto out; 2072 default: 2073 error_report("Unknown savevm section type %d", section_type); 2074 ret = -EINVAL; 2075 goto out; 2076 } 2077 } 2078 2079 out: 2080 if (ret < 0) { 2081 qemu_file_set_error(f, ret); 2082 } 2083 return ret; 2084 } 2085 2086 int qemu_loadvm_state(QEMUFile *f) 2087 { 2088 MigrationIncomingState *mis = migration_incoming_get_current(); 2089 Error *local_err = NULL; 2090 unsigned int v; 2091 int ret; 2092 2093 if (qemu_savevm_state_blocked(&local_err)) { 2094 error_report_err(local_err); 2095 return -EINVAL; 2096 } 2097 2098 v = qemu_get_be32(f); 2099 if (v != QEMU_VM_FILE_MAGIC) { 2100 error_report("Not a migration stream"); 2101 return -EINVAL; 2102 } 2103 2104 v = qemu_get_be32(f); 2105 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 2106 error_report("SaveVM v2 format is obsolete and don't work anymore"); 2107 return -ENOTSUP; 2108 } 2109 if (v != QEMU_VM_FILE_VERSION) { 2110 error_report("Unsupported migration stream version"); 2111 return -ENOTSUP; 2112 } 2113 2114 if (qemu_loadvm_state_setup(f) != 0) { 2115 return -EINVAL; 2116 } 2117 2118 if (migrate_get_current()->send_configuration) { 2119 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 2120 error_report("Configuration section missing"); 2121 return -EINVAL; 2122 } 2123 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 2124 2125 if (ret) { 2126 return ret; 2127 } 2128 } 2129 2130 cpu_synchronize_all_pre_loadvm(); 2131 2132 ret = qemu_loadvm_state_main(f, mis); 2133 qemu_event_set(&mis->main_thread_load_event); 2134 2135 trace_qemu_loadvm_state_post_main(ret); 2136 2137 if (mis->have_listen_thread) { 2138 /* Listen thread still going, can't clean up yet */ 2139 return ret; 2140 } 2141 2142 if (ret == 0) { 2143 ret = qemu_file_get_error(f); 2144 } 2145 2146 /* 2147 * Try to read in the VMDESC section as well, so that dumping tools that 2148 * intercept our migration stream have the chance to see it. 2149 */ 2150 2151 /* We've got to be careful; if we don't read the data and just shut the fd 2152 * then the sender can error if we close while it's still sending. 2153 * We also mustn't read data that isn't there; some transports (RDMA) 2154 * will stall waiting for that data when the source has already closed. 2155 */ 2156 if (ret == 0 && should_send_vmdesc()) { 2157 uint8_t *buf; 2158 uint32_t size; 2159 uint8_t section_type = qemu_get_byte(f); 2160 2161 if (section_type != QEMU_VM_VMDESCRIPTION) { 2162 error_report("Expected vmdescription section, but got %d", 2163 section_type); 2164 /* 2165 * It doesn't seem worth failing at this point since 2166 * we apparently have an otherwise valid VM state 2167 */ 2168 } else { 2169 buf = g_malloc(0x1000); 2170 size = qemu_get_be32(f); 2171 2172 while (size > 0) { 2173 uint32_t read_chunk = MIN(size, 0x1000); 2174 qemu_get_buffer(f, buf, read_chunk); 2175 size -= read_chunk; 2176 } 2177 g_free(buf); 2178 } 2179 } 2180 2181 qemu_loadvm_state_cleanup(); 2182 cpu_synchronize_all_post_init(); 2183 2184 return ret; 2185 } 2186 2187 int save_snapshot(const char *name, Error **errp) 2188 { 2189 BlockDriverState *bs, *bs1; 2190 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 2191 int ret = -1; 2192 QEMUFile *f; 2193 int saved_vm_running; 2194 uint64_t vm_state_size; 2195 qemu_timeval tv; 2196 struct tm tm; 2197 AioContext *aio_context; 2198 2199 if (!bdrv_all_can_snapshot(&bs)) { 2200 error_setg(errp, "Device '%s' is writable but does not support " 2201 "snapshots", bdrv_get_device_name(bs)); 2202 return ret; 2203 } 2204 2205 /* Delete old snapshots of the same name */ 2206 if (name) { 2207 ret = bdrv_all_delete_snapshot(name, &bs1, errp); 2208 if (ret < 0) { 2209 error_prepend(errp, "Error while deleting snapshot on device " 2210 "'%s': ", bdrv_get_device_name(bs1)); 2211 return ret; 2212 } 2213 } 2214 2215 bs = bdrv_all_find_vmstate_bs(); 2216 if (bs == NULL) { 2217 error_setg(errp, "No block device can accept snapshots"); 2218 return ret; 2219 } 2220 aio_context = bdrv_get_aio_context(bs); 2221 2222 saved_vm_running = runstate_is_running(); 2223 2224 ret = global_state_store(); 2225 if (ret) { 2226 error_setg(errp, "Error saving global state"); 2227 return ret; 2228 } 2229 vm_stop(RUN_STATE_SAVE_VM); 2230 2231 bdrv_drain_all_begin(); 2232 2233 aio_context_acquire(aio_context); 2234 2235 memset(sn, 0, sizeof(*sn)); 2236 2237 /* fill auxiliary fields */ 2238 qemu_gettimeofday(&tv); 2239 sn->date_sec = tv.tv_sec; 2240 sn->date_nsec = tv.tv_usec * 1000; 2241 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2242 2243 if (name) { 2244 ret = bdrv_snapshot_find(bs, old_sn, name); 2245 if (ret >= 0) { 2246 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2247 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2248 } else { 2249 pstrcpy(sn->name, sizeof(sn->name), name); 2250 } 2251 } else { 2252 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2253 localtime_r((const time_t *)&tv.tv_sec, &tm); 2254 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2255 } 2256 2257 /* save the VM state */ 2258 f = qemu_fopen_bdrv(bs, 1); 2259 if (!f) { 2260 error_setg(errp, "Could not open VM state file"); 2261 goto the_end; 2262 } 2263 ret = qemu_savevm_state(f, errp); 2264 vm_state_size = qemu_ftell(f); 2265 qemu_fclose(f); 2266 if (ret < 0) { 2267 goto the_end; 2268 } 2269 2270 /* The bdrv_all_create_snapshot() call that follows acquires the AioContext 2271 * for itself. BDRV_POLL_WHILE() does not support nested locking because 2272 * it only releases the lock once. Therefore synchronous I/O will deadlock 2273 * unless we release the AioContext before bdrv_all_create_snapshot(). 2274 */ 2275 aio_context_release(aio_context); 2276 aio_context = NULL; 2277 2278 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2279 if (ret < 0) { 2280 error_setg(errp, "Error while creating snapshot on '%s'", 2281 bdrv_get_device_name(bs)); 2282 goto the_end; 2283 } 2284 2285 ret = 0; 2286 2287 the_end: 2288 if (aio_context) { 2289 aio_context_release(aio_context); 2290 } 2291 2292 bdrv_drain_all_end(); 2293 2294 if (saved_vm_running) { 2295 vm_start(); 2296 } 2297 return ret; 2298 } 2299 2300 void qmp_xen_save_devices_state(const char *filename, bool has_live, bool live, 2301 Error **errp) 2302 { 2303 QEMUFile *f; 2304 QIOChannelFile *ioc; 2305 int saved_vm_running; 2306 int ret; 2307 2308 if (!has_live) { 2309 /* live default to true so old version of Xen tool stack can have a 2310 * successfull live migration */ 2311 live = true; 2312 } 2313 2314 saved_vm_running = runstate_is_running(); 2315 vm_stop(RUN_STATE_SAVE_VM); 2316 global_state_store_running(); 2317 2318 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2319 if (!ioc) { 2320 goto the_end; 2321 } 2322 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 2323 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2324 object_unref(OBJECT(ioc)); 2325 ret = qemu_save_device_state(f); 2326 if (ret < 0 || qemu_fclose(f) < 0) { 2327 error_setg(errp, QERR_IO_ERROR); 2328 } else { 2329 /* libxl calls the QMP command "stop" before calling 2330 * "xen-save-devices-state" and in case of migration failure, libxl 2331 * would call "cont". 2332 * So call bdrv_inactivate_all (release locks) here to let the other 2333 * side of the migration take controle of the images. 2334 */ 2335 if (live && !saved_vm_running) { 2336 ret = bdrv_inactivate_all(); 2337 if (ret) { 2338 error_setg(errp, "%s: bdrv_inactivate_all() failed (%d)", 2339 __func__, ret); 2340 } 2341 } 2342 } 2343 2344 the_end: 2345 if (saved_vm_running) { 2346 vm_start(); 2347 } 2348 } 2349 2350 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2351 { 2352 QEMUFile *f; 2353 QIOChannelFile *ioc; 2354 int ret; 2355 2356 /* Guest must be paused before loading the device state; the RAM state 2357 * will already have been loaded by xc 2358 */ 2359 if (runstate_is_running()) { 2360 error_setg(errp, "Cannot update device state while vm is running"); 2361 return; 2362 } 2363 vm_stop(RUN_STATE_RESTORE_VM); 2364 2365 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2366 if (!ioc) { 2367 return; 2368 } 2369 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 2370 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2371 object_unref(OBJECT(ioc)); 2372 2373 ret = qemu_loadvm_state(f); 2374 qemu_fclose(f); 2375 if (ret < 0) { 2376 error_setg(errp, QERR_IO_ERROR); 2377 } 2378 migration_incoming_state_destroy(); 2379 } 2380 2381 int load_snapshot(const char *name, Error **errp) 2382 { 2383 BlockDriverState *bs, *bs_vm_state; 2384 QEMUSnapshotInfo sn; 2385 QEMUFile *f; 2386 int ret; 2387 AioContext *aio_context; 2388 MigrationIncomingState *mis = migration_incoming_get_current(); 2389 2390 if (!bdrv_all_can_snapshot(&bs)) { 2391 error_setg(errp, 2392 "Device '%s' is writable but does not support snapshots", 2393 bdrv_get_device_name(bs)); 2394 return -ENOTSUP; 2395 } 2396 ret = bdrv_all_find_snapshot(name, &bs); 2397 if (ret < 0) { 2398 error_setg(errp, 2399 "Device '%s' does not have the requested snapshot '%s'", 2400 bdrv_get_device_name(bs), name); 2401 return ret; 2402 } 2403 2404 bs_vm_state = bdrv_all_find_vmstate_bs(); 2405 if (!bs_vm_state) { 2406 error_setg(errp, "No block device supports snapshots"); 2407 return -ENOTSUP; 2408 } 2409 aio_context = bdrv_get_aio_context(bs_vm_state); 2410 2411 /* Don't even try to load empty VM states */ 2412 aio_context_acquire(aio_context); 2413 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2414 aio_context_release(aio_context); 2415 if (ret < 0) { 2416 return ret; 2417 } else if (sn.vm_state_size == 0) { 2418 error_setg(errp, "This is a disk-only snapshot. Revert to it " 2419 " offline using qemu-img"); 2420 return -EINVAL; 2421 } 2422 2423 /* Flush all IO requests so they don't interfere with the new state. */ 2424 bdrv_drain_all_begin(); 2425 2426 ret = bdrv_all_goto_snapshot(name, &bs, errp); 2427 if (ret < 0) { 2428 error_prepend(errp, "Could not load snapshot '%s' on '%s': ", 2429 name, bdrv_get_device_name(bs)); 2430 goto err_drain; 2431 } 2432 2433 /* restore the VM state */ 2434 f = qemu_fopen_bdrv(bs_vm_state, 0); 2435 if (!f) { 2436 error_setg(errp, "Could not open VM state file"); 2437 ret = -EINVAL; 2438 goto err_drain; 2439 } 2440 2441 qemu_system_reset(SHUTDOWN_CAUSE_NONE); 2442 mis->from_src_file = f; 2443 2444 aio_context_acquire(aio_context); 2445 ret = qemu_loadvm_state(f); 2446 migration_incoming_state_destroy(); 2447 aio_context_release(aio_context); 2448 2449 bdrv_drain_all_end(); 2450 2451 if (ret < 0) { 2452 error_setg(errp, "Error %d while loading VM state", ret); 2453 return ret; 2454 } 2455 2456 return 0; 2457 2458 err_drain: 2459 bdrv_drain_all_end(); 2460 return ret; 2461 } 2462 2463 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2464 { 2465 qemu_ram_set_idstr(mr->ram_block, 2466 memory_region_name(mr), dev); 2467 } 2468 2469 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2470 { 2471 qemu_ram_unset_idstr(mr->ram_block); 2472 } 2473 2474 void vmstate_register_ram_global(MemoryRegion *mr) 2475 { 2476 vmstate_register_ram(mr, NULL); 2477 } 2478 2479 bool vmstate_check_only_migratable(const VMStateDescription *vmsd) 2480 { 2481 /* check needed if --only-migratable is specified */ 2482 if (!migrate_get_current()->only_migratable) { 2483 return true; 2484 } 2485 2486 return !(vmsd && vmsd->unmigratable); 2487 } 2488