1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/boards.h" 31 #include "hw/xen/xen.h" 32 #include "net/net.h" 33 #include "migration.h" 34 #include "migration/snapshot.h" 35 #include "migration/misc.h" 36 #include "migration/register.h" 37 #include "migration/global_state.h" 38 #include "ram.h" 39 #include "qemu-file-channel.h" 40 #include "qemu-file.h" 41 #include "savevm.h" 42 #include "postcopy-ram.h" 43 #include "qapi/qmp/qerror.h" 44 #include "qemu/error-report.h" 45 #include "sysemu/cpus.h" 46 #include "exec/memory.h" 47 #include "exec/target_page.h" 48 #include "qmp-commands.h" 49 #include "trace.h" 50 #include "qemu/iov.h" 51 #include "block/snapshot.h" 52 #include "qemu/cutils.h" 53 #include "io/channel-buffer.h" 54 #include "io/channel-file.h" 55 56 #ifndef ETH_P_RARP 57 #define ETH_P_RARP 0x8035 58 #endif 59 #define ARP_HTYPE_ETH 0x0001 60 #define ARP_PTYPE_IP 0x0800 61 #define ARP_OP_REQUEST_REV 0x3 62 63 const unsigned int postcopy_ram_discard_version = 0; 64 65 /* Subcommands for QEMU_VM_COMMAND */ 66 enum qemu_vm_cmd { 67 MIG_CMD_INVALID = 0, /* Must be 0 */ 68 MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */ 69 MIG_CMD_PING, /* Request a PONG on the RP */ 70 71 MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just 72 warn we might want to do PC */ 73 MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming 74 pages as it's running. */ 75 MIG_CMD_POSTCOPY_RUN, /* Start execution */ 76 77 MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that 78 were previously sent during 79 precopy but are dirty. */ 80 MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */ 81 MIG_CMD_MAX 82 }; 83 84 #define MAX_VM_CMD_PACKAGED_SIZE (1ul << 24) 85 static struct mig_cmd_args { 86 ssize_t len; /* -1 = variable */ 87 const char *name; 88 } mig_cmd_args[] = { 89 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 90 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 91 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 92 [MIG_CMD_POSTCOPY_ADVISE] = { .len = -1, .name = "POSTCOPY_ADVISE" }, 93 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 94 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 95 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 96 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 97 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 98 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 99 }; 100 101 /* Note for MIG_CMD_POSTCOPY_ADVISE: 102 * The format of arguments is depending on postcopy mode: 103 * - postcopy RAM only 104 * uint64_t host page size 105 * uint64_t taget page size 106 * 107 * - postcopy RAM and postcopy dirty bitmaps 108 * format is the same as for postcopy RAM only 109 * 110 * - postcopy dirty bitmaps only 111 * Nothing. Command length field is 0. 112 * 113 * Be careful: adding a new postcopy entity with some other parameters should 114 * not break format self-description ability. Good way is to introduce some 115 * generic extendable format with an exception for two old entities. 116 */ 117 118 static int announce_self_create(uint8_t *buf, 119 uint8_t *mac_addr) 120 { 121 /* Ethernet header. */ 122 memset(buf, 0xff, 6); /* destination MAC addr */ 123 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 124 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 125 126 /* RARP header. */ 127 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 128 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 129 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 130 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 131 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 132 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 133 memset(buf + 28, 0x00, 4); /* source protocol addr */ 134 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 135 memset(buf + 38, 0x00, 4); /* target protocol addr */ 136 137 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 138 memset(buf + 42, 0x00, 18); 139 140 return 60; /* len (FCS will be added by hardware) */ 141 } 142 143 static void qemu_announce_self_iter(NICState *nic, void *opaque) 144 { 145 uint8_t buf[60]; 146 int len; 147 148 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 149 len = announce_self_create(buf, nic->conf->macaddr.a); 150 151 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 152 } 153 154 155 static void qemu_announce_self_once(void *opaque) 156 { 157 static int count = SELF_ANNOUNCE_ROUNDS; 158 QEMUTimer *timer = *(QEMUTimer **)opaque; 159 160 qemu_foreach_nic(qemu_announce_self_iter, NULL); 161 162 if (--count) { 163 /* delay 50ms, 150ms, 250ms, ... */ 164 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 165 self_announce_delay(count)); 166 } else { 167 timer_del(timer); 168 timer_free(timer); 169 } 170 } 171 172 void qemu_announce_self(void) 173 { 174 static QEMUTimer *timer; 175 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 176 qemu_announce_self_once(&timer); 177 } 178 179 /***********************************************************/ 180 /* savevm/loadvm support */ 181 182 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 183 int64_t pos) 184 { 185 int ret; 186 QEMUIOVector qiov; 187 188 qemu_iovec_init_external(&qiov, iov, iovcnt); 189 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 190 if (ret < 0) { 191 return ret; 192 } 193 194 return qiov.size; 195 } 196 197 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 198 size_t size) 199 { 200 return bdrv_load_vmstate(opaque, buf, pos, size); 201 } 202 203 static int bdrv_fclose(void *opaque) 204 { 205 return bdrv_flush(opaque); 206 } 207 208 static const QEMUFileOps bdrv_read_ops = { 209 .get_buffer = block_get_buffer, 210 .close = bdrv_fclose 211 }; 212 213 static const QEMUFileOps bdrv_write_ops = { 214 .writev_buffer = block_writev_buffer, 215 .close = bdrv_fclose 216 }; 217 218 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 219 { 220 if (is_writable) { 221 return qemu_fopen_ops(bs, &bdrv_write_ops); 222 } 223 return qemu_fopen_ops(bs, &bdrv_read_ops); 224 } 225 226 227 /* QEMUFile timer support. 228 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 229 */ 230 231 void timer_put(QEMUFile *f, QEMUTimer *ts) 232 { 233 uint64_t expire_time; 234 235 expire_time = timer_expire_time_ns(ts); 236 qemu_put_be64(f, expire_time); 237 } 238 239 void timer_get(QEMUFile *f, QEMUTimer *ts) 240 { 241 uint64_t expire_time; 242 243 expire_time = qemu_get_be64(f); 244 if (expire_time != -1) { 245 timer_mod_ns(ts, expire_time); 246 } else { 247 timer_del(ts); 248 } 249 } 250 251 252 /* VMState timer support. 253 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 254 */ 255 256 static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field) 257 { 258 QEMUTimer *v = pv; 259 timer_get(f, v); 260 return 0; 261 } 262 263 static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field, 264 QJSON *vmdesc) 265 { 266 QEMUTimer *v = pv; 267 timer_put(f, v); 268 269 return 0; 270 } 271 272 const VMStateInfo vmstate_info_timer = { 273 .name = "timer", 274 .get = get_timer, 275 .put = put_timer, 276 }; 277 278 279 typedef struct CompatEntry { 280 char idstr[256]; 281 int instance_id; 282 } CompatEntry; 283 284 typedef struct SaveStateEntry { 285 QTAILQ_ENTRY(SaveStateEntry) entry; 286 char idstr[256]; 287 int instance_id; 288 int alias_id; 289 int version_id; 290 /* version id read from the stream */ 291 int load_version_id; 292 int section_id; 293 /* section id read from the stream */ 294 int load_section_id; 295 SaveVMHandlers *ops; 296 const VMStateDescription *vmsd; 297 void *opaque; 298 CompatEntry *compat; 299 int is_ram; 300 } SaveStateEntry; 301 302 typedef struct SaveState { 303 QTAILQ_HEAD(, SaveStateEntry) handlers; 304 int global_section_id; 305 uint32_t len; 306 const char *name; 307 uint32_t target_page_bits; 308 } SaveState; 309 310 static SaveState savevm_state = { 311 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 312 .global_section_id = 0, 313 }; 314 315 static int configuration_pre_save(void *opaque) 316 { 317 SaveState *state = opaque; 318 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 319 320 state->len = strlen(current_name); 321 state->name = current_name; 322 state->target_page_bits = qemu_target_page_bits(); 323 324 return 0; 325 } 326 327 static int configuration_pre_load(void *opaque) 328 { 329 SaveState *state = opaque; 330 331 /* If there is no target-page-bits subsection it means the source 332 * predates the variable-target-page-bits support and is using the 333 * minimum possible value for this CPU. 334 */ 335 state->target_page_bits = qemu_target_page_bits_min(); 336 return 0; 337 } 338 339 static int configuration_post_load(void *opaque, int version_id) 340 { 341 SaveState *state = opaque; 342 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 343 344 if (strncmp(state->name, current_name, state->len) != 0) { 345 error_report("Machine type received is '%.*s' and local is '%s'", 346 (int) state->len, state->name, current_name); 347 return -EINVAL; 348 } 349 350 if (state->target_page_bits != qemu_target_page_bits()) { 351 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 352 state->target_page_bits, qemu_target_page_bits()); 353 return -EINVAL; 354 } 355 356 return 0; 357 } 358 359 /* The target-page-bits subsection is present only if the 360 * target page size is not the same as the default (ie the 361 * minimum page size for a variable-page-size guest CPU). 362 * If it is present then it contains the actual target page 363 * bits for the machine, and migration will fail if the 364 * two ends don't agree about it. 365 */ 366 static bool vmstate_target_page_bits_needed(void *opaque) 367 { 368 return qemu_target_page_bits() 369 > qemu_target_page_bits_min(); 370 } 371 372 static const VMStateDescription vmstate_target_page_bits = { 373 .name = "configuration/target-page-bits", 374 .version_id = 1, 375 .minimum_version_id = 1, 376 .needed = vmstate_target_page_bits_needed, 377 .fields = (VMStateField[]) { 378 VMSTATE_UINT32(target_page_bits, SaveState), 379 VMSTATE_END_OF_LIST() 380 } 381 }; 382 383 static const VMStateDescription vmstate_configuration = { 384 .name = "configuration", 385 .version_id = 1, 386 .pre_load = configuration_pre_load, 387 .post_load = configuration_post_load, 388 .pre_save = configuration_pre_save, 389 .fields = (VMStateField[]) { 390 VMSTATE_UINT32(len, SaveState), 391 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len), 392 VMSTATE_END_OF_LIST() 393 }, 394 .subsections = (const VMStateDescription*[]) { 395 &vmstate_target_page_bits, 396 NULL 397 } 398 }; 399 400 static void dump_vmstate_vmsd(FILE *out_file, 401 const VMStateDescription *vmsd, int indent, 402 bool is_subsection); 403 404 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 405 int indent) 406 { 407 fprintf(out_file, "%*s{\n", indent, ""); 408 indent += 2; 409 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 410 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 411 field->version_id); 412 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 413 field->field_exists ? "true" : "false"); 414 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 415 if (field->vmsd != NULL) { 416 fprintf(out_file, ",\n"); 417 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 418 } 419 fprintf(out_file, "\n%*s}", indent - 2, ""); 420 } 421 422 static void dump_vmstate_vmss(FILE *out_file, 423 const VMStateDescription **subsection, 424 int indent) 425 { 426 if (*subsection != NULL) { 427 dump_vmstate_vmsd(out_file, *subsection, indent, true); 428 } 429 } 430 431 static void dump_vmstate_vmsd(FILE *out_file, 432 const VMStateDescription *vmsd, int indent, 433 bool is_subsection) 434 { 435 if (is_subsection) { 436 fprintf(out_file, "%*s{\n", indent, ""); 437 } else { 438 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 439 } 440 indent += 2; 441 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 442 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 443 vmsd->version_id); 444 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 445 vmsd->minimum_version_id); 446 if (vmsd->fields != NULL) { 447 const VMStateField *field = vmsd->fields; 448 bool first; 449 450 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 451 first = true; 452 while (field->name != NULL) { 453 if (field->flags & VMS_MUST_EXIST) { 454 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 455 field++; 456 continue; 457 } 458 if (!first) { 459 fprintf(out_file, ",\n"); 460 } 461 dump_vmstate_vmsf(out_file, field, indent + 2); 462 field++; 463 first = false; 464 } 465 fprintf(out_file, "\n%*s]", indent, ""); 466 } 467 if (vmsd->subsections != NULL) { 468 const VMStateDescription **subsection = vmsd->subsections; 469 bool first; 470 471 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 472 first = true; 473 while (*subsection != NULL) { 474 if (!first) { 475 fprintf(out_file, ",\n"); 476 } 477 dump_vmstate_vmss(out_file, subsection, indent + 2); 478 subsection++; 479 first = false; 480 } 481 fprintf(out_file, "\n%*s]", indent, ""); 482 } 483 fprintf(out_file, "\n%*s}", indent - 2, ""); 484 } 485 486 static void dump_machine_type(FILE *out_file) 487 { 488 MachineClass *mc; 489 490 mc = MACHINE_GET_CLASS(current_machine); 491 492 fprintf(out_file, " \"vmschkmachine\": {\n"); 493 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 494 fprintf(out_file, " },\n"); 495 } 496 497 void dump_vmstate_json_to_file(FILE *out_file) 498 { 499 GSList *list, *elt; 500 bool first; 501 502 fprintf(out_file, "{\n"); 503 dump_machine_type(out_file); 504 505 first = true; 506 list = object_class_get_list(TYPE_DEVICE, true); 507 for (elt = list; elt; elt = elt->next) { 508 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 509 TYPE_DEVICE); 510 const char *name; 511 int indent = 2; 512 513 if (!dc->vmsd) { 514 continue; 515 } 516 517 if (!first) { 518 fprintf(out_file, ",\n"); 519 } 520 name = object_class_get_name(OBJECT_CLASS(dc)); 521 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 522 indent += 2; 523 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 524 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 525 dc->vmsd->version_id); 526 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 527 dc->vmsd->minimum_version_id); 528 529 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 530 531 fprintf(out_file, "\n%*s}", indent - 2, ""); 532 first = false; 533 } 534 fprintf(out_file, "\n}\n"); 535 fclose(out_file); 536 } 537 538 static int calculate_new_instance_id(const char *idstr) 539 { 540 SaveStateEntry *se; 541 int instance_id = 0; 542 543 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 544 if (strcmp(idstr, se->idstr) == 0 545 && instance_id <= se->instance_id) { 546 instance_id = se->instance_id + 1; 547 } 548 } 549 return instance_id; 550 } 551 552 static int calculate_compat_instance_id(const char *idstr) 553 { 554 SaveStateEntry *se; 555 int instance_id = 0; 556 557 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 558 if (!se->compat) { 559 continue; 560 } 561 562 if (strcmp(idstr, se->compat->idstr) == 0 563 && instance_id <= se->compat->instance_id) { 564 instance_id = se->compat->instance_id + 1; 565 } 566 } 567 return instance_id; 568 } 569 570 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 571 { 572 if (se->vmsd) { 573 return se->vmsd->priority; 574 } 575 return MIG_PRI_DEFAULT; 576 } 577 578 static void savevm_state_handler_insert(SaveStateEntry *nse) 579 { 580 MigrationPriority priority = save_state_priority(nse); 581 SaveStateEntry *se; 582 583 assert(priority <= MIG_PRI_MAX); 584 585 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 586 if (save_state_priority(se) < priority) { 587 break; 588 } 589 } 590 591 if (se) { 592 QTAILQ_INSERT_BEFORE(se, nse, entry); 593 } else { 594 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 595 } 596 } 597 598 /* TODO: Individual devices generally have very little idea about the rest 599 of the system, so instance_id should be removed/replaced. 600 Meanwhile pass -1 as instance_id if you do not already have a clearly 601 distinguishing id for all instances of your device class. */ 602 int register_savevm_live(DeviceState *dev, 603 const char *idstr, 604 int instance_id, 605 int version_id, 606 SaveVMHandlers *ops, 607 void *opaque) 608 { 609 SaveStateEntry *se; 610 611 se = g_new0(SaveStateEntry, 1); 612 se->version_id = version_id; 613 se->section_id = savevm_state.global_section_id++; 614 se->ops = ops; 615 se->opaque = opaque; 616 se->vmsd = NULL; 617 /* if this is a live_savem then set is_ram */ 618 if (ops->save_setup != NULL) { 619 se->is_ram = 1; 620 } 621 622 if (dev) { 623 char *id = qdev_get_dev_path(dev); 624 if (id) { 625 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 626 sizeof(se->idstr)) { 627 error_report("Path too long for VMState (%s)", id); 628 g_free(id); 629 g_free(se); 630 631 return -1; 632 } 633 g_free(id); 634 635 se->compat = g_new0(CompatEntry, 1); 636 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 637 se->compat->instance_id = instance_id == -1 ? 638 calculate_compat_instance_id(idstr) : instance_id; 639 instance_id = -1; 640 } 641 } 642 pstrcat(se->idstr, sizeof(se->idstr), idstr); 643 644 if (instance_id == -1) { 645 se->instance_id = calculate_new_instance_id(se->idstr); 646 } else { 647 se->instance_id = instance_id; 648 } 649 assert(!se->compat || se->instance_id == 0); 650 savevm_state_handler_insert(se); 651 return 0; 652 } 653 654 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 655 { 656 SaveStateEntry *se, *new_se; 657 char id[256] = ""; 658 659 if (dev) { 660 char *path = qdev_get_dev_path(dev); 661 if (path) { 662 pstrcpy(id, sizeof(id), path); 663 pstrcat(id, sizeof(id), "/"); 664 g_free(path); 665 } 666 } 667 pstrcat(id, sizeof(id), idstr); 668 669 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 670 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 671 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 672 g_free(se->compat); 673 g_free(se); 674 } 675 } 676 } 677 678 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 679 const VMStateDescription *vmsd, 680 void *opaque, int alias_id, 681 int required_for_version, 682 Error **errp) 683 { 684 SaveStateEntry *se; 685 686 /* If this triggers, alias support can be dropped for the vmsd. */ 687 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 688 689 se = g_new0(SaveStateEntry, 1); 690 se->version_id = vmsd->version_id; 691 se->section_id = savevm_state.global_section_id++; 692 se->opaque = opaque; 693 se->vmsd = vmsd; 694 se->alias_id = alias_id; 695 696 if (dev) { 697 char *id = qdev_get_dev_path(dev); 698 if (id) { 699 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 700 sizeof(se->idstr)) { 701 error_setg(errp, "Path too long for VMState (%s)", id); 702 g_free(id); 703 g_free(se); 704 705 return -1; 706 } 707 g_free(id); 708 709 se->compat = g_new0(CompatEntry, 1); 710 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 711 se->compat->instance_id = instance_id == -1 ? 712 calculate_compat_instance_id(vmsd->name) : instance_id; 713 instance_id = -1; 714 } 715 } 716 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 717 718 if (instance_id == -1) { 719 se->instance_id = calculate_new_instance_id(se->idstr); 720 } else { 721 se->instance_id = instance_id; 722 } 723 assert(!se->compat || se->instance_id == 0); 724 savevm_state_handler_insert(se); 725 return 0; 726 } 727 728 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 729 void *opaque) 730 { 731 SaveStateEntry *se, *new_se; 732 733 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 734 if (se->vmsd == vmsd && se->opaque == opaque) { 735 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 736 g_free(se->compat); 737 g_free(se); 738 } 739 } 740 } 741 742 static int vmstate_load(QEMUFile *f, SaveStateEntry *se) 743 { 744 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 745 if (!se->vmsd) { /* Old style */ 746 return se->ops->load_state(f, se->opaque, se->load_version_id); 747 } 748 return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id); 749 } 750 751 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 752 { 753 int64_t old_offset, size; 754 755 old_offset = qemu_ftell_fast(f); 756 se->ops->save_state(f, se->opaque); 757 size = qemu_ftell_fast(f) - old_offset; 758 759 if (vmdesc) { 760 json_prop_int(vmdesc, "size", size); 761 json_start_array(vmdesc, "fields"); 762 json_start_object(vmdesc, NULL); 763 json_prop_str(vmdesc, "name", "data"); 764 json_prop_int(vmdesc, "size", size); 765 json_prop_str(vmdesc, "type", "buffer"); 766 json_end_object(vmdesc); 767 json_end_array(vmdesc); 768 } 769 } 770 771 static int vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 772 { 773 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 774 if (!se->vmsd) { 775 vmstate_save_old_style(f, se, vmdesc); 776 return 0; 777 } 778 return vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 779 } 780 781 /* 782 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 783 */ 784 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 785 uint8_t section_type) 786 { 787 qemu_put_byte(f, section_type); 788 qemu_put_be32(f, se->section_id); 789 790 if (section_type == QEMU_VM_SECTION_FULL || 791 section_type == QEMU_VM_SECTION_START) { 792 /* ID string */ 793 size_t len = strlen(se->idstr); 794 qemu_put_byte(f, len); 795 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 796 797 qemu_put_be32(f, se->instance_id); 798 qemu_put_be32(f, se->version_id); 799 } 800 } 801 802 /* 803 * Write a footer onto device sections that catches cases misformatted device 804 * sections. 805 */ 806 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 807 { 808 if (migrate_get_current()->send_section_footer) { 809 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 810 qemu_put_be32(f, se->section_id); 811 } 812 } 813 814 /** 815 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 816 * command and associated data. 817 * 818 * @f: File to send command on 819 * @command: Command type to send 820 * @len: Length of associated data 821 * @data: Data associated with command. 822 */ 823 static void qemu_savevm_command_send(QEMUFile *f, 824 enum qemu_vm_cmd command, 825 uint16_t len, 826 uint8_t *data) 827 { 828 trace_savevm_command_send(command, len); 829 qemu_put_byte(f, QEMU_VM_COMMAND); 830 qemu_put_be16(f, (uint16_t)command); 831 qemu_put_be16(f, len); 832 qemu_put_buffer(f, data, len); 833 qemu_fflush(f); 834 } 835 836 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 837 { 838 uint32_t buf; 839 840 trace_savevm_send_ping(value); 841 buf = cpu_to_be32(value); 842 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 843 } 844 845 void qemu_savevm_send_open_return_path(QEMUFile *f) 846 { 847 trace_savevm_send_open_return_path(); 848 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 849 } 850 851 /* We have a buffer of data to send; we don't want that all to be loaded 852 * by the command itself, so the command contains just the length of the 853 * extra buffer that we then send straight after it. 854 * TODO: Must be a better way to organise that 855 * 856 * Returns: 857 * 0 on success 858 * -ve on error 859 */ 860 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 861 { 862 uint32_t tmp; 863 864 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 865 error_report("%s: Unreasonably large packaged state: %zu", 866 __func__, len); 867 return -1; 868 } 869 870 tmp = cpu_to_be32(len); 871 872 trace_qemu_savevm_send_packaged(); 873 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 874 875 qemu_put_buffer(f, buf, len); 876 877 return 0; 878 } 879 880 /* Send prior to any postcopy transfer */ 881 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 882 { 883 if (migrate_postcopy_ram()) { 884 uint64_t tmp[2]; 885 tmp[0] = cpu_to_be64(ram_pagesize_summary()); 886 tmp[1] = cpu_to_be64(qemu_target_page_size()); 887 888 trace_qemu_savevm_send_postcopy_advise(); 889 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 890 16, (uint8_t *)tmp); 891 } else { 892 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 0, NULL); 893 } 894 } 895 896 /* Sent prior to starting the destination running in postcopy, discard pages 897 * that have already been sent but redirtied on the source. 898 * CMD_POSTCOPY_RAM_DISCARD consist of: 899 * byte version (0) 900 * byte Length of name field (not including 0) 901 * n x byte RAM block name 902 * byte 0 terminator (just for safety) 903 * n x Byte ranges within the named RAMBlock 904 * be64 Start of the range 905 * be64 Length 906 * 907 * name: RAMBlock name that these entries are part of 908 * len: Number of page entries 909 * start_list: 'len' addresses 910 * length_list: 'len' addresses 911 * 912 */ 913 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 914 uint16_t len, 915 uint64_t *start_list, 916 uint64_t *length_list) 917 { 918 uint8_t *buf; 919 uint16_t tmplen; 920 uint16_t t; 921 size_t name_len = strlen(name); 922 923 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 924 assert(name_len < 256); 925 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 926 buf[0] = postcopy_ram_discard_version; 927 buf[1] = name_len; 928 memcpy(buf + 2, name, name_len); 929 tmplen = 2 + name_len; 930 buf[tmplen++] = '\0'; 931 932 for (t = 0; t < len; t++) { 933 stq_be_p(buf + tmplen, start_list[t]); 934 tmplen += 8; 935 stq_be_p(buf + tmplen, length_list[t]); 936 tmplen += 8; 937 } 938 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 939 g_free(buf); 940 } 941 942 /* Get the destination into a state where it can receive postcopy data. */ 943 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 944 { 945 trace_savevm_send_postcopy_listen(); 946 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 947 } 948 949 /* Kick the destination into running */ 950 void qemu_savevm_send_postcopy_run(QEMUFile *f) 951 { 952 trace_savevm_send_postcopy_run(); 953 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 954 } 955 956 bool qemu_savevm_state_blocked(Error **errp) 957 { 958 SaveStateEntry *se; 959 960 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 961 if (se->vmsd && se->vmsd->unmigratable) { 962 error_setg(errp, "State blocked by non-migratable device '%s'", 963 se->idstr); 964 return true; 965 } 966 } 967 return false; 968 } 969 970 void qemu_savevm_state_header(QEMUFile *f) 971 { 972 trace_savevm_state_header(); 973 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 974 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 975 976 if (migrate_get_current()->send_configuration) { 977 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 978 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 979 } 980 } 981 982 void qemu_savevm_state_setup(QEMUFile *f) 983 { 984 SaveStateEntry *se; 985 int ret; 986 987 trace_savevm_state_setup(); 988 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 989 if (!se->ops || !se->ops->save_setup) { 990 continue; 991 } 992 if (se->ops && se->ops->is_active) { 993 if (!se->ops->is_active(se->opaque)) { 994 continue; 995 } 996 } 997 save_section_header(f, se, QEMU_VM_SECTION_START); 998 999 ret = se->ops->save_setup(f, se->opaque); 1000 save_section_footer(f, se); 1001 if (ret < 0) { 1002 qemu_file_set_error(f, ret); 1003 break; 1004 } 1005 } 1006 } 1007 1008 /* 1009 * this function has three return values: 1010 * negative: there was one error, and we have -errno. 1011 * 0 : We haven't finished, caller have to go again 1012 * 1 : We have finished, we can go to complete phase 1013 */ 1014 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 1015 { 1016 SaveStateEntry *se; 1017 int ret = 1; 1018 1019 trace_savevm_state_iterate(); 1020 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1021 if (!se->ops || !se->ops->save_live_iterate) { 1022 continue; 1023 } 1024 if (se->ops && se->ops->is_active) { 1025 if (!se->ops->is_active(se->opaque)) { 1026 continue; 1027 } 1028 } 1029 /* 1030 * In the postcopy phase, any device that doesn't know how to 1031 * do postcopy should have saved it's state in the _complete 1032 * call that's already run, it might get confused if we call 1033 * iterate afterwards. 1034 */ 1035 if (postcopy && 1036 !(se->ops->has_postcopy && se->ops->has_postcopy(se->opaque))) { 1037 continue; 1038 } 1039 if (qemu_file_rate_limit(f)) { 1040 return 0; 1041 } 1042 trace_savevm_section_start(se->idstr, se->section_id); 1043 1044 save_section_header(f, se, QEMU_VM_SECTION_PART); 1045 1046 ret = se->ops->save_live_iterate(f, se->opaque); 1047 trace_savevm_section_end(se->idstr, se->section_id, ret); 1048 save_section_footer(f, se); 1049 1050 if (ret < 0) { 1051 qemu_file_set_error(f, ret); 1052 } 1053 if (ret <= 0) { 1054 /* Do not proceed to the next vmstate before this one reported 1055 completion of the current stage. This serializes the migration 1056 and reduces the probability that a faster changing state is 1057 synchronized over and over again. */ 1058 break; 1059 } 1060 } 1061 return ret; 1062 } 1063 1064 static bool should_send_vmdesc(void) 1065 { 1066 MachineState *machine = MACHINE(qdev_get_machine()); 1067 bool in_postcopy = migration_in_postcopy(); 1068 return !machine->suppress_vmdesc && !in_postcopy; 1069 } 1070 1071 /* 1072 * Calls the save_live_complete_postcopy methods 1073 * causing the last few pages to be sent immediately and doing any associated 1074 * cleanup. 1075 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1076 * all the other devices, but that happens at the point we switch to postcopy. 1077 */ 1078 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1079 { 1080 SaveStateEntry *se; 1081 int ret; 1082 1083 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1084 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1085 continue; 1086 } 1087 if (se->ops && se->ops->is_active) { 1088 if (!se->ops->is_active(se->opaque)) { 1089 continue; 1090 } 1091 } 1092 trace_savevm_section_start(se->idstr, se->section_id); 1093 /* Section type */ 1094 qemu_put_byte(f, QEMU_VM_SECTION_END); 1095 qemu_put_be32(f, se->section_id); 1096 1097 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1098 trace_savevm_section_end(se->idstr, se->section_id, ret); 1099 save_section_footer(f, se); 1100 if (ret < 0) { 1101 qemu_file_set_error(f, ret); 1102 return; 1103 } 1104 } 1105 1106 qemu_put_byte(f, QEMU_VM_EOF); 1107 qemu_fflush(f); 1108 } 1109 1110 int qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only, 1111 bool inactivate_disks) 1112 { 1113 QJSON *vmdesc; 1114 int vmdesc_len; 1115 SaveStateEntry *se; 1116 int ret; 1117 bool in_postcopy = migration_in_postcopy(); 1118 1119 trace_savevm_state_complete_precopy(); 1120 1121 cpu_synchronize_all_states(); 1122 1123 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1124 if (!se->ops || 1125 (in_postcopy && se->ops->has_postcopy && 1126 se->ops->has_postcopy(se->opaque)) || 1127 (in_postcopy && !iterable_only) || 1128 !se->ops->save_live_complete_precopy) { 1129 continue; 1130 } 1131 1132 if (se->ops && se->ops->is_active) { 1133 if (!se->ops->is_active(se->opaque)) { 1134 continue; 1135 } 1136 } 1137 trace_savevm_section_start(se->idstr, se->section_id); 1138 1139 save_section_header(f, se, QEMU_VM_SECTION_END); 1140 1141 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1142 trace_savevm_section_end(se->idstr, se->section_id, ret); 1143 save_section_footer(f, se); 1144 if (ret < 0) { 1145 qemu_file_set_error(f, ret); 1146 return -1; 1147 } 1148 } 1149 1150 if (iterable_only) { 1151 return 0; 1152 } 1153 1154 vmdesc = qjson_new(); 1155 json_prop_int(vmdesc, "page_size", qemu_target_page_size()); 1156 json_start_array(vmdesc, "devices"); 1157 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1158 1159 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1160 continue; 1161 } 1162 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1163 trace_savevm_section_skip(se->idstr, se->section_id); 1164 continue; 1165 } 1166 1167 trace_savevm_section_start(se->idstr, se->section_id); 1168 1169 json_start_object(vmdesc, NULL); 1170 json_prop_str(vmdesc, "name", se->idstr); 1171 json_prop_int(vmdesc, "instance_id", se->instance_id); 1172 1173 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1174 ret = vmstate_save(f, se, vmdesc); 1175 if (ret) { 1176 qemu_file_set_error(f, ret); 1177 return ret; 1178 } 1179 trace_savevm_section_end(se->idstr, se->section_id, 0); 1180 save_section_footer(f, se); 1181 1182 json_end_object(vmdesc); 1183 } 1184 1185 if (inactivate_disks) { 1186 /* Inactivate before sending QEMU_VM_EOF so that the 1187 * bdrv_invalidate_cache_all() on the other end won't fail. */ 1188 ret = bdrv_inactivate_all(); 1189 if (ret) { 1190 error_report("%s: bdrv_inactivate_all() failed (%d)", 1191 __func__, ret); 1192 qemu_file_set_error(f, ret); 1193 return ret; 1194 } 1195 } 1196 if (!in_postcopy) { 1197 /* Postcopy stream will still be going */ 1198 qemu_put_byte(f, QEMU_VM_EOF); 1199 } 1200 1201 json_end_array(vmdesc); 1202 qjson_finish(vmdesc); 1203 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1204 1205 if (should_send_vmdesc()) { 1206 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1207 qemu_put_be32(f, vmdesc_len); 1208 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1209 } 1210 qjson_destroy(vmdesc); 1211 1212 qemu_fflush(f); 1213 return 0; 1214 } 1215 1216 /* Give an estimate of the amount left to be transferred, 1217 * the result is split into the amount for units that can and 1218 * for units that can't do postcopy. 1219 */ 1220 void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size, 1221 uint64_t *res_non_postcopiable, 1222 uint64_t *res_postcopiable) 1223 { 1224 SaveStateEntry *se; 1225 1226 *res_non_postcopiable = 0; 1227 *res_postcopiable = 0; 1228 1229 1230 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1231 if (!se->ops || !se->ops->save_live_pending) { 1232 continue; 1233 } 1234 if (se->ops && se->ops->is_active) { 1235 if (!se->ops->is_active(se->opaque)) { 1236 continue; 1237 } 1238 } 1239 se->ops->save_live_pending(f, se->opaque, threshold_size, 1240 res_non_postcopiable, res_postcopiable); 1241 } 1242 } 1243 1244 void qemu_savevm_state_cleanup(void) 1245 { 1246 SaveStateEntry *se; 1247 1248 trace_savevm_state_cleanup(); 1249 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1250 if (se->ops && se->ops->save_cleanup) { 1251 se->ops->save_cleanup(se->opaque); 1252 } 1253 } 1254 } 1255 1256 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1257 { 1258 int ret; 1259 MigrationState *ms = migrate_init(); 1260 MigrationStatus status; 1261 ms->to_dst_file = f; 1262 1263 if (migration_is_blocked(errp)) { 1264 ret = -EINVAL; 1265 goto done; 1266 } 1267 1268 if (migrate_use_block()) { 1269 error_setg(errp, "Block migration and snapshots are incompatible"); 1270 ret = -EINVAL; 1271 goto done; 1272 } 1273 1274 qemu_mutex_unlock_iothread(); 1275 qemu_savevm_state_header(f); 1276 qemu_savevm_state_setup(f); 1277 qemu_mutex_lock_iothread(); 1278 1279 while (qemu_file_get_error(f) == 0) { 1280 if (qemu_savevm_state_iterate(f, false) > 0) { 1281 break; 1282 } 1283 } 1284 1285 ret = qemu_file_get_error(f); 1286 if (ret == 0) { 1287 qemu_savevm_state_complete_precopy(f, false, false); 1288 ret = qemu_file_get_error(f); 1289 } 1290 qemu_savevm_state_cleanup(); 1291 if (ret != 0) { 1292 error_setg_errno(errp, -ret, "Error while writing VM state"); 1293 } 1294 1295 done: 1296 if (ret != 0) { 1297 status = MIGRATION_STATUS_FAILED; 1298 } else { 1299 status = MIGRATION_STATUS_COMPLETED; 1300 } 1301 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1302 1303 /* f is outer parameter, it should not stay in global migration state after 1304 * this function finished */ 1305 ms->to_dst_file = NULL; 1306 1307 return ret; 1308 } 1309 1310 static int qemu_save_device_state(QEMUFile *f) 1311 { 1312 SaveStateEntry *se; 1313 1314 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1315 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1316 1317 cpu_synchronize_all_states(); 1318 1319 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1320 int ret; 1321 1322 if (se->is_ram) { 1323 continue; 1324 } 1325 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1326 continue; 1327 } 1328 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1329 continue; 1330 } 1331 1332 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1333 1334 ret = vmstate_save(f, se, NULL); 1335 if (ret) { 1336 return ret; 1337 } 1338 1339 save_section_footer(f, se); 1340 } 1341 1342 qemu_put_byte(f, QEMU_VM_EOF); 1343 1344 return qemu_file_get_error(f); 1345 } 1346 1347 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1348 { 1349 SaveStateEntry *se; 1350 1351 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1352 if (!strcmp(se->idstr, idstr) && 1353 (instance_id == se->instance_id || 1354 instance_id == se->alias_id)) 1355 return se; 1356 /* Migrating from an older version? */ 1357 if (strstr(se->idstr, idstr) && se->compat) { 1358 if (!strcmp(se->compat->idstr, idstr) && 1359 (instance_id == se->compat->instance_id || 1360 instance_id == se->alias_id)) 1361 return se; 1362 } 1363 } 1364 return NULL; 1365 } 1366 1367 enum LoadVMExitCodes { 1368 /* Allow a command to quit all layers of nested loadvm loops */ 1369 LOADVM_QUIT = 1, 1370 }; 1371 1372 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1373 1374 /* ------ incoming postcopy messages ------ */ 1375 /* 'advise' arrives before any transfers just to tell us that a postcopy 1376 * *might* happen - it might be skipped if precopy transferred everything 1377 * quickly. 1378 */ 1379 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis) 1380 { 1381 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1382 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps; 1383 1384 trace_loadvm_postcopy_handle_advise(); 1385 if (ps != POSTCOPY_INCOMING_NONE) { 1386 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1387 return -1; 1388 } 1389 1390 if (!migrate_postcopy_ram()) { 1391 return 0; 1392 } 1393 1394 if (!postcopy_ram_supported_by_host(mis)) { 1395 postcopy_state_set(POSTCOPY_INCOMING_NONE); 1396 return -1; 1397 } 1398 1399 remote_pagesize_summary = qemu_get_be64(mis->from_src_file); 1400 local_pagesize_summary = ram_pagesize_summary(); 1401 1402 if (remote_pagesize_summary != local_pagesize_summary) { 1403 /* 1404 * This detects two potential causes of mismatch: 1405 * a) A mismatch in host page sizes 1406 * Some combinations of mismatch are probably possible but it gets 1407 * a bit more complicated. In particular we need to place whole 1408 * host pages on the dest at once, and we need to ensure that we 1409 * handle dirtying to make sure we never end up sending part of 1410 * a hostpage on it's own. 1411 * b) The use of different huge page sizes on source/destination 1412 * a more fine grain test is performed during RAM block migration 1413 * but this test here causes a nice early clear failure, and 1414 * also fails when passed to an older qemu that doesn't 1415 * do huge pages. 1416 */ 1417 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64 1418 " d=%" PRIx64 ")", 1419 remote_pagesize_summary, local_pagesize_summary); 1420 return -1; 1421 } 1422 1423 remote_tps = qemu_get_be64(mis->from_src_file); 1424 if (remote_tps != qemu_target_page_size()) { 1425 /* 1426 * Again, some differences could be dealt with, but for now keep it 1427 * simple. 1428 */ 1429 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)", 1430 (int)remote_tps, qemu_target_page_size()); 1431 return -1; 1432 } 1433 1434 if (ram_postcopy_incoming_init(mis)) { 1435 return -1; 1436 } 1437 1438 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1439 1440 return 0; 1441 } 1442 1443 /* After postcopy we will be told to throw some pages away since they're 1444 * dirty and will have to be demand fetched. Must happen before CPU is 1445 * started. 1446 * There can be 0..many of these messages, each encoding multiple pages. 1447 */ 1448 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1449 uint16_t len) 1450 { 1451 int tmp; 1452 char ramid[256]; 1453 PostcopyState ps = postcopy_state_get(); 1454 1455 trace_loadvm_postcopy_ram_handle_discard(); 1456 1457 switch (ps) { 1458 case POSTCOPY_INCOMING_ADVISE: 1459 /* 1st discard */ 1460 tmp = postcopy_ram_prepare_discard(mis); 1461 if (tmp) { 1462 return tmp; 1463 } 1464 break; 1465 1466 case POSTCOPY_INCOMING_DISCARD: 1467 /* Expected state */ 1468 break; 1469 1470 default: 1471 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1472 ps); 1473 return -1; 1474 } 1475 /* We're expecting a 1476 * Version (0) 1477 * a RAM ID string (length byte, name, 0 term) 1478 * then at least 1 16 byte chunk 1479 */ 1480 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1481 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1482 return -1; 1483 } 1484 1485 tmp = qemu_get_byte(mis->from_src_file); 1486 if (tmp != postcopy_ram_discard_version) { 1487 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1488 return -1; 1489 } 1490 1491 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1492 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1493 return -1; 1494 } 1495 tmp = qemu_get_byte(mis->from_src_file); 1496 if (tmp != 0) { 1497 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1498 return -1; 1499 } 1500 1501 len -= 3 + strlen(ramid); 1502 if (len % 16) { 1503 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1504 return -1; 1505 } 1506 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1507 while (len) { 1508 uint64_t start_addr, block_length; 1509 start_addr = qemu_get_be64(mis->from_src_file); 1510 block_length = qemu_get_be64(mis->from_src_file); 1511 1512 len -= 16; 1513 int ret = ram_discard_range(ramid, start_addr, block_length); 1514 if (ret) { 1515 return ret; 1516 } 1517 } 1518 trace_loadvm_postcopy_ram_handle_discard_end(); 1519 1520 return 0; 1521 } 1522 1523 /* 1524 * Triggered by a postcopy_listen command; this thread takes over reading 1525 * the input stream, leaving the main thread free to carry on loading the rest 1526 * of the device state (from RAM). 1527 * (TODO:This could do with being in a postcopy file - but there again it's 1528 * just another input loop, not that postcopy specific) 1529 */ 1530 static void *postcopy_ram_listen_thread(void *opaque) 1531 { 1532 QEMUFile *f = opaque; 1533 MigrationIncomingState *mis = migration_incoming_get_current(); 1534 int load_res; 1535 1536 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1537 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1538 qemu_sem_post(&mis->listen_thread_sem); 1539 trace_postcopy_ram_listen_thread_start(); 1540 1541 /* 1542 * Because we're a thread and not a coroutine we can't yield 1543 * in qemu_file, and thus we must be blocking now. 1544 */ 1545 qemu_file_set_blocking(f, true); 1546 load_res = qemu_loadvm_state_main(f, mis); 1547 /* And non-blocking again so we don't block in any cleanup */ 1548 qemu_file_set_blocking(f, false); 1549 1550 trace_postcopy_ram_listen_thread_exit(); 1551 if (load_res < 0) { 1552 error_report("%s: loadvm failed: %d", __func__, load_res); 1553 qemu_file_set_error(f, load_res); 1554 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1555 MIGRATION_STATUS_FAILED); 1556 } else { 1557 /* 1558 * This looks good, but it's possible that the device loading in the 1559 * main thread hasn't finished yet, and so we might not be in 'RUN' 1560 * state yet; wait for the end of the main thread. 1561 */ 1562 qemu_event_wait(&mis->main_thread_load_event); 1563 } 1564 postcopy_ram_incoming_cleanup(mis); 1565 1566 if (load_res < 0) { 1567 /* 1568 * If something went wrong then we have a bad state so exit; 1569 * depending how far we got it might be possible at this point 1570 * to leave the guest running and fire MCEs for pages that never 1571 * arrived as a desperate recovery step. 1572 */ 1573 exit(EXIT_FAILURE); 1574 } 1575 1576 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1577 MIGRATION_STATUS_COMPLETED); 1578 /* 1579 * If everything has worked fine, then the main thread has waited 1580 * for us to start, and we're the last use of the mis. 1581 * (If something broke then qemu will have to exit anyway since it's 1582 * got a bad migration state). 1583 */ 1584 migration_incoming_state_destroy(); 1585 qemu_loadvm_state_cleanup(); 1586 1587 return NULL; 1588 } 1589 1590 /* After this message we must be able to immediately receive postcopy data */ 1591 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1592 { 1593 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1594 trace_loadvm_postcopy_handle_listen(); 1595 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1596 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1597 return -1; 1598 } 1599 if (ps == POSTCOPY_INCOMING_ADVISE) { 1600 /* 1601 * A rare case, we entered listen without having to do any discards, 1602 * so do the setup that's normally done at the time of the 1st discard. 1603 */ 1604 if (migrate_postcopy_ram()) { 1605 postcopy_ram_prepare_discard(mis); 1606 } 1607 } 1608 1609 /* 1610 * Sensitise RAM - can now generate requests for blocks that don't exist 1611 * However, at this point the CPU shouldn't be running, and the IO 1612 * shouldn't be doing anything yet so don't actually expect requests 1613 */ 1614 if (migrate_postcopy_ram()) { 1615 if (postcopy_ram_enable_notify(mis)) { 1616 return -1; 1617 } 1618 } 1619 1620 if (mis->have_listen_thread) { 1621 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1622 return -1; 1623 } 1624 1625 mis->have_listen_thread = true; 1626 /* Start up the listening thread and wait for it to signal ready */ 1627 qemu_sem_init(&mis->listen_thread_sem, 0); 1628 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1629 postcopy_ram_listen_thread, mis->from_src_file, 1630 QEMU_THREAD_DETACHED); 1631 qemu_sem_wait(&mis->listen_thread_sem); 1632 qemu_sem_destroy(&mis->listen_thread_sem); 1633 1634 return 0; 1635 } 1636 1637 1638 typedef struct { 1639 QEMUBH *bh; 1640 } HandleRunBhData; 1641 1642 static void loadvm_postcopy_handle_run_bh(void *opaque) 1643 { 1644 Error *local_err = NULL; 1645 HandleRunBhData *data = opaque; 1646 1647 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1648 * in migration.c 1649 */ 1650 cpu_synchronize_all_post_init(); 1651 1652 qemu_announce_self(); 1653 1654 /* Make sure all file formats flush their mutable metadata. 1655 * If we get an error here, just don't restart the VM yet. */ 1656 bdrv_invalidate_cache_all(&local_err); 1657 if (local_err) { 1658 error_report_err(local_err); 1659 local_err = NULL; 1660 autostart = false; 1661 } 1662 1663 trace_loadvm_postcopy_handle_run_cpu_sync(); 1664 cpu_synchronize_all_post_init(); 1665 1666 trace_loadvm_postcopy_handle_run_vmstart(); 1667 1668 if (autostart) { 1669 /* Hold onto your hats, starting the CPU */ 1670 vm_start(); 1671 } else { 1672 /* leave it paused and let management decide when to start the CPU */ 1673 runstate_set(RUN_STATE_PAUSED); 1674 } 1675 1676 qemu_bh_delete(data->bh); 1677 g_free(data); 1678 } 1679 1680 /* After all discards we can start running and asking for pages */ 1681 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1682 { 1683 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1684 HandleRunBhData *data; 1685 1686 trace_loadvm_postcopy_handle_run(); 1687 if (ps != POSTCOPY_INCOMING_LISTENING) { 1688 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1689 return -1; 1690 } 1691 1692 data = g_new(HandleRunBhData, 1); 1693 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1694 qemu_bh_schedule(data->bh); 1695 1696 /* We need to finish reading the stream from the package 1697 * and also stop reading anything more from the stream that loaded the 1698 * package (since it's now being read by the listener thread). 1699 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1700 */ 1701 return LOADVM_QUIT; 1702 } 1703 1704 /** 1705 * Immediately following this command is a blob of data containing an embedded 1706 * chunk of migration stream; read it and load it. 1707 * 1708 * @mis: Incoming state 1709 * @length: Length of packaged data to read 1710 * 1711 * Returns: Negative values on error 1712 * 1713 */ 1714 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1715 { 1716 int ret; 1717 size_t length; 1718 QIOChannelBuffer *bioc; 1719 1720 length = qemu_get_be32(mis->from_src_file); 1721 trace_loadvm_handle_cmd_packaged(length); 1722 1723 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1724 error_report("Unreasonably large packaged state: %zu", length); 1725 return -1; 1726 } 1727 1728 bioc = qio_channel_buffer_new(length); 1729 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 1730 ret = qemu_get_buffer(mis->from_src_file, 1731 bioc->data, 1732 length); 1733 if (ret != length) { 1734 object_unref(OBJECT(bioc)); 1735 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1736 ret, length); 1737 return (ret < 0) ? ret : -EAGAIN; 1738 } 1739 bioc->usage += length; 1740 trace_loadvm_handle_cmd_packaged_received(ret); 1741 1742 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1743 1744 ret = qemu_loadvm_state_main(packf, mis); 1745 trace_loadvm_handle_cmd_packaged_main(ret); 1746 qemu_fclose(packf); 1747 object_unref(OBJECT(bioc)); 1748 1749 return ret; 1750 } 1751 1752 /* 1753 * Process an incoming 'QEMU_VM_COMMAND' 1754 * 0 just a normal return 1755 * LOADVM_QUIT All good, but exit the loop 1756 * <0 Error 1757 */ 1758 static int loadvm_process_command(QEMUFile *f) 1759 { 1760 MigrationIncomingState *mis = migration_incoming_get_current(); 1761 uint16_t cmd; 1762 uint16_t len; 1763 uint32_t tmp32; 1764 1765 cmd = qemu_get_be16(f); 1766 len = qemu_get_be16(f); 1767 1768 trace_loadvm_process_command(cmd, len); 1769 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1770 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1771 return -EINVAL; 1772 } 1773 1774 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1775 error_report("%s received with bad length - expecting %zu, got %d", 1776 mig_cmd_args[cmd].name, 1777 (size_t)mig_cmd_args[cmd].len, len); 1778 return -ERANGE; 1779 } 1780 1781 switch (cmd) { 1782 case MIG_CMD_OPEN_RETURN_PATH: 1783 if (mis->to_src_file) { 1784 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1785 /* Not really a problem, so don't give up */ 1786 return 0; 1787 } 1788 mis->to_src_file = qemu_file_get_return_path(f); 1789 if (!mis->to_src_file) { 1790 error_report("CMD_OPEN_RETURN_PATH failed"); 1791 return -1; 1792 } 1793 break; 1794 1795 case MIG_CMD_PING: 1796 tmp32 = qemu_get_be32(f); 1797 trace_loadvm_process_command_ping(tmp32); 1798 if (!mis->to_src_file) { 1799 error_report("CMD_PING (0x%x) received with no return path", 1800 tmp32); 1801 return -1; 1802 } 1803 migrate_send_rp_pong(mis, tmp32); 1804 break; 1805 1806 case MIG_CMD_PACKAGED: 1807 return loadvm_handle_cmd_packaged(mis); 1808 1809 case MIG_CMD_POSTCOPY_ADVISE: 1810 return loadvm_postcopy_handle_advise(mis); 1811 1812 case MIG_CMD_POSTCOPY_LISTEN: 1813 return loadvm_postcopy_handle_listen(mis); 1814 1815 case MIG_CMD_POSTCOPY_RUN: 1816 return loadvm_postcopy_handle_run(mis); 1817 1818 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1819 return loadvm_postcopy_ram_handle_discard(mis, len); 1820 } 1821 1822 return 0; 1823 } 1824 1825 /* 1826 * Read a footer off the wire and check that it matches the expected section 1827 * 1828 * Returns: true if the footer was good 1829 * false if there is a problem (and calls error_report to say why) 1830 */ 1831 static bool check_section_footer(QEMUFile *f, SaveStateEntry *se) 1832 { 1833 uint8_t read_mark; 1834 uint32_t read_section_id; 1835 1836 if (!migrate_get_current()->send_section_footer) { 1837 /* No footer to check */ 1838 return true; 1839 } 1840 1841 read_mark = qemu_get_byte(f); 1842 1843 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1844 error_report("Missing section footer for %s", se->idstr); 1845 return false; 1846 } 1847 1848 read_section_id = qemu_get_be32(f); 1849 if (read_section_id != se->load_section_id) { 1850 error_report("Mismatched section id in footer for %s -" 1851 " read 0x%x expected 0x%x", 1852 se->idstr, read_section_id, se->load_section_id); 1853 return false; 1854 } 1855 1856 /* All good */ 1857 return true; 1858 } 1859 1860 static int 1861 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1862 { 1863 uint32_t instance_id, version_id, section_id; 1864 SaveStateEntry *se; 1865 char idstr[256]; 1866 int ret; 1867 1868 /* Read section start */ 1869 section_id = qemu_get_be32(f); 1870 if (!qemu_get_counted_string(f, idstr)) { 1871 error_report("Unable to read ID string for section %u", 1872 section_id); 1873 return -EINVAL; 1874 } 1875 instance_id = qemu_get_be32(f); 1876 version_id = qemu_get_be32(f); 1877 1878 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1879 instance_id, version_id); 1880 /* Find savevm section */ 1881 se = find_se(idstr, instance_id); 1882 if (se == NULL) { 1883 error_report("Unknown savevm section or instance '%s' %d", 1884 idstr, instance_id); 1885 return -EINVAL; 1886 } 1887 1888 /* Validate version */ 1889 if (version_id > se->version_id) { 1890 error_report("savevm: unsupported version %d for '%s' v%d", 1891 version_id, idstr, se->version_id); 1892 return -EINVAL; 1893 } 1894 se->load_version_id = version_id; 1895 se->load_section_id = section_id; 1896 1897 /* Validate if it is a device's state */ 1898 if (xen_enabled() && se->is_ram) { 1899 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1900 return -EINVAL; 1901 } 1902 1903 ret = vmstate_load(f, se); 1904 if (ret < 0) { 1905 error_report("error while loading state for instance 0x%x of" 1906 " device '%s'", instance_id, idstr); 1907 return ret; 1908 } 1909 if (!check_section_footer(f, se)) { 1910 return -EINVAL; 1911 } 1912 1913 return 0; 1914 } 1915 1916 static int 1917 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1918 { 1919 uint32_t section_id; 1920 SaveStateEntry *se; 1921 int ret; 1922 1923 section_id = qemu_get_be32(f); 1924 1925 trace_qemu_loadvm_state_section_partend(section_id); 1926 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1927 if (se->load_section_id == section_id) { 1928 break; 1929 } 1930 } 1931 if (se == NULL) { 1932 error_report("Unknown savevm section %d", section_id); 1933 return -EINVAL; 1934 } 1935 1936 ret = vmstate_load(f, se); 1937 if (ret < 0) { 1938 error_report("error while loading state section id %d(%s)", 1939 section_id, se->idstr); 1940 return ret; 1941 } 1942 if (!check_section_footer(f, se)) { 1943 return -EINVAL; 1944 } 1945 1946 return 0; 1947 } 1948 1949 static int qemu_loadvm_state_setup(QEMUFile *f) 1950 { 1951 SaveStateEntry *se; 1952 int ret; 1953 1954 trace_loadvm_state_setup(); 1955 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1956 if (!se->ops || !se->ops->load_setup) { 1957 continue; 1958 } 1959 if (se->ops && se->ops->is_active) { 1960 if (!se->ops->is_active(se->opaque)) { 1961 continue; 1962 } 1963 } 1964 1965 ret = se->ops->load_setup(f, se->opaque); 1966 if (ret < 0) { 1967 qemu_file_set_error(f, ret); 1968 error_report("Load state of device %s failed", se->idstr); 1969 return ret; 1970 } 1971 } 1972 return 0; 1973 } 1974 1975 void qemu_loadvm_state_cleanup(void) 1976 { 1977 SaveStateEntry *se; 1978 1979 trace_loadvm_state_cleanup(); 1980 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1981 if (se->ops && se->ops->load_cleanup) { 1982 se->ops->load_cleanup(se->opaque); 1983 } 1984 } 1985 } 1986 1987 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 1988 { 1989 uint8_t section_type; 1990 int ret = 0; 1991 1992 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { 1993 ret = 0; 1994 trace_qemu_loadvm_state_section(section_type); 1995 switch (section_type) { 1996 case QEMU_VM_SECTION_START: 1997 case QEMU_VM_SECTION_FULL: 1998 ret = qemu_loadvm_section_start_full(f, mis); 1999 if (ret < 0) { 2000 goto out; 2001 } 2002 break; 2003 case QEMU_VM_SECTION_PART: 2004 case QEMU_VM_SECTION_END: 2005 ret = qemu_loadvm_section_part_end(f, mis); 2006 if (ret < 0) { 2007 goto out; 2008 } 2009 break; 2010 case QEMU_VM_COMMAND: 2011 ret = loadvm_process_command(f); 2012 trace_qemu_loadvm_state_section_command(ret); 2013 if ((ret < 0) || (ret & LOADVM_QUIT)) { 2014 goto out; 2015 } 2016 break; 2017 default: 2018 error_report("Unknown savevm section type %d", section_type); 2019 ret = -EINVAL; 2020 goto out; 2021 } 2022 } 2023 2024 out: 2025 if (ret < 0) { 2026 qemu_file_set_error(f, ret); 2027 } 2028 return ret; 2029 } 2030 2031 int qemu_loadvm_state(QEMUFile *f) 2032 { 2033 MigrationIncomingState *mis = migration_incoming_get_current(); 2034 Error *local_err = NULL; 2035 unsigned int v; 2036 int ret; 2037 2038 if (qemu_savevm_state_blocked(&local_err)) { 2039 error_report_err(local_err); 2040 return -EINVAL; 2041 } 2042 2043 v = qemu_get_be32(f); 2044 if (v != QEMU_VM_FILE_MAGIC) { 2045 error_report("Not a migration stream"); 2046 return -EINVAL; 2047 } 2048 2049 v = qemu_get_be32(f); 2050 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 2051 error_report("SaveVM v2 format is obsolete and don't work anymore"); 2052 return -ENOTSUP; 2053 } 2054 if (v != QEMU_VM_FILE_VERSION) { 2055 error_report("Unsupported migration stream version"); 2056 return -ENOTSUP; 2057 } 2058 2059 if (qemu_loadvm_state_setup(f) != 0) { 2060 return -EINVAL; 2061 } 2062 2063 if (migrate_get_current()->send_configuration) { 2064 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 2065 error_report("Configuration section missing"); 2066 return -EINVAL; 2067 } 2068 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 2069 2070 if (ret) { 2071 return ret; 2072 } 2073 } 2074 2075 cpu_synchronize_all_pre_loadvm(); 2076 2077 ret = qemu_loadvm_state_main(f, mis); 2078 qemu_event_set(&mis->main_thread_load_event); 2079 2080 trace_qemu_loadvm_state_post_main(ret); 2081 2082 if (mis->have_listen_thread) { 2083 /* Listen thread still going, can't clean up yet */ 2084 return ret; 2085 } 2086 2087 if (ret == 0) { 2088 ret = qemu_file_get_error(f); 2089 } 2090 2091 /* 2092 * Try to read in the VMDESC section as well, so that dumping tools that 2093 * intercept our migration stream have the chance to see it. 2094 */ 2095 2096 /* We've got to be careful; if we don't read the data and just shut the fd 2097 * then the sender can error if we close while it's still sending. 2098 * We also mustn't read data that isn't there; some transports (RDMA) 2099 * will stall waiting for that data when the source has already closed. 2100 */ 2101 if (ret == 0 && should_send_vmdesc()) { 2102 uint8_t *buf; 2103 uint32_t size; 2104 uint8_t section_type = qemu_get_byte(f); 2105 2106 if (section_type != QEMU_VM_VMDESCRIPTION) { 2107 error_report("Expected vmdescription section, but got %d", 2108 section_type); 2109 /* 2110 * It doesn't seem worth failing at this point since 2111 * we apparently have an otherwise valid VM state 2112 */ 2113 } else { 2114 buf = g_malloc(0x1000); 2115 size = qemu_get_be32(f); 2116 2117 while (size > 0) { 2118 uint32_t read_chunk = MIN(size, 0x1000); 2119 qemu_get_buffer(f, buf, read_chunk); 2120 size -= read_chunk; 2121 } 2122 g_free(buf); 2123 } 2124 } 2125 2126 qemu_loadvm_state_cleanup(); 2127 cpu_synchronize_all_post_init(); 2128 2129 return ret; 2130 } 2131 2132 int save_snapshot(const char *name, Error **errp) 2133 { 2134 BlockDriverState *bs, *bs1; 2135 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 2136 int ret = -1; 2137 QEMUFile *f; 2138 int saved_vm_running; 2139 uint64_t vm_state_size; 2140 qemu_timeval tv; 2141 struct tm tm; 2142 AioContext *aio_context; 2143 2144 if (!bdrv_all_can_snapshot(&bs)) { 2145 error_setg(errp, "Device '%s' is writable but does not support " 2146 "snapshots", bdrv_get_device_name(bs)); 2147 return ret; 2148 } 2149 2150 /* Delete old snapshots of the same name */ 2151 if (name) { 2152 ret = bdrv_all_delete_snapshot(name, &bs1, errp); 2153 if (ret < 0) { 2154 error_prepend(errp, "Error while deleting snapshot on device " 2155 "'%s': ", bdrv_get_device_name(bs1)); 2156 return ret; 2157 } 2158 } 2159 2160 bs = bdrv_all_find_vmstate_bs(); 2161 if (bs == NULL) { 2162 error_setg(errp, "No block device can accept snapshots"); 2163 return ret; 2164 } 2165 aio_context = bdrv_get_aio_context(bs); 2166 2167 saved_vm_running = runstate_is_running(); 2168 2169 ret = global_state_store(); 2170 if (ret) { 2171 error_setg(errp, "Error saving global state"); 2172 return ret; 2173 } 2174 vm_stop(RUN_STATE_SAVE_VM); 2175 2176 bdrv_drain_all_begin(); 2177 2178 aio_context_acquire(aio_context); 2179 2180 memset(sn, 0, sizeof(*sn)); 2181 2182 /* fill auxiliary fields */ 2183 qemu_gettimeofday(&tv); 2184 sn->date_sec = tv.tv_sec; 2185 sn->date_nsec = tv.tv_usec * 1000; 2186 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2187 2188 if (name) { 2189 ret = bdrv_snapshot_find(bs, old_sn, name); 2190 if (ret >= 0) { 2191 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2192 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2193 } else { 2194 pstrcpy(sn->name, sizeof(sn->name), name); 2195 } 2196 } else { 2197 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2198 localtime_r((const time_t *)&tv.tv_sec, &tm); 2199 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2200 } 2201 2202 /* save the VM state */ 2203 f = qemu_fopen_bdrv(bs, 1); 2204 if (!f) { 2205 error_setg(errp, "Could not open VM state file"); 2206 goto the_end; 2207 } 2208 ret = qemu_savevm_state(f, errp); 2209 vm_state_size = qemu_ftell(f); 2210 qemu_fclose(f); 2211 if (ret < 0) { 2212 goto the_end; 2213 } 2214 2215 /* The bdrv_all_create_snapshot() call that follows acquires the AioContext 2216 * for itself. BDRV_POLL_WHILE() does not support nested locking because 2217 * it only releases the lock once. Therefore synchronous I/O will deadlock 2218 * unless we release the AioContext before bdrv_all_create_snapshot(). 2219 */ 2220 aio_context_release(aio_context); 2221 aio_context = NULL; 2222 2223 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2224 if (ret < 0) { 2225 error_setg(errp, "Error while creating snapshot on '%s'", 2226 bdrv_get_device_name(bs)); 2227 goto the_end; 2228 } 2229 2230 ret = 0; 2231 2232 the_end: 2233 if (aio_context) { 2234 aio_context_release(aio_context); 2235 } 2236 2237 bdrv_drain_all_end(); 2238 2239 if (saved_vm_running) { 2240 vm_start(); 2241 } 2242 return ret; 2243 } 2244 2245 void qmp_xen_save_devices_state(const char *filename, Error **errp) 2246 { 2247 QEMUFile *f; 2248 QIOChannelFile *ioc; 2249 int saved_vm_running; 2250 int ret; 2251 2252 saved_vm_running = runstate_is_running(); 2253 vm_stop(RUN_STATE_SAVE_VM); 2254 global_state_store_running(); 2255 2256 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2257 if (!ioc) { 2258 goto the_end; 2259 } 2260 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 2261 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2262 ret = qemu_save_device_state(f); 2263 qemu_fclose(f); 2264 if (ret < 0) { 2265 error_setg(errp, QERR_IO_ERROR); 2266 } 2267 2268 the_end: 2269 if (saved_vm_running) { 2270 vm_start(); 2271 } 2272 } 2273 2274 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2275 { 2276 QEMUFile *f; 2277 QIOChannelFile *ioc; 2278 int ret; 2279 2280 /* Guest must be paused before loading the device state; the RAM state 2281 * will already have been loaded by xc 2282 */ 2283 if (runstate_is_running()) { 2284 error_setg(errp, "Cannot update device state while vm is running"); 2285 return; 2286 } 2287 vm_stop(RUN_STATE_RESTORE_VM); 2288 2289 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2290 if (!ioc) { 2291 return; 2292 } 2293 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 2294 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2295 2296 ret = qemu_loadvm_state(f); 2297 qemu_fclose(f); 2298 if (ret < 0) { 2299 error_setg(errp, QERR_IO_ERROR); 2300 } 2301 migration_incoming_state_destroy(); 2302 } 2303 2304 int load_snapshot(const char *name, Error **errp) 2305 { 2306 BlockDriverState *bs, *bs_vm_state; 2307 QEMUSnapshotInfo sn; 2308 QEMUFile *f; 2309 int ret; 2310 AioContext *aio_context; 2311 MigrationIncomingState *mis = migration_incoming_get_current(); 2312 2313 if (!bdrv_all_can_snapshot(&bs)) { 2314 error_setg(errp, 2315 "Device '%s' is writable but does not support snapshots", 2316 bdrv_get_device_name(bs)); 2317 return -ENOTSUP; 2318 } 2319 ret = bdrv_all_find_snapshot(name, &bs); 2320 if (ret < 0) { 2321 error_setg(errp, 2322 "Device '%s' does not have the requested snapshot '%s'", 2323 bdrv_get_device_name(bs), name); 2324 return ret; 2325 } 2326 2327 bs_vm_state = bdrv_all_find_vmstate_bs(); 2328 if (!bs_vm_state) { 2329 error_setg(errp, "No block device supports snapshots"); 2330 return -ENOTSUP; 2331 } 2332 aio_context = bdrv_get_aio_context(bs_vm_state); 2333 2334 /* Don't even try to load empty VM states */ 2335 aio_context_acquire(aio_context); 2336 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2337 aio_context_release(aio_context); 2338 if (ret < 0) { 2339 return ret; 2340 } else if (sn.vm_state_size == 0) { 2341 error_setg(errp, "This is a disk-only snapshot. Revert to it " 2342 " offline using qemu-img"); 2343 return -EINVAL; 2344 } 2345 2346 /* Flush all IO requests so they don't interfere with the new state. */ 2347 bdrv_drain_all_begin(); 2348 2349 ret = bdrv_all_goto_snapshot(name, &bs, errp); 2350 if (ret < 0) { 2351 error_prepend(errp, "Could not load snapshot '%s' on '%s': ", 2352 name, bdrv_get_device_name(bs)); 2353 goto err_drain; 2354 } 2355 2356 /* restore the VM state */ 2357 f = qemu_fopen_bdrv(bs_vm_state, 0); 2358 if (!f) { 2359 error_setg(errp, "Could not open VM state file"); 2360 ret = -EINVAL; 2361 goto err_drain; 2362 } 2363 2364 qemu_system_reset(SHUTDOWN_CAUSE_NONE); 2365 mis->from_src_file = f; 2366 2367 aio_context_acquire(aio_context); 2368 ret = qemu_loadvm_state(f); 2369 migration_incoming_state_destroy(); 2370 aio_context_release(aio_context); 2371 2372 bdrv_drain_all_end(); 2373 2374 if (ret < 0) { 2375 error_setg(errp, "Error %d while loading VM state", ret); 2376 return ret; 2377 } 2378 2379 return 0; 2380 2381 err_drain: 2382 bdrv_drain_all_end(); 2383 return ret; 2384 } 2385 2386 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2387 { 2388 qemu_ram_set_idstr(mr->ram_block, 2389 memory_region_name(mr), dev); 2390 } 2391 2392 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2393 { 2394 qemu_ram_unset_idstr(mr->ram_block); 2395 } 2396 2397 void vmstate_register_ram_global(MemoryRegion *mr) 2398 { 2399 vmstate_register_ram(mr, NULL); 2400 } 2401 2402 bool vmstate_check_only_migratable(const VMStateDescription *vmsd) 2403 { 2404 /* check needed if --only-migratable is specified */ 2405 if (!migrate_get_current()->only_migratable) { 2406 return true; 2407 } 2408 2409 return !(vmsd && vmsd->unmigratable); 2410 } 2411