1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/boards.h" 31 #include "hw/xen/xen.h" 32 #include "net/net.h" 33 #include "migration.h" 34 #include "migration/snapshot.h" 35 #include "migration/misc.h" 36 #include "migration/register.h" 37 #include "migration/global_state.h" 38 #include "ram.h" 39 #include "qemu-file-channel.h" 40 #include "qemu-file.h" 41 #include "savevm.h" 42 #include "postcopy-ram.h" 43 #include "qapi/qmp/qerror.h" 44 #include "qemu/error-report.h" 45 #include "sysemu/cpus.h" 46 #include "exec/memory.h" 47 #include "exec/target_page.h" 48 #include "qmp-commands.h" 49 #include "trace.h" 50 #include "qemu/iov.h" 51 #include "block/snapshot.h" 52 #include "qemu/cutils.h" 53 #include "io/channel-buffer.h" 54 #include "io/channel-file.h" 55 56 #ifndef ETH_P_RARP 57 #define ETH_P_RARP 0x8035 58 #endif 59 #define ARP_HTYPE_ETH 0x0001 60 #define ARP_PTYPE_IP 0x0800 61 #define ARP_OP_REQUEST_REV 0x3 62 63 const unsigned int postcopy_ram_discard_version = 0; 64 65 /* Subcommands for QEMU_VM_COMMAND */ 66 enum qemu_vm_cmd { 67 MIG_CMD_INVALID = 0, /* Must be 0 */ 68 MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */ 69 MIG_CMD_PING, /* Request a PONG on the RP */ 70 71 MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just 72 warn we might want to do PC */ 73 MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming 74 pages as it's running. */ 75 MIG_CMD_POSTCOPY_RUN, /* Start execution */ 76 77 MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that 78 were previously sent during 79 precopy but are dirty. */ 80 MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */ 81 MIG_CMD_MAX 82 }; 83 84 #define MAX_VM_CMD_PACKAGED_SIZE (1ul << 24) 85 static struct mig_cmd_args { 86 ssize_t len; /* -1 = variable */ 87 const char *name; 88 } mig_cmd_args[] = { 89 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 90 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 91 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 92 [MIG_CMD_POSTCOPY_ADVISE] = { .len = -1, .name = "POSTCOPY_ADVISE" }, 93 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 94 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 95 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 96 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 97 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 98 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 99 }; 100 101 /* Note for MIG_CMD_POSTCOPY_ADVISE: 102 * The format of arguments is depending on postcopy mode: 103 * - postcopy RAM only 104 * uint64_t host page size 105 * uint64_t taget page size 106 * 107 * - postcopy RAM and postcopy dirty bitmaps 108 * format is the same as for postcopy RAM only 109 * 110 * - postcopy dirty bitmaps only 111 * Nothing. Command length field is 0. 112 * 113 * Be careful: adding a new postcopy entity with some other parameters should 114 * not break format self-description ability. Good way is to introduce some 115 * generic extendable format with an exception for two old entities. 116 */ 117 118 static int announce_self_create(uint8_t *buf, 119 uint8_t *mac_addr) 120 { 121 /* Ethernet header. */ 122 memset(buf, 0xff, 6); /* destination MAC addr */ 123 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 124 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 125 126 /* RARP header. */ 127 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 128 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 129 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 130 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 131 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 132 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 133 memset(buf + 28, 0x00, 4); /* source protocol addr */ 134 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 135 memset(buf + 38, 0x00, 4); /* target protocol addr */ 136 137 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 138 memset(buf + 42, 0x00, 18); 139 140 return 60; /* len (FCS will be added by hardware) */ 141 } 142 143 static void qemu_announce_self_iter(NICState *nic, void *opaque) 144 { 145 uint8_t buf[60]; 146 int len; 147 148 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 149 len = announce_self_create(buf, nic->conf->macaddr.a); 150 151 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 152 } 153 154 155 static void qemu_announce_self_once(void *opaque) 156 { 157 static int count = SELF_ANNOUNCE_ROUNDS; 158 QEMUTimer *timer = *(QEMUTimer **)opaque; 159 160 qemu_foreach_nic(qemu_announce_self_iter, NULL); 161 162 if (--count) { 163 /* delay 50ms, 150ms, 250ms, ... */ 164 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 165 self_announce_delay(count)); 166 } else { 167 timer_del(timer); 168 timer_free(timer); 169 } 170 } 171 172 void qemu_announce_self(void) 173 { 174 static QEMUTimer *timer; 175 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 176 qemu_announce_self_once(&timer); 177 } 178 179 /***********************************************************/ 180 /* savevm/loadvm support */ 181 182 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 183 int64_t pos) 184 { 185 int ret; 186 QEMUIOVector qiov; 187 188 qemu_iovec_init_external(&qiov, iov, iovcnt); 189 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 190 if (ret < 0) { 191 return ret; 192 } 193 194 return qiov.size; 195 } 196 197 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 198 size_t size) 199 { 200 return bdrv_load_vmstate(opaque, buf, pos, size); 201 } 202 203 static int bdrv_fclose(void *opaque) 204 { 205 return bdrv_flush(opaque); 206 } 207 208 static const QEMUFileOps bdrv_read_ops = { 209 .get_buffer = block_get_buffer, 210 .close = bdrv_fclose 211 }; 212 213 static const QEMUFileOps bdrv_write_ops = { 214 .writev_buffer = block_writev_buffer, 215 .close = bdrv_fclose 216 }; 217 218 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 219 { 220 if (is_writable) { 221 return qemu_fopen_ops(bs, &bdrv_write_ops); 222 } 223 return qemu_fopen_ops(bs, &bdrv_read_ops); 224 } 225 226 227 /* QEMUFile timer support. 228 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 229 */ 230 231 void timer_put(QEMUFile *f, QEMUTimer *ts) 232 { 233 uint64_t expire_time; 234 235 expire_time = timer_expire_time_ns(ts); 236 qemu_put_be64(f, expire_time); 237 } 238 239 void timer_get(QEMUFile *f, QEMUTimer *ts) 240 { 241 uint64_t expire_time; 242 243 expire_time = qemu_get_be64(f); 244 if (expire_time != -1) { 245 timer_mod_ns(ts, expire_time); 246 } else { 247 timer_del(ts); 248 } 249 } 250 251 252 /* VMState timer support. 253 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 254 */ 255 256 static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field) 257 { 258 QEMUTimer *v = pv; 259 timer_get(f, v); 260 return 0; 261 } 262 263 static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field, 264 QJSON *vmdesc) 265 { 266 QEMUTimer *v = pv; 267 timer_put(f, v); 268 269 return 0; 270 } 271 272 const VMStateInfo vmstate_info_timer = { 273 .name = "timer", 274 .get = get_timer, 275 .put = put_timer, 276 }; 277 278 279 typedef struct CompatEntry { 280 char idstr[256]; 281 int instance_id; 282 } CompatEntry; 283 284 typedef struct SaveStateEntry { 285 QTAILQ_ENTRY(SaveStateEntry) entry; 286 char idstr[256]; 287 int instance_id; 288 int alias_id; 289 int version_id; 290 /* version id read from the stream */ 291 int load_version_id; 292 int section_id; 293 /* section id read from the stream */ 294 int load_section_id; 295 SaveVMHandlers *ops; 296 const VMStateDescription *vmsd; 297 void *opaque; 298 CompatEntry *compat; 299 int is_ram; 300 } SaveStateEntry; 301 302 typedef struct SaveState { 303 QTAILQ_HEAD(, SaveStateEntry) handlers; 304 int global_section_id; 305 uint32_t len; 306 const char *name; 307 uint32_t target_page_bits; 308 } SaveState; 309 310 static SaveState savevm_state = { 311 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 312 .global_section_id = 0, 313 }; 314 315 static void configuration_pre_save(void *opaque) 316 { 317 SaveState *state = opaque; 318 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 319 320 state->len = strlen(current_name); 321 state->name = current_name; 322 state->target_page_bits = qemu_target_page_bits(); 323 } 324 325 static int configuration_pre_load(void *opaque) 326 { 327 SaveState *state = opaque; 328 329 /* If there is no target-page-bits subsection it means the source 330 * predates the variable-target-page-bits support and is using the 331 * minimum possible value for this CPU. 332 */ 333 state->target_page_bits = qemu_target_page_bits_min(); 334 return 0; 335 } 336 337 static int configuration_post_load(void *opaque, int version_id) 338 { 339 SaveState *state = opaque; 340 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 341 342 if (strncmp(state->name, current_name, state->len) != 0) { 343 error_report("Machine type received is '%.*s' and local is '%s'", 344 (int) state->len, state->name, current_name); 345 return -EINVAL; 346 } 347 348 if (state->target_page_bits != qemu_target_page_bits()) { 349 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 350 state->target_page_bits, qemu_target_page_bits()); 351 return -EINVAL; 352 } 353 354 return 0; 355 } 356 357 /* The target-page-bits subsection is present only if the 358 * target page size is not the same as the default (ie the 359 * minimum page size for a variable-page-size guest CPU). 360 * If it is present then it contains the actual target page 361 * bits for the machine, and migration will fail if the 362 * two ends don't agree about it. 363 */ 364 static bool vmstate_target_page_bits_needed(void *opaque) 365 { 366 return qemu_target_page_bits() 367 > qemu_target_page_bits_min(); 368 } 369 370 static const VMStateDescription vmstate_target_page_bits = { 371 .name = "configuration/target-page-bits", 372 .version_id = 1, 373 .minimum_version_id = 1, 374 .needed = vmstate_target_page_bits_needed, 375 .fields = (VMStateField[]) { 376 VMSTATE_UINT32(target_page_bits, SaveState), 377 VMSTATE_END_OF_LIST() 378 } 379 }; 380 381 static const VMStateDescription vmstate_configuration = { 382 .name = "configuration", 383 .version_id = 1, 384 .pre_load = configuration_pre_load, 385 .post_load = configuration_post_load, 386 .pre_save = configuration_pre_save, 387 .fields = (VMStateField[]) { 388 VMSTATE_UINT32(len, SaveState), 389 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len), 390 VMSTATE_END_OF_LIST() 391 }, 392 .subsections = (const VMStateDescription*[]) { 393 &vmstate_target_page_bits, 394 NULL 395 } 396 }; 397 398 static void dump_vmstate_vmsd(FILE *out_file, 399 const VMStateDescription *vmsd, int indent, 400 bool is_subsection); 401 402 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 403 int indent) 404 { 405 fprintf(out_file, "%*s{\n", indent, ""); 406 indent += 2; 407 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 408 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 409 field->version_id); 410 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 411 field->field_exists ? "true" : "false"); 412 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 413 if (field->vmsd != NULL) { 414 fprintf(out_file, ",\n"); 415 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 416 } 417 fprintf(out_file, "\n%*s}", indent - 2, ""); 418 } 419 420 static void dump_vmstate_vmss(FILE *out_file, 421 const VMStateDescription **subsection, 422 int indent) 423 { 424 if (*subsection != NULL) { 425 dump_vmstate_vmsd(out_file, *subsection, indent, true); 426 } 427 } 428 429 static void dump_vmstate_vmsd(FILE *out_file, 430 const VMStateDescription *vmsd, int indent, 431 bool is_subsection) 432 { 433 if (is_subsection) { 434 fprintf(out_file, "%*s{\n", indent, ""); 435 } else { 436 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 437 } 438 indent += 2; 439 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 440 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 441 vmsd->version_id); 442 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 443 vmsd->minimum_version_id); 444 if (vmsd->fields != NULL) { 445 const VMStateField *field = vmsd->fields; 446 bool first; 447 448 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 449 first = true; 450 while (field->name != NULL) { 451 if (field->flags & VMS_MUST_EXIST) { 452 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 453 field++; 454 continue; 455 } 456 if (!first) { 457 fprintf(out_file, ",\n"); 458 } 459 dump_vmstate_vmsf(out_file, field, indent + 2); 460 field++; 461 first = false; 462 } 463 fprintf(out_file, "\n%*s]", indent, ""); 464 } 465 if (vmsd->subsections != NULL) { 466 const VMStateDescription **subsection = vmsd->subsections; 467 bool first; 468 469 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 470 first = true; 471 while (*subsection != NULL) { 472 if (!first) { 473 fprintf(out_file, ",\n"); 474 } 475 dump_vmstate_vmss(out_file, subsection, indent + 2); 476 subsection++; 477 first = false; 478 } 479 fprintf(out_file, "\n%*s]", indent, ""); 480 } 481 fprintf(out_file, "\n%*s}", indent - 2, ""); 482 } 483 484 static void dump_machine_type(FILE *out_file) 485 { 486 MachineClass *mc; 487 488 mc = MACHINE_GET_CLASS(current_machine); 489 490 fprintf(out_file, " \"vmschkmachine\": {\n"); 491 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 492 fprintf(out_file, " },\n"); 493 } 494 495 void dump_vmstate_json_to_file(FILE *out_file) 496 { 497 GSList *list, *elt; 498 bool first; 499 500 fprintf(out_file, "{\n"); 501 dump_machine_type(out_file); 502 503 first = true; 504 list = object_class_get_list(TYPE_DEVICE, true); 505 for (elt = list; elt; elt = elt->next) { 506 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 507 TYPE_DEVICE); 508 const char *name; 509 int indent = 2; 510 511 if (!dc->vmsd) { 512 continue; 513 } 514 515 if (!first) { 516 fprintf(out_file, ",\n"); 517 } 518 name = object_class_get_name(OBJECT_CLASS(dc)); 519 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 520 indent += 2; 521 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 522 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 523 dc->vmsd->version_id); 524 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 525 dc->vmsd->minimum_version_id); 526 527 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 528 529 fprintf(out_file, "\n%*s}", indent - 2, ""); 530 first = false; 531 } 532 fprintf(out_file, "\n}\n"); 533 fclose(out_file); 534 } 535 536 static int calculate_new_instance_id(const char *idstr) 537 { 538 SaveStateEntry *se; 539 int instance_id = 0; 540 541 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 542 if (strcmp(idstr, se->idstr) == 0 543 && instance_id <= se->instance_id) { 544 instance_id = se->instance_id + 1; 545 } 546 } 547 return instance_id; 548 } 549 550 static int calculate_compat_instance_id(const char *idstr) 551 { 552 SaveStateEntry *se; 553 int instance_id = 0; 554 555 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 556 if (!se->compat) { 557 continue; 558 } 559 560 if (strcmp(idstr, se->compat->idstr) == 0 561 && instance_id <= se->compat->instance_id) { 562 instance_id = se->compat->instance_id + 1; 563 } 564 } 565 return instance_id; 566 } 567 568 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 569 { 570 if (se->vmsd) { 571 return se->vmsd->priority; 572 } 573 return MIG_PRI_DEFAULT; 574 } 575 576 static void savevm_state_handler_insert(SaveStateEntry *nse) 577 { 578 MigrationPriority priority = save_state_priority(nse); 579 SaveStateEntry *se; 580 581 assert(priority <= MIG_PRI_MAX); 582 583 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 584 if (save_state_priority(se) < priority) { 585 break; 586 } 587 } 588 589 if (se) { 590 QTAILQ_INSERT_BEFORE(se, nse, entry); 591 } else { 592 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 593 } 594 } 595 596 /* TODO: Individual devices generally have very little idea about the rest 597 of the system, so instance_id should be removed/replaced. 598 Meanwhile pass -1 as instance_id if you do not already have a clearly 599 distinguishing id for all instances of your device class. */ 600 int register_savevm_live(DeviceState *dev, 601 const char *idstr, 602 int instance_id, 603 int version_id, 604 SaveVMHandlers *ops, 605 void *opaque) 606 { 607 SaveStateEntry *se; 608 609 se = g_new0(SaveStateEntry, 1); 610 se->version_id = version_id; 611 se->section_id = savevm_state.global_section_id++; 612 se->ops = ops; 613 se->opaque = opaque; 614 se->vmsd = NULL; 615 /* if this is a live_savem then set is_ram */ 616 if (ops->save_setup != NULL) { 617 se->is_ram = 1; 618 } 619 620 if (dev) { 621 char *id = qdev_get_dev_path(dev); 622 if (id) { 623 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 624 sizeof(se->idstr)) { 625 error_report("Path too long for VMState (%s)", id); 626 g_free(id); 627 g_free(se); 628 629 return -1; 630 } 631 g_free(id); 632 633 se->compat = g_new0(CompatEntry, 1); 634 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 635 se->compat->instance_id = instance_id == -1 ? 636 calculate_compat_instance_id(idstr) : instance_id; 637 instance_id = -1; 638 } 639 } 640 pstrcat(se->idstr, sizeof(se->idstr), idstr); 641 642 if (instance_id == -1) { 643 se->instance_id = calculate_new_instance_id(se->idstr); 644 } else { 645 se->instance_id = instance_id; 646 } 647 assert(!se->compat || se->instance_id == 0); 648 savevm_state_handler_insert(se); 649 return 0; 650 } 651 652 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 653 { 654 SaveStateEntry *se, *new_se; 655 char id[256] = ""; 656 657 if (dev) { 658 char *path = qdev_get_dev_path(dev); 659 if (path) { 660 pstrcpy(id, sizeof(id), path); 661 pstrcat(id, sizeof(id), "/"); 662 g_free(path); 663 } 664 } 665 pstrcat(id, sizeof(id), idstr); 666 667 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 668 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 669 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 670 g_free(se->compat); 671 g_free(se); 672 } 673 } 674 } 675 676 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 677 const VMStateDescription *vmsd, 678 void *opaque, int alias_id, 679 int required_for_version, 680 Error **errp) 681 { 682 SaveStateEntry *se; 683 684 /* If this triggers, alias support can be dropped for the vmsd. */ 685 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 686 687 se = g_new0(SaveStateEntry, 1); 688 se->version_id = vmsd->version_id; 689 se->section_id = savevm_state.global_section_id++; 690 se->opaque = opaque; 691 se->vmsd = vmsd; 692 se->alias_id = alias_id; 693 694 if (dev) { 695 char *id = qdev_get_dev_path(dev); 696 if (id) { 697 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 698 sizeof(se->idstr)) { 699 error_setg(errp, "Path too long for VMState (%s)", id); 700 g_free(id); 701 g_free(se); 702 703 return -1; 704 } 705 g_free(id); 706 707 se->compat = g_new0(CompatEntry, 1); 708 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 709 se->compat->instance_id = instance_id == -1 ? 710 calculate_compat_instance_id(vmsd->name) : instance_id; 711 instance_id = -1; 712 } 713 } 714 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 715 716 if (instance_id == -1) { 717 se->instance_id = calculate_new_instance_id(se->idstr); 718 } else { 719 se->instance_id = instance_id; 720 } 721 assert(!se->compat || se->instance_id == 0); 722 savevm_state_handler_insert(se); 723 return 0; 724 } 725 726 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 727 void *opaque) 728 { 729 SaveStateEntry *se, *new_se; 730 731 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 732 if (se->vmsd == vmsd && se->opaque == opaque) { 733 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 734 g_free(se->compat); 735 g_free(se); 736 } 737 } 738 } 739 740 static int vmstate_load(QEMUFile *f, SaveStateEntry *se) 741 { 742 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 743 if (!se->vmsd) { /* Old style */ 744 return se->ops->load_state(f, se->opaque, se->load_version_id); 745 } 746 return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id); 747 } 748 749 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 750 { 751 int64_t old_offset, size; 752 753 old_offset = qemu_ftell_fast(f); 754 se->ops->save_state(f, se->opaque); 755 size = qemu_ftell_fast(f) - old_offset; 756 757 if (vmdesc) { 758 json_prop_int(vmdesc, "size", size); 759 json_start_array(vmdesc, "fields"); 760 json_start_object(vmdesc, NULL); 761 json_prop_str(vmdesc, "name", "data"); 762 json_prop_int(vmdesc, "size", size); 763 json_prop_str(vmdesc, "type", "buffer"); 764 json_end_object(vmdesc); 765 json_end_array(vmdesc); 766 } 767 } 768 769 static void vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 770 { 771 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 772 if (!se->vmsd) { 773 vmstate_save_old_style(f, se, vmdesc); 774 return; 775 } 776 vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 777 } 778 779 /* 780 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 781 */ 782 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 783 uint8_t section_type) 784 { 785 qemu_put_byte(f, section_type); 786 qemu_put_be32(f, se->section_id); 787 788 if (section_type == QEMU_VM_SECTION_FULL || 789 section_type == QEMU_VM_SECTION_START) { 790 /* ID string */ 791 size_t len = strlen(se->idstr); 792 qemu_put_byte(f, len); 793 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 794 795 qemu_put_be32(f, se->instance_id); 796 qemu_put_be32(f, se->version_id); 797 } 798 } 799 800 /* 801 * Write a footer onto device sections that catches cases misformatted device 802 * sections. 803 */ 804 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 805 { 806 if (migrate_get_current()->send_section_footer) { 807 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 808 qemu_put_be32(f, se->section_id); 809 } 810 } 811 812 /** 813 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 814 * command and associated data. 815 * 816 * @f: File to send command on 817 * @command: Command type to send 818 * @len: Length of associated data 819 * @data: Data associated with command. 820 */ 821 static void qemu_savevm_command_send(QEMUFile *f, 822 enum qemu_vm_cmd command, 823 uint16_t len, 824 uint8_t *data) 825 { 826 trace_savevm_command_send(command, len); 827 qemu_put_byte(f, QEMU_VM_COMMAND); 828 qemu_put_be16(f, (uint16_t)command); 829 qemu_put_be16(f, len); 830 qemu_put_buffer(f, data, len); 831 qemu_fflush(f); 832 } 833 834 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 835 { 836 uint32_t buf; 837 838 trace_savevm_send_ping(value); 839 buf = cpu_to_be32(value); 840 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 841 } 842 843 void qemu_savevm_send_open_return_path(QEMUFile *f) 844 { 845 trace_savevm_send_open_return_path(); 846 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 847 } 848 849 /* We have a buffer of data to send; we don't want that all to be loaded 850 * by the command itself, so the command contains just the length of the 851 * extra buffer that we then send straight after it. 852 * TODO: Must be a better way to organise that 853 * 854 * Returns: 855 * 0 on success 856 * -ve on error 857 */ 858 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 859 { 860 uint32_t tmp; 861 862 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 863 error_report("%s: Unreasonably large packaged state: %zu", 864 __func__, len); 865 return -1; 866 } 867 868 tmp = cpu_to_be32(len); 869 870 trace_qemu_savevm_send_packaged(); 871 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 872 873 qemu_put_buffer(f, buf, len); 874 875 return 0; 876 } 877 878 /* Send prior to any postcopy transfer */ 879 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 880 { 881 if (migrate_postcopy_ram()) { 882 uint64_t tmp[2]; 883 tmp[0] = cpu_to_be64(ram_pagesize_summary()); 884 tmp[1] = cpu_to_be64(qemu_target_page_size()); 885 886 trace_qemu_savevm_send_postcopy_advise(); 887 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 888 16, (uint8_t *)tmp); 889 } else { 890 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 0, NULL); 891 } 892 } 893 894 /* Sent prior to starting the destination running in postcopy, discard pages 895 * that have already been sent but redirtied on the source. 896 * CMD_POSTCOPY_RAM_DISCARD consist of: 897 * byte version (0) 898 * byte Length of name field (not including 0) 899 * n x byte RAM block name 900 * byte 0 terminator (just for safety) 901 * n x Byte ranges within the named RAMBlock 902 * be64 Start of the range 903 * be64 Length 904 * 905 * name: RAMBlock name that these entries are part of 906 * len: Number of page entries 907 * start_list: 'len' addresses 908 * length_list: 'len' addresses 909 * 910 */ 911 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 912 uint16_t len, 913 uint64_t *start_list, 914 uint64_t *length_list) 915 { 916 uint8_t *buf; 917 uint16_t tmplen; 918 uint16_t t; 919 size_t name_len = strlen(name); 920 921 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 922 assert(name_len < 256); 923 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 924 buf[0] = postcopy_ram_discard_version; 925 buf[1] = name_len; 926 memcpy(buf + 2, name, name_len); 927 tmplen = 2 + name_len; 928 buf[tmplen++] = '\0'; 929 930 for (t = 0; t < len; t++) { 931 stq_be_p(buf + tmplen, start_list[t]); 932 tmplen += 8; 933 stq_be_p(buf + tmplen, length_list[t]); 934 tmplen += 8; 935 } 936 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 937 g_free(buf); 938 } 939 940 /* Get the destination into a state where it can receive postcopy data. */ 941 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 942 { 943 trace_savevm_send_postcopy_listen(); 944 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 945 } 946 947 /* Kick the destination into running */ 948 void qemu_savevm_send_postcopy_run(QEMUFile *f) 949 { 950 trace_savevm_send_postcopy_run(); 951 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 952 } 953 954 bool qemu_savevm_state_blocked(Error **errp) 955 { 956 SaveStateEntry *se; 957 958 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 959 if (se->vmsd && se->vmsd->unmigratable) { 960 error_setg(errp, "State blocked by non-migratable device '%s'", 961 se->idstr); 962 return true; 963 } 964 } 965 return false; 966 } 967 968 void qemu_savevm_state_header(QEMUFile *f) 969 { 970 trace_savevm_state_header(); 971 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 972 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 973 974 if (migrate_get_current()->send_configuration) { 975 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 976 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 977 } 978 } 979 980 void qemu_savevm_state_setup(QEMUFile *f) 981 { 982 SaveStateEntry *se; 983 int ret; 984 985 trace_savevm_state_setup(); 986 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 987 if (!se->ops || !se->ops->save_setup) { 988 continue; 989 } 990 if (se->ops && se->ops->is_active) { 991 if (!se->ops->is_active(se->opaque)) { 992 continue; 993 } 994 } 995 save_section_header(f, se, QEMU_VM_SECTION_START); 996 997 ret = se->ops->save_setup(f, se->opaque); 998 save_section_footer(f, se); 999 if (ret < 0) { 1000 qemu_file_set_error(f, ret); 1001 break; 1002 } 1003 } 1004 } 1005 1006 /* 1007 * this function has three return values: 1008 * negative: there was one error, and we have -errno. 1009 * 0 : We haven't finished, caller have to go again 1010 * 1 : We have finished, we can go to complete phase 1011 */ 1012 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 1013 { 1014 SaveStateEntry *se; 1015 int ret = 1; 1016 1017 trace_savevm_state_iterate(); 1018 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1019 if (!se->ops || !se->ops->save_live_iterate) { 1020 continue; 1021 } 1022 if (se->ops && se->ops->is_active) { 1023 if (!se->ops->is_active(se->opaque)) { 1024 continue; 1025 } 1026 } 1027 /* 1028 * In the postcopy phase, any device that doesn't know how to 1029 * do postcopy should have saved it's state in the _complete 1030 * call that's already run, it might get confused if we call 1031 * iterate afterwards. 1032 */ 1033 if (postcopy && 1034 !(se->ops->has_postcopy && se->ops->has_postcopy(se->opaque))) { 1035 continue; 1036 } 1037 if (qemu_file_rate_limit(f)) { 1038 return 0; 1039 } 1040 trace_savevm_section_start(se->idstr, se->section_id); 1041 1042 save_section_header(f, se, QEMU_VM_SECTION_PART); 1043 1044 ret = se->ops->save_live_iterate(f, se->opaque); 1045 trace_savevm_section_end(se->idstr, se->section_id, ret); 1046 save_section_footer(f, se); 1047 1048 if (ret < 0) { 1049 qemu_file_set_error(f, ret); 1050 } 1051 if (ret <= 0) { 1052 /* Do not proceed to the next vmstate before this one reported 1053 completion of the current stage. This serializes the migration 1054 and reduces the probability that a faster changing state is 1055 synchronized over and over again. */ 1056 break; 1057 } 1058 } 1059 return ret; 1060 } 1061 1062 static bool should_send_vmdesc(void) 1063 { 1064 MachineState *machine = MACHINE(qdev_get_machine()); 1065 bool in_postcopy = migration_in_postcopy(); 1066 return !machine->suppress_vmdesc && !in_postcopy; 1067 } 1068 1069 /* 1070 * Calls the save_live_complete_postcopy methods 1071 * causing the last few pages to be sent immediately and doing any associated 1072 * cleanup. 1073 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1074 * all the other devices, but that happens at the point we switch to postcopy. 1075 */ 1076 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1077 { 1078 SaveStateEntry *se; 1079 int ret; 1080 1081 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1082 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1083 continue; 1084 } 1085 if (se->ops && se->ops->is_active) { 1086 if (!se->ops->is_active(se->opaque)) { 1087 continue; 1088 } 1089 } 1090 trace_savevm_section_start(se->idstr, se->section_id); 1091 /* Section type */ 1092 qemu_put_byte(f, QEMU_VM_SECTION_END); 1093 qemu_put_be32(f, se->section_id); 1094 1095 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1096 trace_savevm_section_end(se->idstr, se->section_id, ret); 1097 save_section_footer(f, se); 1098 if (ret < 0) { 1099 qemu_file_set_error(f, ret); 1100 return; 1101 } 1102 } 1103 1104 qemu_put_byte(f, QEMU_VM_EOF); 1105 qemu_fflush(f); 1106 } 1107 1108 int qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only, 1109 bool inactivate_disks) 1110 { 1111 QJSON *vmdesc; 1112 int vmdesc_len; 1113 SaveStateEntry *se; 1114 int ret; 1115 bool in_postcopy = migration_in_postcopy(); 1116 1117 trace_savevm_state_complete_precopy(); 1118 1119 cpu_synchronize_all_states(); 1120 1121 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1122 if (!se->ops || 1123 (in_postcopy && se->ops->has_postcopy && 1124 se->ops->has_postcopy(se->opaque)) || 1125 (in_postcopy && !iterable_only) || 1126 !se->ops->save_live_complete_precopy) { 1127 continue; 1128 } 1129 1130 if (se->ops && se->ops->is_active) { 1131 if (!se->ops->is_active(se->opaque)) { 1132 continue; 1133 } 1134 } 1135 trace_savevm_section_start(se->idstr, se->section_id); 1136 1137 save_section_header(f, se, QEMU_VM_SECTION_END); 1138 1139 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1140 trace_savevm_section_end(se->idstr, se->section_id, ret); 1141 save_section_footer(f, se); 1142 if (ret < 0) { 1143 qemu_file_set_error(f, ret); 1144 return -1; 1145 } 1146 } 1147 1148 if (iterable_only) { 1149 return 0; 1150 } 1151 1152 vmdesc = qjson_new(); 1153 json_prop_int(vmdesc, "page_size", qemu_target_page_size()); 1154 json_start_array(vmdesc, "devices"); 1155 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1156 1157 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1158 continue; 1159 } 1160 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1161 trace_savevm_section_skip(se->idstr, se->section_id); 1162 continue; 1163 } 1164 1165 trace_savevm_section_start(se->idstr, se->section_id); 1166 1167 json_start_object(vmdesc, NULL); 1168 json_prop_str(vmdesc, "name", se->idstr); 1169 json_prop_int(vmdesc, "instance_id", se->instance_id); 1170 1171 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1172 vmstate_save(f, se, vmdesc); 1173 trace_savevm_section_end(se->idstr, se->section_id, 0); 1174 save_section_footer(f, se); 1175 1176 json_end_object(vmdesc); 1177 } 1178 1179 if (inactivate_disks) { 1180 /* Inactivate before sending QEMU_VM_EOF so that the 1181 * bdrv_invalidate_cache_all() on the other end won't fail. */ 1182 ret = bdrv_inactivate_all(); 1183 if (ret) { 1184 error_report("%s: bdrv_inactivate_all() failed (%d)", 1185 __func__, ret); 1186 qemu_file_set_error(f, ret); 1187 return ret; 1188 } 1189 } 1190 if (!in_postcopy) { 1191 /* Postcopy stream will still be going */ 1192 qemu_put_byte(f, QEMU_VM_EOF); 1193 } 1194 1195 json_end_array(vmdesc); 1196 qjson_finish(vmdesc); 1197 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1198 1199 if (should_send_vmdesc()) { 1200 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1201 qemu_put_be32(f, vmdesc_len); 1202 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1203 } 1204 qjson_destroy(vmdesc); 1205 1206 qemu_fflush(f); 1207 return 0; 1208 } 1209 1210 /* Give an estimate of the amount left to be transferred, 1211 * the result is split into the amount for units that can and 1212 * for units that can't do postcopy. 1213 */ 1214 void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size, 1215 uint64_t *res_non_postcopiable, 1216 uint64_t *res_postcopiable) 1217 { 1218 SaveStateEntry *se; 1219 1220 *res_non_postcopiable = 0; 1221 *res_postcopiable = 0; 1222 1223 1224 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1225 if (!se->ops || !se->ops->save_live_pending) { 1226 continue; 1227 } 1228 if (se->ops && se->ops->is_active) { 1229 if (!se->ops->is_active(se->opaque)) { 1230 continue; 1231 } 1232 } 1233 se->ops->save_live_pending(f, se->opaque, threshold_size, 1234 res_non_postcopiable, res_postcopiable); 1235 } 1236 } 1237 1238 void qemu_savevm_state_cleanup(void) 1239 { 1240 SaveStateEntry *se; 1241 1242 trace_savevm_state_cleanup(); 1243 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1244 if (se->ops && se->ops->save_cleanup) { 1245 se->ops->save_cleanup(se->opaque); 1246 } 1247 } 1248 } 1249 1250 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1251 { 1252 int ret; 1253 MigrationState *ms = migrate_init(); 1254 MigrationStatus status; 1255 ms->to_dst_file = f; 1256 1257 if (migration_is_blocked(errp)) { 1258 ret = -EINVAL; 1259 goto done; 1260 } 1261 1262 if (migrate_use_block()) { 1263 error_setg(errp, "Block migration and snapshots are incompatible"); 1264 ret = -EINVAL; 1265 goto done; 1266 } 1267 1268 qemu_mutex_unlock_iothread(); 1269 qemu_savevm_state_header(f); 1270 qemu_savevm_state_setup(f); 1271 qemu_mutex_lock_iothread(); 1272 1273 while (qemu_file_get_error(f) == 0) { 1274 if (qemu_savevm_state_iterate(f, false) > 0) { 1275 break; 1276 } 1277 } 1278 1279 ret = qemu_file_get_error(f); 1280 if (ret == 0) { 1281 qemu_savevm_state_complete_precopy(f, false, false); 1282 ret = qemu_file_get_error(f); 1283 } 1284 qemu_savevm_state_cleanup(); 1285 if (ret != 0) { 1286 error_setg_errno(errp, -ret, "Error while writing VM state"); 1287 } 1288 1289 done: 1290 if (ret != 0) { 1291 status = MIGRATION_STATUS_FAILED; 1292 } else { 1293 status = MIGRATION_STATUS_COMPLETED; 1294 } 1295 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1296 1297 /* f is outer parameter, it should not stay in global migration state after 1298 * this function finished */ 1299 ms->to_dst_file = NULL; 1300 1301 return ret; 1302 } 1303 1304 static int qemu_save_device_state(QEMUFile *f) 1305 { 1306 SaveStateEntry *se; 1307 1308 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1309 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1310 1311 cpu_synchronize_all_states(); 1312 1313 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1314 if (se->is_ram) { 1315 continue; 1316 } 1317 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1318 continue; 1319 } 1320 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1321 continue; 1322 } 1323 1324 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1325 1326 vmstate_save(f, se, NULL); 1327 1328 save_section_footer(f, se); 1329 } 1330 1331 qemu_put_byte(f, QEMU_VM_EOF); 1332 1333 return qemu_file_get_error(f); 1334 } 1335 1336 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1337 { 1338 SaveStateEntry *se; 1339 1340 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1341 if (!strcmp(se->idstr, idstr) && 1342 (instance_id == se->instance_id || 1343 instance_id == se->alias_id)) 1344 return se; 1345 /* Migrating from an older version? */ 1346 if (strstr(se->idstr, idstr) && se->compat) { 1347 if (!strcmp(se->compat->idstr, idstr) && 1348 (instance_id == se->compat->instance_id || 1349 instance_id == se->alias_id)) 1350 return se; 1351 } 1352 } 1353 return NULL; 1354 } 1355 1356 enum LoadVMExitCodes { 1357 /* Allow a command to quit all layers of nested loadvm loops */ 1358 LOADVM_QUIT = 1, 1359 }; 1360 1361 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1362 1363 /* ------ incoming postcopy messages ------ */ 1364 /* 'advise' arrives before any transfers just to tell us that a postcopy 1365 * *might* happen - it might be skipped if precopy transferred everything 1366 * quickly. 1367 */ 1368 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis) 1369 { 1370 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1371 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps; 1372 1373 trace_loadvm_postcopy_handle_advise(); 1374 if (ps != POSTCOPY_INCOMING_NONE) { 1375 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1376 return -1; 1377 } 1378 1379 if (!migrate_postcopy_ram()) { 1380 return 0; 1381 } 1382 1383 if (!postcopy_ram_supported_by_host(mis)) { 1384 postcopy_state_set(POSTCOPY_INCOMING_NONE); 1385 return -1; 1386 } 1387 1388 remote_pagesize_summary = qemu_get_be64(mis->from_src_file); 1389 local_pagesize_summary = ram_pagesize_summary(); 1390 1391 if (remote_pagesize_summary != local_pagesize_summary) { 1392 /* 1393 * This detects two potential causes of mismatch: 1394 * a) A mismatch in host page sizes 1395 * Some combinations of mismatch are probably possible but it gets 1396 * a bit more complicated. In particular we need to place whole 1397 * host pages on the dest at once, and we need to ensure that we 1398 * handle dirtying to make sure we never end up sending part of 1399 * a hostpage on it's own. 1400 * b) The use of different huge page sizes on source/destination 1401 * a more fine grain test is performed during RAM block migration 1402 * but this test here causes a nice early clear failure, and 1403 * also fails when passed to an older qemu that doesn't 1404 * do huge pages. 1405 */ 1406 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64 1407 " d=%" PRIx64 ")", 1408 remote_pagesize_summary, local_pagesize_summary); 1409 return -1; 1410 } 1411 1412 remote_tps = qemu_get_be64(mis->from_src_file); 1413 if (remote_tps != qemu_target_page_size()) { 1414 /* 1415 * Again, some differences could be dealt with, but for now keep it 1416 * simple. 1417 */ 1418 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)", 1419 (int)remote_tps, qemu_target_page_size()); 1420 return -1; 1421 } 1422 1423 if (ram_postcopy_incoming_init(mis)) { 1424 return -1; 1425 } 1426 1427 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1428 1429 return 0; 1430 } 1431 1432 /* After postcopy we will be told to throw some pages away since they're 1433 * dirty and will have to be demand fetched. Must happen before CPU is 1434 * started. 1435 * There can be 0..many of these messages, each encoding multiple pages. 1436 */ 1437 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1438 uint16_t len) 1439 { 1440 int tmp; 1441 char ramid[256]; 1442 PostcopyState ps = postcopy_state_get(); 1443 1444 trace_loadvm_postcopy_ram_handle_discard(); 1445 1446 switch (ps) { 1447 case POSTCOPY_INCOMING_ADVISE: 1448 /* 1st discard */ 1449 tmp = postcopy_ram_prepare_discard(mis); 1450 if (tmp) { 1451 return tmp; 1452 } 1453 break; 1454 1455 case POSTCOPY_INCOMING_DISCARD: 1456 /* Expected state */ 1457 break; 1458 1459 default: 1460 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1461 ps); 1462 return -1; 1463 } 1464 /* We're expecting a 1465 * Version (0) 1466 * a RAM ID string (length byte, name, 0 term) 1467 * then at least 1 16 byte chunk 1468 */ 1469 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1470 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1471 return -1; 1472 } 1473 1474 tmp = qemu_get_byte(mis->from_src_file); 1475 if (tmp != postcopy_ram_discard_version) { 1476 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1477 return -1; 1478 } 1479 1480 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1481 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1482 return -1; 1483 } 1484 tmp = qemu_get_byte(mis->from_src_file); 1485 if (tmp != 0) { 1486 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1487 return -1; 1488 } 1489 1490 len -= 3 + strlen(ramid); 1491 if (len % 16) { 1492 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1493 return -1; 1494 } 1495 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1496 while (len) { 1497 uint64_t start_addr, block_length; 1498 start_addr = qemu_get_be64(mis->from_src_file); 1499 block_length = qemu_get_be64(mis->from_src_file); 1500 1501 len -= 16; 1502 int ret = ram_discard_range(ramid, start_addr, block_length); 1503 if (ret) { 1504 return ret; 1505 } 1506 } 1507 trace_loadvm_postcopy_ram_handle_discard_end(); 1508 1509 return 0; 1510 } 1511 1512 /* 1513 * Triggered by a postcopy_listen command; this thread takes over reading 1514 * the input stream, leaving the main thread free to carry on loading the rest 1515 * of the device state (from RAM). 1516 * (TODO:This could do with being in a postcopy file - but there again it's 1517 * just another input loop, not that postcopy specific) 1518 */ 1519 static void *postcopy_ram_listen_thread(void *opaque) 1520 { 1521 QEMUFile *f = opaque; 1522 MigrationIncomingState *mis = migration_incoming_get_current(); 1523 int load_res; 1524 1525 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1526 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1527 qemu_sem_post(&mis->listen_thread_sem); 1528 trace_postcopy_ram_listen_thread_start(); 1529 1530 /* 1531 * Because we're a thread and not a coroutine we can't yield 1532 * in qemu_file, and thus we must be blocking now. 1533 */ 1534 qemu_file_set_blocking(f, true); 1535 load_res = qemu_loadvm_state_main(f, mis); 1536 /* And non-blocking again so we don't block in any cleanup */ 1537 qemu_file_set_blocking(f, false); 1538 1539 trace_postcopy_ram_listen_thread_exit(); 1540 if (load_res < 0) { 1541 error_report("%s: loadvm failed: %d", __func__, load_res); 1542 qemu_file_set_error(f, load_res); 1543 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1544 MIGRATION_STATUS_FAILED); 1545 } else { 1546 /* 1547 * This looks good, but it's possible that the device loading in the 1548 * main thread hasn't finished yet, and so we might not be in 'RUN' 1549 * state yet; wait for the end of the main thread. 1550 */ 1551 qemu_event_wait(&mis->main_thread_load_event); 1552 } 1553 postcopy_ram_incoming_cleanup(mis); 1554 1555 if (load_res < 0) { 1556 /* 1557 * If something went wrong then we have a bad state so exit; 1558 * depending how far we got it might be possible at this point 1559 * to leave the guest running and fire MCEs for pages that never 1560 * arrived as a desperate recovery step. 1561 */ 1562 exit(EXIT_FAILURE); 1563 } 1564 1565 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1566 MIGRATION_STATUS_COMPLETED); 1567 /* 1568 * If everything has worked fine, then the main thread has waited 1569 * for us to start, and we're the last use of the mis. 1570 * (If something broke then qemu will have to exit anyway since it's 1571 * got a bad migration state). 1572 */ 1573 migration_incoming_state_destroy(); 1574 qemu_loadvm_state_cleanup(); 1575 1576 return NULL; 1577 } 1578 1579 /* After this message we must be able to immediately receive postcopy data */ 1580 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1581 { 1582 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1583 trace_loadvm_postcopy_handle_listen(); 1584 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1585 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1586 return -1; 1587 } 1588 if (ps == POSTCOPY_INCOMING_ADVISE) { 1589 /* 1590 * A rare case, we entered listen without having to do any discards, 1591 * so do the setup that's normally done at the time of the 1st discard. 1592 */ 1593 if (migrate_postcopy_ram()) { 1594 postcopy_ram_prepare_discard(mis); 1595 } 1596 } 1597 1598 /* 1599 * Sensitise RAM - can now generate requests for blocks that don't exist 1600 * However, at this point the CPU shouldn't be running, and the IO 1601 * shouldn't be doing anything yet so don't actually expect requests 1602 */ 1603 if (migrate_postcopy_ram()) { 1604 if (postcopy_ram_enable_notify(mis)) { 1605 return -1; 1606 } 1607 } 1608 1609 if (mis->have_listen_thread) { 1610 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1611 return -1; 1612 } 1613 1614 mis->have_listen_thread = true; 1615 /* Start up the listening thread and wait for it to signal ready */ 1616 qemu_sem_init(&mis->listen_thread_sem, 0); 1617 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1618 postcopy_ram_listen_thread, mis->from_src_file, 1619 QEMU_THREAD_DETACHED); 1620 qemu_sem_wait(&mis->listen_thread_sem); 1621 qemu_sem_destroy(&mis->listen_thread_sem); 1622 1623 return 0; 1624 } 1625 1626 1627 typedef struct { 1628 QEMUBH *bh; 1629 } HandleRunBhData; 1630 1631 static void loadvm_postcopy_handle_run_bh(void *opaque) 1632 { 1633 Error *local_err = NULL; 1634 HandleRunBhData *data = opaque; 1635 1636 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1637 * in migration.c 1638 */ 1639 cpu_synchronize_all_post_init(); 1640 1641 qemu_announce_self(); 1642 1643 /* Make sure all file formats flush their mutable metadata. 1644 * If we get an error here, just don't restart the VM yet. */ 1645 bdrv_invalidate_cache_all(&local_err); 1646 if (local_err) { 1647 error_report_err(local_err); 1648 local_err = NULL; 1649 autostart = false; 1650 } 1651 1652 trace_loadvm_postcopy_handle_run_cpu_sync(); 1653 cpu_synchronize_all_post_init(); 1654 1655 trace_loadvm_postcopy_handle_run_vmstart(); 1656 1657 if (autostart) { 1658 /* Hold onto your hats, starting the CPU */ 1659 vm_start(); 1660 } else { 1661 /* leave it paused and let management decide when to start the CPU */ 1662 runstate_set(RUN_STATE_PAUSED); 1663 } 1664 1665 qemu_bh_delete(data->bh); 1666 g_free(data); 1667 } 1668 1669 /* After all discards we can start running and asking for pages */ 1670 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1671 { 1672 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1673 HandleRunBhData *data; 1674 1675 trace_loadvm_postcopy_handle_run(); 1676 if (ps != POSTCOPY_INCOMING_LISTENING) { 1677 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1678 return -1; 1679 } 1680 1681 data = g_new(HandleRunBhData, 1); 1682 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1683 qemu_bh_schedule(data->bh); 1684 1685 /* We need to finish reading the stream from the package 1686 * and also stop reading anything more from the stream that loaded the 1687 * package (since it's now being read by the listener thread). 1688 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1689 */ 1690 return LOADVM_QUIT; 1691 } 1692 1693 /** 1694 * Immediately following this command is a blob of data containing an embedded 1695 * chunk of migration stream; read it and load it. 1696 * 1697 * @mis: Incoming state 1698 * @length: Length of packaged data to read 1699 * 1700 * Returns: Negative values on error 1701 * 1702 */ 1703 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1704 { 1705 int ret; 1706 size_t length; 1707 QIOChannelBuffer *bioc; 1708 1709 length = qemu_get_be32(mis->from_src_file); 1710 trace_loadvm_handle_cmd_packaged(length); 1711 1712 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1713 error_report("Unreasonably large packaged state: %zu", length); 1714 return -1; 1715 } 1716 1717 bioc = qio_channel_buffer_new(length); 1718 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 1719 ret = qemu_get_buffer(mis->from_src_file, 1720 bioc->data, 1721 length); 1722 if (ret != length) { 1723 object_unref(OBJECT(bioc)); 1724 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1725 ret, length); 1726 return (ret < 0) ? ret : -EAGAIN; 1727 } 1728 bioc->usage += length; 1729 trace_loadvm_handle_cmd_packaged_received(ret); 1730 1731 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1732 1733 ret = qemu_loadvm_state_main(packf, mis); 1734 trace_loadvm_handle_cmd_packaged_main(ret); 1735 qemu_fclose(packf); 1736 object_unref(OBJECT(bioc)); 1737 1738 return ret; 1739 } 1740 1741 /* 1742 * Process an incoming 'QEMU_VM_COMMAND' 1743 * 0 just a normal return 1744 * LOADVM_QUIT All good, but exit the loop 1745 * <0 Error 1746 */ 1747 static int loadvm_process_command(QEMUFile *f) 1748 { 1749 MigrationIncomingState *mis = migration_incoming_get_current(); 1750 uint16_t cmd; 1751 uint16_t len; 1752 uint32_t tmp32; 1753 1754 cmd = qemu_get_be16(f); 1755 len = qemu_get_be16(f); 1756 1757 trace_loadvm_process_command(cmd, len); 1758 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1759 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1760 return -EINVAL; 1761 } 1762 1763 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1764 error_report("%s received with bad length - expecting %zu, got %d", 1765 mig_cmd_args[cmd].name, 1766 (size_t)mig_cmd_args[cmd].len, len); 1767 return -ERANGE; 1768 } 1769 1770 switch (cmd) { 1771 case MIG_CMD_OPEN_RETURN_PATH: 1772 if (mis->to_src_file) { 1773 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1774 /* Not really a problem, so don't give up */ 1775 return 0; 1776 } 1777 mis->to_src_file = qemu_file_get_return_path(f); 1778 if (!mis->to_src_file) { 1779 error_report("CMD_OPEN_RETURN_PATH failed"); 1780 return -1; 1781 } 1782 break; 1783 1784 case MIG_CMD_PING: 1785 tmp32 = qemu_get_be32(f); 1786 trace_loadvm_process_command_ping(tmp32); 1787 if (!mis->to_src_file) { 1788 error_report("CMD_PING (0x%x) received with no return path", 1789 tmp32); 1790 return -1; 1791 } 1792 migrate_send_rp_pong(mis, tmp32); 1793 break; 1794 1795 case MIG_CMD_PACKAGED: 1796 return loadvm_handle_cmd_packaged(mis); 1797 1798 case MIG_CMD_POSTCOPY_ADVISE: 1799 return loadvm_postcopy_handle_advise(mis); 1800 1801 case MIG_CMD_POSTCOPY_LISTEN: 1802 return loadvm_postcopy_handle_listen(mis); 1803 1804 case MIG_CMD_POSTCOPY_RUN: 1805 return loadvm_postcopy_handle_run(mis); 1806 1807 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1808 return loadvm_postcopy_ram_handle_discard(mis, len); 1809 } 1810 1811 return 0; 1812 } 1813 1814 /* 1815 * Read a footer off the wire and check that it matches the expected section 1816 * 1817 * Returns: true if the footer was good 1818 * false if there is a problem (and calls error_report to say why) 1819 */ 1820 static bool check_section_footer(QEMUFile *f, SaveStateEntry *se) 1821 { 1822 uint8_t read_mark; 1823 uint32_t read_section_id; 1824 1825 if (!migrate_get_current()->send_section_footer) { 1826 /* No footer to check */ 1827 return true; 1828 } 1829 1830 read_mark = qemu_get_byte(f); 1831 1832 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1833 error_report("Missing section footer for %s", se->idstr); 1834 return false; 1835 } 1836 1837 read_section_id = qemu_get_be32(f); 1838 if (read_section_id != se->load_section_id) { 1839 error_report("Mismatched section id in footer for %s -" 1840 " read 0x%x expected 0x%x", 1841 se->idstr, read_section_id, se->load_section_id); 1842 return false; 1843 } 1844 1845 /* All good */ 1846 return true; 1847 } 1848 1849 static int 1850 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1851 { 1852 uint32_t instance_id, version_id, section_id; 1853 SaveStateEntry *se; 1854 char idstr[256]; 1855 int ret; 1856 1857 /* Read section start */ 1858 section_id = qemu_get_be32(f); 1859 if (!qemu_get_counted_string(f, idstr)) { 1860 error_report("Unable to read ID string for section %u", 1861 section_id); 1862 return -EINVAL; 1863 } 1864 instance_id = qemu_get_be32(f); 1865 version_id = qemu_get_be32(f); 1866 1867 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1868 instance_id, version_id); 1869 /* Find savevm section */ 1870 se = find_se(idstr, instance_id); 1871 if (se == NULL) { 1872 error_report("Unknown savevm section or instance '%s' %d", 1873 idstr, instance_id); 1874 return -EINVAL; 1875 } 1876 1877 /* Validate version */ 1878 if (version_id > se->version_id) { 1879 error_report("savevm: unsupported version %d for '%s' v%d", 1880 version_id, idstr, se->version_id); 1881 return -EINVAL; 1882 } 1883 se->load_version_id = version_id; 1884 se->load_section_id = section_id; 1885 1886 /* Validate if it is a device's state */ 1887 if (xen_enabled() && se->is_ram) { 1888 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1889 return -EINVAL; 1890 } 1891 1892 ret = vmstate_load(f, se); 1893 if (ret < 0) { 1894 error_report("error while loading state for instance 0x%x of" 1895 " device '%s'", instance_id, idstr); 1896 return ret; 1897 } 1898 if (!check_section_footer(f, se)) { 1899 return -EINVAL; 1900 } 1901 1902 return 0; 1903 } 1904 1905 static int 1906 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1907 { 1908 uint32_t section_id; 1909 SaveStateEntry *se; 1910 int ret; 1911 1912 section_id = qemu_get_be32(f); 1913 1914 trace_qemu_loadvm_state_section_partend(section_id); 1915 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1916 if (se->load_section_id == section_id) { 1917 break; 1918 } 1919 } 1920 if (se == NULL) { 1921 error_report("Unknown savevm section %d", section_id); 1922 return -EINVAL; 1923 } 1924 1925 ret = vmstate_load(f, se); 1926 if (ret < 0) { 1927 error_report("error while loading state section id %d(%s)", 1928 section_id, se->idstr); 1929 return ret; 1930 } 1931 if (!check_section_footer(f, se)) { 1932 return -EINVAL; 1933 } 1934 1935 return 0; 1936 } 1937 1938 static int qemu_loadvm_state_setup(QEMUFile *f) 1939 { 1940 SaveStateEntry *se; 1941 int ret; 1942 1943 trace_loadvm_state_setup(); 1944 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1945 if (!se->ops || !se->ops->load_setup) { 1946 continue; 1947 } 1948 if (se->ops && se->ops->is_active) { 1949 if (!se->ops->is_active(se->opaque)) { 1950 continue; 1951 } 1952 } 1953 1954 ret = se->ops->load_setup(f, se->opaque); 1955 if (ret < 0) { 1956 qemu_file_set_error(f, ret); 1957 error_report("Load state of device %s failed", se->idstr); 1958 return ret; 1959 } 1960 } 1961 return 0; 1962 } 1963 1964 void qemu_loadvm_state_cleanup(void) 1965 { 1966 SaveStateEntry *se; 1967 1968 trace_loadvm_state_cleanup(); 1969 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1970 if (se->ops && se->ops->load_cleanup) { 1971 se->ops->load_cleanup(se->opaque); 1972 } 1973 } 1974 } 1975 1976 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 1977 { 1978 uint8_t section_type; 1979 int ret = 0; 1980 1981 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { 1982 ret = 0; 1983 trace_qemu_loadvm_state_section(section_type); 1984 switch (section_type) { 1985 case QEMU_VM_SECTION_START: 1986 case QEMU_VM_SECTION_FULL: 1987 ret = qemu_loadvm_section_start_full(f, mis); 1988 if (ret < 0) { 1989 goto out; 1990 } 1991 break; 1992 case QEMU_VM_SECTION_PART: 1993 case QEMU_VM_SECTION_END: 1994 ret = qemu_loadvm_section_part_end(f, mis); 1995 if (ret < 0) { 1996 goto out; 1997 } 1998 break; 1999 case QEMU_VM_COMMAND: 2000 ret = loadvm_process_command(f); 2001 trace_qemu_loadvm_state_section_command(ret); 2002 if ((ret < 0) || (ret & LOADVM_QUIT)) { 2003 goto out; 2004 } 2005 break; 2006 default: 2007 error_report("Unknown savevm section type %d", section_type); 2008 ret = -EINVAL; 2009 goto out; 2010 } 2011 } 2012 2013 out: 2014 if (ret < 0) { 2015 qemu_file_set_error(f, ret); 2016 } 2017 return ret; 2018 } 2019 2020 int qemu_loadvm_state(QEMUFile *f) 2021 { 2022 MigrationIncomingState *mis = migration_incoming_get_current(); 2023 Error *local_err = NULL; 2024 unsigned int v; 2025 int ret; 2026 2027 if (qemu_savevm_state_blocked(&local_err)) { 2028 error_report_err(local_err); 2029 return -EINVAL; 2030 } 2031 2032 v = qemu_get_be32(f); 2033 if (v != QEMU_VM_FILE_MAGIC) { 2034 error_report("Not a migration stream"); 2035 return -EINVAL; 2036 } 2037 2038 v = qemu_get_be32(f); 2039 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 2040 error_report("SaveVM v2 format is obsolete and don't work anymore"); 2041 return -ENOTSUP; 2042 } 2043 if (v != QEMU_VM_FILE_VERSION) { 2044 error_report("Unsupported migration stream version"); 2045 return -ENOTSUP; 2046 } 2047 2048 if (qemu_loadvm_state_setup(f) != 0) { 2049 return -EINVAL; 2050 } 2051 2052 if (migrate_get_current()->send_configuration) { 2053 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 2054 error_report("Configuration section missing"); 2055 return -EINVAL; 2056 } 2057 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 2058 2059 if (ret) { 2060 return ret; 2061 } 2062 } 2063 2064 cpu_synchronize_all_pre_loadvm(); 2065 2066 ret = qemu_loadvm_state_main(f, mis); 2067 qemu_event_set(&mis->main_thread_load_event); 2068 2069 trace_qemu_loadvm_state_post_main(ret); 2070 2071 if (mis->have_listen_thread) { 2072 /* Listen thread still going, can't clean up yet */ 2073 return ret; 2074 } 2075 2076 if (ret == 0) { 2077 ret = qemu_file_get_error(f); 2078 } 2079 2080 /* 2081 * Try to read in the VMDESC section as well, so that dumping tools that 2082 * intercept our migration stream have the chance to see it. 2083 */ 2084 2085 /* We've got to be careful; if we don't read the data and just shut the fd 2086 * then the sender can error if we close while it's still sending. 2087 * We also mustn't read data that isn't there; some transports (RDMA) 2088 * will stall waiting for that data when the source has already closed. 2089 */ 2090 if (ret == 0 && should_send_vmdesc()) { 2091 uint8_t *buf; 2092 uint32_t size; 2093 uint8_t section_type = qemu_get_byte(f); 2094 2095 if (section_type != QEMU_VM_VMDESCRIPTION) { 2096 error_report("Expected vmdescription section, but got %d", 2097 section_type); 2098 /* 2099 * It doesn't seem worth failing at this point since 2100 * we apparently have an otherwise valid VM state 2101 */ 2102 } else { 2103 buf = g_malloc(0x1000); 2104 size = qemu_get_be32(f); 2105 2106 while (size > 0) { 2107 uint32_t read_chunk = MIN(size, 0x1000); 2108 qemu_get_buffer(f, buf, read_chunk); 2109 size -= read_chunk; 2110 } 2111 g_free(buf); 2112 } 2113 } 2114 2115 qemu_loadvm_state_cleanup(); 2116 cpu_synchronize_all_post_init(); 2117 2118 return ret; 2119 } 2120 2121 int save_snapshot(const char *name, Error **errp) 2122 { 2123 BlockDriverState *bs, *bs1; 2124 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 2125 int ret = -1; 2126 QEMUFile *f; 2127 int saved_vm_running; 2128 uint64_t vm_state_size; 2129 qemu_timeval tv; 2130 struct tm tm; 2131 AioContext *aio_context; 2132 2133 if (!bdrv_all_can_snapshot(&bs)) { 2134 error_setg(errp, "Device '%s' is writable but does not support " 2135 "snapshots", bdrv_get_device_name(bs)); 2136 return ret; 2137 } 2138 2139 /* Delete old snapshots of the same name */ 2140 if (name) { 2141 ret = bdrv_all_delete_snapshot(name, &bs1, errp); 2142 if (ret < 0) { 2143 error_prepend(errp, "Error while deleting snapshot on device " 2144 "'%s': ", bdrv_get_device_name(bs1)); 2145 return ret; 2146 } 2147 } 2148 2149 bs = bdrv_all_find_vmstate_bs(); 2150 if (bs == NULL) { 2151 error_setg(errp, "No block device can accept snapshots"); 2152 return ret; 2153 } 2154 aio_context = bdrv_get_aio_context(bs); 2155 2156 saved_vm_running = runstate_is_running(); 2157 2158 ret = global_state_store(); 2159 if (ret) { 2160 error_setg(errp, "Error saving global state"); 2161 return ret; 2162 } 2163 vm_stop(RUN_STATE_SAVE_VM); 2164 2165 bdrv_drain_all_begin(); 2166 2167 aio_context_acquire(aio_context); 2168 2169 memset(sn, 0, sizeof(*sn)); 2170 2171 /* fill auxiliary fields */ 2172 qemu_gettimeofday(&tv); 2173 sn->date_sec = tv.tv_sec; 2174 sn->date_nsec = tv.tv_usec * 1000; 2175 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2176 2177 if (name) { 2178 ret = bdrv_snapshot_find(bs, old_sn, name); 2179 if (ret >= 0) { 2180 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2181 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2182 } else { 2183 pstrcpy(sn->name, sizeof(sn->name), name); 2184 } 2185 } else { 2186 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2187 localtime_r((const time_t *)&tv.tv_sec, &tm); 2188 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2189 } 2190 2191 /* save the VM state */ 2192 f = qemu_fopen_bdrv(bs, 1); 2193 if (!f) { 2194 error_setg(errp, "Could not open VM state file"); 2195 goto the_end; 2196 } 2197 ret = qemu_savevm_state(f, errp); 2198 vm_state_size = qemu_ftell(f); 2199 qemu_fclose(f); 2200 if (ret < 0) { 2201 goto the_end; 2202 } 2203 2204 /* The bdrv_all_create_snapshot() call that follows acquires the AioContext 2205 * for itself. BDRV_POLL_WHILE() does not support nested locking because 2206 * it only releases the lock once. Therefore synchronous I/O will deadlock 2207 * unless we release the AioContext before bdrv_all_create_snapshot(). 2208 */ 2209 aio_context_release(aio_context); 2210 aio_context = NULL; 2211 2212 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2213 if (ret < 0) { 2214 error_setg(errp, "Error while creating snapshot on '%s'", 2215 bdrv_get_device_name(bs)); 2216 goto the_end; 2217 } 2218 2219 ret = 0; 2220 2221 the_end: 2222 if (aio_context) { 2223 aio_context_release(aio_context); 2224 } 2225 2226 bdrv_drain_all_end(); 2227 2228 if (saved_vm_running) { 2229 vm_start(); 2230 } 2231 return ret; 2232 } 2233 2234 void qmp_xen_save_devices_state(const char *filename, Error **errp) 2235 { 2236 QEMUFile *f; 2237 QIOChannelFile *ioc; 2238 int saved_vm_running; 2239 int ret; 2240 2241 saved_vm_running = runstate_is_running(); 2242 vm_stop(RUN_STATE_SAVE_VM); 2243 global_state_store_running(); 2244 2245 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2246 if (!ioc) { 2247 goto the_end; 2248 } 2249 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 2250 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2251 ret = qemu_save_device_state(f); 2252 qemu_fclose(f); 2253 if (ret < 0) { 2254 error_setg(errp, QERR_IO_ERROR); 2255 } 2256 2257 the_end: 2258 if (saved_vm_running) { 2259 vm_start(); 2260 } 2261 } 2262 2263 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2264 { 2265 QEMUFile *f; 2266 QIOChannelFile *ioc; 2267 int ret; 2268 2269 /* Guest must be paused before loading the device state; the RAM state 2270 * will already have been loaded by xc 2271 */ 2272 if (runstate_is_running()) { 2273 error_setg(errp, "Cannot update device state while vm is running"); 2274 return; 2275 } 2276 vm_stop(RUN_STATE_RESTORE_VM); 2277 2278 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2279 if (!ioc) { 2280 return; 2281 } 2282 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 2283 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2284 2285 ret = qemu_loadvm_state(f); 2286 qemu_fclose(f); 2287 if (ret < 0) { 2288 error_setg(errp, QERR_IO_ERROR); 2289 } 2290 migration_incoming_state_destroy(); 2291 } 2292 2293 int load_snapshot(const char *name, Error **errp) 2294 { 2295 BlockDriverState *bs, *bs_vm_state; 2296 QEMUSnapshotInfo sn; 2297 QEMUFile *f; 2298 int ret; 2299 AioContext *aio_context; 2300 MigrationIncomingState *mis = migration_incoming_get_current(); 2301 2302 if (!bdrv_all_can_snapshot(&bs)) { 2303 error_setg(errp, 2304 "Device '%s' is writable but does not support snapshots", 2305 bdrv_get_device_name(bs)); 2306 return -ENOTSUP; 2307 } 2308 ret = bdrv_all_find_snapshot(name, &bs); 2309 if (ret < 0) { 2310 error_setg(errp, 2311 "Device '%s' does not have the requested snapshot '%s'", 2312 bdrv_get_device_name(bs), name); 2313 return ret; 2314 } 2315 2316 bs_vm_state = bdrv_all_find_vmstate_bs(); 2317 if (!bs_vm_state) { 2318 error_setg(errp, "No block device supports snapshots"); 2319 return -ENOTSUP; 2320 } 2321 aio_context = bdrv_get_aio_context(bs_vm_state); 2322 2323 /* Don't even try to load empty VM states */ 2324 aio_context_acquire(aio_context); 2325 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2326 aio_context_release(aio_context); 2327 if (ret < 0) { 2328 return ret; 2329 } else if (sn.vm_state_size == 0) { 2330 error_setg(errp, "This is a disk-only snapshot. Revert to it " 2331 " offline using qemu-img"); 2332 return -EINVAL; 2333 } 2334 2335 /* Flush all IO requests so they don't interfere with the new state. */ 2336 bdrv_drain_all_begin(); 2337 2338 ret = bdrv_all_goto_snapshot(name, &bs); 2339 if (ret < 0) { 2340 error_setg(errp, "Error %d while activating snapshot '%s' on '%s'", 2341 ret, name, bdrv_get_device_name(bs)); 2342 goto err_drain; 2343 } 2344 2345 /* restore the VM state */ 2346 f = qemu_fopen_bdrv(bs_vm_state, 0); 2347 if (!f) { 2348 error_setg(errp, "Could not open VM state file"); 2349 ret = -EINVAL; 2350 goto err_drain; 2351 } 2352 2353 qemu_system_reset(SHUTDOWN_CAUSE_NONE); 2354 mis->from_src_file = f; 2355 2356 aio_context_acquire(aio_context); 2357 ret = qemu_loadvm_state(f); 2358 migration_incoming_state_destroy(); 2359 aio_context_release(aio_context); 2360 2361 bdrv_drain_all_end(); 2362 2363 if (ret < 0) { 2364 error_setg(errp, "Error %d while loading VM state", ret); 2365 return ret; 2366 } 2367 2368 return 0; 2369 2370 err_drain: 2371 bdrv_drain_all_end(); 2372 return ret; 2373 } 2374 2375 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2376 { 2377 qemu_ram_set_idstr(mr->ram_block, 2378 memory_region_name(mr), dev); 2379 } 2380 2381 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2382 { 2383 qemu_ram_unset_idstr(mr->ram_block); 2384 } 2385 2386 void vmstate_register_ram_global(MemoryRegion *mr) 2387 { 2388 vmstate_register_ram(mr, NULL); 2389 } 2390 2391 bool vmstate_check_only_migratable(const VMStateDescription *vmsd) 2392 { 2393 /* check needed if --only-migratable is specified */ 2394 if (!migrate_get_current()->only_migratable) { 2395 return true; 2396 } 2397 2398 return !(vmsd && vmsd->unmigratable); 2399 } 2400