1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/boards.h" 31 #include "net/net.h" 32 #include "migration.h" 33 #include "migration/snapshot.h" 34 #include "migration-stats.h" 35 #include "migration/vmstate.h" 36 #include "migration/misc.h" 37 #include "migration/register.h" 38 #include "migration/global_state.h" 39 #include "migration/channel-block.h" 40 #include "ram.h" 41 #include "qemu-file.h" 42 #include "savevm.h" 43 #include "postcopy-ram.h" 44 #include "qapi/error.h" 45 #include "qapi/qapi-commands-migration.h" 46 #include "qapi/clone-visitor.h" 47 #include "qapi/qapi-builtin-visit.h" 48 #include "qapi/qmp/qerror.h" 49 #include "qemu/error-report.h" 50 #include "sysemu/cpus.h" 51 #include "exec/memory.h" 52 #include "exec/target_page.h" 53 #include "trace.h" 54 #include "qemu/iov.h" 55 #include "qemu/job.h" 56 #include "qemu/main-loop.h" 57 #include "block/snapshot.h" 58 #include "qemu/cutils.h" 59 #include "io/channel-buffer.h" 60 #include "io/channel-file.h" 61 #include "sysemu/replay.h" 62 #include "sysemu/runstate.h" 63 #include "sysemu/sysemu.h" 64 #include "sysemu/xen.h" 65 #include "migration/colo.h" 66 #include "qemu/bitmap.h" 67 #include "net/announce.h" 68 #include "qemu/yank.h" 69 #include "yank_functions.h" 70 #include "sysemu/qtest.h" 71 #include "options.h" 72 73 const unsigned int postcopy_ram_discard_version; 74 75 /* Subcommands for QEMU_VM_COMMAND */ 76 enum qemu_vm_cmd { 77 MIG_CMD_INVALID = 0, /* Must be 0 */ 78 MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */ 79 MIG_CMD_PING, /* Request a PONG on the RP */ 80 81 MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just 82 warn we might want to do PC */ 83 MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming 84 pages as it's running. */ 85 MIG_CMD_POSTCOPY_RUN, /* Start execution */ 86 87 MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that 88 were previously sent during 89 precopy but are dirty. */ 90 MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */ 91 MIG_CMD_ENABLE_COLO, /* Enable COLO */ 92 MIG_CMD_POSTCOPY_RESUME, /* resume postcopy on dest */ 93 MIG_CMD_RECV_BITMAP, /* Request for recved bitmap on dst */ 94 MIG_CMD_MAX 95 }; 96 97 #define MAX_VM_CMD_PACKAGED_SIZE UINT32_MAX 98 static struct mig_cmd_args { 99 ssize_t len; /* -1 = variable */ 100 const char *name; 101 } mig_cmd_args[] = { 102 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 103 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 104 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 105 [MIG_CMD_POSTCOPY_ADVISE] = { .len = -1, .name = "POSTCOPY_ADVISE" }, 106 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 107 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 108 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 109 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 110 [MIG_CMD_POSTCOPY_RESUME] = { .len = 0, .name = "POSTCOPY_RESUME" }, 111 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 112 [MIG_CMD_RECV_BITMAP] = { .len = -1, .name = "RECV_BITMAP" }, 113 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 114 }; 115 116 /* Note for MIG_CMD_POSTCOPY_ADVISE: 117 * The format of arguments is depending on postcopy mode: 118 * - postcopy RAM only 119 * uint64_t host page size 120 * uint64_t target page size 121 * 122 * - postcopy RAM and postcopy dirty bitmaps 123 * format is the same as for postcopy RAM only 124 * 125 * - postcopy dirty bitmaps only 126 * Nothing. Command length field is 0. 127 * 128 * Be careful: adding a new postcopy entity with some other parameters should 129 * not break format self-description ability. Good way is to introduce some 130 * generic extendable format with an exception for two old entities. 131 */ 132 133 /***********************************************************/ 134 /* savevm/loadvm support */ 135 136 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 137 { 138 if (is_writable) { 139 return qemu_file_new_output(QIO_CHANNEL(qio_channel_block_new(bs))); 140 } else { 141 return qemu_file_new_input(QIO_CHANNEL(qio_channel_block_new(bs))); 142 } 143 } 144 145 146 /* QEMUFile timer support. 147 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 148 */ 149 150 void timer_put(QEMUFile *f, QEMUTimer *ts) 151 { 152 uint64_t expire_time; 153 154 expire_time = timer_expire_time_ns(ts); 155 qemu_put_be64(f, expire_time); 156 } 157 158 void timer_get(QEMUFile *f, QEMUTimer *ts) 159 { 160 uint64_t expire_time; 161 162 expire_time = qemu_get_be64(f); 163 if (expire_time != -1) { 164 timer_mod_ns(ts, expire_time); 165 } else { 166 timer_del(ts); 167 } 168 } 169 170 171 /* VMState timer support. 172 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 173 */ 174 175 static int get_timer(QEMUFile *f, void *pv, size_t size, 176 const VMStateField *field) 177 { 178 QEMUTimer *v = pv; 179 timer_get(f, v); 180 return 0; 181 } 182 183 static int put_timer(QEMUFile *f, void *pv, size_t size, 184 const VMStateField *field, JSONWriter *vmdesc) 185 { 186 QEMUTimer *v = pv; 187 timer_put(f, v); 188 189 return 0; 190 } 191 192 const VMStateInfo vmstate_info_timer = { 193 .name = "timer", 194 .get = get_timer, 195 .put = put_timer, 196 }; 197 198 199 typedef struct CompatEntry { 200 char idstr[256]; 201 int instance_id; 202 } CompatEntry; 203 204 typedef struct SaveStateEntry { 205 QTAILQ_ENTRY(SaveStateEntry) entry; 206 char idstr[256]; 207 uint32_t instance_id; 208 int alias_id; 209 int version_id; 210 /* version id read from the stream */ 211 int load_version_id; 212 int section_id; 213 /* section id read from the stream */ 214 int load_section_id; 215 const SaveVMHandlers *ops; 216 const VMStateDescription *vmsd; 217 void *opaque; 218 CompatEntry *compat; 219 int is_ram; 220 } SaveStateEntry; 221 222 typedef struct SaveState { 223 QTAILQ_HEAD(, SaveStateEntry) handlers; 224 SaveStateEntry *handler_pri_head[MIG_PRI_MAX + 1]; 225 int global_section_id; 226 uint32_t len; 227 const char *name; 228 uint32_t target_page_bits; 229 uint32_t caps_count; 230 MigrationCapability *capabilities; 231 QemuUUID uuid; 232 } SaveState; 233 234 static SaveState savevm_state = { 235 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 236 .handler_pri_head = { [MIG_PRI_DEFAULT ... MIG_PRI_MAX] = NULL }, 237 .global_section_id = 0, 238 }; 239 240 static SaveStateEntry *find_se(const char *idstr, uint32_t instance_id); 241 242 static bool should_validate_capability(int capability) 243 { 244 assert(capability >= 0 && capability < MIGRATION_CAPABILITY__MAX); 245 /* Validate only new capabilities to keep compatibility. */ 246 switch (capability) { 247 case MIGRATION_CAPABILITY_X_IGNORE_SHARED: 248 return true; 249 default: 250 return false; 251 } 252 } 253 254 static uint32_t get_validatable_capabilities_count(void) 255 { 256 MigrationState *s = migrate_get_current(); 257 uint32_t result = 0; 258 int i; 259 for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) { 260 if (should_validate_capability(i) && s->capabilities[i]) { 261 result++; 262 } 263 } 264 return result; 265 } 266 267 static int configuration_pre_save(void *opaque) 268 { 269 SaveState *state = opaque; 270 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 271 MigrationState *s = migrate_get_current(); 272 int i, j; 273 274 state->len = strlen(current_name); 275 state->name = current_name; 276 state->target_page_bits = qemu_target_page_bits(); 277 278 state->caps_count = get_validatable_capabilities_count(); 279 state->capabilities = g_renew(MigrationCapability, state->capabilities, 280 state->caps_count); 281 for (i = j = 0; i < MIGRATION_CAPABILITY__MAX; i++) { 282 if (should_validate_capability(i) && s->capabilities[i]) { 283 state->capabilities[j++] = i; 284 } 285 } 286 state->uuid = qemu_uuid; 287 288 return 0; 289 } 290 291 static int configuration_post_save(void *opaque) 292 { 293 SaveState *state = opaque; 294 295 g_free(state->capabilities); 296 state->capabilities = NULL; 297 state->caps_count = 0; 298 return 0; 299 } 300 301 static int configuration_pre_load(void *opaque) 302 { 303 SaveState *state = opaque; 304 305 /* If there is no target-page-bits subsection it means the source 306 * predates the variable-target-page-bits support and is using the 307 * minimum possible value for this CPU. 308 */ 309 state->target_page_bits = qemu_target_page_bits_min(); 310 return 0; 311 } 312 313 static bool configuration_validate_capabilities(SaveState *state) 314 { 315 bool ret = true; 316 MigrationState *s = migrate_get_current(); 317 unsigned long *source_caps_bm; 318 int i; 319 320 source_caps_bm = bitmap_new(MIGRATION_CAPABILITY__MAX); 321 for (i = 0; i < state->caps_count; i++) { 322 MigrationCapability capability = state->capabilities[i]; 323 set_bit(capability, source_caps_bm); 324 } 325 326 for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) { 327 bool source_state, target_state; 328 if (!should_validate_capability(i)) { 329 continue; 330 } 331 source_state = test_bit(i, source_caps_bm); 332 target_state = s->capabilities[i]; 333 if (source_state != target_state) { 334 error_report("Capability %s is %s, but received capability is %s", 335 MigrationCapability_str(i), 336 target_state ? "on" : "off", 337 source_state ? "on" : "off"); 338 ret = false; 339 /* Don't break here to report all failed capabilities */ 340 } 341 } 342 343 g_free(source_caps_bm); 344 return ret; 345 } 346 347 static int configuration_post_load(void *opaque, int version_id) 348 { 349 SaveState *state = opaque; 350 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 351 int ret = 0; 352 353 if (strncmp(state->name, current_name, state->len) != 0) { 354 error_report("Machine type received is '%.*s' and local is '%s'", 355 (int) state->len, state->name, current_name); 356 ret = -EINVAL; 357 goto out; 358 } 359 360 if (state->target_page_bits != qemu_target_page_bits()) { 361 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 362 state->target_page_bits, qemu_target_page_bits()); 363 ret = -EINVAL; 364 goto out; 365 } 366 367 if (!configuration_validate_capabilities(state)) { 368 ret = -EINVAL; 369 goto out; 370 } 371 372 out: 373 g_free((void *)state->name); 374 state->name = NULL; 375 state->len = 0; 376 g_free(state->capabilities); 377 state->capabilities = NULL; 378 state->caps_count = 0; 379 380 return ret; 381 } 382 383 static int get_capability(QEMUFile *f, void *pv, size_t size, 384 const VMStateField *field) 385 { 386 MigrationCapability *capability = pv; 387 char capability_str[UINT8_MAX + 1]; 388 uint8_t len; 389 int i; 390 391 len = qemu_get_byte(f); 392 qemu_get_buffer(f, (uint8_t *)capability_str, len); 393 capability_str[len] = '\0'; 394 for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) { 395 if (!strcmp(MigrationCapability_str(i), capability_str)) { 396 *capability = i; 397 return 0; 398 } 399 } 400 error_report("Received unknown capability %s", capability_str); 401 return -EINVAL; 402 } 403 404 static int put_capability(QEMUFile *f, void *pv, size_t size, 405 const VMStateField *field, JSONWriter *vmdesc) 406 { 407 MigrationCapability *capability = pv; 408 const char *capability_str = MigrationCapability_str(*capability); 409 size_t len = strlen(capability_str); 410 assert(len <= UINT8_MAX); 411 412 qemu_put_byte(f, len); 413 qemu_put_buffer(f, (uint8_t *)capability_str, len); 414 return 0; 415 } 416 417 static const VMStateInfo vmstate_info_capability = { 418 .name = "capability", 419 .get = get_capability, 420 .put = put_capability, 421 }; 422 423 /* The target-page-bits subsection is present only if the 424 * target page size is not the same as the default (ie the 425 * minimum page size for a variable-page-size guest CPU). 426 * If it is present then it contains the actual target page 427 * bits for the machine, and migration will fail if the 428 * two ends don't agree about it. 429 */ 430 static bool vmstate_target_page_bits_needed(void *opaque) 431 { 432 return qemu_target_page_bits() 433 > qemu_target_page_bits_min(); 434 } 435 436 static const VMStateDescription vmstate_target_page_bits = { 437 .name = "configuration/target-page-bits", 438 .version_id = 1, 439 .minimum_version_id = 1, 440 .needed = vmstate_target_page_bits_needed, 441 .fields = (VMStateField[]) { 442 VMSTATE_UINT32(target_page_bits, SaveState), 443 VMSTATE_END_OF_LIST() 444 } 445 }; 446 447 static bool vmstate_capabilites_needed(void *opaque) 448 { 449 return get_validatable_capabilities_count() > 0; 450 } 451 452 static const VMStateDescription vmstate_capabilites = { 453 .name = "configuration/capabilities", 454 .version_id = 1, 455 .minimum_version_id = 1, 456 .needed = vmstate_capabilites_needed, 457 .fields = (VMStateField[]) { 458 VMSTATE_UINT32_V(caps_count, SaveState, 1), 459 VMSTATE_VARRAY_UINT32_ALLOC(capabilities, SaveState, caps_count, 1, 460 vmstate_info_capability, 461 MigrationCapability), 462 VMSTATE_END_OF_LIST() 463 } 464 }; 465 466 static bool vmstate_uuid_needed(void *opaque) 467 { 468 return qemu_uuid_set && migrate_validate_uuid(); 469 } 470 471 static int vmstate_uuid_post_load(void *opaque, int version_id) 472 { 473 SaveState *state = opaque; 474 char uuid_src[UUID_STR_LEN]; 475 char uuid_dst[UUID_STR_LEN]; 476 477 if (!qemu_uuid_set) { 478 /* 479 * It's warning because user might not know UUID in some cases, 480 * e.g. load an old snapshot 481 */ 482 qemu_uuid_unparse(&state->uuid, uuid_src); 483 warn_report("UUID is received %s, but local uuid isn't set", 484 uuid_src); 485 return 0; 486 } 487 if (!qemu_uuid_is_equal(&state->uuid, &qemu_uuid)) { 488 qemu_uuid_unparse(&state->uuid, uuid_src); 489 qemu_uuid_unparse(&qemu_uuid, uuid_dst); 490 error_report("UUID received is %s and local is %s", uuid_src, uuid_dst); 491 return -EINVAL; 492 } 493 return 0; 494 } 495 496 static const VMStateDescription vmstate_uuid = { 497 .name = "configuration/uuid", 498 .version_id = 1, 499 .minimum_version_id = 1, 500 .needed = vmstate_uuid_needed, 501 .post_load = vmstate_uuid_post_load, 502 .fields = (VMStateField[]) { 503 VMSTATE_UINT8_ARRAY_V(uuid.data, SaveState, sizeof(QemuUUID), 1), 504 VMSTATE_END_OF_LIST() 505 } 506 }; 507 508 static const VMStateDescription vmstate_configuration = { 509 .name = "configuration", 510 .version_id = 1, 511 .pre_load = configuration_pre_load, 512 .post_load = configuration_post_load, 513 .pre_save = configuration_pre_save, 514 .post_save = configuration_post_save, 515 .fields = (VMStateField[]) { 516 VMSTATE_UINT32(len, SaveState), 517 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len), 518 VMSTATE_END_OF_LIST() 519 }, 520 .subsections = (const VMStateDescription *[]) { 521 &vmstate_target_page_bits, 522 &vmstate_capabilites, 523 &vmstate_uuid, 524 NULL 525 } 526 }; 527 528 static void dump_vmstate_vmsd(FILE *out_file, 529 const VMStateDescription *vmsd, int indent, 530 bool is_subsection); 531 532 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 533 int indent) 534 { 535 fprintf(out_file, "%*s{\n", indent, ""); 536 indent += 2; 537 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 538 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 539 field->version_id); 540 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 541 field->field_exists ? "true" : "false"); 542 if (field->flags & VMS_ARRAY) { 543 fprintf(out_file, "%*s\"num\": %d,\n", indent, "", field->num); 544 } 545 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 546 if (field->vmsd != NULL) { 547 fprintf(out_file, ",\n"); 548 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 549 } 550 fprintf(out_file, "\n%*s}", indent - 2, ""); 551 } 552 553 static void dump_vmstate_vmss(FILE *out_file, 554 const VMStateDescription **subsection, 555 int indent) 556 { 557 if (*subsection != NULL) { 558 dump_vmstate_vmsd(out_file, *subsection, indent, true); 559 } 560 } 561 562 static void dump_vmstate_vmsd(FILE *out_file, 563 const VMStateDescription *vmsd, int indent, 564 bool is_subsection) 565 { 566 if (is_subsection) { 567 fprintf(out_file, "%*s{\n", indent, ""); 568 } else { 569 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 570 } 571 indent += 2; 572 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 573 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 574 vmsd->version_id); 575 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 576 vmsd->minimum_version_id); 577 if (vmsd->fields != NULL) { 578 const VMStateField *field = vmsd->fields; 579 bool first; 580 581 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 582 first = true; 583 while (field->name != NULL) { 584 if (field->flags & VMS_MUST_EXIST) { 585 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 586 field++; 587 continue; 588 } 589 if (!first) { 590 fprintf(out_file, ",\n"); 591 } 592 dump_vmstate_vmsf(out_file, field, indent + 2); 593 field++; 594 first = false; 595 } 596 assert(field->flags == VMS_END); 597 fprintf(out_file, "\n%*s]", indent, ""); 598 } 599 if (vmsd->subsections != NULL) { 600 const VMStateDescription **subsection = vmsd->subsections; 601 bool first; 602 603 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 604 first = true; 605 while (*subsection != NULL) { 606 if (!first) { 607 fprintf(out_file, ",\n"); 608 } 609 dump_vmstate_vmss(out_file, subsection, indent + 2); 610 subsection++; 611 first = false; 612 } 613 fprintf(out_file, "\n%*s]", indent, ""); 614 } 615 fprintf(out_file, "\n%*s}", indent - 2, ""); 616 } 617 618 static void dump_machine_type(FILE *out_file) 619 { 620 MachineClass *mc; 621 622 mc = MACHINE_GET_CLASS(current_machine); 623 624 fprintf(out_file, " \"vmschkmachine\": {\n"); 625 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 626 fprintf(out_file, " },\n"); 627 } 628 629 void dump_vmstate_json_to_file(FILE *out_file) 630 { 631 GSList *list, *elt; 632 bool first; 633 634 fprintf(out_file, "{\n"); 635 dump_machine_type(out_file); 636 637 first = true; 638 list = object_class_get_list(TYPE_DEVICE, true); 639 for (elt = list; elt; elt = elt->next) { 640 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 641 TYPE_DEVICE); 642 const char *name; 643 int indent = 2; 644 645 if (!dc->vmsd) { 646 continue; 647 } 648 649 if (!first) { 650 fprintf(out_file, ",\n"); 651 } 652 name = object_class_get_name(OBJECT_CLASS(dc)); 653 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 654 indent += 2; 655 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 656 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 657 dc->vmsd->version_id); 658 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 659 dc->vmsd->minimum_version_id); 660 661 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 662 663 fprintf(out_file, "\n%*s}", indent - 2, ""); 664 first = false; 665 } 666 fprintf(out_file, "\n}\n"); 667 fclose(out_file); 668 g_slist_free(list); 669 } 670 671 static uint32_t calculate_new_instance_id(const char *idstr) 672 { 673 SaveStateEntry *se; 674 uint32_t instance_id = 0; 675 676 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 677 if (strcmp(idstr, se->idstr) == 0 678 && instance_id <= se->instance_id) { 679 instance_id = se->instance_id + 1; 680 } 681 } 682 /* Make sure we never loop over without being noticed */ 683 assert(instance_id != VMSTATE_INSTANCE_ID_ANY); 684 return instance_id; 685 } 686 687 static int calculate_compat_instance_id(const char *idstr) 688 { 689 SaveStateEntry *se; 690 int instance_id = 0; 691 692 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 693 if (!se->compat) { 694 continue; 695 } 696 697 if (strcmp(idstr, se->compat->idstr) == 0 698 && instance_id <= se->compat->instance_id) { 699 instance_id = se->compat->instance_id + 1; 700 } 701 } 702 return instance_id; 703 } 704 705 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 706 { 707 if (se->vmsd) { 708 return se->vmsd->priority; 709 } 710 return MIG_PRI_DEFAULT; 711 } 712 713 static void savevm_state_handler_insert(SaveStateEntry *nse) 714 { 715 MigrationPriority priority = save_state_priority(nse); 716 SaveStateEntry *se; 717 int i; 718 719 assert(priority <= MIG_PRI_MAX); 720 721 /* 722 * This should never happen otherwise migration will probably fail 723 * silently somewhere because we can be wrongly applying one 724 * object properties upon another one. Bail out ASAP. 725 */ 726 if (find_se(nse->idstr, nse->instance_id)) { 727 error_report("%s: Detected duplicate SaveStateEntry: " 728 "id=%s, instance_id=0x%"PRIx32, __func__, 729 nse->idstr, nse->instance_id); 730 exit(EXIT_FAILURE); 731 } 732 733 for (i = priority - 1; i >= 0; i--) { 734 se = savevm_state.handler_pri_head[i]; 735 if (se != NULL) { 736 assert(save_state_priority(se) < priority); 737 break; 738 } 739 } 740 741 if (i >= 0) { 742 QTAILQ_INSERT_BEFORE(se, nse, entry); 743 } else { 744 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 745 } 746 747 if (savevm_state.handler_pri_head[priority] == NULL) { 748 savevm_state.handler_pri_head[priority] = nse; 749 } 750 } 751 752 static void savevm_state_handler_remove(SaveStateEntry *se) 753 { 754 SaveStateEntry *next; 755 MigrationPriority priority = save_state_priority(se); 756 757 if (se == savevm_state.handler_pri_head[priority]) { 758 next = QTAILQ_NEXT(se, entry); 759 if (next != NULL && save_state_priority(next) == priority) { 760 savevm_state.handler_pri_head[priority] = next; 761 } else { 762 savevm_state.handler_pri_head[priority] = NULL; 763 } 764 } 765 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 766 } 767 768 /* TODO: Individual devices generally have very little idea about the rest 769 of the system, so instance_id should be removed/replaced. 770 Meanwhile pass -1 as instance_id if you do not already have a clearly 771 distinguishing id for all instances of your device class. */ 772 int register_savevm_live(const char *idstr, 773 uint32_t instance_id, 774 int version_id, 775 const SaveVMHandlers *ops, 776 void *opaque) 777 { 778 SaveStateEntry *se; 779 780 se = g_new0(SaveStateEntry, 1); 781 se->version_id = version_id; 782 se->section_id = savevm_state.global_section_id++; 783 se->ops = ops; 784 se->opaque = opaque; 785 se->vmsd = NULL; 786 /* if this is a live_savem then set is_ram */ 787 if (ops->save_setup != NULL) { 788 se->is_ram = 1; 789 } 790 791 pstrcat(se->idstr, sizeof(se->idstr), idstr); 792 793 if (instance_id == VMSTATE_INSTANCE_ID_ANY) { 794 se->instance_id = calculate_new_instance_id(se->idstr); 795 } else { 796 se->instance_id = instance_id; 797 } 798 assert(!se->compat || se->instance_id == 0); 799 savevm_state_handler_insert(se); 800 return 0; 801 } 802 803 void unregister_savevm(VMStateIf *obj, const char *idstr, void *opaque) 804 { 805 SaveStateEntry *se, *new_se; 806 char id[256] = ""; 807 808 if (obj) { 809 char *oid = vmstate_if_get_id(obj); 810 if (oid) { 811 pstrcpy(id, sizeof(id), oid); 812 pstrcat(id, sizeof(id), "/"); 813 g_free(oid); 814 } 815 } 816 pstrcat(id, sizeof(id), idstr); 817 818 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 819 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 820 savevm_state_handler_remove(se); 821 g_free(se->compat); 822 g_free(se); 823 } 824 } 825 } 826 827 /* 828 * Perform some basic checks on vmsd's at registration 829 * time. 830 */ 831 static void vmstate_check(const VMStateDescription *vmsd) 832 { 833 const VMStateField *field = vmsd->fields; 834 const VMStateDescription **subsection = vmsd->subsections; 835 836 if (field) { 837 while (field->name) { 838 if (field->flags & (VMS_STRUCT | VMS_VSTRUCT)) { 839 /* Recurse to sub structures */ 840 vmstate_check(field->vmsd); 841 } 842 /* Carry on */ 843 field++; 844 } 845 /* Check for the end of field list canary */ 846 if (field->flags != VMS_END) { 847 error_report("VMSTATE not ending with VMS_END: %s", vmsd->name); 848 g_assert_not_reached(); 849 } 850 } 851 852 while (subsection && *subsection) { 853 /* 854 * The name of a subsection should start with the name of the 855 * current object. 856 */ 857 assert(!strncmp(vmsd->name, (*subsection)->name, strlen(vmsd->name))); 858 vmstate_check(*subsection); 859 subsection++; 860 } 861 } 862 863 /* 864 * See comment in hw/intc/xics.c:icp_realize() 865 * 866 * This function can be removed when 867 * pre_2_10_vmstate_register_dummy_icp() is removed. 868 */ 869 int vmstate_replace_hack_for_ppc(VMStateIf *obj, int instance_id, 870 const VMStateDescription *vmsd, 871 void *opaque) 872 { 873 SaveStateEntry *se = find_se(vmsd->name, instance_id); 874 875 if (se) { 876 savevm_state_handler_remove(se); 877 } 878 return vmstate_register(obj, instance_id, vmsd, opaque); 879 } 880 881 int vmstate_register_with_alias_id(VMStateIf *obj, uint32_t instance_id, 882 const VMStateDescription *vmsd, 883 void *opaque, int alias_id, 884 int required_for_version, 885 Error **errp) 886 { 887 SaveStateEntry *se; 888 889 /* If this triggers, alias support can be dropped for the vmsd. */ 890 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 891 892 se = g_new0(SaveStateEntry, 1); 893 se->version_id = vmsd->version_id; 894 se->section_id = savevm_state.global_section_id++; 895 se->opaque = opaque; 896 se->vmsd = vmsd; 897 se->alias_id = alias_id; 898 899 if (obj) { 900 char *id = vmstate_if_get_id(obj); 901 if (id) { 902 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 903 sizeof(se->idstr)) { 904 error_setg(errp, "Path too long for VMState (%s)", id); 905 g_free(id); 906 g_free(se); 907 908 return -1; 909 } 910 g_free(id); 911 912 se->compat = g_new0(CompatEntry, 1); 913 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 914 se->compat->instance_id = instance_id == VMSTATE_INSTANCE_ID_ANY ? 915 calculate_compat_instance_id(vmsd->name) : instance_id; 916 instance_id = VMSTATE_INSTANCE_ID_ANY; 917 } 918 } 919 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 920 921 if (instance_id == VMSTATE_INSTANCE_ID_ANY) { 922 se->instance_id = calculate_new_instance_id(se->idstr); 923 } else { 924 se->instance_id = instance_id; 925 } 926 927 /* Perform a recursive sanity check during the test runs */ 928 if (qtest_enabled()) { 929 vmstate_check(vmsd); 930 } 931 assert(!se->compat || se->instance_id == 0); 932 savevm_state_handler_insert(se); 933 return 0; 934 } 935 936 void vmstate_unregister(VMStateIf *obj, const VMStateDescription *vmsd, 937 void *opaque) 938 { 939 SaveStateEntry *se, *new_se; 940 941 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 942 if (se->vmsd == vmsd && se->opaque == opaque) { 943 savevm_state_handler_remove(se); 944 g_free(se->compat); 945 g_free(se); 946 } 947 } 948 } 949 950 static int vmstate_load(QEMUFile *f, SaveStateEntry *se) 951 { 952 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 953 if (!se->vmsd) { /* Old style */ 954 return se->ops->load_state(f, se->opaque, se->load_version_id); 955 } 956 return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id); 957 } 958 959 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, 960 JSONWriter *vmdesc) 961 { 962 uint64_t old_offset = qemu_file_transferred(f); 963 se->ops->save_state(f, se->opaque); 964 uint64_t size = qemu_file_transferred(f) - old_offset; 965 966 if (vmdesc) { 967 json_writer_int64(vmdesc, "size", size); 968 json_writer_start_array(vmdesc, "fields"); 969 json_writer_start_object(vmdesc, NULL); 970 json_writer_str(vmdesc, "name", "data"); 971 json_writer_int64(vmdesc, "size", size); 972 json_writer_str(vmdesc, "type", "buffer"); 973 json_writer_end_object(vmdesc); 974 json_writer_end_array(vmdesc); 975 } 976 } 977 978 /* 979 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 980 */ 981 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 982 uint8_t section_type) 983 { 984 qemu_put_byte(f, section_type); 985 qemu_put_be32(f, se->section_id); 986 987 if (section_type == QEMU_VM_SECTION_FULL || 988 section_type == QEMU_VM_SECTION_START) { 989 /* ID string */ 990 size_t len = strlen(se->idstr); 991 qemu_put_byte(f, len); 992 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 993 994 qemu_put_be32(f, se->instance_id); 995 qemu_put_be32(f, se->version_id); 996 } 997 } 998 999 /* 1000 * Write a footer onto device sections that catches cases misformatted device 1001 * sections. 1002 */ 1003 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 1004 { 1005 if (migrate_get_current()->send_section_footer) { 1006 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 1007 qemu_put_be32(f, se->section_id); 1008 } 1009 } 1010 1011 static int vmstate_save(QEMUFile *f, SaveStateEntry *se, JSONWriter *vmdesc) 1012 { 1013 int ret; 1014 Error *local_err = NULL; 1015 MigrationState *s = migrate_get_current(); 1016 1017 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1018 return 0; 1019 } 1020 if (se->vmsd && !vmstate_section_needed(se->vmsd, se->opaque)) { 1021 trace_savevm_section_skip(se->idstr, se->section_id); 1022 return 0; 1023 } 1024 1025 trace_savevm_section_start(se->idstr, se->section_id); 1026 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1027 if (vmdesc) { 1028 json_writer_start_object(vmdesc, NULL); 1029 json_writer_str(vmdesc, "name", se->idstr); 1030 json_writer_int64(vmdesc, "instance_id", se->instance_id); 1031 } 1032 1033 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 1034 if (!se->vmsd) { 1035 vmstate_save_old_style(f, se, vmdesc); 1036 } else { 1037 ret = vmstate_save_state_with_err(f, se->vmsd, se->opaque, vmdesc, &local_err); 1038 if (ret) { 1039 migrate_set_error(s, local_err); 1040 error_report_err(local_err); 1041 return ret; 1042 } 1043 } 1044 1045 trace_savevm_section_end(se->idstr, se->section_id, 0); 1046 save_section_footer(f, se); 1047 if (vmdesc) { 1048 json_writer_end_object(vmdesc); 1049 } 1050 return 0; 1051 } 1052 /** 1053 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 1054 * command and associated data. 1055 * 1056 * @f: File to send command on 1057 * @command: Command type to send 1058 * @len: Length of associated data 1059 * @data: Data associated with command. 1060 */ 1061 static void qemu_savevm_command_send(QEMUFile *f, 1062 enum qemu_vm_cmd command, 1063 uint16_t len, 1064 uint8_t *data) 1065 { 1066 trace_savevm_command_send(command, len); 1067 qemu_put_byte(f, QEMU_VM_COMMAND); 1068 qemu_put_be16(f, (uint16_t)command); 1069 qemu_put_be16(f, len); 1070 qemu_put_buffer(f, data, len); 1071 qemu_fflush(f); 1072 } 1073 1074 void qemu_savevm_send_colo_enable(QEMUFile *f) 1075 { 1076 trace_savevm_send_colo_enable(); 1077 qemu_savevm_command_send(f, MIG_CMD_ENABLE_COLO, 0, NULL); 1078 } 1079 1080 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 1081 { 1082 uint32_t buf; 1083 1084 trace_savevm_send_ping(value); 1085 buf = cpu_to_be32(value); 1086 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 1087 } 1088 1089 void qemu_savevm_send_open_return_path(QEMUFile *f) 1090 { 1091 trace_savevm_send_open_return_path(); 1092 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 1093 } 1094 1095 /* We have a buffer of data to send; we don't want that all to be loaded 1096 * by the command itself, so the command contains just the length of the 1097 * extra buffer that we then send straight after it. 1098 * TODO: Must be a better way to organise that 1099 * 1100 * Returns: 1101 * 0 on success 1102 * -ve on error 1103 */ 1104 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 1105 { 1106 uint32_t tmp; 1107 MigrationState *ms = migrate_get_current(); 1108 Error *local_err = NULL; 1109 1110 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 1111 error_setg(&local_err, "%s: Unreasonably large packaged state: %zu", 1112 __func__, len); 1113 migrate_set_error(ms, local_err); 1114 error_report_err(local_err); 1115 return -1; 1116 } 1117 1118 tmp = cpu_to_be32(len); 1119 1120 trace_qemu_savevm_send_packaged(); 1121 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 1122 1123 qemu_put_buffer(f, buf, len); 1124 1125 return 0; 1126 } 1127 1128 /* Send prior to any postcopy transfer */ 1129 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 1130 { 1131 if (migrate_postcopy_ram()) { 1132 uint64_t tmp[2]; 1133 tmp[0] = cpu_to_be64(ram_pagesize_summary()); 1134 tmp[1] = cpu_to_be64(qemu_target_page_size()); 1135 1136 trace_qemu_savevm_send_postcopy_advise(); 1137 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 1138 16, (uint8_t *)tmp); 1139 } else { 1140 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 0, NULL); 1141 } 1142 } 1143 1144 /* Sent prior to starting the destination running in postcopy, discard pages 1145 * that have already been sent but redirtied on the source. 1146 * CMD_POSTCOPY_RAM_DISCARD consist of: 1147 * byte version (0) 1148 * byte Length of name field (not including 0) 1149 * n x byte RAM block name 1150 * byte 0 terminator (just for safety) 1151 * n x Byte ranges within the named RAMBlock 1152 * be64 Start of the range 1153 * be64 Length 1154 * 1155 * name: RAMBlock name that these entries are part of 1156 * len: Number of page entries 1157 * start_list: 'len' addresses 1158 * length_list: 'len' addresses 1159 * 1160 */ 1161 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 1162 uint16_t len, 1163 uint64_t *start_list, 1164 uint64_t *length_list) 1165 { 1166 uint8_t *buf; 1167 uint16_t tmplen; 1168 uint16_t t; 1169 size_t name_len = strlen(name); 1170 1171 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 1172 assert(name_len < 256); 1173 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 1174 buf[0] = postcopy_ram_discard_version; 1175 buf[1] = name_len; 1176 memcpy(buf + 2, name, name_len); 1177 tmplen = 2 + name_len; 1178 buf[tmplen++] = '\0'; 1179 1180 for (t = 0; t < len; t++) { 1181 stq_be_p(buf + tmplen, start_list[t]); 1182 tmplen += 8; 1183 stq_be_p(buf + tmplen, length_list[t]); 1184 tmplen += 8; 1185 } 1186 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 1187 g_free(buf); 1188 } 1189 1190 /* Get the destination into a state where it can receive postcopy data. */ 1191 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 1192 { 1193 trace_savevm_send_postcopy_listen(); 1194 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 1195 } 1196 1197 /* Kick the destination into running */ 1198 void qemu_savevm_send_postcopy_run(QEMUFile *f) 1199 { 1200 trace_savevm_send_postcopy_run(); 1201 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 1202 } 1203 1204 void qemu_savevm_send_postcopy_resume(QEMUFile *f) 1205 { 1206 trace_savevm_send_postcopy_resume(); 1207 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RESUME, 0, NULL); 1208 } 1209 1210 void qemu_savevm_send_recv_bitmap(QEMUFile *f, char *block_name) 1211 { 1212 size_t len; 1213 char buf[256]; 1214 1215 trace_savevm_send_recv_bitmap(block_name); 1216 1217 buf[0] = len = strlen(block_name); 1218 memcpy(buf + 1, block_name, len); 1219 1220 qemu_savevm_command_send(f, MIG_CMD_RECV_BITMAP, len + 1, (uint8_t *)buf); 1221 } 1222 1223 bool qemu_savevm_state_blocked(Error **errp) 1224 { 1225 SaveStateEntry *se; 1226 1227 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1228 if (se->vmsd && se->vmsd->unmigratable) { 1229 error_setg(errp, "State blocked by non-migratable device '%s'", 1230 se->idstr); 1231 return true; 1232 } 1233 } 1234 return false; 1235 } 1236 1237 void qemu_savevm_non_migratable_list(strList **reasons) 1238 { 1239 SaveStateEntry *se; 1240 1241 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1242 if (se->vmsd && se->vmsd->unmigratable) { 1243 QAPI_LIST_PREPEND(*reasons, 1244 g_strdup_printf("non-migratable device: %s", 1245 se->idstr)); 1246 } 1247 } 1248 } 1249 1250 void qemu_savevm_state_header(QEMUFile *f) 1251 { 1252 MigrationState *s = migrate_get_current(); 1253 1254 s->vmdesc = json_writer_new(false); 1255 1256 trace_savevm_state_header(); 1257 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1258 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1259 1260 if (s->send_configuration) { 1261 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 1262 1263 /* 1264 * This starts the main json object and is paired with the 1265 * json_writer_end_object in 1266 * qemu_savevm_state_complete_precopy_non_iterable 1267 */ 1268 json_writer_start_object(s->vmdesc, NULL); 1269 1270 json_writer_start_object(s->vmdesc, "configuration"); 1271 vmstate_save_state(f, &vmstate_configuration, &savevm_state, s->vmdesc); 1272 json_writer_end_object(s->vmdesc); 1273 } 1274 } 1275 1276 bool qemu_savevm_state_guest_unplug_pending(void) 1277 { 1278 SaveStateEntry *se; 1279 1280 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1281 if (se->vmsd && se->vmsd->dev_unplug_pending && 1282 se->vmsd->dev_unplug_pending(se->opaque)) { 1283 return true; 1284 } 1285 } 1286 1287 return false; 1288 } 1289 1290 int qemu_savevm_state_prepare(Error **errp) 1291 { 1292 SaveStateEntry *se; 1293 int ret; 1294 1295 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1296 if (!se->ops || !se->ops->save_prepare) { 1297 continue; 1298 } 1299 if (se->ops->is_active) { 1300 if (!se->ops->is_active(se->opaque)) { 1301 continue; 1302 } 1303 } 1304 1305 ret = se->ops->save_prepare(se->opaque, errp); 1306 if (ret < 0) { 1307 return ret; 1308 } 1309 } 1310 1311 return 0; 1312 } 1313 1314 void qemu_savevm_state_setup(QEMUFile *f) 1315 { 1316 MigrationState *ms = migrate_get_current(); 1317 SaveStateEntry *se; 1318 Error *local_err = NULL; 1319 int ret; 1320 1321 json_writer_int64(ms->vmdesc, "page_size", qemu_target_page_size()); 1322 json_writer_start_array(ms->vmdesc, "devices"); 1323 1324 trace_savevm_state_setup(); 1325 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1326 if (se->vmsd && se->vmsd->early_setup) { 1327 ret = vmstate_save(f, se, ms->vmdesc); 1328 if (ret) { 1329 qemu_file_set_error(f, ret); 1330 break; 1331 } 1332 continue; 1333 } 1334 1335 if (!se->ops || !se->ops->save_setup) { 1336 continue; 1337 } 1338 if (se->ops->is_active) { 1339 if (!se->ops->is_active(se->opaque)) { 1340 continue; 1341 } 1342 } 1343 save_section_header(f, se, QEMU_VM_SECTION_START); 1344 1345 ret = se->ops->save_setup(f, se->opaque); 1346 save_section_footer(f, se); 1347 if (ret < 0) { 1348 qemu_file_set_error(f, ret); 1349 break; 1350 } 1351 } 1352 1353 if (precopy_notify(PRECOPY_NOTIFY_SETUP, &local_err)) { 1354 error_report_err(local_err); 1355 } 1356 } 1357 1358 int qemu_savevm_state_resume_prepare(MigrationState *s) 1359 { 1360 SaveStateEntry *se; 1361 int ret; 1362 1363 trace_savevm_state_resume_prepare(); 1364 1365 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1366 if (!se->ops || !se->ops->resume_prepare) { 1367 continue; 1368 } 1369 if (se->ops->is_active) { 1370 if (!se->ops->is_active(se->opaque)) { 1371 continue; 1372 } 1373 } 1374 ret = se->ops->resume_prepare(s, se->opaque); 1375 if (ret < 0) { 1376 return ret; 1377 } 1378 } 1379 1380 return 0; 1381 } 1382 1383 /* 1384 * this function has three return values: 1385 * negative: there was one error, and we have -errno. 1386 * 0 : We haven't finished, caller have to go again 1387 * 1 : We have finished, we can go to complete phase 1388 */ 1389 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 1390 { 1391 SaveStateEntry *se; 1392 int ret = 1; 1393 1394 trace_savevm_state_iterate(); 1395 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1396 if (!se->ops || !se->ops->save_live_iterate) { 1397 continue; 1398 } 1399 if (se->ops->is_active && 1400 !se->ops->is_active(se->opaque)) { 1401 continue; 1402 } 1403 if (se->ops->is_active_iterate && 1404 !se->ops->is_active_iterate(se->opaque)) { 1405 continue; 1406 } 1407 /* 1408 * In the postcopy phase, any device that doesn't know how to 1409 * do postcopy should have saved it's state in the _complete 1410 * call that's already run, it might get confused if we call 1411 * iterate afterwards. 1412 */ 1413 if (postcopy && 1414 !(se->ops->has_postcopy && se->ops->has_postcopy(se->opaque))) { 1415 continue; 1416 } 1417 if (migration_rate_exceeded(f)) { 1418 return 0; 1419 } 1420 trace_savevm_section_start(se->idstr, se->section_id); 1421 1422 save_section_header(f, se, QEMU_VM_SECTION_PART); 1423 1424 ret = se->ops->save_live_iterate(f, se->opaque); 1425 trace_savevm_section_end(se->idstr, se->section_id, ret); 1426 save_section_footer(f, se); 1427 1428 if (ret < 0) { 1429 error_report("failed to save SaveStateEntry with id(name): " 1430 "%d(%s): %d", 1431 se->section_id, se->idstr, ret); 1432 qemu_file_set_error(f, ret); 1433 } 1434 if (ret <= 0) { 1435 /* Do not proceed to the next vmstate before this one reported 1436 completion of the current stage. This serializes the migration 1437 and reduces the probability that a faster changing state is 1438 synchronized over and over again. */ 1439 break; 1440 } 1441 } 1442 return ret; 1443 } 1444 1445 static bool should_send_vmdesc(void) 1446 { 1447 MachineState *machine = MACHINE(qdev_get_machine()); 1448 bool in_postcopy = migration_in_postcopy(); 1449 return !machine->suppress_vmdesc && !in_postcopy; 1450 } 1451 1452 /* 1453 * Calls the save_live_complete_postcopy methods 1454 * causing the last few pages to be sent immediately and doing any associated 1455 * cleanup. 1456 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1457 * all the other devices, but that happens at the point we switch to postcopy. 1458 */ 1459 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1460 { 1461 SaveStateEntry *se; 1462 int ret; 1463 1464 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1465 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1466 continue; 1467 } 1468 if (se->ops->is_active) { 1469 if (!se->ops->is_active(se->opaque)) { 1470 continue; 1471 } 1472 } 1473 trace_savevm_section_start(se->idstr, se->section_id); 1474 /* Section type */ 1475 qemu_put_byte(f, QEMU_VM_SECTION_END); 1476 qemu_put_be32(f, se->section_id); 1477 1478 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1479 trace_savevm_section_end(se->idstr, se->section_id, ret); 1480 save_section_footer(f, se); 1481 if (ret < 0) { 1482 qemu_file_set_error(f, ret); 1483 return; 1484 } 1485 } 1486 1487 qemu_put_byte(f, QEMU_VM_EOF); 1488 qemu_fflush(f); 1489 } 1490 1491 static 1492 int qemu_savevm_state_complete_precopy_iterable(QEMUFile *f, bool in_postcopy) 1493 { 1494 int64_t start_ts_each, end_ts_each; 1495 SaveStateEntry *se; 1496 int ret; 1497 1498 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1499 if (!se->ops || 1500 (in_postcopy && se->ops->has_postcopy && 1501 se->ops->has_postcopy(se->opaque)) || 1502 !se->ops->save_live_complete_precopy) { 1503 continue; 1504 } 1505 1506 if (se->ops->is_active) { 1507 if (!se->ops->is_active(se->opaque)) { 1508 continue; 1509 } 1510 } 1511 1512 start_ts_each = qemu_clock_get_us(QEMU_CLOCK_REALTIME); 1513 trace_savevm_section_start(se->idstr, se->section_id); 1514 1515 save_section_header(f, se, QEMU_VM_SECTION_END); 1516 1517 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1518 trace_savevm_section_end(se->idstr, se->section_id, ret); 1519 save_section_footer(f, se); 1520 if (ret < 0) { 1521 qemu_file_set_error(f, ret); 1522 return -1; 1523 } 1524 end_ts_each = qemu_clock_get_us(QEMU_CLOCK_REALTIME); 1525 trace_vmstate_downtime_save("iterable", se->idstr, se->instance_id, 1526 end_ts_each - start_ts_each); 1527 } 1528 1529 trace_vmstate_downtime_checkpoint("src-iterable-saved"); 1530 1531 return 0; 1532 } 1533 1534 int qemu_savevm_state_complete_precopy_non_iterable(QEMUFile *f, 1535 bool in_postcopy, 1536 bool inactivate_disks) 1537 { 1538 MigrationState *ms = migrate_get_current(); 1539 int64_t start_ts_each, end_ts_each; 1540 JSONWriter *vmdesc = ms->vmdesc; 1541 int vmdesc_len; 1542 SaveStateEntry *se; 1543 int ret; 1544 1545 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1546 if (se->vmsd && se->vmsd->early_setup) { 1547 /* Already saved during qemu_savevm_state_setup(). */ 1548 continue; 1549 } 1550 1551 start_ts_each = qemu_clock_get_us(QEMU_CLOCK_REALTIME); 1552 1553 ret = vmstate_save(f, se, vmdesc); 1554 if (ret) { 1555 qemu_file_set_error(f, ret); 1556 return ret; 1557 } 1558 1559 end_ts_each = qemu_clock_get_us(QEMU_CLOCK_REALTIME); 1560 trace_vmstate_downtime_save("non-iterable", se->idstr, se->instance_id, 1561 end_ts_each - start_ts_each); 1562 } 1563 1564 if (inactivate_disks) { 1565 /* Inactivate before sending QEMU_VM_EOF so that the 1566 * bdrv_activate_all() on the other end won't fail. */ 1567 ret = bdrv_inactivate_all(); 1568 if (ret) { 1569 Error *local_err = NULL; 1570 error_setg(&local_err, "%s: bdrv_inactivate_all() failed (%d)", 1571 __func__, ret); 1572 migrate_set_error(ms, local_err); 1573 error_report_err(local_err); 1574 qemu_file_set_error(f, ret); 1575 return ret; 1576 } 1577 } 1578 if (!in_postcopy) { 1579 /* Postcopy stream will still be going */ 1580 qemu_put_byte(f, QEMU_VM_EOF); 1581 } 1582 1583 json_writer_end_array(vmdesc); 1584 json_writer_end_object(vmdesc); 1585 vmdesc_len = strlen(json_writer_get(vmdesc)); 1586 1587 if (should_send_vmdesc()) { 1588 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1589 qemu_put_be32(f, vmdesc_len); 1590 qemu_put_buffer(f, (uint8_t *)json_writer_get(vmdesc), vmdesc_len); 1591 } 1592 1593 /* Free it now to detect any inconsistencies. */ 1594 json_writer_free(vmdesc); 1595 ms->vmdesc = NULL; 1596 1597 trace_vmstate_downtime_checkpoint("src-non-iterable-saved"); 1598 1599 return 0; 1600 } 1601 1602 int qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only, 1603 bool inactivate_disks) 1604 { 1605 int ret; 1606 Error *local_err = NULL; 1607 bool in_postcopy = migration_in_postcopy(); 1608 1609 if (precopy_notify(PRECOPY_NOTIFY_COMPLETE, &local_err)) { 1610 error_report_err(local_err); 1611 } 1612 1613 trace_savevm_state_complete_precopy(); 1614 1615 cpu_synchronize_all_states(); 1616 1617 if (!in_postcopy || iterable_only) { 1618 ret = qemu_savevm_state_complete_precopy_iterable(f, in_postcopy); 1619 if (ret) { 1620 return ret; 1621 } 1622 } 1623 1624 if (iterable_only) { 1625 goto flush; 1626 } 1627 1628 ret = qemu_savevm_state_complete_precopy_non_iterable(f, in_postcopy, 1629 inactivate_disks); 1630 if (ret) { 1631 return ret; 1632 } 1633 1634 flush: 1635 return qemu_fflush(f); 1636 } 1637 1638 /* Give an estimate of the amount left to be transferred, 1639 * the result is split into the amount for units that can and 1640 * for units that can't do postcopy. 1641 */ 1642 void qemu_savevm_state_pending_estimate(uint64_t *must_precopy, 1643 uint64_t *can_postcopy) 1644 { 1645 SaveStateEntry *se; 1646 1647 *must_precopy = 0; 1648 *can_postcopy = 0; 1649 1650 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1651 if (!se->ops || !se->ops->state_pending_estimate) { 1652 continue; 1653 } 1654 if (se->ops->is_active) { 1655 if (!se->ops->is_active(se->opaque)) { 1656 continue; 1657 } 1658 } 1659 se->ops->state_pending_estimate(se->opaque, must_precopy, can_postcopy); 1660 } 1661 } 1662 1663 void qemu_savevm_state_pending_exact(uint64_t *must_precopy, 1664 uint64_t *can_postcopy) 1665 { 1666 SaveStateEntry *se; 1667 1668 *must_precopy = 0; 1669 *can_postcopy = 0; 1670 1671 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1672 if (!se->ops || !se->ops->state_pending_exact) { 1673 continue; 1674 } 1675 if (se->ops->is_active) { 1676 if (!se->ops->is_active(se->opaque)) { 1677 continue; 1678 } 1679 } 1680 se->ops->state_pending_exact(se->opaque, must_precopy, can_postcopy); 1681 } 1682 } 1683 1684 void qemu_savevm_state_cleanup(void) 1685 { 1686 SaveStateEntry *se; 1687 Error *local_err = NULL; 1688 1689 if (precopy_notify(PRECOPY_NOTIFY_CLEANUP, &local_err)) { 1690 error_report_err(local_err); 1691 } 1692 1693 trace_savevm_state_cleanup(); 1694 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1695 if (se->ops && se->ops->save_cleanup) { 1696 se->ops->save_cleanup(se->opaque); 1697 } 1698 } 1699 } 1700 1701 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1702 { 1703 int ret; 1704 MigrationState *ms = migrate_get_current(); 1705 MigrationStatus status; 1706 1707 if (migration_is_running(ms->state)) { 1708 error_setg(errp, QERR_MIGRATION_ACTIVE); 1709 return -EINVAL; 1710 } 1711 1712 if (migrate_block()) { 1713 error_setg(errp, "Block migration and snapshots are incompatible"); 1714 return -EINVAL; 1715 } 1716 1717 ret = migrate_init(ms, errp); 1718 if (ret) { 1719 return ret; 1720 } 1721 ms->to_dst_file = f; 1722 1723 qemu_savevm_state_header(f); 1724 qemu_savevm_state_setup(f); 1725 1726 while (qemu_file_get_error(f) == 0) { 1727 if (qemu_savevm_state_iterate(f, false) > 0) { 1728 break; 1729 } 1730 } 1731 1732 ret = qemu_file_get_error(f); 1733 if (ret == 0) { 1734 qemu_savevm_state_complete_precopy(f, false, false); 1735 ret = qemu_file_get_error(f); 1736 } 1737 qemu_savevm_state_cleanup(); 1738 if (ret != 0) { 1739 error_setg_errno(errp, -ret, "Error while writing VM state"); 1740 } 1741 1742 if (ret != 0) { 1743 status = MIGRATION_STATUS_FAILED; 1744 } else { 1745 status = MIGRATION_STATUS_COMPLETED; 1746 } 1747 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1748 1749 /* f is outer parameter, it should not stay in global migration state after 1750 * this function finished */ 1751 ms->to_dst_file = NULL; 1752 1753 return ret; 1754 } 1755 1756 void qemu_savevm_live_state(QEMUFile *f) 1757 { 1758 /* save QEMU_VM_SECTION_END section */ 1759 qemu_savevm_state_complete_precopy(f, true, false); 1760 qemu_put_byte(f, QEMU_VM_EOF); 1761 } 1762 1763 int qemu_save_device_state(QEMUFile *f) 1764 { 1765 SaveStateEntry *se; 1766 1767 if (!migration_in_colo_state()) { 1768 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1769 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1770 } 1771 cpu_synchronize_all_states(); 1772 1773 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1774 int ret; 1775 1776 if (se->is_ram) { 1777 continue; 1778 } 1779 ret = vmstate_save(f, se, NULL); 1780 if (ret) { 1781 return ret; 1782 } 1783 } 1784 1785 qemu_put_byte(f, QEMU_VM_EOF); 1786 1787 return qemu_file_get_error(f); 1788 } 1789 1790 static SaveStateEntry *find_se(const char *idstr, uint32_t instance_id) 1791 { 1792 SaveStateEntry *se; 1793 1794 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1795 if (!strcmp(se->idstr, idstr) && 1796 (instance_id == se->instance_id || 1797 instance_id == se->alias_id)) 1798 return se; 1799 /* Migrating from an older version? */ 1800 if (strstr(se->idstr, idstr) && se->compat) { 1801 if (!strcmp(se->compat->idstr, idstr) && 1802 (instance_id == se->compat->instance_id || 1803 instance_id == se->alias_id)) 1804 return se; 1805 } 1806 } 1807 return NULL; 1808 } 1809 1810 enum LoadVMExitCodes { 1811 /* Allow a command to quit all layers of nested loadvm loops */ 1812 LOADVM_QUIT = 1, 1813 }; 1814 1815 /* ------ incoming postcopy messages ------ */ 1816 /* 'advise' arrives before any transfers just to tell us that a postcopy 1817 * *might* happen - it might be skipped if precopy transferred everything 1818 * quickly. 1819 */ 1820 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis, 1821 uint16_t len) 1822 { 1823 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1824 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps; 1825 size_t page_size = qemu_target_page_size(); 1826 Error *local_err = NULL; 1827 1828 trace_loadvm_postcopy_handle_advise(); 1829 if (ps != POSTCOPY_INCOMING_NONE) { 1830 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1831 return -1; 1832 } 1833 1834 switch (len) { 1835 case 0: 1836 if (migrate_postcopy_ram()) { 1837 error_report("RAM postcopy is enabled but have 0 byte advise"); 1838 return -EINVAL; 1839 } 1840 return 0; 1841 case 8 + 8: 1842 if (!migrate_postcopy_ram()) { 1843 error_report("RAM postcopy is disabled but have 16 byte advise"); 1844 return -EINVAL; 1845 } 1846 break; 1847 default: 1848 error_report("CMD_POSTCOPY_ADVISE invalid length (%d)", len); 1849 return -EINVAL; 1850 } 1851 1852 if (!postcopy_ram_supported_by_host(mis, &local_err)) { 1853 error_report_err(local_err); 1854 postcopy_state_set(POSTCOPY_INCOMING_NONE); 1855 return -1; 1856 } 1857 1858 remote_pagesize_summary = qemu_get_be64(mis->from_src_file); 1859 local_pagesize_summary = ram_pagesize_summary(); 1860 1861 if (remote_pagesize_summary != local_pagesize_summary) { 1862 /* 1863 * This detects two potential causes of mismatch: 1864 * a) A mismatch in host page sizes 1865 * Some combinations of mismatch are probably possible but it gets 1866 * a bit more complicated. In particular we need to place whole 1867 * host pages on the dest at once, and we need to ensure that we 1868 * handle dirtying to make sure we never end up sending part of 1869 * a hostpage on it's own. 1870 * b) The use of different huge page sizes on source/destination 1871 * a more fine grain test is performed during RAM block migration 1872 * but this test here causes a nice early clear failure, and 1873 * also fails when passed to an older qemu that doesn't 1874 * do huge pages. 1875 */ 1876 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64 1877 " d=%" PRIx64 ")", 1878 remote_pagesize_summary, local_pagesize_summary); 1879 return -1; 1880 } 1881 1882 remote_tps = qemu_get_be64(mis->from_src_file); 1883 if (remote_tps != page_size) { 1884 /* 1885 * Again, some differences could be dealt with, but for now keep it 1886 * simple. 1887 */ 1888 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)", 1889 (int)remote_tps, page_size); 1890 return -1; 1891 } 1892 1893 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_ADVISE, &local_err)) { 1894 error_report_err(local_err); 1895 return -1; 1896 } 1897 1898 if (ram_postcopy_incoming_init(mis)) { 1899 return -1; 1900 } 1901 1902 return 0; 1903 } 1904 1905 /* After postcopy we will be told to throw some pages away since they're 1906 * dirty and will have to be demand fetched. Must happen before CPU is 1907 * started. 1908 * There can be 0..many of these messages, each encoding multiple pages. 1909 */ 1910 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1911 uint16_t len) 1912 { 1913 int tmp; 1914 char ramid[256]; 1915 PostcopyState ps = postcopy_state_get(); 1916 1917 trace_loadvm_postcopy_ram_handle_discard(); 1918 1919 switch (ps) { 1920 case POSTCOPY_INCOMING_ADVISE: 1921 /* 1st discard */ 1922 tmp = postcopy_ram_prepare_discard(mis); 1923 if (tmp) { 1924 return tmp; 1925 } 1926 break; 1927 1928 case POSTCOPY_INCOMING_DISCARD: 1929 /* Expected state */ 1930 break; 1931 1932 default: 1933 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1934 ps); 1935 return -1; 1936 } 1937 /* We're expecting a 1938 * Version (0) 1939 * a RAM ID string (length byte, name, 0 term) 1940 * then at least 1 16 byte chunk 1941 */ 1942 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1943 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1944 return -1; 1945 } 1946 1947 tmp = qemu_get_byte(mis->from_src_file); 1948 if (tmp != postcopy_ram_discard_version) { 1949 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1950 return -1; 1951 } 1952 1953 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1954 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1955 return -1; 1956 } 1957 tmp = qemu_get_byte(mis->from_src_file); 1958 if (tmp != 0) { 1959 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1960 return -1; 1961 } 1962 1963 len -= 3 + strlen(ramid); 1964 if (len % 16) { 1965 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1966 return -1; 1967 } 1968 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1969 while (len) { 1970 uint64_t start_addr, block_length; 1971 start_addr = qemu_get_be64(mis->from_src_file); 1972 block_length = qemu_get_be64(mis->from_src_file); 1973 1974 len -= 16; 1975 int ret = ram_discard_range(ramid, start_addr, block_length); 1976 if (ret) { 1977 return ret; 1978 } 1979 } 1980 trace_loadvm_postcopy_ram_handle_discard_end(); 1981 1982 return 0; 1983 } 1984 1985 /* 1986 * Triggered by a postcopy_listen command; this thread takes over reading 1987 * the input stream, leaving the main thread free to carry on loading the rest 1988 * of the device state (from RAM). 1989 * (TODO:This could do with being in a postcopy file - but there again it's 1990 * just another input loop, not that postcopy specific) 1991 */ 1992 static void *postcopy_ram_listen_thread(void *opaque) 1993 { 1994 MigrationIncomingState *mis = migration_incoming_get_current(); 1995 QEMUFile *f = mis->from_src_file; 1996 int load_res; 1997 MigrationState *migr = migrate_get_current(); 1998 1999 object_ref(OBJECT(migr)); 2000 2001 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 2002 MIGRATION_STATUS_POSTCOPY_ACTIVE); 2003 qemu_sem_post(&mis->thread_sync_sem); 2004 trace_postcopy_ram_listen_thread_start(); 2005 2006 rcu_register_thread(); 2007 /* 2008 * Because we're a thread and not a coroutine we can't yield 2009 * in qemu_file, and thus we must be blocking now. 2010 */ 2011 qemu_file_set_blocking(f, true); 2012 load_res = qemu_loadvm_state_main(f, mis); 2013 2014 /* 2015 * This is tricky, but, mis->from_src_file can change after it 2016 * returns, when postcopy recovery happened. In the future, we may 2017 * want a wrapper for the QEMUFile handle. 2018 */ 2019 f = mis->from_src_file; 2020 2021 /* And non-blocking again so we don't block in any cleanup */ 2022 qemu_file_set_blocking(f, false); 2023 2024 trace_postcopy_ram_listen_thread_exit(); 2025 if (load_res < 0) { 2026 qemu_file_set_error(f, load_res); 2027 dirty_bitmap_mig_cancel_incoming(); 2028 if (postcopy_state_get() == POSTCOPY_INCOMING_RUNNING && 2029 !migrate_postcopy_ram() && migrate_dirty_bitmaps()) 2030 { 2031 error_report("%s: loadvm failed during postcopy: %d. All states " 2032 "are migrated except dirty bitmaps. Some dirty " 2033 "bitmaps may be lost, and present migrated dirty " 2034 "bitmaps are correctly migrated and valid.", 2035 __func__, load_res); 2036 load_res = 0; /* prevent further exit() */ 2037 } else { 2038 error_report("%s: loadvm failed: %d", __func__, load_res); 2039 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 2040 MIGRATION_STATUS_FAILED); 2041 } 2042 } 2043 if (load_res >= 0) { 2044 /* 2045 * This looks good, but it's possible that the device loading in the 2046 * main thread hasn't finished yet, and so we might not be in 'RUN' 2047 * state yet; wait for the end of the main thread. 2048 */ 2049 qemu_event_wait(&mis->main_thread_load_event); 2050 } 2051 postcopy_ram_incoming_cleanup(mis); 2052 2053 if (load_res < 0) { 2054 /* 2055 * If something went wrong then we have a bad state so exit; 2056 * depending how far we got it might be possible at this point 2057 * to leave the guest running and fire MCEs for pages that never 2058 * arrived as a desperate recovery step. 2059 */ 2060 rcu_unregister_thread(); 2061 exit(EXIT_FAILURE); 2062 } 2063 2064 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 2065 MIGRATION_STATUS_COMPLETED); 2066 /* 2067 * If everything has worked fine, then the main thread has waited 2068 * for us to start, and we're the last use of the mis. 2069 * (If something broke then qemu will have to exit anyway since it's 2070 * got a bad migration state). 2071 */ 2072 migration_incoming_state_destroy(); 2073 qemu_loadvm_state_cleanup(); 2074 2075 rcu_unregister_thread(); 2076 mis->have_listen_thread = false; 2077 postcopy_state_set(POSTCOPY_INCOMING_END); 2078 2079 object_unref(OBJECT(migr)); 2080 2081 return NULL; 2082 } 2083 2084 /* After this message we must be able to immediately receive postcopy data */ 2085 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 2086 { 2087 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 2088 Error *local_err = NULL; 2089 2090 trace_loadvm_postcopy_handle_listen("enter"); 2091 2092 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 2093 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 2094 return -1; 2095 } 2096 if (ps == POSTCOPY_INCOMING_ADVISE) { 2097 /* 2098 * A rare case, we entered listen without having to do any discards, 2099 * so do the setup that's normally done at the time of the 1st discard. 2100 */ 2101 if (migrate_postcopy_ram()) { 2102 postcopy_ram_prepare_discard(mis); 2103 } 2104 } 2105 2106 trace_loadvm_postcopy_handle_listen("after discard"); 2107 2108 /* 2109 * Sensitise RAM - can now generate requests for blocks that don't exist 2110 * However, at this point the CPU shouldn't be running, and the IO 2111 * shouldn't be doing anything yet so don't actually expect requests 2112 */ 2113 if (migrate_postcopy_ram()) { 2114 if (postcopy_ram_incoming_setup(mis)) { 2115 postcopy_ram_incoming_cleanup(mis); 2116 return -1; 2117 } 2118 } 2119 2120 trace_loadvm_postcopy_handle_listen("after uffd"); 2121 2122 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_LISTEN, &local_err)) { 2123 error_report_err(local_err); 2124 return -1; 2125 } 2126 2127 mis->have_listen_thread = true; 2128 postcopy_thread_create(mis, &mis->listen_thread, "postcopy/listen", 2129 postcopy_ram_listen_thread, QEMU_THREAD_DETACHED); 2130 trace_loadvm_postcopy_handle_listen("return"); 2131 2132 return 0; 2133 } 2134 2135 static void loadvm_postcopy_handle_run_bh(void *opaque) 2136 { 2137 Error *local_err = NULL; 2138 MigrationIncomingState *mis = opaque; 2139 2140 trace_vmstate_downtime_checkpoint("dst-postcopy-bh-enter"); 2141 2142 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 2143 * in migration.c 2144 */ 2145 cpu_synchronize_all_post_init(); 2146 2147 trace_vmstate_downtime_checkpoint("dst-postcopy-bh-cpu-synced"); 2148 2149 qemu_announce_self(&mis->announce_timer, migrate_announce_params()); 2150 2151 trace_vmstate_downtime_checkpoint("dst-postcopy-bh-announced"); 2152 2153 /* Make sure all file formats throw away their mutable metadata. 2154 * If we get an error here, just don't restart the VM yet. */ 2155 bdrv_activate_all(&local_err); 2156 if (local_err) { 2157 error_report_err(local_err); 2158 local_err = NULL; 2159 autostart = false; 2160 } 2161 2162 trace_vmstate_downtime_checkpoint("dst-postcopy-bh-cache-invalidated"); 2163 2164 dirty_bitmap_mig_before_vm_start(); 2165 2166 if (autostart) { 2167 /* Hold onto your hats, starting the CPU */ 2168 vm_start(); 2169 } else { 2170 /* leave it paused and let management decide when to start the CPU */ 2171 runstate_set(RUN_STATE_PAUSED); 2172 } 2173 2174 qemu_bh_delete(mis->bh); 2175 2176 trace_vmstate_downtime_checkpoint("dst-postcopy-bh-vm-started"); 2177 } 2178 2179 /* After all discards we can start running and asking for pages */ 2180 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 2181 { 2182 PostcopyState ps = postcopy_state_get(); 2183 2184 trace_loadvm_postcopy_handle_run(); 2185 if (ps != POSTCOPY_INCOMING_LISTENING) { 2186 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 2187 return -1; 2188 } 2189 2190 postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 2191 mis->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, mis); 2192 qemu_bh_schedule(mis->bh); 2193 2194 /* We need to finish reading the stream from the package 2195 * and also stop reading anything more from the stream that loaded the 2196 * package (since it's now being read by the listener thread). 2197 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 2198 */ 2199 return LOADVM_QUIT; 2200 } 2201 2202 /* We must be with page_request_mutex held */ 2203 static gboolean postcopy_sync_page_req(gpointer key, gpointer value, 2204 gpointer data) 2205 { 2206 MigrationIncomingState *mis = data; 2207 void *host_addr = (void *) key; 2208 ram_addr_t rb_offset; 2209 RAMBlock *rb; 2210 int ret; 2211 2212 rb = qemu_ram_block_from_host(host_addr, true, &rb_offset); 2213 if (!rb) { 2214 /* 2215 * This should _never_ happen. However be nice for a migrating VM to 2216 * not crash/assert. Post an error (note: intended to not use *_once 2217 * because we do want to see all the illegal addresses; and this can 2218 * never be triggered by the guest so we're safe) and move on next. 2219 */ 2220 error_report("%s: illegal host addr %p", __func__, host_addr); 2221 /* Try the next entry */ 2222 return FALSE; 2223 } 2224 2225 ret = migrate_send_rp_message_req_pages(mis, rb, rb_offset); 2226 if (ret) { 2227 /* Please refer to above comment. */ 2228 error_report("%s: send rp message failed for addr %p", 2229 __func__, host_addr); 2230 return FALSE; 2231 } 2232 2233 trace_postcopy_page_req_sync(host_addr); 2234 2235 return FALSE; 2236 } 2237 2238 static void migrate_send_rp_req_pages_pending(MigrationIncomingState *mis) 2239 { 2240 WITH_QEMU_LOCK_GUARD(&mis->page_request_mutex) { 2241 g_tree_foreach(mis->page_requested, postcopy_sync_page_req, mis); 2242 } 2243 } 2244 2245 static int loadvm_postcopy_handle_resume(MigrationIncomingState *mis) 2246 { 2247 if (mis->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 2248 error_report("%s: illegal resume received", __func__); 2249 /* Don't fail the load, only for this. */ 2250 return 0; 2251 } 2252 2253 /* 2254 * Reset the last_rb before we resend any page req to source again, since 2255 * the source should have it reset already. 2256 */ 2257 mis->last_rb = NULL; 2258 2259 /* 2260 * This means source VM is ready to resume the postcopy migration. 2261 */ 2262 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_RECOVER, 2263 MIGRATION_STATUS_POSTCOPY_ACTIVE); 2264 2265 trace_loadvm_postcopy_handle_resume(); 2266 2267 /* Tell source that "we are ready" */ 2268 migrate_send_rp_resume_ack(mis, MIGRATION_RESUME_ACK_VALUE); 2269 2270 /* 2271 * After a postcopy recovery, the source should have lost the postcopy 2272 * queue, or potentially the requested pages could have been lost during 2273 * the network down phase. Let's re-sync with the source VM by re-sending 2274 * all the pending pages that we eagerly need, so these threads won't get 2275 * blocked too long due to the recovery. 2276 * 2277 * Without this procedure, the faulted destination VM threads (waiting for 2278 * page requests right before the postcopy is interrupted) can keep hanging 2279 * until the pages are sent by the source during the background copying of 2280 * pages, or another thread faulted on the same address accidentally. 2281 */ 2282 migrate_send_rp_req_pages_pending(mis); 2283 2284 /* 2285 * It's time to switch state and release the fault thread to continue 2286 * service page faults. Note that this should be explicitly after the 2287 * above call to migrate_send_rp_req_pages_pending(). In short: 2288 * migrate_send_rp_message_req_pages() is not thread safe, yet. 2289 */ 2290 qemu_sem_post(&mis->postcopy_pause_sem_fault); 2291 2292 if (migrate_postcopy_preempt()) { 2293 /* 2294 * The preempt channel will be created in async manner, now let's 2295 * wait for it and make sure it's created. 2296 */ 2297 qemu_sem_wait(&mis->postcopy_qemufile_dst_done); 2298 assert(mis->postcopy_qemufile_dst); 2299 /* Kick the fast ram load thread too */ 2300 qemu_sem_post(&mis->postcopy_pause_sem_fast_load); 2301 } 2302 2303 return 0; 2304 } 2305 2306 /** 2307 * Immediately following this command is a blob of data containing an embedded 2308 * chunk of migration stream; read it and load it. 2309 * 2310 * @mis: Incoming state 2311 * @length: Length of packaged data to read 2312 * 2313 * Returns: Negative values on error 2314 * 2315 */ 2316 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 2317 { 2318 int ret; 2319 size_t length; 2320 QIOChannelBuffer *bioc; 2321 2322 length = qemu_get_be32(mis->from_src_file); 2323 trace_loadvm_handle_cmd_packaged(length); 2324 2325 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 2326 error_report("Unreasonably large packaged state: %zu", length); 2327 return -1; 2328 } 2329 2330 bioc = qio_channel_buffer_new(length); 2331 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 2332 ret = qemu_get_buffer(mis->from_src_file, 2333 bioc->data, 2334 length); 2335 if (ret != length) { 2336 object_unref(OBJECT(bioc)); 2337 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 2338 ret, length); 2339 return (ret < 0) ? ret : -EAGAIN; 2340 } 2341 bioc->usage += length; 2342 trace_loadvm_handle_cmd_packaged_received(ret); 2343 2344 QEMUFile *packf = qemu_file_new_input(QIO_CHANNEL(bioc)); 2345 2346 ret = qemu_loadvm_state_main(packf, mis); 2347 trace_loadvm_handle_cmd_packaged_main(ret); 2348 qemu_fclose(packf); 2349 object_unref(OBJECT(bioc)); 2350 2351 return ret; 2352 } 2353 2354 /* 2355 * Handle request that source requests for recved_bitmap on 2356 * destination. Payload format: 2357 * 2358 * len (1 byte) + ramblock_name (<255 bytes) 2359 */ 2360 static int loadvm_handle_recv_bitmap(MigrationIncomingState *mis, 2361 uint16_t len) 2362 { 2363 QEMUFile *file = mis->from_src_file; 2364 RAMBlock *rb; 2365 char block_name[256]; 2366 size_t cnt; 2367 2368 cnt = qemu_get_counted_string(file, block_name); 2369 if (!cnt) { 2370 error_report("%s: failed to read block name", __func__); 2371 return -EINVAL; 2372 } 2373 2374 /* Validate before using the data */ 2375 if (qemu_file_get_error(file)) { 2376 return qemu_file_get_error(file); 2377 } 2378 2379 if (len != cnt + 1) { 2380 error_report("%s: invalid payload length (%d)", __func__, len); 2381 return -EINVAL; 2382 } 2383 2384 rb = qemu_ram_block_by_name(block_name); 2385 if (!rb) { 2386 error_report("%s: block '%s' not found", __func__, block_name); 2387 return -EINVAL; 2388 } 2389 2390 migrate_send_rp_recv_bitmap(mis, block_name); 2391 2392 trace_loadvm_handle_recv_bitmap(block_name); 2393 2394 return 0; 2395 } 2396 2397 static int loadvm_process_enable_colo(MigrationIncomingState *mis) 2398 { 2399 int ret = migration_incoming_enable_colo(); 2400 2401 if (!ret) { 2402 ret = colo_init_ram_cache(); 2403 if (ret) { 2404 migration_incoming_disable_colo(); 2405 } 2406 } 2407 return ret; 2408 } 2409 2410 /* 2411 * Process an incoming 'QEMU_VM_COMMAND' 2412 * 0 just a normal return 2413 * LOADVM_QUIT All good, but exit the loop 2414 * <0 Error 2415 */ 2416 static int loadvm_process_command(QEMUFile *f) 2417 { 2418 MigrationIncomingState *mis = migration_incoming_get_current(); 2419 uint16_t cmd; 2420 uint16_t len; 2421 uint32_t tmp32; 2422 2423 cmd = qemu_get_be16(f); 2424 len = qemu_get_be16(f); 2425 2426 /* Check validity before continue processing of cmds */ 2427 if (qemu_file_get_error(f)) { 2428 return qemu_file_get_error(f); 2429 } 2430 2431 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 2432 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 2433 return -EINVAL; 2434 } 2435 2436 trace_loadvm_process_command(mig_cmd_args[cmd].name, len); 2437 2438 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 2439 error_report("%s received with bad length - expecting %zu, got %d", 2440 mig_cmd_args[cmd].name, 2441 (size_t)mig_cmd_args[cmd].len, len); 2442 return -ERANGE; 2443 } 2444 2445 switch (cmd) { 2446 case MIG_CMD_OPEN_RETURN_PATH: 2447 if (mis->to_src_file) { 2448 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 2449 /* Not really a problem, so don't give up */ 2450 return 0; 2451 } 2452 mis->to_src_file = qemu_file_get_return_path(f); 2453 if (!mis->to_src_file) { 2454 error_report("CMD_OPEN_RETURN_PATH failed"); 2455 return -1; 2456 } 2457 2458 /* 2459 * Switchover ack is enabled but no device uses it, so send an ACK to 2460 * source that it's OK to switchover. Do it here, after return path has 2461 * been created. 2462 */ 2463 if (migrate_switchover_ack() && !mis->switchover_ack_pending_num) { 2464 int ret = migrate_send_rp_switchover_ack(mis); 2465 if (ret) { 2466 error_report( 2467 "Could not send switchover ack RP MSG, err %d (%s)", ret, 2468 strerror(-ret)); 2469 return ret; 2470 } 2471 } 2472 break; 2473 2474 case MIG_CMD_PING: 2475 tmp32 = qemu_get_be32(f); 2476 trace_loadvm_process_command_ping(tmp32); 2477 if (!mis->to_src_file) { 2478 error_report("CMD_PING (0x%x) received with no return path", 2479 tmp32); 2480 return -1; 2481 } 2482 migrate_send_rp_pong(mis, tmp32); 2483 break; 2484 2485 case MIG_CMD_PACKAGED: 2486 return loadvm_handle_cmd_packaged(mis); 2487 2488 case MIG_CMD_POSTCOPY_ADVISE: 2489 return loadvm_postcopy_handle_advise(mis, len); 2490 2491 case MIG_CMD_POSTCOPY_LISTEN: 2492 return loadvm_postcopy_handle_listen(mis); 2493 2494 case MIG_CMD_POSTCOPY_RUN: 2495 return loadvm_postcopy_handle_run(mis); 2496 2497 case MIG_CMD_POSTCOPY_RAM_DISCARD: 2498 return loadvm_postcopy_ram_handle_discard(mis, len); 2499 2500 case MIG_CMD_POSTCOPY_RESUME: 2501 return loadvm_postcopy_handle_resume(mis); 2502 2503 case MIG_CMD_RECV_BITMAP: 2504 return loadvm_handle_recv_bitmap(mis, len); 2505 2506 case MIG_CMD_ENABLE_COLO: 2507 return loadvm_process_enable_colo(mis); 2508 } 2509 2510 return 0; 2511 } 2512 2513 /* 2514 * Read a footer off the wire and check that it matches the expected section 2515 * 2516 * Returns: true if the footer was good 2517 * false if there is a problem (and calls error_report to say why) 2518 */ 2519 static bool check_section_footer(QEMUFile *f, SaveStateEntry *se) 2520 { 2521 int ret; 2522 uint8_t read_mark; 2523 uint32_t read_section_id; 2524 2525 if (!migrate_get_current()->send_section_footer) { 2526 /* No footer to check */ 2527 return true; 2528 } 2529 2530 read_mark = qemu_get_byte(f); 2531 2532 ret = qemu_file_get_error(f); 2533 if (ret) { 2534 error_report("%s: Read section footer failed: %d", 2535 __func__, ret); 2536 return false; 2537 } 2538 2539 if (read_mark != QEMU_VM_SECTION_FOOTER) { 2540 error_report("Missing section footer for %s", se->idstr); 2541 return false; 2542 } 2543 2544 read_section_id = qemu_get_be32(f); 2545 if (read_section_id != se->load_section_id) { 2546 error_report("Mismatched section id in footer for %s -" 2547 " read 0x%x expected 0x%x", 2548 se->idstr, read_section_id, se->load_section_id); 2549 return false; 2550 } 2551 2552 /* All good */ 2553 return true; 2554 } 2555 2556 static int 2557 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis, 2558 uint8_t type) 2559 { 2560 bool trace_downtime = (type == QEMU_VM_SECTION_FULL); 2561 uint32_t instance_id, version_id, section_id; 2562 int64_t start_ts, end_ts; 2563 SaveStateEntry *se; 2564 char idstr[256]; 2565 int ret; 2566 2567 /* Read section start */ 2568 section_id = qemu_get_be32(f); 2569 if (!qemu_get_counted_string(f, idstr)) { 2570 error_report("Unable to read ID string for section %u", 2571 section_id); 2572 return -EINVAL; 2573 } 2574 instance_id = qemu_get_be32(f); 2575 version_id = qemu_get_be32(f); 2576 2577 ret = qemu_file_get_error(f); 2578 if (ret) { 2579 error_report("%s: Failed to read instance/version ID: %d", 2580 __func__, ret); 2581 return ret; 2582 } 2583 2584 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 2585 instance_id, version_id); 2586 /* Find savevm section */ 2587 se = find_se(idstr, instance_id); 2588 if (se == NULL) { 2589 error_report("Unknown savevm section or instance '%s' %"PRIu32". " 2590 "Make sure that your current VM setup matches your " 2591 "saved VM setup, including any hotplugged devices", 2592 idstr, instance_id); 2593 return -EINVAL; 2594 } 2595 2596 /* Validate version */ 2597 if (version_id > se->version_id) { 2598 error_report("savevm: unsupported version %d for '%s' v%d", 2599 version_id, idstr, se->version_id); 2600 return -EINVAL; 2601 } 2602 se->load_version_id = version_id; 2603 se->load_section_id = section_id; 2604 2605 /* Validate if it is a device's state */ 2606 if (xen_enabled() && se->is_ram) { 2607 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 2608 return -EINVAL; 2609 } 2610 2611 if (trace_downtime) { 2612 start_ts = qemu_clock_get_us(QEMU_CLOCK_REALTIME); 2613 } 2614 2615 ret = vmstate_load(f, se); 2616 if (ret < 0) { 2617 error_report("error while loading state for instance 0x%"PRIx32" of" 2618 " device '%s'", instance_id, idstr); 2619 return ret; 2620 } 2621 2622 if (trace_downtime) { 2623 end_ts = qemu_clock_get_us(QEMU_CLOCK_REALTIME); 2624 trace_vmstate_downtime_load("non-iterable", se->idstr, 2625 se->instance_id, end_ts - start_ts); 2626 } 2627 2628 if (!check_section_footer(f, se)) { 2629 return -EINVAL; 2630 } 2631 2632 return 0; 2633 } 2634 2635 static int 2636 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis, 2637 uint8_t type) 2638 { 2639 bool trace_downtime = (type == QEMU_VM_SECTION_END); 2640 int64_t start_ts, end_ts; 2641 uint32_t section_id; 2642 SaveStateEntry *se; 2643 int ret; 2644 2645 section_id = qemu_get_be32(f); 2646 2647 ret = qemu_file_get_error(f); 2648 if (ret) { 2649 error_report("%s: Failed to read section ID: %d", 2650 __func__, ret); 2651 return ret; 2652 } 2653 2654 trace_qemu_loadvm_state_section_partend(section_id); 2655 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 2656 if (se->load_section_id == section_id) { 2657 break; 2658 } 2659 } 2660 if (se == NULL) { 2661 error_report("Unknown savevm section %d", section_id); 2662 return -EINVAL; 2663 } 2664 2665 if (trace_downtime) { 2666 start_ts = qemu_clock_get_us(QEMU_CLOCK_REALTIME); 2667 } 2668 2669 ret = vmstate_load(f, se); 2670 if (ret < 0) { 2671 error_report("error while loading state section id %d(%s)", 2672 section_id, se->idstr); 2673 return ret; 2674 } 2675 2676 if (trace_downtime) { 2677 end_ts = qemu_clock_get_us(QEMU_CLOCK_REALTIME); 2678 trace_vmstate_downtime_load("iterable", se->idstr, 2679 se->instance_id, end_ts - start_ts); 2680 } 2681 2682 if (!check_section_footer(f, se)) { 2683 return -EINVAL; 2684 } 2685 2686 return 0; 2687 } 2688 2689 static int qemu_loadvm_state_header(QEMUFile *f) 2690 { 2691 unsigned int v; 2692 int ret; 2693 2694 v = qemu_get_be32(f); 2695 if (v != QEMU_VM_FILE_MAGIC) { 2696 error_report("Not a migration stream"); 2697 return -EINVAL; 2698 } 2699 2700 v = qemu_get_be32(f); 2701 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 2702 error_report("SaveVM v2 format is obsolete and don't work anymore"); 2703 return -ENOTSUP; 2704 } 2705 if (v != QEMU_VM_FILE_VERSION) { 2706 error_report("Unsupported migration stream version"); 2707 return -ENOTSUP; 2708 } 2709 2710 if (migrate_get_current()->send_configuration) { 2711 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 2712 error_report("Configuration section missing"); 2713 qemu_loadvm_state_cleanup(); 2714 return -EINVAL; 2715 } 2716 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 2717 2718 if (ret) { 2719 qemu_loadvm_state_cleanup(); 2720 return ret; 2721 } 2722 } 2723 return 0; 2724 } 2725 2726 static void qemu_loadvm_state_switchover_ack_needed(MigrationIncomingState *mis) 2727 { 2728 SaveStateEntry *se; 2729 2730 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 2731 if (!se->ops || !se->ops->switchover_ack_needed) { 2732 continue; 2733 } 2734 2735 if (se->ops->switchover_ack_needed(se->opaque)) { 2736 mis->switchover_ack_pending_num++; 2737 } 2738 } 2739 2740 trace_loadvm_state_switchover_ack_needed(mis->switchover_ack_pending_num); 2741 } 2742 2743 static int qemu_loadvm_state_setup(QEMUFile *f) 2744 { 2745 SaveStateEntry *se; 2746 int ret; 2747 2748 trace_loadvm_state_setup(); 2749 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 2750 if (!se->ops || !se->ops->load_setup) { 2751 continue; 2752 } 2753 if (se->ops->is_active) { 2754 if (!se->ops->is_active(se->opaque)) { 2755 continue; 2756 } 2757 } 2758 2759 ret = se->ops->load_setup(f, se->opaque); 2760 if (ret < 0) { 2761 qemu_file_set_error(f, ret); 2762 error_report("Load state of device %s failed", se->idstr); 2763 return ret; 2764 } 2765 } 2766 return 0; 2767 } 2768 2769 void qemu_loadvm_state_cleanup(void) 2770 { 2771 SaveStateEntry *se; 2772 2773 trace_loadvm_state_cleanup(); 2774 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 2775 if (se->ops && se->ops->load_cleanup) { 2776 se->ops->load_cleanup(se->opaque); 2777 } 2778 } 2779 } 2780 2781 /* Return true if we should continue the migration, or false. */ 2782 static bool postcopy_pause_incoming(MigrationIncomingState *mis) 2783 { 2784 int i; 2785 2786 trace_postcopy_pause_incoming(); 2787 2788 assert(migrate_postcopy_ram()); 2789 2790 /* 2791 * Unregister yank with either from/to src would work, since ioc behind it 2792 * is the same 2793 */ 2794 migration_ioc_unregister_yank_from_file(mis->from_src_file); 2795 2796 assert(mis->from_src_file); 2797 qemu_file_shutdown(mis->from_src_file); 2798 qemu_fclose(mis->from_src_file); 2799 mis->from_src_file = NULL; 2800 2801 assert(mis->to_src_file); 2802 qemu_file_shutdown(mis->to_src_file); 2803 qemu_mutex_lock(&mis->rp_mutex); 2804 qemu_fclose(mis->to_src_file); 2805 mis->to_src_file = NULL; 2806 qemu_mutex_unlock(&mis->rp_mutex); 2807 2808 /* 2809 * NOTE: this must happen before reset the PostcopyTmpPages below, 2810 * otherwise it's racy to reset those fields when the fast load thread 2811 * can be accessing it in parallel. 2812 */ 2813 if (mis->postcopy_qemufile_dst) { 2814 qemu_file_shutdown(mis->postcopy_qemufile_dst); 2815 /* Take the mutex to make sure the fast ram load thread halted */ 2816 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); 2817 migration_ioc_unregister_yank_from_file(mis->postcopy_qemufile_dst); 2818 qemu_fclose(mis->postcopy_qemufile_dst); 2819 mis->postcopy_qemufile_dst = NULL; 2820 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); 2821 } 2822 2823 /* Current state can be either ACTIVE or RECOVER */ 2824 migrate_set_state(&mis->state, mis->state, 2825 MIGRATION_STATUS_POSTCOPY_PAUSED); 2826 2827 /* Notify the fault thread for the invalidated file handle */ 2828 postcopy_fault_thread_notify(mis); 2829 2830 /* 2831 * If network is interrupted, any temp page we received will be useless 2832 * because we didn't mark them as "received" in receivedmap. After a 2833 * proper recovery later (which will sync src dirty bitmap with receivedmap 2834 * on dest) these cached small pages will be resent again. 2835 */ 2836 for (i = 0; i < mis->postcopy_channels; i++) { 2837 postcopy_temp_page_reset(&mis->postcopy_tmp_pages[i]); 2838 } 2839 2840 error_report("Detected IO failure for postcopy. " 2841 "Migration paused."); 2842 2843 while (mis->state == MIGRATION_STATUS_POSTCOPY_PAUSED) { 2844 qemu_sem_wait(&mis->postcopy_pause_sem_dst); 2845 } 2846 2847 trace_postcopy_pause_incoming_continued(); 2848 2849 return true; 2850 } 2851 2852 int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 2853 { 2854 uint8_t section_type; 2855 int ret = 0; 2856 2857 retry: 2858 while (true) { 2859 section_type = qemu_get_byte(f); 2860 2861 ret = qemu_file_get_error_obj_any(f, mis->postcopy_qemufile_dst, NULL); 2862 if (ret) { 2863 break; 2864 } 2865 2866 trace_qemu_loadvm_state_section(section_type); 2867 switch (section_type) { 2868 case QEMU_VM_SECTION_START: 2869 case QEMU_VM_SECTION_FULL: 2870 ret = qemu_loadvm_section_start_full(f, mis, section_type); 2871 if (ret < 0) { 2872 goto out; 2873 } 2874 break; 2875 case QEMU_VM_SECTION_PART: 2876 case QEMU_VM_SECTION_END: 2877 ret = qemu_loadvm_section_part_end(f, mis, section_type); 2878 if (ret < 0) { 2879 goto out; 2880 } 2881 break; 2882 case QEMU_VM_COMMAND: 2883 ret = loadvm_process_command(f); 2884 trace_qemu_loadvm_state_section_command(ret); 2885 if ((ret < 0) || (ret == LOADVM_QUIT)) { 2886 goto out; 2887 } 2888 break; 2889 case QEMU_VM_EOF: 2890 /* This is the end of migration */ 2891 goto out; 2892 default: 2893 error_report("Unknown savevm section type %d", section_type); 2894 ret = -EINVAL; 2895 goto out; 2896 } 2897 } 2898 2899 out: 2900 if (ret < 0) { 2901 qemu_file_set_error(f, ret); 2902 2903 /* Cancel bitmaps incoming regardless of recovery */ 2904 dirty_bitmap_mig_cancel_incoming(); 2905 2906 /* 2907 * If we are during an active postcopy, then we pause instead 2908 * of bail out to at least keep the VM's dirty data. Note 2909 * that POSTCOPY_INCOMING_LISTENING stage is still not enough, 2910 * during which we're still receiving device states and we 2911 * still haven't yet started the VM on destination. 2912 * 2913 * Only RAM postcopy supports recovery. Still, if RAM postcopy is 2914 * enabled, canceled bitmaps postcopy will not affect RAM postcopy 2915 * recovering. 2916 */ 2917 if (postcopy_state_get() == POSTCOPY_INCOMING_RUNNING && 2918 migrate_postcopy_ram() && postcopy_pause_incoming(mis)) { 2919 /* Reset f to point to the newly created channel */ 2920 f = mis->from_src_file; 2921 goto retry; 2922 } 2923 } 2924 return ret; 2925 } 2926 2927 int qemu_loadvm_state(QEMUFile *f) 2928 { 2929 MigrationIncomingState *mis = migration_incoming_get_current(); 2930 Error *local_err = NULL; 2931 int ret; 2932 2933 if (qemu_savevm_state_blocked(&local_err)) { 2934 error_report_err(local_err); 2935 return -EINVAL; 2936 } 2937 2938 ret = qemu_loadvm_state_header(f); 2939 if (ret) { 2940 return ret; 2941 } 2942 2943 if (qemu_loadvm_state_setup(f) != 0) { 2944 return -EINVAL; 2945 } 2946 2947 if (migrate_switchover_ack()) { 2948 qemu_loadvm_state_switchover_ack_needed(mis); 2949 } 2950 2951 cpu_synchronize_all_pre_loadvm(); 2952 2953 ret = qemu_loadvm_state_main(f, mis); 2954 qemu_event_set(&mis->main_thread_load_event); 2955 2956 trace_qemu_loadvm_state_post_main(ret); 2957 2958 if (mis->have_listen_thread) { 2959 /* Listen thread still going, can't clean up yet */ 2960 return ret; 2961 } 2962 2963 if (ret == 0) { 2964 ret = qemu_file_get_error(f); 2965 } 2966 2967 /* 2968 * Try to read in the VMDESC section as well, so that dumping tools that 2969 * intercept our migration stream have the chance to see it. 2970 */ 2971 2972 /* We've got to be careful; if we don't read the data and just shut the fd 2973 * then the sender can error if we close while it's still sending. 2974 * We also mustn't read data that isn't there; some transports (RDMA) 2975 * will stall waiting for that data when the source has already closed. 2976 */ 2977 if (ret == 0 && should_send_vmdesc()) { 2978 uint8_t *buf; 2979 uint32_t size; 2980 uint8_t section_type = qemu_get_byte(f); 2981 2982 if (section_type != QEMU_VM_VMDESCRIPTION) { 2983 error_report("Expected vmdescription section, but got %d", 2984 section_type); 2985 /* 2986 * It doesn't seem worth failing at this point since 2987 * we apparently have an otherwise valid VM state 2988 */ 2989 } else { 2990 buf = g_malloc(0x1000); 2991 size = qemu_get_be32(f); 2992 2993 while (size > 0) { 2994 uint32_t read_chunk = MIN(size, 0x1000); 2995 qemu_get_buffer(f, buf, read_chunk); 2996 size -= read_chunk; 2997 } 2998 g_free(buf); 2999 } 3000 } 3001 3002 qemu_loadvm_state_cleanup(); 3003 cpu_synchronize_all_post_init(); 3004 3005 return ret; 3006 } 3007 3008 int qemu_load_device_state(QEMUFile *f) 3009 { 3010 MigrationIncomingState *mis = migration_incoming_get_current(); 3011 int ret; 3012 3013 /* Load QEMU_VM_SECTION_FULL section */ 3014 ret = qemu_loadvm_state_main(f, mis); 3015 if (ret < 0) { 3016 error_report("Failed to load device state: %d", ret); 3017 return ret; 3018 } 3019 3020 cpu_synchronize_all_post_init(); 3021 return 0; 3022 } 3023 3024 int qemu_loadvm_approve_switchover(void) 3025 { 3026 MigrationIncomingState *mis = migration_incoming_get_current(); 3027 3028 if (!mis->switchover_ack_pending_num) { 3029 return -EINVAL; 3030 } 3031 3032 mis->switchover_ack_pending_num--; 3033 trace_loadvm_approve_switchover(mis->switchover_ack_pending_num); 3034 3035 if (mis->switchover_ack_pending_num) { 3036 return 0; 3037 } 3038 3039 return migrate_send_rp_switchover_ack(mis); 3040 } 3041 3042 bool save_snapshot(const char *name, bool overwrite, const char *vmstate, 3043 bool has_devices, strList *devices, Error **errp) 3044 { 3045 BlockDriverState *bs; 3046 QEMUSnapshotInfo sn1, *sn = &sn1; 3047 int ret = -1, ret2; 3048 QEMUFile *f; 3049 int saved_vm_running; 3050 uint64_t vm_state_size; 3051 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 3052 AioContext *aio_context; 3053 3054 GLOBAL_STATE_CODE(); 3055 3056 if (migration_is_blocked(errp)) { 3057 return false; 3058 } 3059 3060 if (!replay_can_snapshot()) { 3061 error_setg(errp, "Record/replay does not allow making snapshot " 3062 "right now. Try once more later."); 3063 return false; 3064 } 3065 3066 if (!bdrv_all_can_snapshot(has_devices, devices, errp)) { 3067 return false; 3068 } 3069 3070 /* Delete old snapshots of the same name */ 3071 if (name) { 3072 if (overwrite) { 3073 if (bdrv_all_delete_snapshot(name, has_devices, 3074 devices, errp) < 0) { 3075 return false; 3076 } 3077 } else { 3078 ret2 = bdrv_all_has_snapshot(name, has_devices, devices, errp); 3079 if (ret2 < 0) { 3080 return false; 3081 } 3082 if (ret2 == 1) { 3083 error_setg(errp, 3084 "Snapshot '%s' already exists in one or more devices", 3085 name); 3086 return false; 3087 } 3088 } 3089 } 3090 3091 bs = bdrv_all_find_vmstate_bs(vmstate, has_devices, devices, errp); 3092 if (bs == NULL) { 3093 return false; 3094 } 3095 aio_context = bdrv_get_aio_context(bs); 3096 3097 saved_vm_running = runstate_is_running(); 3098 3099 global_state_store(); 3100 vm_stop(RUN_STATE_SAVE_VM); 3101 3102 bdrv_drain_all_begin(); 3103 3104 aio_context_acquire(aio_context); 3105 3106 memset(sn, 0, sizeof(*sn)); 3107 3108 /* fill auxiliary fields */ 3109 sn->date_sec = g_date_time_to_unix(now); 3110 sn->date_nsec = g_date_time_get_microsecond(now) * 1000; 3111 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 3112 if (replay_mode != REPLAY_MODE_NONE) { 3113 sn->icount = replay_get_current_icount(); 3114 } else { 3115 sn->icount = -1ULL; 3116 } 3117 3118 if (name) { 3119 pstrcpy(sn->name, sizeof(sn->name), name); 3120 } else { 3121 g_autofree char *autoname = g_date_time_format(now, "vm-%Y%m%d%H%M%S"); 3122 pstrcpy(sn->name, sizeof(sn->name), autoname); 3123 } 3124 3125 /* save the VM state */ 3126 f = qemu_fopen_bdrv(bs, 1); 3127 if (!f) { 3128 error_setg(errp, "Could not open VM state file"); 3129 goto the_end; 3130 } 3131 ret = qemu_savevm_state(f, errp); 3132 vm_state_size = qemu_file_transferred(f); 3133 ret2 = qemu_fclose(f); 3134 if (ret < 0) { 3135 goto the_end; 3136 } 3137 if (ret2 < 0) { 3138 ret = ret2; 3139 goto the_end; 3140 } 3141 3142 /* The bdrv_all_create_snapshot() call that follows acquires the AioContext 3143 * for itself. BDRV_POLL_WHILE() does not support nested locking because 3144 * it only releases the lock once. Therefore synchronous I/O will deadlock 3145 * unless we release the AioContext before bdrv_all_create_snapshot(). 3146 */ 3147 aio_context_release(aio_context); 3148 aio_context = NULL; 3149 3150 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, 3151 has_devices, devices, errp); 3152 if (ret < 0) { 3153 bdrv_all_delete_snapshot(sn->name, has_devices, devices, NULL); 3154 goto the_end; 3155 } 3156 3157 ret = 0; 3158 3159 the_end: 3160 if (aio_context) { 3161 aio_context_release(aio_context); 3162 } 3163 3164 bdrv_drain_all_end(); 3165 3166 if (saved_vm_running) { 3167 vm_start(); 3168 } 3169 return ret == 0; 3170 } 3171 3172 void qmp_xen_save_devices_state(const char *filename, bool has_live, bool live, 3173 Error **errp) 3174 { 3175 QEMUFile *f; 3176 QIOChannelFile *ioc; 3177 int saved_vm_running; 3178 int ret; 3179 3180 if (!has_live) { 3181 /* live default to true so old version of Xen tool stack can have a 3182 * successful live migration */ 3183 live = true; 3184 } 3185 3186 saved_vm_running = runstate_is_running(); 3187 vm_stop(RUN_STATE_SAVE_VM); 3188 global_state_store_running(); 3189 3190 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT | O_TRUNC, 3191 0660, errp); 3192 if (!ioc) { 3193 goto the_end; 3194 } 3195 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 3196 f = qemu_file_new_output(QIO_CHANNEL(ioc)); 3197 object_unref(OBJECT(ioc)); 3198 ret = qemu_save_device_state(f); 3199 if (ret < 0 || qemu_fclose(f) < 0) { 3200 error_setg(errp, QERR_IO_ERROR); 3201 } else { 3202 /* libxl calls the QMP command "stop" before calling 3203 * "xen-save-devices-state" and in case of migration failure, libxl 3204 * would call "cont". 3205 * So call bdrv_inactivate_all (release locks) here to let the other 3206 * side of the migration take control of the images. 3207 */ 3208 if (live && !saved_vm_running) { 3209 ret = bdrv_inactivate_all(); 3210 if (ret) { 3211 error_setg(errp, "%s: bdrv_inactivate_all() failed (%d)", 3212 __func__, ret); 3213 } 3214 } 3215 } 3216 3217 the_end: 3218 if (saved_vm_running) { 3219 vm_start(); 3220 } 3221 } 3222 3223 void qmp_xen_load_devices_state(const char *filename, Error **errp) 3224 { 3225 QEMUFile *f; 3226 QIOChannelFile *ioc; 3227 int ret; 3228 3229 /* Guest must be paused before loading the device state; the RAM state 3230 * will already have been loaded by xc 3231 */ 3232 if (runstate_is_running()) { 3233 error_setg(errp, "Cannot update device state while vm is running"); 3234 return; 3235 } 3236 vm_stop(RUN_STATE_RESTORE_VM); 3237 3238 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 3239 if (!ioc) { 3240 return; 3241 } 3242 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 3243 f = qemu_file_new_input(QIO_CHANNEL(ioc)); 3244 object_unref(OBJECT(ioc)); 3245 3246 ret = qemu_loadvm_state(f); 3247 qemu_fclose(f); 3248 if (ret < 0) { 3249 error_setg(errp, QERR_IO_ERROR); 3250 } 3251 migration_incoming_state_destroy(); 3252 } 3253 3254 bool load_snapshot(const char *name, const char *vmstate, 3255 bool has_devices, strList *devices, Error **errp) 3256 { 3257 BlockDriverState *bs_vm_state; 3258 QEMUSnapshotInfo sn; 3259 QEMUFile *f; 3260 int ret; 3261 AioContext *aio_context; 3262 MigrationIncomingState *mis = migration_incoming_get_current(); 3263 3264 if (!bdrv_all_can_snapshot(has_devices, devices, errp)) { 3265 return false; 3266 } 3267 ret = bdrv_all_has_snapshot(name, has_devices, devices, errp); 3268 if (ret < 0) { 3269 return false; 3270 } 3271 if (ret == 0) { 3272 error_setg(errp, "Snapshot '%s' does not exist in one or more devices", 3273 name); 3274 return false; 3275 } 3276 3277 bs_vm_state = bdrv_all_find_vmstate_bs(vmstate, has_devices, devices, errp); 3278 if (!bs_vm_state) { 3279 return false; 3280 } 3281 aio_context = bdrv_get_aio_context(bs_vm_state); 3282 3283 /* Don't even try to load empty VM states */ 3284 aio_context_acquire(aio_context); 3285 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 3286 aio_context_release(aio_context); 3287 if (ret < 0) { 3288 return false; 3289 } else if (sn.vm_state_size == 0) { 3290 error_setg(errp, "This is a disk-only snapshot. Revert to it " 3291 " offline using qemu-img"); 3292 return false; 3293 } 3294 3295 /* 3296 * Flush the record/replay queue. Now the VM state is going 3297 * to change. Therefore we don't need to preserve its consistency 3298 */ 3299 replay_flush_events(); 3300 3301 /* Flush all IO requests so they don't interfere with the new state. */ 3302 bdrv_drain_all_begin(); 3303 3304 ret = bdrv_all_goto_snapshot(name, has_devices, devices, errp); 3305 if (ret < 0) { 3306 goto err_drain; 3307 } 3308 3309 /* restore the VM state */ 3310 f = qemu_fopen_bdrv(bs_vm_state, 0); 3311 if (!f) { 3312 error_setg(errp, "Could not open VM state file"); 3313 goto err_drain; 3314 } 3315 3316 qemu_system_reset(SHUTDOWN_CAUSE_SNAPSHOT_LOAD); 3317 mis->from_src_file = f; 3318 3319 if (!yank_register_instance(MIGRATION_YANK_INSTANCE, errp)) { 3320 ret = -EINVAL; 3321 goto err_drain; 3322 } 3323 aio_context_acquire(aio_context); 3324 ret = qemu_loadvm_state(f); 3325 migration_incoming_state_destroy(); 3326 aio_context_release(aio_context); 3327 3328 bdrv_drain_all_end(); 3329 3330 if (ret < 0) { 3331 error_setg(errp, "Error %d while loading VM state", ret); 3332 return false; 3333 } 3334 3335 return true; 3336 3337 err_drain: 3338 bdrv_drain_all_end(); 3339 return false; 3340 } 3341 3342 bool delete_snapshot(const char *name, bool has_devices, 3343 strList *devices, Error **errp) 3344 { 3345 if (!bdrv_all_can_snapshot(has_devices, devices, errp)) { 3346 return false; 3347 } 3348 3349 if (bdrv_all_delete_snapshot(name, has_devices, devices, errp) < 0) { 3350 return false; 3351 } 3352 3353 return true; 3354 } 3355 3356 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 3357 { 3358 qemu_ram_set_idstr(mr->ram_block, 3359 memory_region_name(mr), dev); 3360 qemu_ram_set_migratable(mr->ram_block); 3361 } 3362 3363 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 3364 { 3365 qemu_ram_unset_idstr(mr->ram_block); 3366 qemu_ram_unset_migratable(mr->ram_block); 3367 } 3368 3369 void vmstate_register_ram_global(MemoryRegion *mr) 3370 { 3371 vmstate_register_ram(mr, NULL); 3372 } 3373 3374 bool vmstate_check_only_migratable(const VMStateDescription *vmsd) 3375 { 3376 /* check needed if --only-migratable is specified */ 3377 if (!only_migratable) { 3378 return true; 3379 } 3380 3381 return !(vmsd && vmsd->unmigratable); 3382 } 3383 3384 typedef struct SnapshotJob { 3385 Job common; 3386 char *tag; 3387 char *vmstate; 3388 strList *devices; 3389 Coroutine *co; 3390 Error **errp; 3391 bool ret; 3392 } SnapshotJob; 3393 3394 static void qmp_snapshot_job_free(SnapshotJob *s) 3395 { 3396 g_free(s->tag); 3397 g_free(s->vmstate); 3398 qapi_free_strList(s->devices); 3399 } 3400 3401 3402 static void snapshot_load_job_bh(void *opaque) 3403 { 3404 Job *job = opaque; 3405 SnapshotJob *s = container_of(job, SnapshotJob, common); 3406 int orig_vm_running; 3407 3408 job_progress_set_remaining(&s->common, 1); 3409 3410 orig_vm_running = runstate_is_running(); 3411 vm_stop(RUN_STATE_RESTORE_VM); 3412 3413 s->ret = load_snapshot(s->tag, s->vmstate, true, s->devices, s->errp); 3414 if (s->ret && orig_vm_running) { 3415 vm_start(); 3416 } 3417 3418 job_progress_update(&s->common, 1); 3419 3420 qmp_snapshot_job_free(s); 3421 aio_co_wake(s->co); 3422 } 3423 3424 static void snapshot_save_job_bh(void *opaque) 3425 { 3426 Job *job = opaque; 3427 SnapshotJob *s = container_of(job, SnapshotJob, common); 3428 3429 job_progress_set_remaining(&s->common, 1); 3430 s->ret = save_snapshot(s->tag, false, s->vmstate, 3431 true, s->devices, s->errp); 3432 job_progress_update(&s->common, 1); 3433 3434 qmp_snapshot_job_free(s); 3435 aio_co_wake(s->co); 3436 } 3437 3438 static void snapshot_delete_job_bh(void *opaque) 3439 { 3440 Job *job = opaque; 3441 SnapshotJob *s = container_of(job, SnapshotJob, common); 3442 3443 job_progress_set_remaining(&s->common, 1); 3444 s->ret = delete_snapshot(s->tag, true, s->devices, s->errp); 3445 job_progress_update(&s->common, 1); 3446 3447 qmp_snapshot_job_free(s); 3448 aio_co_wake(s->co); 3449 } 3450 3451 static int coroutine_fn snapshot_save_job_run(Job *job, Error **errp) 3452 { 3453 SnapshotJob *s = container_of(job, SnapshotJob, common); 3454 s->errp = errp; 3455 s->co = qemu_coroutine_self(); 3456 aio_bh_schedule_oneshot(qemu_get_aio_context(), 3457 snapshot_save_job_bh, job); 3458 qemu_coroutine_yield(); 3459 return s->ret ? 0 : -1; 3460 } 3461 3462 static int coroutine_fn snapshot_load_job_run(Job *job, Error **errp) 3463 { 3464 SnapshotJob *s = container_of(job, SnapshotJob, common); 3465 s->errp = errp; 3466 s->co = qemu_coroutine_self(); 3467 aio_bh_schedule_oneshot(qemu_get_aio_context(), 3468 snapshot_load_job_bh, job); 3469 qemu_coroutine_yield(); 3470 return s->ret ? 0 : -1; 3471 } 3472 3473 static int coroutine_fn snapshot_delete_job_run(Job *job, Error **errp) 3474 { 3475 SnapshotJob *s = container_of(job, SnapshotJob, common); 3476 s->errp = errp; 3477 s->co = qemu_coroutine_self(); 3478 aio_bh_schedule_oneshot(qemu_get_aio_context(), 3479 snapshot_delete_job_bh, job); 3480 qemu_coroutine_yield(); 3481 return s->ret ? 0 : -1; 3482 } 3483 3484 3485 static const JobDriver snapshot_load_job_driver = { 3486 .instance_size = sizeof(SnapshotJob), 3487 .job_type = JOB_TYPE_SNAPSHOT_LOAD, 3488 .run = snapshot_load_job_run, 3489 }; 3490 3491 static const JobDriver snapshot_save_job_driver = { 3492 .instance_size = sizeof(SnapshotJob), 3493 .job_type = JOB_TYPE_SNAPSHOT_SAVE, 3494 .run = snapshot_save_job_run, 3495 }; 3496 3497 static const JobDriver snapshot_delete_job_driver = { 3498 .instance_size = sizeof(SnapshotJob), 3499 .job_type = JOB_TYPE_SNAPSHOT_DELETE, 3500 .run = snapshot_delete_job_run, 3501 }; 3502 3503 3504 void qmp_snapshot_save(const char *job_id, 3505 const char *tag, 3506 const char *vmstate, 3507 strList *devices, 3508 Error **errp) 3509 { 3510 SnapshotJob *s; 3511 3512 s = job_create(job_id, &snapshot_save_job_driver, NULL, 3513 qemu_get_aio_context(), JOB_MANUAL_DISMISS, 3514 NULL, NULL, errp); 3515 if (!s) { 3516 return; 3517 } 3518 3519 s->tag = g_strdup(tag); 3520 s->vmstate = g_strdup(vmstate); 3521 s->devices = QAPI_CLONE(strList, devices); 3522 3523 job_start(&s->common); 3524 } 3525 3526 void qmp_snapshot_load(const char *job_id, 3527 const char *tag, 3528 const char *vmstate, 3529 strList *devices, 3530 Error **errp) 3531 { 3532 SnapshotJob *s; 3533 3534 s = job_create(job_id, &snapshot_load_job_driver, NULL, 3535 qemu_get_aio_context(), JOB_MANUAL_DISMISS, 3536 NULL, NULL, errp); 3537 if (!s) { 3538 return; 3539 } 3540 3541 s->tag = g_strdup(tag); 3542 s->vmstate = g_strdup(vmstate); 3543 s->devices = QAPI_CLONE(strList, devices); 3544 3545 job_start(&s->common); 3546 } 3547 3548 void qmp_snapshot_delete(const char *job_id, 3549 const char *tag, 3550 strList *devices, 3551 Error **errp) 3552 { 3553 SnapshotJob *s; 3554 3555 s = job_create(job_id, &snapshot_delete_job_driver, NULL, 3556 qemu_get_aio_context(), JOB_MANUAL_DISMISS, 3557 NULL, NULL, errp); 3558 if (!s) { 3559 return; 3560 } 3561 3562 s->tag = g_strdup(tag); 3563 s->devices = QAPI_CLONE(strList, devices); 3564 3565 job_start(&s->common); 3566 } 3567