1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "hw/boards.h" 31 #include "hw/xen/xen.h" 32 #include "net/net.h" 33 #include "migration.h" 34 #include "migration/snapshot.h" 35 #include "migration/misc.h" 36 #include "migration/register.h" 37 #include "migration/global_state.h" 38 #include "ram.h" 39 #include "qemu-file-channel.h" 40 #include "qemu-file.h" 41 #include "savevm.h" 42 #include "postcopy-ram.h" 43 #include "qapi/qmp/qerror.h" 44 #include "qemu/error-report.h" 45 #include "sysemu/cpus.h" 46 #include "exec/memory.h" 47 #include "exec/target_page.h" 48 #include "qmp-commands.h" 49 #include "trace.h" 50 #include "qemu/iov.h" 51 #include "block/snapshot.h" 52 #include "qemu/cutils.h" 53 #include "io/channel-buffer.h" 54 #include "io/channel-file.h" 55 56 #ifndef ETH_P_RARP 57 #define ETH_P_RARP 0x8035 58 #endif 59 #define ARP_HTYPE_ETH 0x0001 60 #define ARP_PTYPE_IP 0x0800 61 #define ARP_OP_REQUEST_REV 0x3 62 63 const unsigned int postcopy_ram_discard_version = 0; 64 65 /* Subcommands for QEMU_VM_COMMAND */ 66 enum qemu_vm_cmd { 67 MIG_CMD_INVALID = 0, /* Must be 0 */ 68 MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */ 69 MIG_CMD_PING, /* Request a PONG on the RP */ 70 71 MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just 72 warn we might want to do PC */ 73 MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming 74 pages as it's running. */ 75 MIG_CMD_POSTCOPY_RUN, /* Start execution */ 76 77 MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that 78 were previously sent during 79 precopy but are dirty. */ 80 MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */ 81 MIG_CMD_MAX 82 }; 83 84 #define MAX_VM_CMD_PACKAGED_SIZE (1ul << 24) 85 static struct mig_cmd_args { 86 ssize_t len; /* -1 = variable */ 87 const char *name; 88 } mig_cmd_args[] = { 89 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 90 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 91 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 92 [MIG_CMD_POSTCOPY_ADVISE] = { .len = 16, .name = "POSTCOPY_ADVISE" }, 93 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 94 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 95 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 96 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 97 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 98 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 99 }; 100 101 static int announce_self_create(uint8_t *buf, 102 uint8_t *mac_addr) 103 { 104 /* Ethernet header. */ 105 memset(buf, 0xff, 6); /* destination MAC addr */ 106 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 107 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 108 109 /* RARP header. */ 110 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 111 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 112 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 113 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 114 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 115 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 116 memset(buf + 28, 0x00, 4); /* source protocol addr */ 117 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 118 memset(buf + 38, 0x00, 4); /* target protocol addr */ 119 120 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 121 memset(buf + 42, 0x00, 18); 122 123 return 60; /* len (FCS will be added by hardware) */ 124 } 125 126 static void qemu_announce_self_iter(NICState *nic, void *opaque) 127 { 128 uint8_t buf[60]; 129 int len; 130 131 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 132 len = announce_self_create(buf, nic->conf->macaddr.a); 133 134 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 135 } 136 137 138 static void qemu_announce_self_once(void *opaque) 139 { 140 static int count = SELF_ANNOUNCE_ROUNDS; 141 QEMUTimer *timer = *(QEMUTimer **)opaque; 142 143 qemu_foreach_nic(qemu_announce_self_iter, NULL); 144 145 if (--count) { 146 /* delay 50ms, 150ms, 250ms, ... */ 147 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 148 self_announce_delay(count)); 149 } else { 150 timer_del(timer); 151 timer_free(timer); 152 } 153 } 154 155 void qemu_announce_self(void) 156 { 157 static QEMUTimer *timer; 158 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 159 qemu_announce_self_once(&timer); 160 } 161 162 /***********************************************************/ 163 /* savevm/loadvm support */ 164 165 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 166 int64_t pos) 167 { 168 int ret; 169 QEMUIOVector qiov; 170 171 qemu_iovec_init_external(&qiov, iov, iovcnt); 172 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 173 if (ret < 0) { 174 return ret; 175 } 176 177 return qiov.size; 178 } 179 180 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 181 size_t size) 182 { 183 return bdrv_load_vmstate(opaque, buf, pos, size); 184 } 185 186 static int bdrv_fclose(void *opaque) 187 { 188 return bdrv_flush(opaque); 189 } 190 191 static const QEMUFileOps bdrv_read_ops = { 192 .get_buffer = block_get_buffer, 193 .close = bdrv_fclose 194 }; 195 196 static const QEMUFileOps bdrv_write_ops = { 197 .writev_buffer = block_writev_buffer, 198 .close = bdrv_fclose 199 }; 200 201 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 202 { 203 if (is_writable) { 204 return qemu_fopen_ops(bs, &bdrv_write_ops); 205 } 206 return qemu_fopen_ops(bs, &bdrv_read_ops); 207 } 208 209 210 /* QEMUFile timer support. 211 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 212 */ 213 214 void timer_put(QEMUFile *f, QEMUTimer *ts) 215 { 216 uint64_t expire_time; 217 218 expire_time = timer_expire_time_ns(ts); 219 qemu_put_be64(f, expire_time); 220 } 221 222 void timer_get(QEMUFile *f, QEMUTimer *ts) 223 { 224 uint64_t expire_time; 225 226 expire_time = qemu_get_be64(f); 227 if (expire_time != -1) { 228 timer_mod_ns(ts, expire_time); 229 } else { 230 timer_del(ts); 231 } 232 } 233 234 235 /* VMState timer support. 236 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 237 */ 238 239 static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field) 240 { 241 QEMUTimer *v = pv; 242 timer_get(f, v); 243 return 0; 244 } 245 246 static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field, 247 QJSON *vmdesc) 248 { 249 QEMUTimer *v = pv; 250 timer_put(f, v); 251 252 return 0; 253 } 254 255 const VMStateInfo vmstate_info_timer = { 256 .name = "timer", 257 .get = get_timer, 258 .put = put_timer, 259 }; 260 261 262 typedef struct CompatEntry { 263 char idstr[256]; 264 int instance_id; 265 } CompatEntry; 266 267 typedef struct SaveStateEntry { 268 QTAILQ_ENTRY(SaveStateEntry) entry; 269 char idstr[256]; 270 int instance_id; 271 int alias_id; 272 int version_id; 273 /* version id read from the stream */ 274 int load_version_id; 275 int section_id; 276 /* section id read from the stream */ 277 int load_section_id; 278 SaveVMHandlers *ops; 279 const VMStateDescription *vmsd; 280 void *opaque; 281 CompatEntry *compat; 282 int is_ram; 283 } SaveStateEntry; 284 285 typedef struct SaveState { 286 QTAILQ_HEAD(, SaveStateEntry) handlers; 287 int global_section_id; 288 uint32_t len; 289 const char *name; 290 uint32_t target_page_bits; 291 } SaveState; 292 293 static SaveState savevm_state = { 294 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 295 .global_section_id = 0, 296 }; 297 298 static void configuration_pre_save(void *opaque) 299 { 300 SaveState *state = opaque; 301 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 302 303 state->len = strlen(current_name); 304 state->name = current_name; 305 state->target_page_bits = qemu_target_page_bits(); 306 } 307 308 static int configuration_pre_load(void *opaque) 309 { 310 SaveState *state = opaque; 311 312 /* If there is no target-page-bits subsection it means the source 313 * predates the variable-target-page-bits support and is using the 314 * minimum possible value for this CPU. 315 */ 316 state->target_page_bits = qemu_target_page_bits_min(); 317 return 0; 318 } 319 320 static int configuration_post_load(void *opaque, int version_id) 321 { 322 SaveState *state = opaque; 323 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 324 325 if (strncmp(state->name, current_name, state->len) != 0) { 326 error_report("Machine type received is '%.*s' and local is '%s'", 327 (int) state->len, state->name, current_name); 328 return -EINVAL; 329 } 330 331 if (state->target_page_bits != qemu_target_page_bits()) { 332 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 333 state->target_page_bits, qemu_target_page_bits()); 334 return -EINVAL; 335 } 336 337 return 0; 338 } 339 340 /* The target-page-bits subsection is present only if the 341 * target page size is not the same as the default (ie the 342 * minimum page size for a variable-page-size guest CPU). 343 * If it is present then it contains the actual target page 344 * bits for the machine, and migration will fail if the 345 * two ends don't agree about it. 346 */ 347 static bool vmstate_target_page_bits_needed(void *opaque) 348 { 349 return qemu_target_page_bits() 350 > qemu_target_page_bits_min(); 351 } 352 353 static const VMStateDescription vmstate_target_page_bits = { 354 .name = "configuration/target-page-bits", 355 .version_id = 1, 356 .minimum_version_id = 1, 357 .needed = vmstate_target_page_bits_needed, 358 .fields = (VMStateField[]) { 359 VMSTATE_UINT32(target_page_bits, SaveState), 360 VMSTATE_END_OF_LIST() 361 } 362 }; 363 364 static const VMStateDescription vmstate_configuration = { 365 .name = "configuration", 366 .version_id = 1, 367 .pre_load = configuration_pre_load, 368 .post_load = configuration_post_load, 369 .pre_save = configuration_pre_save, 370 .fields = (VMStateField[]) { 371 VMSTATE_UINT32(len, SaveState), 372 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len), 373 VMSTATE_END_OF_LIST() 374 }, 375 .subsections = (const VMStateDescription*[]) { 376 &vmstate_target_page_bits, 377 NULL 378 } 379 }; 380 381 static void dump_vmstate_vmsd(FILE *out_file, 382 const VMStateDescription *vmsd, int indent, 383 bool is_subsection); 384 385 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 386 int indent) 387 { 388 fprintf(out_file, "%*s{\n", indent, ""); 389 indent += 2; 390 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 391 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 392 field->version_id); 393 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 394 field->field_exists ? "true" : "false"); 395 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 396 if (field->vmsd != NULL) { 397 fprintf(out_file, ",\n"); 398 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 399 } 400 fprintf(out_file, "\n%*s}", indent - 2, ""); 401 } 402 403 static void dump_vmstate_vmss(FILE *out_file, 404 const VMStateDescription **subsection, 405 int indent) 406 { 407 if (*subsection != NULL) { 408 dump_vmstate_vmsd(out_file, *subsection, indent, true); 409 } 410 } 411 412 static void dump_vmstate_vmsd(FILE *out_file, 413 const VMStateDescription *vmsd, int indent, 414 bool is_subsection) 415 { 416 if (is_subsection) { 417 fprintf(out_file, "%*s{\n", indent, ""); 418 } else { 419 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 420 } 421 indent += 2; 422 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 423 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 424 vmsd->version_id); 425 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 426 vmsd->minimum_version_id); 427 if (vmsd->fields != NULL) { 428 const VMStateField *field = vmsd->fields; 429 bool first; 430 431 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 432 first = true; 433 while (field->name != NULL) { 434 if (field->flags & VMS_MUST_EXIST) { 435 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 436 field++; 437 continue; 438 } 439 if (!first) { 440 fprintf(out_file, ",\n"); 441 } 442 dump_vmstate_vmsf(out_file, field, indent + 2); 443 field++; 444 first = false; 445 } 446 fprintf(out_file, "\n%*s]", indent, ""); 447 } 448 if (vmsd->subsections != NULL) { 449 const VMStateDescription **subsection = vmsd->subsections; 450 bool first; 451 452 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 453 first = true; 454 while (*subsection != NULL) { 455 if (!first) { 456 fprintf(out_file, ",\n"); 457 } 458 dump_vmstate_vmss(out_file, subsection, indent + 2); 459 subsection++; 460 first = false; 461 } 462 fprintf(out_file, "\n%*s]", indent, ""); 463 } 464 fprintf(out_file, "\n%*s}", indent - 2, ""); 465 } 466 467 static void dump_machine_type(FILE *out_file) 468 { 469 MachineClass *mc; 470 471 mc = MACHINE_GET_CLASS(current_machine); 472 473 fprintf(out_file, " \"vmschkmachine\": {\n"); 474 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 475 fprintf(out_file, " },\n"); 476 } 477 478 void dump_vmstate_json_to_file(FILE *out_file) 479 { 480 GSList *list, *elt; 481 bool first; 482 483 fprintf(out_file, "{\n"); 484 dump_machine_type(out_file); 485 486 first = true; 487 list = object_class_get_list(TYPE_DEVICE, true); 488 for (elt = list; elt; elt = elt->next) { 489 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 490 TYPE_DEVICE); 491 const char *name; 492 int indent = 2; 493 494 if (!dc->vmsd) { 495 continue; 496 } 497 498 if (!first) { 499 fprintf(out_file, ",\n"); 500 } 501 name = object_class_get_name(OBJECT_CLASS(dc)); 502 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 503 indent += 2; 504 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 505 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 506 dc->vmsd->version_id); 507 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 508 dc->vmsd->minimum_version_id); 509 510 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 511 512 fprintf(out_file, "\n%*s}", indent - 2, ""); 513 first = false; 514 } 515 fprintf(out_file, "\n}\n"); 516 fclose(out_file); 517 } 518 519 static int calculate_new_instance_id(const char *idstr) 520 { 521 SaveStateEntry *se; 522 int instance_id = 0; 523 524 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 525 if (strcmp(idstr, se->idstr) == 0 526 && instance_id <= se->instance_id) { 527 instance_id = se->instance_id + 1; 528 } 529 } 530 return instance_id; 531 } 532 533 static int calculate_compat_instance_id(const char *idstr) 534 { 535 SaveStateEntry *se; 536 int instance_id = 0; 537 538 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 539 if (!se->compat) { 540 continue; 541 } 542 543 if (strcmp(idstr, se->compat->idstr) == 0 544 && instance_id <= se->compat->instance_id) { 545 instance_id = se->compat->instance_id + 1; 546 } 547 } 548 return instance_id; 549 } 550 551 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 552 { 553 if (se->vmsd) { 554 return se->vmsd->priority; 555 } 556 return MIG_PRI_DEFAULT; 557 } 558 559 static void savevm_state_handler_insert(SaveStateEntry *nse) 560 { 561 MigrationPriority priority = save_state_priority(nse); 562 SaveStateEntry *se; 563 564 assert(priority <= MIG_PRI_MAX); 565 566 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 567 if (save_state_priority(se) < priority) { 568 break; 569 } 570 } 571 572 if (se) { 573 QTAILQ_INSERT_BEFORE(se, nse, entry); 574 } else { 575 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 576 } 577 } 578 579 /* TODO: Individual devices generally have very little idea about the rest 580 of the system, so instance_id should be removed/replaced. 581 Meanwhile pass -1 as instance_id if you do not already have a clearly 582 distinguishing id for all instances of your device class. */ 583 int register_savevm_live(DeviceState *dev, 584 const char *idstr, 585 int instance_id, 586 int version_id, 587 SaveVMHandlers *ops, 588 void *opaque) 589 { 590 SaveStateEntry *se; 591 592 se = g_new0(SaveStateEntry, 1); 593 se->version_id = version_id; 594 se->section_id = savevm_state.global_section_id++; 595 se->ops = ops; 596 se->opaque = opaque; 597 se->vmsd = NULL; 598 /* if this is a live_savem then set is_ram */ 599 if (ops->save_setup != NULL) { 600 se->is_ram = 1; 601 } 602 603 if (dev) { 604 char *id = qdev_get_dev_path(dev); 605 if (id) { 606 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 607 sizeof(se->idstr)) { 608 error_report("Path too long for VMState (%s)", id); 609 g_free(id); 610 g_free(se); 611 612 return -1; 613 } 614 g_free(id); 615 616 se->compat = g_new0(CompatEntry, 1); 617 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 618 se->compat->instance_id = instance_id == -1 ? 619 calculate_compat_instance_id(idstr) : instance_id; 620 instance_id = -1; 621 } 622 } 623 pstrcat(se->idstr, sizeof(se->idstr), idstr); 624 625 if (instance_id == -1) { 626 se->instance_id = calculate_new_instance_id(se->idstr); 627 } else { 628 se->instance_id = instance_id; 629 } 630 assert(!se->compat || se->instance_id == 0); 631 savevm_state_handler_insert(se); 632 return 0; 633 } 634 635 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 636 { 637 SaveStateEntry *se, *new_se; 638 char id[256] = ""; 639 640 if (dev) { 641 char *path = qdev_get_dev_path(dev); 642 if (path) { 643 pstrcpy(id, sizeof(id), path); 644 pstrcat(id, sizeof(id), "/"); 645 g_free(path); 646 } 647 } 648 pstrcat(id, sizeof(id), idstr); 649 650 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 651 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 652 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 653 g_free(se->compat); 654 g_free(se); 655 } 656 } 657 } 658 659 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 660 const VMStateDescription *vmsd, 661 void *opaque, int alias_id, 662 int required_for_version, 663 Error **errp) 664 { 665 SaveStateEntry *se; 666 667 /* If this triggers, alias support can be dropped for the vmsd. */ 668 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 669 670 se = g_new0(SaveStateEntry, 1); 671 se->version_id = vmsd->version_id; 672 se->section_id = savevm_state.global_section_id++; 673 se->opaque = opaque; 674 se->vmsd = vmsd; 675 se->alias_id = alias_id; 676 677 if (dev) { 678 char *id = qdev_get_dev_path(dev); 679 if (id) { 680 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 681 sizeof(se->idstr)) { 682 error_setg(errp, "Path too long for VMState (%s)", id); 683 g_free(id); 684 g_free(se); 685 686 return -1; 687 } 688 g_free(id); 689 690 se->compat = g_new0(CompatEntry, 1); 691 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 692 se->compat->instance_id = instance_id == -1 ? 693 calculate_compat_instance_id(vmsd->name) : instance_id; 694 instance_id = -1; 695 } 696 } 697 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 698 699 if (instance_id == -1) { 700 se->instance_id = calculate_new_instance_id(se->idstr); 701 } else { 702 se->instance_id = instance_id; 703 } 704 assert(!se->compat || se->instance_id == 0); 705 savevm_state_handler_insert(se); 706 return 0; 707 } 708 709 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 710 void *opaque) 711 { 712 SaveStateEntry *se, *new_se; 713 714 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 715 if (se->vmsd == vmsd && se->opaque == opaque) { 716 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 717 g_free(se->compat); 718 g_free(se); 719 } 720 } 721 } 722 723 static int vmstate_load(QEMUFile *f, SaveStateEntry *se) 724 { 725 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 726 if (!se->vmsd) { /* Old style */ 727 return se->ops->load_state(f, se->opaque, se->load_version_id); 728 } 729 return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id); 730 } 731 732 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 733 { 734 int64_t old_offset, size; 735 736 old_offset = qemu_ftell_fast(f); 737 se->ops->save_state(f, se->opaque); 738 size = qemu_ftell_fast(f) - old_offset; 739 740 if (vmdesc) { 741 json_prop_int(vmdesc, "size", size); 742 json_start_array(vmdesc, "fields"); 743 json_start_object(vmdesc, NULL); 744 json_prop_str(vmdesc, "name", "data"); 745 json_prop_int(vmdesc, "size", size); 746 json_prop_str(vmdesc, "type", "buffer"); 747 json_end_object(vmdesc); 748 json_end_array(vmdesc); 749 } 750 } 751 752 static void vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 753 { 754 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 755 if (!se->vmsd) { 756 vmstate_save_old_style(f, se, vmdesc); 757 return; 758 } 759 vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 760 } 761 762 /* 763 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 764 */ 765 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 766 uint8_t section_type) 767 { 768 qemu_put_byte(f, section_type); 769 qemu_put_be32(f, se->section_id); 770 771 if (section_type == QEMU_VM_SECTION_FULL || 772 section_type == QEMU_VM_SECTION_START) { 773 /* ID string */ 774 size_t len = strlen(se->idstr); 775 qemu_put_byte(f, len); 776 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 777 778 qemu_put_be32(f, se->instance_id); 779 qemu_put_be32(f, se->version_id); 780 } 781 } 782 783 /* 784 * Write a footer onto device sections that catches cases misformatted device 785 * sections. 786 */ 787 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 788 { 789 if (migrate_get_current()->send_section_footer) { 790 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 791 qemu_put_be32(f, se->section_id); 792 } 793 } 794 795 /** 796 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 797 * command and associated data. 798 * 799 * @f: File to send command on 800 * @command: Command type to send 801 * @len: Length of associated data 802 * @data: Data associated with command. 803 */ 804 static void qemu_savevm_command_send(QEMUFile *f, 805 enum qemu_vm_cmd command, 806 uint16_t len, 807 uint8_t *data) 808 { 809 trace_savevm_command_send(command, len); 810 qemu_put_byte(f, QEMU_VM_COMMAND); 811 qemu_put_be16(f, (uint16_t)command); 812 qemu_put_be16(f, len); 813 qemu_put_buffer(f, data, len); 814 qemu_fflush(f); 815 } 816 817 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 818 { 819 uint32_t buf; 820 821 trace_savevm_send_ping(value); 822 buf = cpu_to_be32(value); 823 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 824 } 825 826 void qemu_savevm_send_open_return_path(QEMUFile *f) 827 { 828 trace_savevm_send_open_return_path(); 829 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 830 } 831 832 /* We have a buffer of data to send; we don't want that all to be loaded 833 * by the command itself, so the command contains just the length of the 834 * extra buffer that we then send straight after it. 835 * TODO: Must be a better way to organise that 836 * 837 * Returns: 838 * 0 on success 839 * -ve on error 840 */ 841 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 842 { 843 uint32_t tmp; 844 845 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 846 error_report("%s: Unreasonably large packaged state: %zu", 847 __func__, len); 848 return -1; 849 } 850 851 tmp = cpu_to_be32(len); 852 853 trace_qemu_savevm_send_packaged(); 854 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 855 856 qemu_put_buffer(f, buf, len); 857 858 return 0; 859 } 860 861 /* Send prior to any postcopy transfer */ 862 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 863 { 864 uint64_t tmp[2]; 865 tmp[0] = cpu_to_be64(ram_pagesize_summary()); 866 tmp[1] = cpu_to_be64(qemu_target_page_size()); 867 868 trace_qemu_savevm_send_postcopy_advise(); 869 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 16, (uint8_t *)tmp); 870 } 871 872 /* Sent prior to starting the destination running in postcopy, discard pages 873 * that have already been sent but redirtied on the source. 874 * CMD_POSTCOPY_RAM_DISCARD consist of: 875 * byte version (0) 876 * byte Length of name field (not including 0) 877 * n x byte RAM block name 878 * byte 0 terminator (just for safety) 879 * n x Byte ranges within the named RAMBlock 880 * be64 Start of the range 881 * be64 Length 882 * 883 * name: RAMBlock name that these entries are part of 884 * len: Number of page entries 885 * start_list: 'len' addresses 886 * length_list: 'len' addresses 887 * 888 */ 889 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 890 uint16_t len, 891 uint64_t *start_list, 892 uint64_t *length_list) 893 { 894 uint8_t *buf; 895 uint16_t tmplen; 896 uint16_t t; 897 size_t name_len = strlen(name); 898 899 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 900 assert(name_len < 256); 901 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 902 buf[0] = postcopy_ram_discard_version; 903 buf[1] = name_len; 904 memcpy(buf + 2, name, name_len); 905 tmplen = 2 + name_len; 906 buf[tmplen++] = '\0'; 907 908 for (t = 0; t < len; t++) { 909 stq_be_p(buf + tmplen, start_list[t]); 910 tmplen += 8; 911 stq_be_p(buf + tmplen, length_list[t]); 912 tmplen += 8; 913 } 914 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 915 g_free(buf); 916 } 917 918 /* Get the destination into a state where it can receive postcopy data. */ 919 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 920 { 921 trace_savevm_send_postcopy_listen(); 922 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 923 } 924 925 /* Kick the destination into running */ 926 void qemu_savevm_send_postcopy_run(QEMUFile *f) 927 { 928 trace_savevm_send_postcopy_run(); 929 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 930 } 931 932 bool qemu_savevm_state_blocked(Error **errp) 933 { 934 SaveStateEntry *se; 935 936 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 937 if (se->vmsd && se->vmsd->unmigratable) { 938 error_setg(errp, "State blocked by non-migratable device '%s'", 939 se->idstr); 940 return true; 941 } 942 } 943 return false; 944 } 945 946 void qemu_savevm_state_header(QEMUFile *f) 947 { 948 trace_savevm_state_header(); 949 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 950 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 951 952 if (migrate_get_current()->send_configuration) { 953 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 954 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 955 } 956 } 957 958 void qemu_savevm_state_setup(QEMUFile *f) 959 { 960 SaveStateEntry *se; 961 int ret; 962 963 trace_savevm_state_setup(); 964 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 965 if (!se->ops || !se->ops->save_setup) { 966 continue; 967 } 968 if (se->ops && se->ops->is_active) { 969 if (!se->ops->is_active(se->opaque)) { 970 continue; 971 } 972 } 973 save_section_header(f, se, QEMU_VM_SECTION_START); 974 975 ret = se->ops->save_setup(f, se->opaque); 976 save_section_footer(f, se); 977 if (ret < 0) { 978 qemu_file_set_error(f, ret); 979 break; 980 } 981 } 982 } 983 984 /* 985 * this function has three return values: 986 * negative: there was one error, and we have -errno. 987 * 0 : We haven't finished, caller have to go again 988 * 1 : We have finished, we can go to complete phase 989 */ 990 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 991 { 992 SaveStateEntry *se; 993 int ret = 1; 994 995 trace_savevm_state_iterate(); 996 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 997 if (!se->ops || !se->ops->save_live_iterate) { 998 continue; 999 } 1000 if (se->ops && se->ops->is_active) { 1001 if (!se->ops->is_active(se->opaque)) { 1002 continue; 1003 } 1004 } 1005 /* 1006 * In the postcopy phase, any device that doesn't know how to 1007 * do postcopy should have saved it's state in the _complete 1008 * call that's already run, it might get confused if we call 1009 * iterate afterwards. 1010 */ 1011 if (postcopy && !se->ops->save_live_complete_postcopy) { 1012 continue; 1013 } 1014 if (qemu_file_rate_limit(f)) { 1015 return 0; 1016 } 1017 trace_savevm_section_start(se->idstr, se->section_id); 1018 1019 save_section_header(f, se, QEMU_VM_SECTION_PART); 1020 1021 ret = se->ops->save_live_iterate(f, se->opaque); 1022 trace_savevm_section_end(se->idstr, se->section_id, ret); 1023 save_section_footer(f, se); 1024 1025 if (ret < 0) { 1026 qemu_file_set_error(f, ret); 1027 } 1028 if (ret <= 0) { 1029 /* Do not proceed to the next vmstate before this one reported 1030 completion of the current stage. This serializes the migration 1031 and reduces the probability that a faster changing state is 1032 synchronized over and over again. */ 1033 break; 1034 } 1035 } 1036 return ret; 1037 } 1038 1039 static bool should_send_vmdesc(void) 1040 { 1041 MachineState *machine = MACHINE(qdev_get_machine()); 1042 bool in_postcopy = migration_in_postcopy(); 1043 return !machine->suppress_vmdesc && !in_postcopy; 1044 } 1045 1046 /* 1047 * Calls the save_live_complete_postcopy methods 1048 * causing the last few pages to be sent immediately and doing any associated 1049 * cleanup. 1050 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1051 * all the other devices, but that happens at the point we switch to postcopy. 1052 */ 1053 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1054 { 1055 SaveStateEntry *se; 1056 int ret; 1057 1058 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1059 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1060 continue; 1061 } 1062 if (se->ops && se->ops->is_active) { 1063 if (!se->ops->is_active(se->opaque)) { 1064 continue; 1065 } 1066 } 1067 trace_savevm_section_start(se->idstr, se->section_id); 1068 /* Section type */ 1069 qemu_put_byte(f, QEMU_VM_SECTION_END); 1070 qemu_put_be32(f, se->section_id); 1071 1072 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1073 trace_savevm_section_end(se->idstr, se->section_id, ret); 1074 save_section_footer(f, se); 1075 if (ret < 0) { 1076 qemu_file_set_error(f, ret); 1077 return; 1078 } 1079 } 1080 1081 qemu_put_byte(f, QEMU_VM_EOF); 1082 qemu_fflush(f); 1083 } 1084 1085 int qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only, 1086 bool inactivate_disks) 1087 { 1088 QJSON *vmdesc; 1089 int vmdesc_len; 1090 SaveStateEntry *se; 1091 int ret; 1092 bool in_postcopy = migration_in_postcopy(); 1093 1094 trace_savevm_state_complete_precopy(); 1095 1096 cpu_synchronize_all_states(); 1097 1098 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1099 if (!se->ops || 1100 (in_postcopy && se->ops->save_live_complete_postcopy) || 1101 (in_postcopy && !iterable_only) || 1102 !se->ops->save_live_complete_precopy) { 1103 continue; 1104 } 1105 1106 if (se->ops && se->ops->is_active) { 1107 if (!se->ops->is_active(se->opaque)) { 1108 continue; 1109 } 1110 } 1111 trace_savevm_section_start(se->idstr, se->section_id); 1112 1113 save_section_header(f, se, QEMU_VM_SECTION_END); 1114 1115 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1116 trace_savevm_section_end(se->idstr, se->section_id, ret); 1117 save_section_footer(f, se); 1118 if (ret < 0) { 1119 qemu_file_set_error(f, ret); 1120 return -1; 1121 } 1122 } 1123 1124 if (iterable_only) { 1125 return 0; 1126 } 1127 1128 vmdesc = qjson_new(); 1129 json_prop_int(vmdesc, "page_size", qemu_target_page_size()); 1130 json_start_array(vmdesc, "devices"); 1131 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1132 1133 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1134 continue; 1135 } 1136 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1137 trace_savevm_section_skip(se->idstr, se->section_id); 1138 continue; 1139 } 1140 1141 trace_savevm_section_start(se->idstr, se->section_id); 1142 1143 json_start_object(vmdesc, NULL); 1144 json_prop_str(vmdesc, "name", se->idstr); 1145 json_prop_int(vmdesc, "instance_id", se->instance_id); 1146 1147 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1148 vmstate_save(f, se, vmdesc); 1149 trace_savevm_section_end(se->idstr, se->section_id, 0); 1150 save_section_footer(f, se); 1151 1152 json_end_object(vmdesc); 1153 } 1154 1155 if (inactivate_disks) { 1156 /* Inactivate before sending QEMU_VM_EOF so that the 1157 * bdrv_invalidate_cache_all() on the other end won't fail. */ 1158 ret = bdrv_inactivate_all(); 1159 if (ret) { 1160 qemu_file_set_error(f, ret); 1161 return ret; 1162 } 1163 } 1164 if (!in_postcopy) { 1165 /* Postcopy stream will still be going */ 1166 qemu_put_byte(f, QEMU_VM_EOF); 1167 } 1168 1169 json_end_array(vmdesc); 1170 qjson_finish(vmdesc); 1171 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1172 1173 if (should_send_vmdesc()) { 1174 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1175 qemu_put_be32(f, vmdesc_len); 1176 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1177 } 1178 qjson_destroy(vmdesc); 1179 1180 qemu_fflush(f); 1181 return 0; 1182 } 1183 1184 /* Give an estimate of the amount left to be transferred, 1185 * the result is split into the amount for units that can and 1186 * for units that can't do postcopy. 1187 */ 1188 void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size, 1189 uint64_t *res_non_postcopiable, 1190 uint64_t *res_postcopiable) 1191 { 1192 SaveStateEntry *se; 1193 1194 *res_non_postcopiable = 0; 1195 *res_postcopiable = 0; 1196 1197 1198 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1199 if (!se->ops || !se->ops->save_live_pending) { 1200 continue; 1201 } 1202 if (se->ops && se->ops->is_active) { 1203 if (!se->ops->is_active(se->opaque)) { 1204 continue; 1205 } 1206 } 1207 se->ops->save_live_pending(f, se->opaque, threshold_size, 1208 res_non_postcopiable, res_postcopiable); 1209 } 1210 } 1211 1212 void qemu_savevm_state_cleanup(void) 1213 { 1214 SaveStateEntry *se; 1215 1216 trace_savevm_state_cleanup(); 1217 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1218 if (se->ops && se->ops->save_cleanup) { 1219 se->ops->save_cleanup(se->opaque); 1220 } 1221 } 1222 } 1223 1224 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1225 { 1226 int ret; 1227 MigrationState *ms = migrate_init(); 1228 MigrationStatus status; 1229 ms->to_dst_file = f; 1230 1231 if (migration_is_blocked(errp)) { 1232 ret = -EINVAL; 1233 goto done; 1234 } 1235 1236 if (migrate_use_block()) { 1237 error_setg(errp, "Block migration and snapshots are incompatible"); 1238 ret = -EINVAL; 1239 goto done; 1240 } 1241 1242 qemu_mutex_unlock_iothread(); 1243 qemu_savevm_state_header(f); 1244 qemu_savevm_state_setup(f); 1245 qemu_mutex_lock_iothread(); 1246 1247 while (qemu_file_get_error(f) == 0) { 1248 if (qemu_savevm_state_iterate(f, false) > 0) { 1249 break; 1250 } 1251 } 1252 1253 ret = qemu_file_get_error(f); 1254 if (ret == 0) { 1255 qemu_savevm_state_complete_precopy(f, false, false); 1256 ret = qemu_file_get_error(f); 1257 } 1258 qemu_savevm_state_cleanup(); 1259 if (ret != 0) { 1260 error_setg_errno(errp, -ret, "Error while writing VM state"); 1261 } 1262 1263 done: 1264 if (ret != 0) { 1265 status = MIGRATION_STATUS_FAILED; 1266 } else { 1267 status = MIGRATION_STATUS_COMPLETED; 1268 } 1269 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1270 1271 /* f is outer parameter, it should not stay in global migration state after 1272 * this function finished */ 1273 ms->to_dst_file = NULL; 1274 1275 return ret; 1276 } 1277 1278 static int qemu_save_device_state(QEMUFile *f) 1279 { 1280 SaveStateEntry *se; 1281 1282 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1283 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1284 1285 cpu_synchronize_all_states(); 1286 1287 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1288 if (se->is_ram) { 1289 continue; 1290 } 1291 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1292 continue; 1293 } 1294 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1295 continue; 1296 } 1297 1298 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1299 1300 vmstate_save(f, se, NULL); 1301 1302 save_section_footer(f, se); 1303 } 1304 1305 qemu_put_byte(f, QEMU_VM_EOF); 1306 1307 return qemu_file_get_error(f); 1308 } 1309 1310 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1311 { 1312 SaveStateEntry *se; 1313 1314 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1315 if (!strcmp(se->idstr, idstr) && 1316 (instance_id == se->instance_id || 1317 instance_id == se->alias_id)) 1318 return se; 1319 /* Migrating from an older version? */ 1320 if (strstr(se->idstr, idstr) && se->compat) { 1321 if (!strcmp(se->compat->idstr, idstr) && 1322 (instance_id == se->compat->instance_id || 1323 instance_id == se->alias_id)) 1324 return se; 1325 } 1326 } 1327 return NULL; 1328 } 1329 1330 enum LoadVMExitCodes { 1331 /* Allow a command to quit all layers of nested loadvm loops */ 1332 LOADVM_QUIT = 1, 1333 }; 1334 1335 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1336 1337 /* ------ incoming postcopy messages ------ */ 1338 /* 'advise' arrives before any transfers just to tell us that a postcopy 1339 * *might* happen - it might be skipped if precopy transferred everything 1340 * quickly. 1341 */ 1342 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis) 1343 { 1344 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1345 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps; 1346 1347 trace_loadvm_postcopy_handle_advise(); 1348 if (ps != POSTCOPY_INCOMING_NONE) { 1349 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1350 return -1; 1351 } 1352 1353 if (!postcopy_ram_supported_by_host()) { 1354 postcopy_state_set(POSTCOPY_INCOMING_NONE); 1355 return -1; 1356 } 1357 1358 remote_pagesize_summary = qemu_get_be64(mis->from_src_file); 1359 local_pagesize_summary = ram_pagesize_summary(); 1360 1361 if (remote_pagesize_summary != local_pagesize_summary) { 1362 /* 1363 * This detects two potential causes of mismatch: 1364 * a) A mismatch in host page sizes 1365 * Some combinations of mismatch are probably possible but it gets 1366 * a bit more complicated. In particular we need to place whole 1367 * host pages on the dest at once, and we need to ensure that we 1368 * handle dirtying to make sure we never end up sending part of 1369 * a hostpage on it's own. 1370 * b) The use of different huge page sizes on source/destination 1371 * a more fine grain test is performed during RAM block migration 1372 * but this test here causes a nice early clear failure, and 1373 * also fails when passed to an older qemu that doesn't 1374 * do huge pages. 1375 */ 1376 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64 1377 " d=%" PRIx64 ")", 1378 remote_pagesize_summary, local_pagesize_summary); 1379 return -1; 1380 } 1381 1382 remote_tps = qemu_get_be64(mis->from_src_file); 1383 if (remote_tps != qemu_target_page_size()) { 1384 /* 1385 * Again, some differences could be dealt with, but for now keep it 1386 * simple. 1387 */ 1388 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)", 1389 (int)remote_tps, qemu_target_page_size()); 1390 return -1; 1391 } 1392 1393 if (ram_postcopy_incoming_init(mis)) { 1394 return -1; 1395 } 1396 1397 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1398 1399 return 0; 1400 } 1401 1402 /* After postcopy we will be told to throw some pages away since they're 1403 * dirty and will have to be demand fetched. Must happen before CPU is 1404 * started. 1405 * There can be 0..many of these messages, each encoding multiple pages. 1406 */ 1407 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1408 uint16_t len) 1409 { 1410 int tmp; 1411 char ramid[256]; 1412 PostcopyState ps = postcopy_state_get(); 1413 1414 trace_loadvm_postcopy_ram_handle_discard(); 1415 1416 switch (ps) { 1417 case POSTCOPY_INCOMING_ADVISE: 1418 /* 1st discard */ 1419 tmp = postcopy_ram_prepare_discard(mis); 1420 if (tmp) { 1421 return tmp; 1422 } 1423 break; 1424 1425 case POSTCOPY_INCOMING_DISCARD: 1426 /* Expected state */ 1427 break; 1428 1429 default: 1430 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1431 ps); 1432 return -1; 1433 } 1434 /* We're expecting a 1435 * Version (0) 1436 * a RAM ID string (length byte, name, 0 term) 1437 * then at least 1 16 byte chunk 1438 */ 1439 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1440 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1441 return -1; 1442 } 1443 1444 tmp = qemu_get_byte(mis->from_src_file); 1445 if (tmp != postcopy_ram_discard_version) { 1446 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1447 return -1; 1448 } 1449 1450 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1451 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1452 return -1; 1453 } 1454 tmp = qemu_get_byte(mis->from_src_file); 1455 if (tmp != 0) { 1456 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1457 return -1; 1458 } 1459 1460 len -= 3 + strlen(ramid); 1461 if (len % 16) { 1462 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1463 return -1; 1464 } 1465 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1466 while (len) { 1467 uint64_t start_addr, block_length; 1468 start_addr = qemu_get_be64(mis->from_src_file); 1469 block_length = qemu_get_be64(mis->from_src_file); 1470 1471 len -= 16; 1472 int ret = ram_discard_range(ramid, start_addr, block_length); 1473 if (ret) { 1474 return ret; 1475 } 1476 } 1477 trace_loadvm_postcopy_ram_handle_discard_end(); 1478 1479 return 0; 1480 } 1481 1482 /* 1483 * Triggered by a postcopy_listen command; this thread takes over reading 1484 * the input stream, leaving the main thread free to carry on loading the rest 1485 * of the device state (from RAM). 1486 * (TODO:This could do with being in a postcopy file - but there again it's 1487 * just another input loop, not that postcopy specific) 1488 */ 1489 static void *postcopy_ram_listen_thread(void *opaque) 1490 { 1491 QEMUFile *f = opaque; 1492 MigrationIncomingState *mis = migration_incoming_get_current(); 1493 int load_res; 1494 1495 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1496 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1497 qemu_sem_post(&mis->listen_thread_sem); 1498 trace_postcopy_ram_listen_thread_start(); 1499 1500 /* 1501 * Because we're a thread and not a coroutine we can't yield 1502 * in qemu_file, and thus we must be blocking now. 1503 */ 1504 qemu_file_set_blocking(f, true); 1505 load_res = qemu_loadvm_state_main(f, mis); 1506 /* And non-blocking again so we don't block in any cleanup */ 1507 qemu_file_set_blocking(f, false); 1508 1509 trace_postcopy_ram_listen_thread_exit(); 1510 if (load_res < 0) { 1511 error_report("%s: loadvm failed: %d", __func__, load_res); 1512 qemu_file_set_error(f, load_res); 1513 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1514 MIGRATION_STATUS_FAILED); 1515 } else { 1516 /* 1517 * This looks good, but it's possible that the device loading in the 1518 * main thread hasn't finished yet, and so we might not be in 'RUN' 1519 * state yet; wait for the end of the main thread. 1520 */ 1521 qemu_event_wait(&mis->main_thread_load_event); 1522 } 1523 postcopy_ram_incoming_cleanup(mis); 1524 1525 if (load_res < 0) { 1526 /* 1527 * If something went wrong then we have a bad state so exit; 1528 * depending how far we got it might be possible at this point 1529 * to leave the guest running and fire MCEs for pages that never 1530 * arrived as a desperate recovery step. 1531 */ 1532 exit(EXIT_FAILURE); 1533 } 1534 1535 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1536 MIGRATION_STATUS_COMPLETED); 1537 /* 1538 * If everything has worked fine, then the main thread has waited 1539 * for us to start, and we're the last use of the mis. 1540 * (If something broke then qemu will have to exit anyway since it's 1541 * got a bad migration state). 1542 */ 1543 migration_incoming_state_destroy(); 1544 qemu_loadvm_state_cleanup(); 1545 1546 return NULL; 1547 } 1548 1549 /* After this message we must be able to immediately receive postcopy data */ 1550 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1551 { 1552 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1553 trace_loadvm_postcopy_handle_listen(); 1554 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1555 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1556 return -1; 1557 } 1558 if (ps == POSTCOPY_INCOMING_ADVISE) { 1559 /* 1560 * A rare case, we entered listen without having to do any discards, 1561 * so do the setup that's normally done at the time of the 1st discard. 1562 */ 1563 postcopy_ram_prepare_discard(mis); 1564 } 1565 1566 /* 1567 * Sensitise RAM - can now generate requests for blocks that don't exist 1568 * However, at this point the CPU shouldn't be running, and the IO 1569 * shouldn't be doing anything yet so don't actually expect requests 1570 */ 1571 if (postcopy_ram_enable_notify(mis)) { 1572 return -1; 1573 } 1574 1575 if (mis->have_listen_thread) { 1576 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1577 return -1; 1578 } 1579 1580 mis->have_listen_thread = true; 1581 /* Start up the listening thread and wait for it to signal ready */ 1582 qemu_sem_init(&mis->listen_thread_sem, 0); 1583 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1584 postcopy_ram_listen_thread, mis->from_src_file, 1585 QEMU_THREAD_DETACHED); 1586 qemu_sem_wait(&mis->listen_thread_sem); 1587 qemu_sem_destroy(&mis->listen_thread_sem); 1588 1589 return 0; 1590 } 1591 1592 1593 typedef struct { 1594 QEMUBH *bh; 1595 } HandleRunBhData; 1596 1597 static void loadvm_postcopy_handle_run_bh(void *opaque) 1598 { 1599 Error *local_err = NULL; 1600 HandleRunBhData *data = opaque; 1601 1602 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1603 * in migration.c 1604 */ 1605 cpu_synchronize_all_post_init(); 1606 1607 qemu_announce_self(); 1608 1609 /* Make sure all file formats flush their mutable metadata. 1610 * If we get an error here, just don't restart the VM yet. */ 1611 bdrv_invalidate_cache_all(&local_err); 1612 if (local_err) { 1613 error_report_err(local_err); 1614 local_err = NULL; 1615 autostart = false; 1616 } 1617 1618 trace_loadvm_postcopy_handle_run_cpu_sync(); 1619 cpu_synchronize_all_post_init(); 1620 1621 trace_loadvm_postcopy_handle_run_vmstart(); 1622 1623 if (autostart) { 1624 /* Hold onto your hats, starting the CPU */ 1625 vm_start(); 1626 } else { 1627 /* leave it paused and let management decide when to start the CPU */ 1628 runstate_set(RUN_STATE_PAUSED); 1629 } 1630 1631 qemu_bh_delete(data->bh); 1632 g_free(data); 1633 } 1634 1635 /* After all discards we can start running and asking for pages */ 1636 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1637 { 1638 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1639 HandleRunBhData *data; 1640 1641 trace_loadvm_postcopy_handle_run(); 1642 if (ps != POSTCOPY_INCOMING_LISTENING) { 1643 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1644 return -1; 1645 } 1646 1647 data = g_new(HandleRunBhData, 1); 1648 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1649 qemu_bh_schedule(data->bh); 1650 1651 /* We need to finish reading the stream from the package 1652 * and also stop reading anything more from the stream that loaded the 1653 * package (since it's now being read by the listener thread). 1654 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1655 */ 1656 return LOADVM_QUIT; 1657 } 1658 1659 /** 1660 * Immediately following this command is a blob of data containing an embedded 1661 * chunk of migration stream; read it and load it. 1662 * 1663 * @mis: Incoming state 1664 * @length: Length of packaged data to read 1665 * 1666 * Returns: Negative values on error 1667 * 1668 */ 1669 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1670 { 1671 int ret; 1672 size_t length; 1673 QIOChannelBuffer *bioc; 1674 1675 length = qemu_get_be32(mis->from_src_file); 1676 trace_loadvm_handle_cmd_packaged(length); 1677 1678 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1679 error_report("Unreasonably large packaged state: %zu", length); 1680 return -1; 1681 } 1682 1683 bioc = qio_channel_buffer_new(length); 1684 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 1685 ret = qemu_get_buffer(mis->from_src_file, 1686 bioc->data, 1687 length); 1688 if (ret != length) { 1689 object_unref(OBJECT(bioc)); 1690 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1691 ret, length); 1692 return (ret < 0) ? ret : -EAGAIN; 1693 } 1694 bioc->usage += length; 1695 trace_loadvm_handle_cmd_packaged_received(ret); 1696 1697 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1698 1699 ret = qemu_loadvm_state_main(packf, mis); 1700 trace_loadvm_handle_cmd_packaged_main(ret); 1701 qemu_fclose(packf); 1702 object_unref(OBJECT(bioc)); 1703 1704 return ret; 1705 } 1706 1707 /* 1708 * Process an incoming 'QEMU_VM_COMMAND' 1709 * 0 just a normal return 1710 * LOADVM_QUIT All good, but exit the loop 1711 * <0 Error 1712 */ 1713 static int loadvm_process_command(QEMUFile *f) 1714 { 1715 MigrationIncomingState *mis = migration_incoming_get_current(); 1716 uint16_t cmd; 1717 uint16_t len; 1718 uint32_t tmp32; 1719 1720 cmd = qemu_get_be16(f); 1721 len = qemu_get_be16(f); 1722 1723 trace_loadvm_process_command(cmd, len); 1724 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1725 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1726 return -EINVAL; 1727 } 1728 1729 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1730 error_report("%s received with bad length - expecting %zu, got %d", 1731 mig_cmd_args[cmd].name, 1732 (size_t)mig_cmd_args[cmd].len, len); 1733 return -ERANGE; 1734 } 1735 1736 switch (cmd) { 1737 case MIG_CMD_OPEN_RETURN_PATH: 1738 if (mis->to_src_file) { 1739 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1740 /* Not really a problem, so don't give up */ 1741 return 0; 1742 } 1743 mis->to_src_file = qemu_file_get_return_path(f); 1744 if (!mis->to_src_file) { 1745 error_report("CMD_OPEN_RETURN_PATH failed"); 1746 return -1; 1747 } 1748 break; 1749 1750 case MIG_CMD_PING: 1751 tmp32 = qemu_get_be32(f); 1752 trace_loadvm_process_command_ping(tmp32); 1753 if (!mis->to_src_file) { 1754 error_report("CMD_PING (0x%x) received with no return path", 1755 tmp32); 1756 return -1; 1757 } 1758 migrate_send_rp_pong(mis, tmp32); 1759 break; 1760 1761 case MIG_CMD_PACKAGED: 1762 return loadvm_handle_cmd_packaged(mis); 1763 1764 case MIG_CMD_POSTCOPY_ADVISE: 1765 return loadvm_postcopy_handle_advise(mis); 1766 1767 case MIG_CMD_POSTCOPY_LISTEN: 1768 return loadvm_postcopy_handle_listen(mis); 1769 1770 case MIG_CMD_POSTCOPY_RUN: 1771 return loadvm_postcopy_handle_run(mis); 1772 1773 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1774 return loadvm_postcopy_ram_handle_discard(mis, len); 1775 } 1776 1777 return 0; 1778 } 1779 1780 /* 1781 * Read a footer off the wire and check that it matches the expected section 1782 * 1783 * Returns: true if the footer was good 1784 * false if there is a problem (and calls error_report to say why) 1785 */ 1786 static bool check_section_footer(QEMUFile *f, SaveStateEntry *se) 1787 { 1788 uint8_t read_mark; 1789 uint32_t read_section_id; 1790 1791 if (!migrate_get_current()->send_section_footer) { 1792 /* No footer to check */ 1793 return true; 1794 } 1795 1796 read_mark = qemu_get_byte(f); 1797 1798 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1799 error_report("Missing section footer for %s", se->idstr); 1800 return false; 1801 } 1802 1803 read_section_id = qemu_get_be32(f); 1804 if (read_section_id != se->load_section_id) { 1805 error_report("Mismatched section id in footer for %s -" 1806 " read 0x%x expected 0x%x", 1807 se->idstr, read_section_id, se->load_section_id); 1808 return false; 1809 } 1810 1811 /* All good */ 1812 return true; 1813 } 1814 1815 static int 1816 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1817 { 1818 uint32_t instance_id, version_id, section_id; 1819 SaveStateEntry *se; 1820 char idstr[256]; 1821 int ret; 1822 1823 /* Read section start */ 1824 section_id = qemu_get_be32(f); 1825 if (!qemu_get_counted_string(f, idstr)) { 1826 error_report("Unable to read ID string for section %u", 1827 section_id); 1828 return -EINVAL; 1829 } 1830 instance_id = qemu_get_be32(f); 1831 version_id = qemu_get_be32(f); 1832 1833 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1834 instance_id, version_id); 1835 /* Find savevm section */ 1836 se = find_se(idstr, instance_id); 1837 if (se == NULL) { 1838 error_report("Unknown savevm section or instance '%s' %d", 1839 idstr, instance_id); 1840 return -EINVAL; 1841 } 1842 1843 /* Validate version */ 1844 if (version_id > se->version_id) { 1845 error_report("savevm: unsupported version %d for '%s' v%d", 1846 version_id, idstr, se->version_id); 1847 return -EINVAL; 1848 } 1849 se->load_version_id = version_id; 1850 se->load_section_id = section_id; 1851 1852 /* Validate if it is a device's state */ 1853 if (xen_enabled() && se->is_ram) { 1854 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1855 return -EINVAL; 1856 } 1857 1858 ret = vmstate_load(f, se); 1859 if (ret < 0) { 1860 error_report("error while loading state for instance 0x%x of" 1861 " device '%s'", instance_id, idstr); 1862 return ret; 1863 } 1864 if (!check_section_footer(f, se)) { 1865 return -EINVAL; 1866 } 1867 1868 return 0; 1869 } 1870 1871 static int 1872 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1873 { 1874 uint32_t section_id; 1875 SaveStateEntry *se; 1876 int ret; 1877 1878 section_id = qemu_get_be32(f); 1879 1880 trace_qemu_loadvm_state_section_partend(section_id); 1881 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1882 if (se->load_section_id == section_id) { 1883 break; 1884 } 1885 } 1886 if (se == NULL) { 1887 error_report("Unknown savevm section %d", section_id); 1888 return -EINVAL; 1889 } 1890 1891 ret = vmstate_load(f, se); 1892 if (ret < 0) { 1893 error_report("error while loading state section id %d(%s)", 1894 section_id, se->idstr); 1895 return ret; 1896 } 1897 if (!check_section_footer(f, se)) { 1898 return -EINVAL; 1899 } 1900 1901 return 0; 1902 } 1903 1904 static int qemu_loadvm_state_setup(QEMUFile *f) 1905 { 1906 SaveStateEntry *se; 1907 int ret; 1908 1909 trace_loadvm_state_setup(); 1910 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1911 if (!se->ops || !se->ops->load_setup) { 1912 continue; 1913 } 1914 if (se->ops && se->ops->is_active) { 1915 if (!se->ops->is_active(se->opaque)) { 1916 continue; 1917 } 1918 } 1919 1920 ret = se->ops->load_setup(f, se->opaque); 1921 if (ret < 0) { 1922 qemu_file_set_error(f, ret); 1923 error_report("Load state of device %s failed", se->idstr); 1924 return ret; 1925 } 1926 } 1927 return 0; 1928 } 1929 1930 void qemu_loadvm_state_cleanup(void) 1931 { 1932 SaveStateEntry *se; 1933 1934 trace_loadvm_state_cleanup(); 1935 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1936 if (se->ops && se->ops->load_cleanup) { 1937 se->ops->load_cleanup(se->opaque); 1938 } 1939 } 1940 } 1941 1942 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 1943 { 1944 uint8_t section_type; 1945 int ret = 0; 1946 1947 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { 1948 ret = 0; 1949 trace_qemu_loadvm_state_section(section_type); 1950 switch (section_type) { 1951 case QEMU_VM_SECTION_START: 1952 case QEMU_VM_SECTION_FULL: 1953 ret = qemu_loadvm_section_start_full(f, mis); 1954 if (ret < 0) { 1955 goto out; 1956 } 1957 break; 1958 case QEMU_VM_SECTION_PART: 1959 case QEMU_VM_SECTION_END: 1960 ret = qemu_loadvm_section_part_end(f, mis); 1961 if (ret < 0) { 1962 goto out; 1963 } 1964 break; 1965 case QEMU_VM_COMMAND: 1966 ret = loadvm_process_command(f); 1967 trace_qemu_loadvm_state_section_command(ret); 1968 if ((ret < 0) || (ret & LOADVM_QUIT)) { 1969 goto out; 1970 } 1971 break; 1972 default: 1973 error_report("Unknown savevm section type %d", section_type); 1974 ret = -EINVAL; 1975 goto out; 1976 } 1977 } 1978 1979 out: 1980 if (ret < 0) { 1981 qemu_file_set_error(f, ret); 1982 } 1983 return ret; 1984 } 1985 1986 int qemu_loadvm_state(QEMUFile *f) 1987 { 1988 MigrationIncomingState *mis = migration_incoming_get_current(); 1989 Error *local_err = NULL; 1990 unsigned int v; 1991 int ret; 1992 1993 if (qemu_savevm_state_blocked(&local_err)) { 1994 error_report_err(local_err); 1995 return -EINVAL; 1996 } 1997 1998 v = qemu_get_be32(f); 1999 if (v != QEMU_VM_FILE_MAGIC) { 2000 error_report("Not a migration stream"); 2001 return -EINVAL; 2002 } 2003 2004 v = qemu_get_be32(f); 2005 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 2006 error_report("SaveVM v2 format is obsolete and don't work anymore"); 2007 return -ENOTSUP; 2008 } 2009 if (v != QEMU_VM_FILE_VERSION) { 2010 error_report("Unsupported migration stream version"); 2011 return -ENOTSUP; 2012 } 2013 2014 if (qemu_loadvm_state_setup(f) != 0) { 2015 return -EINVAL; 2016 } 2017 2018 if (migrate_get_current()->send_configuration) { 2019 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 2020 error_report("Configuration section missing"); 2021 return -EINVAL; 2022 } 2023 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 2024 2025 if (ret) { 2026 return ret; 2027 } 2028 } 2029 2030 cpu_synchronize_all_pre_loadvm(); 2031 2032 ret = qemu_loadvm_state_main(f, mis); 2033 qemu_event_set(&mis->main_thread_load_event); 2034 2035 trace_qemu_loadvm_state_post_main(ret); 2036 2037 if (mis->have_listen_thread) { 2038 /* Listen thread still going, can't clean up yet */ 2039 return ret; 2040 } 2041 2042 if (ret == 0) { 2043 ret = qemu_file_get_error(f); 2044 } 2045 2046 /* 2047 * Try to read in the VMDESC section as well, so that dumping tools that 2048 * intercept our migration stream have the chance to see it. 2049 */ 2050 2051 /* We've got to be careful; if we don't read the data and just shut the fd 2052 * then the sender can error if we close while it's still sending. 2053 * We also mustn't read data that isn't there; some transports (RDMA) 2054 * will stall waiting for that data when the source has already closed. 2055 */ 2056 if (ret == 0 && should_send_vmdesc()) { 2057 uint8_t *buf; 2058 uint32_t size; 2059 uint8_t section_type = qemu_get_byte(f); 2060 2061 if (section_type != QEMU_VM_VMDESCRIPTION) { 2062 error_report("Expected vmdescription section, but got %d", 2063 section_type); 2064 /* 2065 * It doesn't seem worth failing at this point since 2066 * we apparently have an otherwise valid VM state 2067 */ 2068 } else { 2069 buf = g_malloc(0x1000); 2070 size = qemu_get_be32(f); 2071 2072 while (size > 0) { 2073 uint32_t read_chunk = MIN(size, 0x1000); 2074 qemu_get_buffer(f, buf, read_chunk); 2075 size -= read_chunk; 2076 } 2077 g_free(buf); 2078 } 2079 } 2080 2081 qemu_loadvm_state_cleanup(); 2082 cpu_synchronize_all_post_init(); 2083 2084 return ret; 2085 } 2086 2087 int save_snapshot(const char *name, Error **errp) 2088 { 2089 BlockDriverState *bs, *bs1; 2090 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 2091 int ret = -1; 2092 QEMUFile *f; 2093 int saved_vm_running; 2094 uint64_t vm_state_size; 2095 qemu_timeval tv; 2096 struct tm tm; 2097 AioContext *aio_context; 2098 2099 if (!bdrv_all_can_snapshot(&bs)) { 2100 error_setg(errp, "Device '%s' is writable but does not support " 2101 "snapshots", bdrv_get_device_name(bs)); 2102 return ret; 2103 } 2104 2105 /* Delete old snapshots of the same name */ 2106 if (name) { 2107 ret = bdrv_all_delete_snapshot(name, &bs1, errp); 2108 if (ret < 0) { 2109 error_prepend(errp, "Error while deleting snapshot on device " 2110 "'%s': ", bdrv_get_device_name(bs1)); 2111 return ret; 2112 } 2113 } 2114 2115 bs = bdrv_all_find_vmstate_bs(); 2116 if (bs == NULL) { 2117 error_setg(errp, "No block device can accept snapshots"); 2118 return ret; 2119 } 2120 aio_context = bdrv_get_aio_context(bs); 2121 2122 saved_vm_running = runstate_is_running(); 2123 2124 ret = global_state_store(); 2125 if (ret) { 2126 error_setg(errp, "Error saving global state"); 2127 return ret; 2128 } 2129 vm_stop(RUN_STATE_SAVE_VM); 2130 2131 bdrv_drain_all_begin(); 2132 2133 aio_context_acquire(aio_context); 2134 2135 memset(sn, 0, sizeof(*sn)); 2136 2137 /* fill auxiliary fields */ 2138 qemu_gettimeofday(&tv); 2139 sn->date_sec = tv.tv_sec; 2140 sn->date_nsec = tv.tv_usec * 1000; 2141 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2142 2143 if (name) { 2144 ret = bdrv_snapshot_find(bs, old_sn, name); 2145 if (ret >= 0) { 2146 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2147 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2148 } else { 2149 pstrcpy(sn->name, sizeof(sn->name), name); 2150 } 2151 } else { 2152 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2153 localtime_r((const time_t *)&tv.tv_sec, &tm); 2154 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2155 } 2156 2157 /* save the VM state */ 2158 f = qemu_fopen_bdrv(bs, 1); 2159 if (!f) { 2160 error_setg(errp, "Could not open VM state file"); 2161 goto the_end; 2162 } 2163 ret = qemu_savevm_state(f, errp); 2164 vm_state_size = qemu_ftell(f); 2165 qemu_fclose(f); 2166 if (ret < 0) { 2167 goto the_end; 2168 } 2169 2170 /* The bdrv_all_create_snapshot() call that follows acquires the AioContext 2171 * for itself. BDRV_POLL_WHILE() does not support nested locking because 2172 * it only releases the lock once. Therefore synchronous I/O will deadlock 2173 * unless we release the AioContext before bdrv_all_create_snapshot(). 2174 */ 2175 aio_context_release(aio_context); 2176 aio_context = NULL; 2177 2178 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2179 if (ret < 0) { 2180 error_setg(errp, "Error while creating snapshot on '%s'", 2181 bdrv_get_device_name(bs)); 2182 goto the_end; 2183 } 2184 2185 ret = 0; 2186 2187 the_end: 2188 if (aio_context) { 2189 aio_context_release(aio_context); 2190 } 2191 2192 bdrv_drain_all_end(); 2193 2194 if (saved_vm_running) { 2195 vm_start(); 2196 } 2197 return ret; 2198 } 2199 2200 void qmp_xen_save_devices_state(const char *filename, Error **errp) 2201 { 2202 QEMUFile *f; 2203 QIOChannelFile *ioc; 2204 int saved_vm_running; 2205 int ret; 2206 2207 saved_vm_running = runstate_is_running(); 2208 vm_stop(RUN_STATE_SAVE_VM); 2209 global_state_store_running(); 2210 2211 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2212 if (!ioc) { 2213 goto the_end; 2214 } 2215 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 2216 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2217 ret = qemu_save_device_state(f); 2218 qemu_fclose(f); 2219 if (ret < 0) { 2220 error_setg(errp, QERR_IO_ERROR); 2221 } 2222 2223 the_end: 2224 if (saved_vm_running) { 2225 vm_start(); 2226 } 2227 } 2228 2229 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2230 { 2231 QEMUFile *f; 2232 QIOChannelFile *ioc; 2233 int ret; 2234 2235 /* Guest must be paused before loading the device state; the RAM state 2236 * will already have been loaded by xc 2237 */ 2238 if (runstate_is_running()) { 2239 error_setg(errp, "Cannot update device state while vm is running"); 2240 return; 2241 } 2242 vm_stop(RUN_STATE_RESTORE_VM); 2243 2244 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2245 if (!ioc) { 2246 return; 2247 } 2248 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 2249 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2250 2251 ret = qemu_loadvm_state(f); 2252 qemu_fclose(f); 2253 if (ret < 0) { 2254 error_setg(errp, QERR_IO_ERROR); 2255 } 2256 migration_incoming_state_destroy(); 2257 } 2258 2259 int load_snapshot(const char *name, Error **errp) 2260 { 2261 BlockDriverState *bs, *bs_vm_state; 2262 QEMUSnapshotInfo sn; 2263 QEMUFile *f; 2264 int ret; 2265 AioContext *aio_context; 2266 MigrationIncomingState *mis = migration_incoming_get_current(); 2267 2268 if (!bdrv_all_can_snapshot(&bs)) { 2269 error_setg(errp, 2270 "Device '%s' is writable but does not support snapshots", 2271 bdrv_get_device_name(bs)); 2272 return -ENOTSUP; 2273 } 2274 ret = bdrv_all_find_snapshot(name, &bs); 2275 if (ret < 0) { 2276 error_setg(errp, 2277 "Device '%s' does not have the requested snapshot '%s'", 2278 bdrv_get_device_name(bs), name); 2279 return ret; 2280 } 2281 2282 bs_vm_state = bdrv_all_find_vmstate_bs(); 2283 if (!bs_vm_state) { 2284 error_setg(errp, "No block device supports snapshots"); 2285 return -ENOTSUP; 2286 } 2287 aio_context = bdrv_get_aio_context(bs_vm_state); 2288 2289 /* Don't even try to load empty VM states */ 2290 aio_context_acquire(aio_context); 2291 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2292 aio_context_release(aio_context); 2293 if (ret < 0) { 2294 return ret; 2295 } else if (sn.vm_state_size == 0) { 2296 error_setg(errp, "This is a disk-only snapshot. Revert to it " 2297 " offline using qemu-img"); 2298 return -EINVAL; 2299 } 2300 2301 /* Flush all IO requests so they don't interfere with the new state. */ 2302 bdrv_drain_all_begin(); 2303 2304 ret = bdrv_all_goto_snapshot(name, &bs); 2305 if (ret < 0) { 2306 error_setg(errp, "Error %d while activating snapshot '%s' on '%s'", 2307 ret, name, bdrv_get_device_name(bs)); 2308 goto err_drain; 2309 } 2310 2311 /* restore the VM state */ 2312 f = qemu_fopen_bdrv(bs_vm_state, 0); 2313 if (!f) { 2314 error_setg(errp, "Could not open VM state file"); 2315 ret = -EINVAL; 2316 goto err_drain; 2317 } 2318 2319 qemu_system_reset(SHUTDOWN_CAUSE_NONE); 2320 mis->from_src_file = f; 2321 2322 aio_context_acquire(aio_context); 2323 ret = qemu_loadvm_state(f); 2324 migration_incoming_state_destroy(); 2325 aio_context_release(aio_context); 2326 2327 bdrv_drain_all_end(); 2328 2329 if (ret < 0) { 2330 error_setg(errp, "Error %d while loading VM state", ret); 2331 return ret; 2332 } 2333 2334 return 0; 2335 2336 err_drain: 2337 bdrv_drain_all_end(); 2338 return ret; 2339 } 2340 2341 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2342 { 2343 qemu_ram_set_idstr(mr->ram_block, 2344 memory_region_name(mr), dev); 2345 } 2346 2347 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2348 { 2349 qemu_ram_unset_idstr(mr->ram_block); 2350 } 2351 2352 void vmstate_register_ram_global(MemoryRegion *mr) 2353 { 2354 vmstate_register_ram(mr, NULL); 2355 } 2356 2357 bool vmstate_check_only_migratable(const VMStateDescription *vmsd) 2358 { 2359 /* check needed if --only-migratable is specified */ 2360 if (!migrate_get_current()->only_migratable) { 2361 return true; 2362 } 2363 2364 return !(vmsd && vmsd->unmigratable); 2365 } 2366