1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include "hw/boards.h" 32 #include "hw/hw.h" 33 #include "hw/qdev.h" 34 #include "hw/xen/xen.h" 35 #include "net/net.h" 36 #include "monitor/monitor.h" 37 #include "sysemu/sysemu.h" 38 #include "qemu/timer.h" 39 #include "audio/audio.h" 40 #include "migration/migration.h" 41 #include "migration/postcopy-ram.h" 42 #include "qapi/qmp/qerror.h" 43 #include "qemu/error-report.h" 44 #include "qemu/sockets.h" 45 #include "qemu/queue.h" 46 #include "sysemu/cpus.h" 47 #include "exec/memory.h" 48 #include "qmp-commands.h" 49 #include "trace.h" 50 #include "qemu/bitops.h" 51 #include "qemu/iov.h" 52 #include "block/snapshot.h" 53 #include "block/qapi.h" 54 #include "qemu/cutils.h" 55 #include "io/channel-buffer.h" 56 #include "io/channel-file.h" 57 58 #ifndef ETH_P_RARP 59 #define ETH_P_RARP 0x8035 60 #endif 61 #define ARP_HTYPE_ETH 0x0001 62 #define ARP_PTYPE_IP 0x0800 63 #define ARP_OP_REQUEST_REV 0x3 64 65 const unsigned int postcopy_ram_discard_version = 0; 66 67 static bool skip_section_footers; 68 69 static struct mig_cmd_args { 70 ssize_t len; /* -1 = variable */ 71 const char *name; 72 } mig_cmd_args[] = { 73 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 74 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 75 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 76 [MIG_CMD_POSTCOPY_ADVISE] = { .len = 16, .name = "POSTCOPY_ADVISE" }, 77 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 78 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 79 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 80 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 81 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 82 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 83 }; 84 85 static int announce_self_create(uint8_t *buf, 86 uint8_t *mac_addr) 87 { 88 /* Ethernet header. */ 89 memset(buf, 0xff, 6); /* destination MAC addr */ 90 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 91 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 92 93 /* RARP header. */ 94 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 95 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 96 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 97 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 98 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 99 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 100 memset(buf + 28, 0x00, 4); /* source protocol addr */ 101 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 102 memset(buf + 38, 0x00, 4); /* target protocol addr */ 103 104 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 105 memset(buf + 42, 0x00, 18); 106 107 return 60; /* len (FCS will be added by hardware) */ 108 } 109 110 static void qemu_announce_self_iter(NICState *nic, void *opaque) 111 { 112 uint8_t buf[60]; 113 int len; 114 115 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 116 len = announce_self_create(buf, nic->conf->macaddr.a); 117 118 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 119 } 120 121 122 static void qemu_announce_self_once(void *opaque) 123 { 124 static int count = SELF_ANNOUNCE_ROUNDS; 125 QEMUTimer *timer = *(QEMUTimer **)opaque; 126 127 qemu_foreach_nic(qemu_announce_self_iter, NULL); 128 129 if (--count) { 130 /* delay 50ms, 150ms, 250ms, ... */ 131 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 132 self_announce_delay(count)); 133 } else { 134 timer_del(timer); 135 timer_free(timer); 136 } 137 } 138 139 void qemu_announce_self(void) 140 { 141 static QEMUTimer *timer; 142 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 143 qemu_announce_self_once(&timer); 144 } 145 146 /***********************************************************/ 147 /* savevm/loadvm support */ 148 149 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 150 int64_t pos) 151 { 152 int ret; 153 QEMUIOVector qiov; 154 155 qemu_iovec_init_external(&qiov, iov, iovcnt); 156 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 157 if (ret < 0) { 158 return ret; 159 } 160 161 return qiov.size; 162 } 163 164 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 165 size_t size) 166 { 167 return bdrv_load_vmstate(opaque, buf, pos, size); 168 } 169 170 static int bdrv_fclose(void *opaque) 171 { 172 return bdrv_flush(opaque); 173 } 174 175 static const QEMUFileOps bdrv_read_ops = { 176 .get_buffer = block_get_buffer, 177 .close = bdrv_fclose 178 }; 179 180 static const QEMUFileOps bdrv_write_ops = { 181 .writev_buffer = block_writev_buffer, 182 .close = bdrv_fclose 183 }; 184 185 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 186 { 187 if (is_writable) { 188 return qemu_fopen_ops(bs, &bdrv_write_ops); 189 } 190 return qemu_fopen_ops(bs, &bdrv_read_ops); 191 } 192 193 194 /* QEMUFile timer support. 195 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 196 */ 197 198 void timer_put(QEMUFile *f, QEMUTimer *ts) 199 { 200 uint64_t expire_time; 201 202 expire_time = timer_expire_time_ns(ts); 203 qemu_put_be64(f, expire_time); 204 } 205 206 void timer_get(QEMUFile *f, QEMUTimer *ts) 207 { 208 uint64_t expire_time; 209 210 expire_time = qemu_get_be64(f); 211 if (expire_time != -1) { 212 timer_mod_ns(ts, expire_time); 213 } else { 214 timer_del(ts); 215 } 216 } 217 218 219 /* VMState timer support. 220 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 221 */ 222 223 static int get_timer(QEMUFile *f, void *pv, size_t size) 224 { 225 QEMUTimer *v = pv; 226 timer_get(f, v); 227 return 0; 228 } 229 230 static void put_timer(QEMUFile *f, void *pv, size_t size) 231 { 232 QEMUTimer *v = pv; 233 timer_put(f, v); 234 } 235 236 const VMStateInfo vmstate_info_timer = { 237 .name = "timer", 238 .get = get_timer, 239 .put = put_timer, 240 }; 241 242 243 typedef struct CompatEntry { 244 char idstr[256]; 245 int instance_id; 246 } CompatEntry; 247 248 typedef struct SaveStateEntry { 249 QTAILQ_ENTRY(SaveStateEntry) entry; 250 char idstr[256]; 251 int instance_id; 252 int alias_id; 253 int version_id; 254 int section_id; 255 SaveVMHandlers *ops; 256 const VMStateDescription *vmsd; 257 void *opaque; 258 CompatEntry *compat; 259 int is_ram; 260 } SaveStateEntry; 261 262 typedef struct SaveState { 263 QTAILQ_HEAD(, SaveStateEntry) handlers; 264 int global_section_id; 265 bool skip_configuration; 266 uint32_t len; 267 const char *name; 268 } SaveState; 269 270 static SaveState savevm_state = { 271 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 272 .global_section_id = 0, 273 .skip_configuration = false, 274 }; 275 276 void savevm_skip_configuration(void) 277 { 278 savevm_state.skip_configuration = true; 279 } 280 281 282 static void configuration_pre_save(void *opaque) 283 { 284 SaveState *state = opaque; 285 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 286 287 state->len = strlen(current_name); 288 state->name = current_name; 289 } 290 291 static int configuration_post_load(void *opaque, int version_id) 292 { 293 SaveState *state = opaque; 294 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 295 296 if (strncmp(state->name, current_name, state->len) != 0) { 297 error_report("Machine type received is '%.*s' and local is '%s'", 298 (int) state->len, state->name, current_name); 299 return -EINVAL; 300 } 301 return 0; 302 } 303 304 static const VMStateDescription vmstate_configuration = { 305 .name = "configuration", 306 .version_id = 1, 307 .post_load = configuration_post_load, 308 .pre_save = configuration_pre_save, 309 .fields = (VMStateField[]) { 310 VMSTATE_UINT32(len, SaveState), 311 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, 0, len), 312 VMSTATE_END_OF_LIST() 313 }, 314 }; 315 316 static void dump_vmstate_vmsd(FILE *out_file, 317 const VMStateDescription *vmsd, int indent, 318 bool is_subsection); 319 320 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 321 int indent) 322 { 323 fprintf(out_file, "%*s{\n", indent, ""); 324 indent += 2; 325 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 326 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 327 field->version_id); 328 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 329 field->field_exists ? "true" : "false"); 330 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 331 if (field->vmsd != NULL) { 332 fprintf(out_file, ",\n"); 333 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 334 } 335 fprintf(out_file, "\n%*s}", indent - 2, ""); 336 } 337 338 static void dump_vmstate_vmss(FILE *out_file, 339 const VMStateDescription **subsection, 340 int indent) 341 { 342 if (*subsection != NULL) { 343 dump_vmstate_vmsd(out_file, *subsection, indent, true); 344 } 345 } 346 347 static void dump_vmstate_vmsd(FILE *out_file, 348 const VMStateDescription *vmsd, int indent, 349 bool is_subsection) 350 { 351 if (is_subsection) { 352 fprintf(out_file, "%*s{\n", indent, ""); 353 } else { 354 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 355 } 356 indent += 2; 357 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 358 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 359 vmsd->version_id); 360 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 361 vmsd->minimum_version_id); 362 if (vmsd->fields != NULL) { 363 const VMStateField *field = vmsd->fields; 364 bool first; 365 366 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 367 first = true; 368 while (field->name != NULL) { 369 if (field->flags & VMS_MUST_EXIST) { 370 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 371 field++; 372 continue; 373 } 374 if (!first) { 375 fprintf(out_file, ",\n"); 376 } 377 dump_vmstate_vmsf(out_file, field, indent + 2); 378 field++; 379 first = false; 380 } 381 fprintf(out_file, "\n%*s]", indent, ""); 382 } 383 if (vmsd->subsections != NULL) { 384 const VMStateDescription **subsection = vmsd->subsections; 385 bool first; 386 387 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 388 first = true; 389 while (*subsection != NULL) { 390 if (!first) { 391 fprintf(out_file, ",\n"); 392 } 393 dump_vmstate_vmss(out_file, subsection, indent + 2); 394 subsection++; 395 first = false; 396 } 397 fprintf(out_file, "\n%*s]", indent, ""); 398 } 399 fprintf(out_file, "\n%*s}", indent - 2, ""); 400 } 401 402 static void dump_machine_type(FILE *out_file) 403 { 404 MachineClass *mc; 405 406 mc = MACHINE_GET_CLASS(current_machine); 407 408 fprintf(out_file, " \"vmschkmachine\": {\n"); 409 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 410 fprintf(out_file, " },\n"); 411 } 412 413 void dump_vmstate_json_to_file(FILE *out_file) 414 { 415 GSList *list, *elt; 416 bool first; 417 418 fprintf(out_file, "{\n"); 419 dump_machine_type(out_file); 420 421 first = true; 422 list = object_class_get_list(TYPE_DEVICE, true); 423 for (elt = list; elt; elt = elt->next) { 424 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 425 TYPE_DEVICE); 426 const char *name; 427 int indent = 2; 428 429 if (!dc->vmsd) { 430 continue; 431 } 432 433 if (!first) { 434 fprintf(out_file, ",\n"); 435 } 436 name = object_class_get_name(OBJECT_CLASS(dc)); 437 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 438 indent += 2; 439 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 440 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 441 dc->vmsd->version_id); 442 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 443 dc->vmsd->minimum_version_id); 444 445 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 446 447 fprintf(out_file, "\n%*s}", indent - 2, ""); 448 first = false; 449 } 450 fprintf(out_file, "\n}\n"); 451 fclose(out_file); 452 } 453 454 static int calculate_new_instance_id(const char *idstr) 455 { 456 SaveStateEntry *se; 457 int instance_id = 0; 458 459 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 460 if (strcmp(idstr, se->idstr) == 0 461 && instance_id <= se->instance_id) { 462 instance_id = se->instance_id + 1; 463 } 464 } 465 return instance_id; 466 } 467 468 static int calculate_compat_instance_id(const char *idstr) 469 { 470 SaveStateEntry *se; 471 int instance_id = 0; 472 473 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 474 if (!se->compat) { 475 continue; 476 } 477 478 if (strcmp(idstr, se->compat->idstr) == 0 479 && instance_id <= se->compat->instance_id) { 480 instance_id = se->compat->instance_id + 1; 481 } 482 } 483 return instance_id; 484 } 485 486 /* TODO: Individual devices generally have very little idea about the rest 487 of the system, so instance_id should be removed/replaced. 488 Meanwhile pass -1 as instance_id if you do not already have a clearly 489 distinguishing id for all instances of your device class. */ 490 int register_savevm_live(DeviceState *dev, 491 const char *idstr, 492 int instance_id, 493 int version_id, 494 SaveVMHandlers *ops, 495 void *opaque) 496 { 497 SaveStateEntry *se; 498 499 se = g_new0(SaveStateEntry, 1); 500 se->version_id = version_id; 501 se->section_id = savevm_state.global_section_id++; 502 se->ops = ops; 503 se->opaque = opaque; 504 se->vmsd = NULL; 505 /* if this is a live_savem then set is_ram */ 506 if (ops->save_live_setup != NULL) { 507 se->is_ram = 1; 508 } 509 510 if (dev) { 511 char *id = qdev_get_dev_path(dev); 512 if (id) { 513 pstrcpy(se->idstr, sizeof(se->idstr), id); 514 pstrcat(se->idstr, sizeof(se->idstr), "/"); 515 g_free(id); 516 517 se->compat = g_new0(CompatEntry, 1); 518 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 519 se->compat->instance_id = instance_id == -1 ? 520 calculate_compat_instance_id(idstr) : instance_id; 521 instance_id = -1; 522 } 523 } 524 pstrcat(se->idstr, sizeof(se->idstr), idstr); 525 526 if (instance_id == -1) { 527 se->instance_id = calculate_new_instance_id(se->idstr); 528 } else { 529 se->instance_id = instance_id; 530 } 531 assert(!se->compat || se->instance_id == 0); 532 /* add at the end of list */ 533 QTAILQ_INSERT_TAIL(&savevm_state.handlers, se, entry); 534 return 0; 535 } 536 537 int register_savevm(DeviceState *dev, 538 const char *idstr, 539 int instance_id, 540 int version_id, 541 SaveStateHandler *save_state, 542 LoadStateHandler *load_state, 543 void *opaque) 544 { 545 SaveVMHandlers *ops = g_new0(SaveVMHandlers, 1); 546 ops->save_state = save_state; 547 ops->load_state = load_state; 548 return register_savevm_live(dev, idstr, instance_id, version_id, 549 ops, opaque); 550 } 551 552 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 553 { 554 SaveStateEntry *se, *new_se; 555 char id[256] = ""; 556 557 if (dev) { 558 char *path = qdev_get_dev_path(dev); 559 if (path) { 560 pstrcpy(id, sizeof(id), path); 561 pstrcat(id, sizeof(id), "/"); 562 g_free(path); 563 } 564 } 565 pstrcat(id, sizeof(id), idstr); 566 567 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 568 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 569 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 570 g_free(se->compat); 571 g_free(se->ops); 572 g_free(se); 573 } 574 } 575 } 576 577 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 578 const VMStateDescription *vmsd, 579 void *opaque, int alias_id, 580 int required_for_version) 581 { 582 SaveStateEntry *se; 583 584 /* If this triggers, alias support can be dropped for the vmsd. */ 585 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 586 587 se = g_new0(SaveStateEntry, 1); 588 se->version_id = vmsd->version_id; 589 se->section_id = savevm_state.global_section_id++; 590 se->opaque = opaque; 591 se->vmsd = vmsd; 592 se->alias_id = alias_id; 593 594 if (dev) { 595 char *id = qdev_get_dev_path(dev); 596 if (id) { 597 pstrcpy(se->idstr, sizeof(se->idstr), id); 598 pstrcat(se->idstr, sizeof(se->idstr), "/"); 599 g_free(id); 600 601 se->compat = g_new0(CompatEntry, 1); 602 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 603 se->compat->instance_id = instance_id == -1 ? 604 calculate_compat_instance_id(vmsd->name) : instance_id; 605 instance_id = -1; 606 } 607 } 608 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 609 610 if (instance_id == -1) { 611 se->instance_id = calculate_new_instance_id(se->idstr); 612 } else { 613 se->instance_id = instance_id; 614 } 615 assert(!se->compat || se->instance_id == 0); 616 /* add at the end of list */ 617 QTAILQ_INSERT_TAIL(&savevm_state.handlers, se, entry); 618 return 0; 619 } 620 621 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 622 void *opaque) 623 { 624 SaveStateEntry *se, *new_se; 625 626 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 627 if (se->vmsd == vmsd && se->opaque == opaque) { 628 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 629 g_free(se->compat); 630 g_free(se); 631 } 632 } 633 } 634 635 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id) 636 { 637 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 638 if (!se->vmsd) { /* Old style */ 639 return se->ops->load_state(f, se->opaque, version_id); 640 } 641 return vmstate_load_state(f, se->vmsd, se->opaque, version_id); 642 } 643 644 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 645 { 646 int64_t old_offset, size; 647 648 old_offset = qemu_ftell_fast(f); 649 se->ops->save_state(f, se->opaque); 650 size = qemu_ftell_fast(f) - old_offset; 651 652 if (vmdesc) { 653 json_prop_int(vmdesc, "size", size); 654 json_start_array(vmdesc, "fields"); 655 json_start_object(vmdesc, NULL); 656 json_prop_str(vmdesc, "name", "data"); 657 json_prop_int(vmdesc, "size", size); 658 json_prop_str(vmdesc, "type", "buffer"); 659 json_end_object(vmdesc); 660 json_end_array(vmdesc); 661 } 662 } 663 664 static void vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 665 { 666 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 667 if (!se->vmsd) { 668 vmstate_save_old_style(f, se, vmdesc); 669 return; 670 } 671 vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 672 } 673 674 void savevm_skip_section_footers(void) 675 { 676 skip_section_footers = true; 677 } 678 679 /* 680 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 681 */ 682 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 683 uint8_t section_type) 684 { 685 qemu_put_byte(f, section_type); 686 qemu_put_be32(f, se->section_id); 687 688 if (section_type == QEMU_VM_SECTION_FULL || 689 section_type == QEMU_VM_SECTION_START) { 690 /* ID string */ 691 size_t len = strlen(se->idstr); 692 qemu_put_byte(f, len); 693 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 694 695 qemu_put_be32(f, se->instance_id); 696 qemu_put_be32(f, se->version_id); 697 } 698 } 699 700 /* 701 * Write a footer onto device sections that catches cases misformatted device 702 * sections. 703 */ 704 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 705 { 706 if (!skip_section_footers) { 707 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 708 qemu_put_be32(f, se->section_id); 709 } 710 } 711 712 /** 713 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 714 * command and associated data. 715 * 716 * @f: File to send command on 717 * @command: Command type to send 718 * @len: Length of associated data 719 * @data: Data associated with command. 720 */ 721 void qemu_savevm_command_send(QEMUFile *f, 722 enum qemu_vm_cmd command, 723 uint16_t len, 724 uint8_t *data) 725 { 726 trace_savevm_command_send(command, len); 727 qemu_put_byte(f, QEMU_VM_COMMAND); 728 qemu_put_be16(f, (uint16_t)command); 729 qemu_put_be16(f, len); 730 qemu_put_buffer(f, data, len); 731 qemu_fflush(f); 732 } 733 734 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 735 { 736 uint32_t buf; 737 738 trace_savevm_send_ping(value); 739 buf = cpu_to_be32(value); 740 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 741 } 742 743 void qemu_savevm_send_open_return_path(QEMUFile *f) 744 { 745 trace_savevm_send_open_return_path(); 746 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 747 } 748 749 /* We have a buffer of data to send; we don't want that all to be loaded 750 * by the command itself, so the command contains just the length of the 751 * extra buffer that we then send straight after it. 752 * TODO: Must be a better way to organise that 753 * 754 * Returns: 755 * 0 on success 756 * -ve on error 757 */ 758 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 759 { 760 uint32_t tmp; 761 762 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 763 error_report("%s: Unreasonably large packaged state: %zu", 764 __func__, len); 765 return -1; 766 } 767 768 tmp = cpu_to_be32(len); 769 770 trace_qemu_savevm_send_packaged(); 771 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 772 773 qemu_put_buffer(f, buf, len); 774 775 return 0; 776 } 777 778 /* Send prior to any postcopy transfer */ 779 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 780 { 781 uint64_t tmp[2]; 782 tmp[0] = cpu_to_be64(getpagesize()); 783 tmp[1] = cpu_to_be64(1ul << qemu_target_page_bits()); 784 785 trace_qemu_savevm_send_postcopy_advise(); 786 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 16, (uint8_t *)tmp); 787 } 788 789 /* Sent prior to starting the destination running in postcopy, discard pages 790 * that have already been sent but redirtied on the source. 791 * CMD_POSTCOPY_RAM_DISCARD consist of: 792 * byte version (0) 793 * byte Length of name field (not including 0) 794 * n x byte RAM block name 795 * byte 0 terminator (just for safety) 796 * n x Byte ranges within the named RAMBlock 797 * be64 Start of the range 798 * be64 Length 799 * 800 * name: RAMBlock name that these entries are part of 801 * len: Number of page entries 802 * start_list: 'len' addresses 803 * length_list: 'len' addresses 804 * 805 */ 806 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 807 uint16_t len, 808 uint64_t *start_list, 809 uint64_t *length_list) 810 { 811 uint8_t *buf; 812 uint16_t tmplen; 813 uint16_t t; 814 size_t name_len = strlen(name); 815 816 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 817 assert(name_len < 256); 818 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 819 buf[0] = postcopy_ram_discard_version; 820 buf[1] = name_len; 821 memcpy(buf + 2, name, name_len); 822 tmplen = 2 + name_len; 823 buf[tmplen++] = '\0'; 824 825 for (t = 0; t < len; t++) { 826 stq_be_p(buf + tmplen, start_list[t]); 827 tmplen += 8; 828 stq_be_p(buf + tmplen, length_list[t]); 829 tmplen += 8; 830 } 831 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 832 g_free(buf); 833 } 834 835 /* Get the destination into a state where it can receive postcopy data. */ 836 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 837 { 838 trace_savevm_send_postcopy_listen(); 839 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 840 } 841 842 /* Kick the destination into running */ 843 void qemu_savevm_send_postcopy_run(QEMUFile *f) 844 { 845 trace_savevm_send_postcopy_run(); 846 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 847 } 848 849 bool qemu_savevm_state_blocked(Error **errp) 850 { 851 SaveStateEntry *se; 852 853 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 854 if (se->vmsd && se->vmsd->unmigratable) { 855 error_setg(errp, "State blocked by non-migratable device '%s'", 856 se->idstr); 857 return true; 858 } 859 } 860 return false; 861 } 862 863 static bool enforce_config_section(void) 864 { 865 MachineState *machine = MACHINE(qdev_get_machine()); 866 return machine->enforce_config_section; 867 } 868 869 void qemu_savevm_state_header(QEMUFile *f) 870 { 871 trace_savevm_state_header(); 872 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 873 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 874 875 if (!savevm_state.skip_configuration || enforce_config_section()) { 876 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 877 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 878 } 879 880 } 881 882 void qemu_savevm_state_begin(QEMUFile *f, 883 const MigrationParams *params) 884 { 885 SaveStateEntry *se; 886 int ret; 887 888 trace_savevm_state_begin(); 889 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 890 if (!se->ops || !se->ops->set_params) { 891 continue; 892 } 893 se->ops->set_params(params, se->opaque); 894 } 895 896 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 897 if (!se->ops || !se->ops->save_live_setup) { 898 continue; 899 } 900 if (se->ops && se->ops->is_active) { 901 if (!se->ops->is_active(se->opaque)) { 902 continue; 903 } 904 } 905 save_section_header(f, se, QEMU_VM_SECTION_START); 906 907 ret = se->ops->save_live_setup(f, se->opaque); 908 save_section_footer(f, se); 909 if (ret < 0) { 910 qemu_file_set_error(f, ret); 911 break; 912 } 913 } 914 } 915 916 /* 917 * this function has three return values: 918 * negative: there was one error, and we have -errno. 919 * 0 : We haven't finished, caller have to go again 920 * 1 : We have finished, we can go to complete phase 921 */ 922 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 923 { 924 SaveStateEntry *se; 925 int ret = 1; 926 927 trace_savevm_state_iterate(); 928 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 929 if (!se->ops || !se->ops->save_live_iterate) { 930 continue; 931 } 932 if (se->ops && se->ops->is_active) { 933 if (!se->ops->is_active(se->opaque)) { 934 continue; 935 } 936 } 937 /* 938 * In the postcopy phase, any device that doesn't know how to 939 * do postcopy should have saved it's state in the _complete 940 * call that's already run, it might get confused if we call 941 * iterate afterwards. 942 */ 943 if (postcopy && !se->ops->save_live_complete_postcopy) { 944 continue; 945 } 946 if (qemu_file_rate_limit(f)) { 947 return 0; 948 } 949 trace_savevm_section_start(se->idstr, se->section_id); 950 951 save_section_header(f, se, QEMU_VM_SECTION_PART); 952 953 ret = se->ops->save_live_iterate(f, se->opaque); 954 trace_savevm_section_end(se->idstr, se->section_id, ret); 955 save_section_footer(f, se); 956 957 if (ret < 0) { 958 qemu_file_set_error(f, ret); 959 } 960 if (ret <= 0) { 961 /* Do not proceed to the next vmstate before this one reported 962 completion of the current stage. This serializes the migration 963 and reduces the probability that a faster changing state is 964 synchronized over and over again. */ 965 break; 966 } 967 } 968 return ret; 969 } 970 971 static bool should_send_vmdesc(void) 972 { 973 MachineState *machine = MACHINE(qdev_get_machine()); 974 bool in_postcopy = migration_in_postcopy(migrate_get_current()); 975 return !machine->suppress_vmdesc && !in_postcopy; 976 } 977 978 /* 979 * Calls the save_live_complete_postcopy methods 980 * causing the last few pages to be sent immediately and doing any associated 981 * cleanup. 982 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 983 * all the other devices, but that happens at the point we switch to postcopy. 984 */ 985 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 986 { 987 SaveStateEntry *se; 988 int ret; 989 990 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 991 if (!se->ops || !se->ops->save_live_complete_postcopy) { 992 continue; 993 } 994 if (se->ops && se->ops->is_active) { 995 if (!se->ops->is_active(se->opaque)) { 996 continue; 997 } 998 } 999 trace_savevm_section_start(se->idstr, se->section_id); 1000 /* Section type */ 1001 qemu_put_byte(f, QEMU_VM_SECTION_END); 1002 qemu_put_be32(f, se->section_id); 1003 1004 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1005 trace_savevm_section_end(se->idstr, se->section_id, ret); 1006 save_section_footer(f, se); 1007 if (ret < 0) { 1008 qemu_file_set_error(f, ret); 1009 return; 1010 } 1011 } 1012 1013 qemu_put_byte(f, QEMU_VM_EOF); 1014 qemu_fflush(f); 1015 } 1016 1017 void qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only) 1018 { 1019 QJSON *vmdesc; 1020 int vmdesc_len; 1021 SaveStateEntry *se; 1022 int ret; 1023 bool in_postcopy = migration_in_postcopy(migrate_get_current()); 1024 1025 trace_savevm_state_complete_precopy(); 1026 1027 cpu_synchronize_all_states(); 1028 1029 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1030 if (!se->ops || 1031 (in_postcopy && se->ops->save_live_complete_postcopy) || 1032 (in_postcopy && !iterable_only) || 1033 !se->ops->save_live_complete_precopy) { 1034 continue; 1035 } 1036 1037 if (se->ops && se->ops->is_active) { 1038 if (!se->ops->is_active(se->opaque)) { 1039 continue; 1040 } 1041 } 1042 trace_savevm_section_start(se->idstr, se->section_id); 1043 1044 save_section_header(f, se, QEMU_VM_SECTION_END); 1045 1046 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1047 trace_savevm_section_end(se->idstr, se->section_id, ret); 1048 save_section_footer(f, se); 1049 if (ret < 0) { 1050 qemu_file_set_error(f, ret); 1051 return; 1052 } 1053 } 1054 1055 if (iterable_only) { 1056 return; 1057 } 1058 1059 vmdesc = qjson_new(); 1060 json_prop_int(vmdesc, "page_size", TARGET_PAGE_SIZE); 1061 json_start_array(vmdesc, "devices"); 1062 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1063 1064 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1065 continue; 1066 } 1067 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1068 trace_savevm_section_skip(se->idstr, se->section_id); 1069 continue; 1070 } 1071 1072 trace_savevm_section_start(se->idstr, se->section_id); 1073 1074 json_start_object(vmdesc, NULL); 1075 json_prop_str(vmdesc, "name", se->idstr); 1076 json_prop_int(vmdesc, "instance_id", se->instance_id); 1077 1078 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1079 vmstate_save(f, se, vmdesc); 1080 trace_savevm_section_end(se->idstr, se->section_id, 0); 1081 save_section_footer(f, se); 1082 1083 json_end_object(vmdesc); 1084 } 1085 1086 if (!in_postcopy) { 1087 /* Postcopy stream will still be going */ 1088 qemu_put_byte(f, QEMU_VM_EOF); 1089 } 1090 1091 json_end_array(vmdesc); 1092 qjson_finish(vmdesc); 1093 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1094 1095 if (should_send_vmdesc()) { 1096 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1097 qemu_put_be32(f, vmdesc_len); 1098 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1099 } 1100 qjson_destroy(vmdesc); 1101 1102 qemu_fflush(f); 1103 } 1104 1105 /* Give an estimate of the amount left to be transferred, 1106 * the result is split into the amount for units that can and 1107 * for units that can't do postcopy. 1108 */ 1109 void qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size, 1110 uint64_t *res_non_postcopiable, 1111 uint64_t *res_postcopiable) 1112 { 1113 SaveStateEntry *se; 1114 1115 *res_non_postcopiable = 0; 1116 *res_postcopiable = 0; 1117 1118 1119 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1120 if (!se->ops || !se->ops->save_live_pending) { 1121 continue; 1122 } 1123 if (se->ops && se->ops->is_active) { 1124 if (!se->ops->is_active(se->opaque)) { 1125 continue; 1126 } 1127 } 1128 se->ops->save_live_pending(f, se->opaque, max_size, 1129 res_non_postcopiable, res_postcopiable); 1130 } 1131 } 1132 1133 void qemu_savevm_state_cleanup(void) 1134 { 1135 SaveStateEntry *se; 1136 1137 trace_savevm_state_cleanup(); 1138 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1139 if (se->ops && se->ops->cleanup) { 1140 se->ops->cleanup(se->opaque); 1141 } 1142 } 1143 } 1144 1145 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1146 { 1147 int ret; 1148 MigrationParams params = { 1149 .blk = 0, 1150 .shared = 0 1151 }; 1152 MigrationState *ms = migrate_init(¶ms); 1153 MigrationStatus status; 1154 ms->to_dst_file = f; 1155 1156 if (migration_is_blocked(errp)) { 1157 ret = -EINVAL; 1158 goto done; 1159 } 1160 1161 qemu_mutex_unlock_iothread(); 1162 qemu_savevm_state_header(f); 1163 qemu_savevm_state_begin(f, ¶ms); 1164 qemu_mutex_lock_iothread(); 1165 1166 while (qemu_file_get_error(f) == 0) { 1167 if (qemu_savevm_state_iterate(f, false) > 0) { 1168 break; 1169 } 1170 } 1171 1172 ret = qemu_file_get_error(f); 1173 if (ret == 0) { 1174 qemu_savevm_state_complete_precopy(f, false); 1175 ret = qemu_file_get_error(f); 1176 } 1177 qemu_savevm_state_cleanup(); 1178 if (ret != 0) { 1179 error_setg_errno(errp, -ret, "Error while writing VM state"); 1180 } 1181 1182 done: 1183 if (ret != 0) { 1184 status = MIGRATION_STATUS_FAILED; 1185 } else { 1186 status = MIGRATION_STATUS_COMPLETED; 1187 } 1188 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1189 return ret; 1190 } 1191 1192 static int qemu_save_device_state(QEMUFile *f) 1193 { 1194 SaveStateEntry *se; 1195 1196 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1197 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1198 1199 cpu_synchronize_all_states(); 1200 1201 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1202 if (se->is_ram) { 1203 continue; 1204 } 1205 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1206 continue; 1207 } 1208 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1209 continue; 1210 } 1211 1212 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1213 1214 vmstate_save(f, se, NULL); 1215 1216 save_section_footer(f, se); 1217 } 1218 1219 qemu_put_byte(f, QEMU_VM_EOF); 1220 1221 return qemu_file_get_error(f); 1222 } 1223 1224 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1225 { 1226 SaveStateEntry *se; 1227 1228 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1229 if (!strcmp(se->idstr, idstr) && 1230 (instance_id == se->instance_id || 1231 instance_id == se->alias_id)) 1232 return se; 1233 /* Migrating from an older version? */ 1234 if (strstr(se->idstr, idstr) && se->compat) { 1235 if (!strcmp(se->compat->idstr, idstr) && 1236 (instance_id == se->compat->instance_id || 1237 instance_id == se->alias_id)) 1238 return se; 1239 } 1240 } 1241 return NULL; 1242 } 1243 1244 enum LoadVMExitCodes { 1245 /* Allow a command to quit all layers of nested loadvm loops */ 1246 LOADVM_QUIT = 1, 1247 }; 1248 1249 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1250 1251 /* ------ incoming postcopy messages ------ */ 1252 /* 'advise' arrives before any transfers just to tell us that a postcopy 1253 * *might* happen - it might be skipped if precopy transferred everything 1254 * quickly. 1255 */ 1256 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis) 1257 { 1258 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1259 uint64_t remote_hps, remote_tps; 1260 1261 trace_loadvm_postcopy_handle_advise(); 1262 if (ps != POSTCOPY_INCOMING_NONE) { 1263 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1264 return -1; 1265 } 1266 1267 if (!postcopy_ram_supported_by_host()) { 1268 return -1; 1269 } 1270 1271 remote_hps = qemu_get_be64(mis->from_src_file); 1272 if (remote_hps != getpagesize()) { 1273 /* 1274 * Some combinations of mismatch are probably possible but it gets 1275 * a bit more complicated. In particular we need to place whole 1276 * host pages on the dest at once, and we need to ensure that we 1277 * handle dirtying to make sure we never end up sending part of 1278 * a hostpage on it's own. 1279 */ 1280 error_report("Postcopy needs matching host page sizes (s=%d d=%d)", 1281 (int)remote_hps, getpagesize()); 1282 return -1; 1283 } 1284 1285 remote_tps = qemu_get_be64(mis->from_src_file); 1286 if (remote_tps != (1ul << qemu_target_page_bits())) { 1287 /* 1288 * Again, some differences could be dealt with, but for now keep it 1289 * simple. 1290 */ 1291 error_report("Postcopy needs matching target page sizes (s=%d d=%d)", 1292 (int)remote_tps, 1 << qemu_target_page_bits()); 1293 return -1; 1294 } 1295 1296 if (ram_postcopy_incoming_init(mis)) { 1297 return -1; 1298 } 1299 1300 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1301 1302 return 0; 1303 } 1304 1305 /* After postcopy we will be told to throw some pages away since they're 1306 * dirty and will have to be demand fetched. Must happen before CPU is 1307 * started. 1308 * There can be 0..many of these messages, each encoding multiple pages. 1309 */ 1310 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1311 uint16_t len) 1312 { 1313 int tmp; 1314 char ramid[256]; 1315 PostcopyState ps = postcopy_state_get(); 1316 1317 trace_loadvm_postcopy_ram_handle_discard(); 1318 1319 switch (ps) { 1320 case POSTCOPY_INCOMING_ADVISE: 1321 /* 1st discard */ 1322 tmp = postcopy_ram_prepare_discard(mis); 1323 if (tmp) { 1324 return tmp; 1325 } 1326 break; 1327 1328 case POSTCOPY_INCOMING_DISCARD: 1329 /* Expected state */ 1330 break; 1331 1332 default: 1333 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1334 ps); 1335 return -1; 1336 } 1337 /* We're expecting a 1338 * Version (0) 1339 * a RAM ID string (length byte, name, 0 term) 1340 * then at least 1 16 byte chunk 1341 */ 1342 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1343 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1344 return -1; 1345 } 1346 1347 tmp = qemu_get_byte(mis->from_src_file); 1348 if (tmp != postcopy_ram_discard_version) { 1349 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1350 return -1; 1351 } 1352 1353 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1354 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1355 return -1; 1356 } 1357 tmp = qemu_get_byte(mis->from_src_file); 1358 if (tmp != 0) { 1359 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1360 return -1; 1361 } 1362 1363 len -= 3 + strlen(ramid); 1364 if (len % 16) { 1365 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1366 return -1; 1367 } 1368 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1369 while (len) { 1370 uint64_t start_addr, block_length; 1371 start_addr = qemu_get_be64(mis->from_src_file); 1372 block_length = qemu_get_be64(mis->from_src_file); 1373 1374 len -= 16; 1375 int ret = ram_discard_range(mis, ramid, start_addr, 1376 block_length); 1377 if (ret) { 1378 return ret; 1379 } 1380 } 1381 trace_loadvm_postcopy_ram_handle_discard_end(); 1382 1383 return 0; 1384 } 1385 1386 /* 1387 * Triggered by a postcopy_listen command; this thread takes over reading 1388 * the input stream, leaving the main thread free to carry on loading the rest 1389 * of the device state (from RAM). 1390 * (TODO:This could do with being in a postcopy file - but there again it's 1391 * just another input loop, not that postcopy specific) 1392 */ 1393 static void *postcopy_ram_listen_thread(void *opaque) 1394 { 1395 QEMUFile *f = opaque; 1396 MigrationIncomingState *mis = migration_incoming_get_current(); 1397 int load_res; 1398 1399 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1400 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1401 qemu_sem_post(&mis->listen_thread_sem); 1402 trace_postcopy_ram_listen_thread_start(); 1403 1404 /* 1405 * Because we're a thread and not a coroutine we can't yield 1406 * in qemu_file, and thus we must be blocking now. 1407 */ 1408 qemu_file_set_blocking(f, true); 1409 load_res = qemu_loadvm_state_main(f, mis); 1410 /* And non-blocking again so we don't block in any cleanup */ 1411 qemu_file_set_blocking(f, false); 1412 1413 trace_postcopy_ram_listen_thread_exit(); 1414 if (load_res < 0) { 1415 error_report("%s: loadvm failed: %d", __func__, load_res); 1416 qemu_file_set_error(f, load_res); 1417 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1418 MIGRATION_STATUS_FAILED); 1419 } else { 1420 /* 1421 * This looks good, but it's possible that the device loading in the 1422 * main thread hasn't finished yet, and so we might not be in 'RUN' 1423 * state yet; wait for the end of the main thread. 1424 */ 1425 qemu_event_wait(&mis->main_thread_load_event); 1426 } 1427 postcopy_ram_incoming_cleanup(mis); 1428 1429 if (load_res < 0) { 1430 /* 1431 * If something went wrong then we have a bad state so exit; 1432 * depending how far we got it might be possible at this point 1433 * to leave the guest running and fire MCEs for pages that never 1434 * arrived as a desperate recovery step. 1435 */ 1436 exit(EXIT_FAILURE); 1437 } 1438 1439 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1440 MIGRATION_STATUS_COMPLETED); 1441 /* 1442 * If everything has worked fine, then the main thread has waited 1443 * for us to start, and we're the last use of the mis. 1444 * (If something broke then qemu will have to exit anyway since it's 1445 * got a bad migration state). 1446 */ 1447 migration_incoming_state_destroy(); 1448 1449 1450 return NULL; 1451 } 1452 1453 /* After this message we must be able to immediately receive postcopy data */ 1454 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1455 { 1456 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1457 trace_loadvm_postcopy_handle_listen(); 1458 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1459 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1460 return -1; 1461 } 1462 if (ps == POSTCOPY_INCOMING_ADVISE) { 1463 /* 1464 * A rare case, we entered listen without having to do any discards, 1465 * so do the setup that's normally done at the time of the 1st discard. 1466 */ 1467 postcopy_ram_prepare_discard(mis); 1468 } 1469 1470 /* 1471 * Sensitise RAM - can now generate requests for blocks that don't exist 1472 * However, at this point the CPU shouldn't be running, and the IO 1473 * shouldn't be doing anything yet so don't actually expect requests 1474 */ 1475 if (postcopy_ram_enable_notify(mis)) { 1476 return -1; 1477 } 1478 1479 if (mis->have_listen_thread) { 1480 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1481 return -1; 1482 } 1483 1484 mis->have_listen_thread = true; 1485 /* Start up the listening thread and wait for it to signal ready */ 1486 qemu_sem_init(&mis->listen_thread_sem, 0); 1487 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1488 postcopy_ram_listen_thread, mis->from_src_file, 1489 QEMU_THREAD_DETACHED); 1490 qemu_sem_wait(&mis->listen_thread_sem); 1491 qemu_sem_destroy(&mis->listen_thread_sem); 1492 1493 return 0; 1494 } 1495 1496 1497 typedef struct { 1498 QEMUBH *bh; 1499 } HandleRunBhData; 1500 1501 static void loadvm_postcopy_handle_run_bh(void *opaque) 1502 { 1503 Error *local_err = NULL; 1504 HandleRunBhData *data = opaque; 1505 1506 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1507 * in migration.c 1508 */ 1509 cpu_synchronize_all_post_init(); 1510 1511 qemu_announce_self(); 1512 1513 /* Make sure all file formats flush their mutable metadata */ 1514 bdrv_invalidate_cache_all(&local_err); 1515 if (local_err) { 1516 error_report_err(local_err); 1517 } 1518 1519 trace_loadvm_postcopy_handle_run_cpu_sync(); 1520 cpu_synchronize_all_post_init(); 1521 1522 trace_loadvm_postcopy_handle_run_vmstart(); 1523 1524 if (autostart) { 1525 /* Hold onto your hats, starting the CPU */ 1526 vm_start(); 1527 } else { 1528 /* leave it paused and let management decide when to start the CPU */ 1529 runstate_set(RUN_STATE_PAUSED); 1530 } 1531 1532 qemu_bh_delete(data->bh); 1533 g_free(data); 1534 } 1535 1536 /* After all discards we can start running and asking for pages */ 1537 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1538 { 1539 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1540 HandleRunBhData *data; 1541 1542 trace_loadvm_postcopy_handle_run(); 1543 if (ps != POSTCOPY_INCOMING_LISTENING) { 1544 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1545 return -1; 1546 } 1547 1548 data = g_new(HandleRunBhData, 1); 1549 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1550 qemu_bh_schedule(data->bh); 1551 1552 /* We need to finish reading the stream from the package 1553 * and also stop reading anything more from the stream that loaded the 1554 * package (since it's now being read by the listener thread). 1555 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1556 */ 1557 return LOADVM_QUIT; 1558 } 1559 1560 /** 1561 * Immediately following this command is a blob of data containing an embedded 1562 * chunk of migration stream; read it and load it. 1563 * 1564 * @mis: Incoming state 1565 * @length: Length of packaged data to read 1566 * 1567 * Returns: Negative values on error 1568 * 1569 */ 1570 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1571 { 1572 int ret; 1573 size_t length; 1574 QIOChannelBuffer *bioc; 1575 1576 length = qemu_get_be32(mis->from_src_file); 1577 trace_loadvm_handle_cmd_packaged(length); 1578 1579 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1580 error_report("Unreasonably large packaged state: %zu", length); 1581 return -1; 1582 } 1583 1584 bioc = qio_channel_buffer_new(length); 1585 ret = qemu_get_buffer(mis->from_src_file, 1586 bioc->data, 1587 length); 1588 if (ret != length) { 1589 object_unref(OBJECT(bioc)); 1590 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1591 ret, length); 1592 return (ret < 0) ? ret : -EAGAIN; 1593 } 1594 bioc->usage += length; 1595 trace_loadvm_handle_cmd_packaged_received(ret); 1596 1597 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1598 1599 ret = qemu_loadvm_state_main(packf, mis); 1600 trace_loadvm_handle_cmd_packaged_main(ret); 1601 qemu_fclose(packf); 1602 object_unref(OBJECT(bioc)); 1603 1604 return ret; 1605 } 1606 1607 /* 1608 * Process an incoming 'QEMU_VM_COMMAND' 1609 * 0 just a normal return 1610 * LOADVM_QUIT All good, but exit the loop 1611 * <0 Error 1612 */ 1613 static int loadvm_process_command(QEMUFile *f) 1614 { 1615 MigrationIncomingState *mis = migration_incoming_get_current(); 1616 uint16_t cmd; 1617 uint16_t len; 1618 uint32_t tmp32; 1619 1620 cmd = qemu_get_be16(f); 1621 len = qemu_get_be16(f); 1622 1623 trace_loadvm_process_command(cmd, len); 1624 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1625 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1626 return -EINVAL; 1627 } 1628 1629 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1630 error_report("%s received with bad length - expecting %zu, got %d", 1631 mig_cmd_args[cmd].name, 1632 (size_t)mig_cmd_args[cmd].len, len); 1633 return -ERANGE; 1634 } 1635 1636 switch (cmd) { 1637 case MIG_CMD_OPEN_RETURN_PATH: 1638 if (mis->to_src_file) { 1639 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1640 /* Not really a problem, so don't give up */ 1641 return 0; 1642 } 1643 mis->to_src_file = qemu_file_get_return_path(f); 1644 if (!mis->to_src_file) { 1645 error_report("CMD_OPEN_RETURN_PATH failed"); 1646 return -1; 1647 } 1648 break; 1649 1650 case MIG_CMD_PING: 1651 tmp32 = qemu_get_be32(f); 1652 trace_loadvm_process_command_ping(tmp32); 1653 if (!mis->to_src_file) { 1654 error_report("CMD_PING (0x%x) received with no return path", 1655 tmp32); 1656 return -1; 1657 } 1658 migrate_send_rp_pong(mis, tmp32); 1659 break; 1660 1661 case MIG_CMD_PACKAGED: 1662 return loadvm_handle_cmd_packaged(mis); 1663 1664 case MIG_CMD_POSTCOPY_ADVISE: 1665 return loadvm_postcopy_handle_advise(mis); 1666 1667 case MIG_CMD_POSTCOPY_LISTEN: 1668 return loadvm_postcopy_handle_listen(mis); 1669 1670 case MIG_CMD_POSTCOPY_RUN: 1671 return loadvm_postcopy_handle_run(mis); 1672 1673 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1674 return loadvm_postcopy_ram_handle_discard(mis, len); 1675 } 1676 1677 return 0; 1678 } 1679 1680 struct LoadStateEntry { 1681 QLIST_ENTRY(LoadStateEntry) entry; 1682 SaveStateEntry *se; 1683 int section_id; 1684 int version_id; 1685 }; 1686 1687 /* 1688 * Read a footer off the wire and check that it matches the expected section 1689 * 1690 * Returns: true if the footer was good 1691 * false if there is a problem (and calls error_report to say why) 1692 */ 1693 static bool check_section_footer(QEMUFile *f, LoadStateEntry *le) 1694 { 1695 uint8_t read_mark; 1696 uint32_t read_section_id; 1697 1698 if (skip_section_footers) { 1699 /* No footer to check */ 1700 return true; 1701 } 1702 1703 read_mark = qemu_get_byte(f); 1704 1705 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1706 error_report("Missing section footer for %s", le->se->idstr); 1707 return false; 1708 } 1709 1710 read_section_id = qemu_get_be32(f); 1711 if (read_section_id != le->section_id) { 1712 error_report("Mismatched section id in footer for %s -" 1713 " read 0x%x expected 0x%x", 1714 le->se->idstr, read_section_id, le->section_id); 1715 return false; 1716 } 1717 1718 /* All good */ 1719 return true; 1720 } 1721 1722 void loadvm_free_handlers(MigrationIncomingState *mis) 1723 { 1724 LoadStateEntry *le, *new_le; 1725 1726 QLIST_FOREACH_SAFE(le, &mis->loadvm_handlers, entry, new_le) { 1727 QLIST_REMOVE(le, entry); 1728 g_free(le); 1729 } 1730 } 1731 1732 static int 1733 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1734 { 1735 uint32_t instance_id, version_id, section_id; 1736 SaveStateEntry *se; 1737 LoadStateEntry *le; 1738 char idstr[256]; 1739 int ret; 1740 1741 /* Read section start */ 1742 section_id = qemu_get_be32(f); 1743 if (!qemu_get_counted_string(f, idstr)) { 1744 error_report("Unable to read ID string for section %u", 1745 section_id); 1746 return -EINVAL; 1747 } 1748 instance_id = qemu_get_be32(f); 1749 version_id = qemu_get_be32(f); 1750 1751 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1752 instance_id, version_id); 1753 /* Find savevm section */ 1754 se = find_se(idstr, instance_id); 1755 if (se == NULL) { 1756 error_report("Unknown savevm section or instance '%s' %d", 1757 idstr, instance_id); 1758 return -EINVAL; 1759 } 1760 1761 /* Validate version */ 1762 if (version_id > se->version_id) { 1763 error_report("savevm: unsupported version %d for '%s' v%d", 1764 version_id, idstr, se->version_id); 1765 return -EINVAL; 1766 } 1767 1768 /* Validate if it is a device's state */ 1769 if (xen_enabled() && se->is_ram) { 1770 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1771 return -EINVAL; 1772 } 1773 1774 /* Add entry */ 1775 le = g_malloc0(sizeof(*le)); 1776 1777 le->se = se; 1778 le->section_id = section_id; 1779 le->version_id = version_id; 1780 QLIST_INSERT_HEAD(&mis->loadvm_handlers, le, entry); 1781 1782 ret = vmstate_load(f, le->se, le->version_id); 1783 if (ret < 0) { 1784 error_report("error while loading state for instance 0x%x of" 1785 " device '%s'", instance_id, idstr); 1786 return ret; 1787 } 1788 if (!check_section_footer(f, le)) { 1789 return -EINVAL; 1790 } 1791 1792 return 0; 1793 } 1794 1795 static int 1796 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1797 { 1798 uint32_t section_id; 1799 LoadStateEntry *le; 1800 int ret; 1801 1802 section_id = qemu_get_be32(f); 1803 1804 trace_qemu_loadvm_state_section_partend(section_id); 1805 QLIST_FOREACH(le, &mis->loadvm_handlers, entry) { 1806 if (le->section_id == section_id) { 1807 break; 1808 } 1809 } 1810 if (le == NULL) { 1811 error_report("Unknown savevm section %d", section_id); 1812 return -EINVAL; 1813 } 1814 1815 ret = vmstate_load(f, le->se, le->version_id); 1816 if (ret < 0) { 1817 error_report("error while loading state section id %d(%s)", 1818 section_id, le->se->idstr); 1819 return ret; 1820 } 1821 if (!check_section_footer(f, le)) { 1822 return -EINVAL; 1823 } 1824 1825 return 0; 1826 } 1827 1828 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 1829 { 1830 uint8_t section_type; 1831 int ret; 1832 1833 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { 1834 1835 trace_qemu_loadvm_state_section(section_type); 1836 switch (section_type) { 1837 case QEMU_VM_SECTION_START: 1838 case QEMU_VM_SECTION_FULL: 1839 ret = qemu_loadvm_section_start_full(f, mis); 1840 if (ret < 0) { 1841 return ret; 1842 } 1843 break; 1844 case QEMU_VM_SECTION_PART: 1845 case QEMU_VM_SECTION_END: 1846 ret = qemu_loadvm_section_part_end(f, mis); 1847 if (ret < 0) { 1848 return ret; 1849 } 1850 break; 1851 case QEMU_VM_COMMAND: 1852 ret = loadvm_process_command(f); 1853 trace_qemu_loadvm_state_section_command(ret); 1854 if ((ret < 0) || (ret & LOADVM_QUIT)) { 1855 return ret; 1856 } 1857 break; 1858 default: 1859 error_report("Unknown savevm section type %d", section_type); 1860 return -EINVAL; 1861 } 1862 } 1863 1864 return 0; 1865 } 1866 1867 int qemu_loadvm_state(QEMUFile *f) 1868 { 1869 MigrationIncomingState *mis = migration_incoming_get_current(); 1870 Error *local_err = NULL; 1871 unsigned int v; 1872 int ret; 1873 1874 if (qemu_savevm_state_blocked(&local_err)) { 1875 error_report_err(local_err); 1876 return -EINVAL; 1877 } 1878 1879 v = qemu_get_be32(f); 1880 if (v != QEMU_VM_FILE_MAGIC) { 1881 error_report("Not a migration stream"); 1882 return -EINVAL; 1883 } 1884 1885 v = qemu_get_be32(f); 1886 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 1887 error_report("SaveVM v2 format is obsolete and don't work anymore"); 1888 return -ENOTSUP; 1889 } 1890 if (v != QEMU_VM_FILE_VERSION) { 1891 error_report("Unsupported migration stream version"); 1892 return -ENOTSUP; 1893 } 1894 1895 if (!savevm_state.skip_configuration || enforce_config_section()) { 1896 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 1897 error_report("Configuration section missing"); 1898 return -EINVAL; 1899 } 1900 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 1901 1902 if (ret) { 1903 return ret; 1904 } 1905 } 1906 1907 ret = qemu_loadvm_state_main(f, mis); 1908 qemu_event_set(&mis->main_thread_load_event); 1909 1910 trace_qemu_loadvm_state_post_main(ret); 1911 1912 if (mis->have_listen_thread) { 1913 /* Listen thread still going, can't clean up yet */ 1914 return ret; 1915 } 1916 1917 if (ret == 0) { 1918 ret = qemu_file_get_error(f); 1919 } 1920 1921 /* 1922 * Try to read in the VMDESC section as well, so that dumping tools that 1923 * intercept our migration stream have the chance to see it. 1924 */ 1925 1926 /* We've got to be careful; if we don't read the data and just shut the fd 1927 * then the sender can error if we close while it's still sending. 1928 * We also mustn't read data that isn't there; some transports (RDMA) 1929 * will stall waiting for that data when the source has already closed. 1930 */ 1931 if (ret == 0 && should_send_vmdesc()) { 1932 uint8_t *buf; 1933 uint32_t size; 1934 uint8_t section_type = qemu_get_byte(f); 1935 1936 if (section_type != QEMU_VM_VMDESCRIPTION) { 1937 error_report("Expected vmdescription section, but got %d", 1938 section_type); 1939 /* 1940 * It doesn't seem worth failing at this point since 1941 * we apparently have an otherwise valid VM state 1942 */ 1943 } else { 1944 buf = g_malloc(0x1000); 1945 size = qemu_get_be32(f); 1946 1947 while (size > 0) { 1948 uint32_t read_chunk = MIN(size, 0x1000); 1949 qemu_get_buffer(f, buf, read_chunk); 1950 size -= read_chunk; 1951 } 1952 g_free(buf); 1953 } 1954 } 1955 1956 cpu_synchronize_all_post_init(); 1957 1958 return ret; 1959 } 1960 1961 void hmp_savevm(Monitor *mon, const QDict *qdict) 1962 { 1963 BlockDriverState *bs, *bs1; 1964 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 1965 int ret; 1966 QEMUFile *f; 1967 int saved_vm_running; 1968 uint64_t vm_state_size; 1969 qemu_timeval tv; 1970 struct tm tm; 1971 const char *name = qdict_get_try_str(qdict, "name"); 1972 Error *local_err = NULL; 1973 AioContext *aio_context; 1974 1975 if (!bdrv_all_can_snapshot(&bs)) { 1976 monitor_printf(mon, "Device '%s' is writable but does not " 1977 "support snapshots.\n", bdrv_get_device_name(bs)); 1978 return; 1979 } 1980 1981 /* Delete old snapshots of the same name */ 1982 if (name && bdrv_all_delete_snapshot(name, &bs1, &local_err) < 0) { 1983 error_reportf_err(local_err, 1984 "Error while deleting snapshot on device '%s': ", 1985 bdrv_get_device_name(bs1)); 1986 return; 1987 } 1988 1989 bs = bdrv_all_find_vmstate_bs(); 1990 if (bs == NULL) { 1991 monitor_printf(mon, "No block device can accept snapshots\n"); 1992 return; 1993 } 1994 aio_context = bdrv_get_aio_context(bs); 1995 1996 saved_vm_running = runstate_is_running(); 1997 1998 ret = global_state_store(); 1999 if (ret) { 2000 monitor_printf(mon, "Error saving global state\n"); 2001 return; 2002 } 2003 vm_stop(RUN_STATE_SAVE_VM); 2004 2005 aio_context_acquire(aio_context); 2006 2007 memset(sn, 0, sizeof(*sn)); 2008 2009 /* fill auxiliary fields */ 2010 qemu_gettimeofday(&tv); 2011 sn->date_sec = tv.tv_sec; 2012 sn->date_nsec = tv.tv_usec * 1000; 2013 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2014 2015 if (name) { 2016 ret = bdrv_snapshot_find(bs, old_sn, name); 2017 if (ret >= 0) { 2018 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2019 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2020 } else { 2021 pstrcpy(sn->name, sizeof(sn->name), name); 2022 } 2023 } else { 2024 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2025 localtime_r((const time_t *)&tv.tv_sec, &tm); 2026 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2027 } 2028 2029 /* save the VM state */ 2030 f = qemu_fopen_bdrv(bs, 1); 2031 if (!f) { 2032 monitor_printf(mon, "Could not open VM state file\n"); 2033 goto the_end; 2034 } 2035 ret = qemu_savevm_state(f, &local_err); 2036 vm_state_size = qemu_ftell(f); 2037 qemu_fclose(f); 2038 if (ret < 0) { 2039 error_report_err(local_err); 2040 goto the_end; 2041 } 2042 2043 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2044 if (ret < 0) { 2045 monitor_printf(mon, "Error while creating snapshot on '%s'\n", 2046 bdrv_get_device_name(bs)); 2047 } 2048 2049 the_end: 2050 aio_context_release(aio_context); 2051 if (saved_vm_running) { 2052 vm_start(); 2053 } 2054 } 2055 2056 void qmp_xen_save_devices_state(const char *filename, Error **errp) 2057 { 2058 QEMUFile *f; 2059 QIOChannelFile *ioc; 2060 int saved_vm_running; 2061 int ret; 2062 2063 saved_vm_running = runstate_is_running(); 2064 vm_stop(RUN_STATE_SAVE_VM); 2065 global_state_store_running(); 2066 2067 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2068 if (!ioc) { 2069 goto the_end; 2070 } 2071 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2072 ret = qemu_save_device_state(f); 2073 qemu_fclose(f); 2074 if (ret < 0) { 2075 error_setg(errp, QERR_IO_ERROR); 2076 } 2077 2078 the_end: 2079 if (saved_vm_running) { 2080 vm_start(); 2081 } 2082 } 2083 2084 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2085 { 2086 QEMUFile *f; 2087 QIOChannelFile *ioc; 2088 int ret; 2089 2090 /* Guest must be paused before loading the device state; the RAM state 2091 * will already have been loaded by xc 2092 */ 2093 if (runstate_is_running()) { 2094 error_setg(errp, "Cannot update device state while vm is running"); 2095 return; 2096 } 2097 vm_stop(RUN_STATE_RESTORE_VM); 2098 2099 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2100 if (!ioc) { 2101 return; 2102 } 2103 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2104 2105 migration_incoming_state_new(f); 2106 ret = qemu_loadvm_state(f); 2107 qemu_fclose(f); 2108 if (ret < 0) { 2109 error_setg(errp, QERR_IO_ERROR); 2110 } 2111 migration_incoming_state_destroy(); 2112 } 2113 2114 int load_vmstate(const char *name) 2115 { 2116 BlockDriverState *bs, *bs_vm_state; 2117 QEMUSnapshotInfo sn; 2118 QEMUFile *f; 2119 int ret; 2120 AioContext *aio_context; 2121 2122 if (!bdrv_all_can_snapshot(&bs)) { 2123 error_report("Device '%s' is writable but does not support snapshots.", 2124 bdrv_get_device_name(bs)); 2125 return -ENOTSUP; 2126 } 2127 ret = bdrv_all_find_snapshot(name, &bs); 2128 if (ret < 0) { 2129 error_report("Device '%s' does not have the requested snapshot '%s'", 2130 bdrv_get_device_name(bs), name); 2131 return ret; 2132 } 2133 2134 bs_vm_state = bdrv_all_find_vmstate_bs(); 2135 if (!bs_vm_state) { 2136 error_report("No block device supports snapshots"); 2137 return -ENOTSUP; 2138 } 2139 aio_context = bdrv_get_aio_context(bs_vm_state); 2140 2141 /* Don't even try to load empty VM states */ 2142 aio_context_acquire(aio_context); 2143 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2144 aio_context_release(aio_context); 2145 if (ret < 0) { 2146 return ret; 2147 } else if (sn.vm_state_size == 0) { 2148 error_report("This is a disk-only snapshot. Revert to it offline " 2149 "using qemu-img."); 2150 return -EINVAL; 2151 } 2152 2153 /* Flush all IO requests so they don't interfere with the new state. */ 2154 bdrv_drain_all(); 2155 2156 ret = bdrv_all_goto_snapshot(name, &bs); 2157 if (ret < 0) { 2158 error_report("Error %d while activating snapshot '%s' on '%s'", 2159 ret, name, bdrv_get_device_name(bs)); 2160 return ret; 2161 } 2162 2163 /* restore the VM state */ 2164 f = qemu_fopen_bdrv(bs_vm_state, 0); 2165 if (!f) { 2166 error_report("Could not open VM state file"); 2167 return -EINVAL; 2168 } 2169 2170 qemu_system_reset(VMRESET_SILENT); 2171 migration_incoming_state_new(f); 2172 2173 aio_context_acquire(aio_context); 2174 ret = qemu_loadvm_state(f); 2175 qemu_fclose(f); 2176 aio_context_release(aio_context); 2177 2178 migration_incoming_state_destroy(); 2179 if (ret < 0) { 2180 error_report("Error %d while loading VM state", ret); 2181 return ret; 2182 } 2183 2184 return 0; 2185 } 2186 2187 void hmp_delvm(Monitor *mon, const QDict *qdict) 2188 { 2189 BlockDriverState *bs; 2190 Error *err; 2191 const char *name = qdict_get_str(qdict, "name"); 2192 2193 if (bdrv_all_delete_snapshot(name, &bs, &err) < 0) { 2194 error_reportf_err(err, 2195 "Error while deleting snapshot on device '%s': ", 2196 bdrv_get_device_name(bs)); 2197 } 2198 } 2199 2200 void hmp_info_snapshots(Monitor *mon, const QDict *qdict) 2201 { 2202 BlockDriverState *bs, *bs1; 2203 QEMUSnapshotInfo *sn_tab, *sn; 2204 int nb_sns, i; 2205 int total; 2206 int *available_snapshots; 2207 AioContext *aio_context; 2208 2209 bs = bdrv_all_find_vmstate_bs(); 2210 if (!bs) { 2211 monitor_printf(mon, "No available block device supports snapshots\n"); 2212 return; 2213 } 2214 aio_context = bdrv_get_aio_context(bs); 2215 2216 aio_context_acquire(aio_context); 2217 nb_sns = bdrv_snapshot_list(bs, &sn_tab); 2218 aio_context_release(aio_context); 2219 2220 if (nb_sns < 0) { 2221 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns); 2222 return; 2223 } 2224 2225 if (nb_sns == 0) { 2226 monitor_printf(mon, "There is no snapshot available.\n"); 2227 return; 2228 } 2229 2230 available_snapshots = g_new0(int, nb_sns); 2231 total = 0; 2232 for (i = 0; i < nb_sns; i++) { 2233 if (bdrv_all_find_snapshot(sn_tab[i].id_str, &bs1) == 0) { 2234 available_snapshots[total] = i; 2235 total++; 2236 } 2237 } 2238 2239 if (total > 0) { 2240 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL); 2241 monitor_printf(mon, "\n"); 2242 for (i = 0; i < total; i++) { 2243 sn = &sn_tab[available_snapshots[i]]; 2244 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, sn); 2245 monitor_printf(mon, "\n"); 2246 } 2247 } else { 2248 monitor_printf(mon, "There is no suitable snapshot available\n"); 2249 } 2250 2251 g_free(sn_tab); 2252 g_free(available_snapshots); 2253 2254 } 2255 2256 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2257 { 2258 qemu_ram_set_idstr(mr->ram_block, 2259 memory_region_name(mr), dev); 2260 } 2261 2262 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2263 { 2264 qemu_ram_unset_idstr(mr->ram_block); 2265 } 2266 2267 void vmstate_register_ram_global(MemoryRegion *mr) 2268 { 2269 vmstate_register_ram(mr, NULL); 2270 } 2271