1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include "hw/boards.h" 32 #include "hw/hw.h" 33 #include "hw/qdev.h" 34 #include "hw/xen/xen.h" 35 #include "net/net.h" 36 #include "monitor/monitor.h" 37 #include "sysemu/sysemu.h" 38 #include "qemu/timer.h" 39 #include "audio/audio.h" 40 #include "migration/migration.h" 41 #include "migration/postcopy-ram.h" 42 #include "qapi/qmp/qerror.h" 43 #include "qemu/error-report.h" 44 #include "qemu/sockets.h" 45 #include "qemu/queue.h" 46 #include "sysemu/cpus.h" 47 #include "exec/memory.h" 48 #include "qmp-commands.h" 49 #include "trace.h" 50 #include "qemu/bitops.h" 51 #include "qemu/iov.h" 52 #include "block/snapshot.h" 53 #include "block/qapi.h" 54 #include "qemu/cutils.h" 55 #include "io/channel-buffer.h" 56 #include "io/channel-file.h" 57 58 #ifndef ETH_P_RARP 59 #define ETH_P_RARP 0x8035 60 #endif 61 #define ARP_HTYPE_ETH 0x0001 62 #define ARP_PTYPE_IP 0x0800 63 #define ARP_OP_REQUEST_REV 0x3 64 65 const unsigned int postcopy_ram_discard_version = 0; 66 67 static bool skip_section_footers; 68 69 static struct mig_cmd_args { 70 ssize_t len; /* -1 = variable */ 71 const char *name; 72 } mig_cmd_args[] = { 73 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 74 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 75 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 76 [MIG_CMD_POSTCOPY_ADVISE] = { .len = 16, .name = "POSTCOPY_ADVISE" }, 77 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 78 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 79 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 80 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 81 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 82 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 83 }; 84 85 static int announce_self_create(uint8_t *buf, 86 uint8_t *mac_addr) 87 { 88 /* Ethernet header. */ 89 memset(buf, 0xff, 6); /* destination MAC addr */ 90 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 91 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 92 93 /* RARP header. */ 94 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 95 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 96 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 97 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 98 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 99 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 100 memset(buf + 28, 0x00, 4); /* source protocol addr */ 101 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 102 memset(buf + 38, 0x00, 4); /* target protocol addr */ 103 104 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 105 memset(buf + 42, 0x00, 18); 106 107 return 60; /* len (FCS will be added by hardware) */ 108 } 109 110 static void qemu_announce_self_iter(NICState *nic, void *opaque) 111 { 112 uint8_t buf[60]; 113 int len; 114 115 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 116 len = announce_self_create(buf, nic->conf->macaddr.a); 117 118 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 119 } 120 121 122 static void qemu_announce_self_once(void *opaque) 123 { 124 static int count = SELF_ANNOUNCE_ROUNDS; 125 QEMUTimer *timer = *(QEMUTimer **)opaque; 126 127 qemu_foreach_nic(qemu_announce_self_iter, NULL); 128 129 if (--count) { 130 /* delay 50ms, 150ms, 250ms, ... */ 131 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 132 self_announce_delay(count)); 133 } else { 134 timer_del(timer); 135 timer_free(timer); 136 } 137 } 138 139 void qemu_announce_self(void) 140 { 141 static QEMUTimer *timer; 142 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 143 qemu_announce_self_once(&timer); 144 } 145 146 /***********************************************************/ 147 /* savevm/loadvm support */ 148 149 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 150 int64_t pos) 151 { 152 int ret; 153 QEMUIOVector qiov; 154 155 qemu_iovec_init_external(&qiov, iov, iovcnt); 156 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 157 if (ret < 0) { 158 return ret; 159 } 160 161 return qiov.size; 162 } 163 164 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 165 size_t size) 166 { 167 return bdrv_load_vmstate(opaque, buf, pos, size); 168 } 169 170 static int bdrv_fclose(void *opaque) 171 { 172 return bdrv_flush(opaque); 173 } 174 175 static const QEMUFileOps bdrv_read_ops = { 176 .get_buffer = block_get_buffer, 177 .close = bdrv_fclose 178 }; 179 180 static const QEMUFileOps bdrv_write_ops = { 181 .writev_buffer = block_writev_buffer, 182 .close = bdrv_fclose 183 }; 184 185 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 186 { 187 if (is_writable) { 188 return qemu_fopen_ops(bs, &bdrv_write_ops); 189 } 190 return qemu_fopen_ops(bs, &bdrv_read_ops); 191 } 192 193 194 /* QEMUFile timer support. 195 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 196 */ 197 198 void timer_put(QEMUFile *f, QEMUTimer *ts) 199 { 200 uint64_t expire_time; 201 202 expire_time = timer_expire_time_ns(ts); 203 qemu_put_be64(f, expire_time); 204 } 205 206 void timer_get(QEMUFile *f, QEMUTimer *ts) 207 { 208 uint64_t expire_time; 209 210 expire_time = qemu_get_be64(f); 211 if (expire_time != -1) { 212 timer_mod_ns(ts, expire_time); 213 } else { 214 timer_del(ts); 215 } 216 } 217 218 219 /* VMState timer support. 220 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 221 */ 222 223 static int get_timer(QEMUFile *f, void *pv, size_t size) 224 { 225 QEMUTimer *v = pv; 226 timer_get(f, v); 227 return 0; 228 } 229 230 static void put_timer(QEMUFile *f, void *pv, size_t size) 231 { 232 QEMUTimer *v = pv; 233 timer_put(f, v); 234 } 235 236 const VMStateInfo vmstate_info_timer = { 237 .name = "timer", 238 .get = get_timer, 239 .put = put_timer, 240 }; 241 242 243 typedef struct CompatEntry { 244 char idstr[256]; 245 int instance_id; 246 } CompatEntry; 247 248 typedef struct SaveStateEntry { 249 QTAILQ_ENTRY(SaveStateEntry) entry; 250 char idstr[256]; 251 int instance_id; 252 int alias_id; 253 int version_id; 254 int section_id; 255 SaveVMHandlers *ops; 256 const VMStateDescription *vmsd; 257 void *opaque; 258 CompatEntry *compat; 259 int is_ram; 260 } SaveStateEntry; 261 262 typedef struct SaveState { 263 QTAILQ_HEAD(, SaveStateEntry) handlers; 264 int global_section_id; 265 bool skip_configuration; 266 uint32_t len; 267 const char *name; 268 uint32_t target_page_bits; 269 } SaveState; 270 271 static SaveState savevm_state = { 272 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 273 .global_section_id = 0, 274 .skip_configuration = false, 275 }; 276 277 void savevm_skip_configuration(void) 278 { 279 savevm_state.skip_configuration = true; 280 } 281 282 283 static void configuration_pre_save(void *opaque) 284 { 285 SaveState *state = opaque; 286 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 287 288 state->len = strlen(current_name); 289 state->name = current_name; 290 state->target_page_bits = TARGET_PAGE_BITS; 291 } 292 293 static int configuration_pre_load(void *opaque) 294 { 295 SaveState *state = opaque; 296 297 /* If there is no target-page-bits subsection it means the source 298 * predates the variable-target-page-bits support and is using the 299 * minimum possible value for this CPU. 300 */ 301 state->target_page_bits = TARGET_PAGE_BITS_MIN; 302 return 0; 303 } 304 305 static int configuration_post_load(void *opaque, int version_id) 306 { 307 SaveState *state = opaque; 308 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 309 310 if (strncmp(state->name, current_name, state->len) != 0) { 311 error_report("Machine type received is '%.*s' and local is '%s'", 312 (int) state->len, state->name, current_name); 313 return -EINVAL; 314 } 315 316 if (state->target_page_bits != TARGET_PAGE_BITS) { 317 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 318 state->target_page_bits, TARGET_PAGE_BITS); 319 return -EINVAL; 320 } 321 322 return 0; 323 } 324 325 /* The target-page-bits subsection is present only if the 326 * target page size is not the same as the default (ie the 327 * minimum page size for a variable-page-size guest CPU). 328 * If it is present then it contains the actual target page 329 * bits for the machine, and migration will fail if the 330 * two ends don't agree about it. 331 */ 332 static bool vmstate_target_page_bits_needed(void *opaque) 333 { 334 return TARGET_PAGE_BITS > TARGET_PAGE_BITS_MIN; 335 } 336 337 static const VMStateDescription vmstate_target_page_bits = { 338 .name = "configuration/target-page-bits", 339 .version_id = 1, 340 .minimum_version_id = 1, 341 .needed = vmstate_target_page_bits_needed, 342 .fields = (VMStateField[]) { 343 VMSTATE_UINT32(target_page_bits, SaveState), 344 VMSTATE_END_OF_LIST() 345 } 346 }; 347 348 static const VMStateDescription vmstate_configuration = { 349 .name = "configuration", 350 .version_id = 1, 351 .pre_load = configuration_pre_load, 352 .post_load = configuration_post_load, 353 .pre_save = configuration_pre_save, 354 .fields = (VMStateField[]) { 355 VMSTATE_UINT32(len, SaveState), 356 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, 0, len), 357 VMSTATE_END_OF_LIST() 358 }, 359 .subsections = (const VMStateDescription*[]) { 360 &vmstate_target_page_bits, 361 NULL 362 } 363 }; 364 365 static void dump_vmstate_vmsd(FILE *out_file, 366 const VMStateDescription *vmsd, int indent, 367 bool is_subsection); 368 369 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 370 int indent) 371 { 372 fprintf(out_file, "%*s{\n", indent, ""); 373 indent += 2; 374 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 375 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 376 field->version_id); 377 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 378 field->field_exists ? "true" : "false"); 379 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 380 if (field->vmsd != NULL) { 381 fprintf(out_file, ",\n"); 382 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 383 } 384 fprintf(out_file, "\n%*s}", indent - 2, ""); 385 } 386 387 static void dump_vmstate_vmss(FILE *out_file, 388 const VMStateDescription **subsection, 389 int indent) 390 { 391 if (*subsection != NULL) { 392 dump_vmstate_vmsd(out_file, *subsection, indent, true); 393 } 394 } 395 396 static void dump_vmstate_vmsd(FILE *out_file, 397 const VMStateDescription *vmsd, int indent, 398 bool is_subsection) 399 { 400 if (is_subsection) { 401 fprintf(out_file, "%*s{\n", indent, ""); 402 } else { 403 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 404 } 405 indent += 2; 406 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 407 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 408 vmsd->version_id); 409 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 410 vmsd->minimum_version_id); 411 if (vmsd->fields != NULL) { 412 const VMStateField *field = vmsd->fields; 413 bool first; 414 415 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 416 first = true; 417 while (field->name != NULL) { 418 if (field->flags & VMS_MUST_EXIST) { 419 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 420 field++; 421 continue; 422 } 423 if (!first) { 424 fprintf(out_file, ",\n"); 425 } 426 dump_vmstate_vmsf(out_file, field, indent + 2); 427 field++; 428 first = false; 429 } 430 fprintf(out_file, "\n%*s]", indent, ""); 431 } 432 if (vmsd->subsections != NULL) { 433 const VMStateDescription **subsection = vmsd->subsections; 434 bool first; 435 436 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 437 first = true; 438 while (*subsection != NULL) { 439 if (!first) { 440 fprintf(out_file, ",\n"); 441 } 442 dump_vmstate_vmss(out_file, subsection, indent + 2); 443 subsection++; 444 first = false; 445 } 446 fprintf(out_file, "\n%*s]", indent, ""); 447 } 448 fprintf(out_file, "\n%*s}", indent - 2, ""); 449 } 450 451 static void dump_machine_type(FILE *out_file) 452 { 453 MachineClass *mc; 454 455 mc = MACHINE_GET_CLASS(current_machine); 456 457 fprintf(out_file, " \"vmschkmachine\": {\n"); 458 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 459 fprintf(out_file, " },\n"); 460 } 461 462 void dump_vmstate_json_to_file(FILE *out_file) 463 { 464 GSList *list, *elt; 465 bool first; 466 467 fprintf(out_file, "{\n"); 468 dump_machine_type(out_file); 469 470 first = true; 471 list = object_class_get_list(TYPE_DEVICE, true); 472 for (elt = list; elt; elt = elt->next) { 473 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 474 TYPE_DEVICE); 475 const char *name; 476 int indent = 2; 477 478 if (!dc->vmsd) { 479 continue; 480 } 481 482 if (!first) { 483 fprintf(out_file, ",\n"); 484 } 485 name = object_class_get_name(OBJECT_CLASS(dc)); 486 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 487 indent += 2; 488 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 489 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 490 dc->vmsd->version_id); 491 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 492 dc->vmsd->minimum_version_id); 493 494 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 495 496 fprintf(out_file, "\n%*s}", indent - 2, ""); 497 first = false; 498 } 499 fprintf(out_file, "\n}\n"); 500 fclose(out_file); 501 } 502 503 static int calculate_new_instance_id(const char *idstr) 504 { 505 SaveStateEntry *se; 506 int instance_id = 0; 507 508 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 509 if (strcmp(idstr, se->idstr) == 0 510 && instance_id <= se->instance_id) { 511 instance_id = se->instance_id + 1; 512 } 513 } 514 return instance_id; 515 } 516 517 static int calculate_compat_instance_id(const char *idstr) 518 { 519 SaveStateEntry *se; 520 int instance_id = 0; 521 522 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 523 if (!se->compat) { 524 continue; 525 } 526 527 if (strcmp(idstr, se->compat->idstr) == 0 528 && instance_id <= se->compat->instance_id) { 529 instance_id = se->compat->instance_id + 1; 530 } 531 } 532 return instance_id; 533 } 534 535 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 536 { 537 if (se->vmsd) { 538 return se->vmsd->priority; 539 } 540 return MIG_PRI_DEFAULT; 541 } 542 543 static void savevm_state_handler_insert(SaveStateEntry *nse) 544 { 545 MigrationPriority priority = save_state_priority(nse); 546 SaveStateEntry *se; 547 548 assert(priority <= MIG_PRI_MAX); 549 550 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 551 if (save_state_priority(se) < priority) { 552 break; 553 } 554 } 555 556 if (se) { 557 QTAILQ_INSERT_BEFORE(se, nse, entry); 558 } else { 559 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 560 } 561 } 562 563 /* TODO: Individual devices generally have very little idea about the rest 564 of the system, so instance_id should be removed/replaced. 565 Meanwhile pass -1 as instance_id if you do not already have a clearly 566 distinguishing id for all instances of your device class. */ 567 int register_savevm_live(DeviceState *dev, 568 const char *idstr, 569 int instance_id, 570 int version_id, 571 SaveVMHandlers *ops, 572 void *opaque) 573 { 574 SaveStateEntry *se; 575 576 se = g_new0(SaveStateEntry, 1); 577 se->version_id = version_id; 578 se->section_id = savevm_state.global_section_id++; 579 se->ops = ops; 580 se->opaque = opaque; 581 se->vmsd = NULL; 582 /* if this is a live_savem then set is_ram */ 583 if (ops->save_live_setup != NULL) { 584 se->is_ram = 1; 585 } 586 587 if (dev) { 588 char *id = qdev_get_dev_path(dev); 589 if (id) { 590 pstrcpy(se->idstr, sizeof(se->idstr), id); 591 pstrcat(se->idstr, sizeof(se->idstr), "/"); 592 g_free(id); 593 594 se->compat = g_new0(CompatEntry, 1); 595 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 596 se->compat->instance_id = instance_id == -1 ? 597 calculate_compat_instance_id(idstr) : instance_id; 598 instance_id = -1; 599 } 600 } 601 pstrcat(se->idstr, sizeof(se->idstr), idstr); 602 603 if (instance_id == -1) { 604 se->instance_id = calculate_new_instance_id(se->idstr); 605 } else { 606 se->instance_id = instance_id; 607 } 608 assert(!se->compat || se->instance_id == 0); 609 savevm_state_handler_insert(se); 610 return 0; 611 } 612 613 int register_savevm(DeviceState *dev, 614 const char *idstr, 615 int instance_id, 616 int version_id, 617 SaveStateHandler *save_state, 618 LoadStateHandler *load_state, 619 void *opaque) 620 { 621 SaveVMHandlers *ops = g_new0(SaveVMHandlers, 1); 622 ops->save_state = save_state; 623 ops->load_state = load_state; 624 return register_savevm_live(dev, idstr, instance_id, version_id, 625 ops, opaque); 626 } 627 628 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 629 { 630 SaveStateEntry *se, *new_se; 631 char id[256] = ""; 632 633 if (dev) { 634 char *path = qdev_get_dev_path(dev); 635 if (path) { 636 pstrcpy(id, sizeof(id), path); 637 pstrcat(id, sizeof(id), "/"); 638 g_free(path); 639 } 640 } 641 pstrcat(id, sizeof(id), idstr); 642 643 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 644 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 645 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 646 g_free(se->compat); 647 g_free(se->ops); 648 g_free(se); 649 } 650 } 651 } 652 653 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 654 const VMStateDescription *vmsd, 655 void *opaque, int alias_id, 656 int required_for_version) 657 { 658 SaveStateEntry *se; 659 660 /* If this triggers, alias support can be dropped for the vmsd. */ 661 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 662 663 se = g_new0(SaveStateEntry, 1); 664 se->version_id = vmsd->version_id; 665 se->section_id = savevm_state.global_section_id++; 666 se->opaque = opaque; 667 se->vmsd = vmsd; 668 se->alias_id = alias_id; 669 670 if (dev) { 671 char *id = qdev_get_dev_path(dev); 672 if (id) { 673 pstrcpy(se->idstr, sizeof(se->idstr), id); 674 pstrcat(se->idstr, sizeof(se->idstr), "/"); 675 g_free(id); 676 677 se->compat = g_new0(CompatEntry, 1); 678 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 679 se->compat->instance_id = instance_id == -1 ? 680 calculate_compat_instance_id(vmsd->name) : instance_id; 681 instance_id = -1; 682 } 683 } 684 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 685 686 if (instance_id == -1) { 687 se->instance_id = calculate_new_instance_id(se->idstr); 688 } else { 689 se->instance_id = instance_id; 690 } 691 assert(!se->compat || se->instance_id == 0); 692 savevm_state_handler_insert(se); 693 return 0; 694 } 695 696 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 697 void *opaque) 698 { 699 SaveStateEntry *se, *new_se; 700 701 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 702 if (se->vmsd == vmsd && se->opaque == opaque) { 703 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 704 g_free(se->compat); 705 g_free(se); 706 } 707 } 708 } 709 710 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id) 711 { 712 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 713 if (!se->vmsd) { /* Old style */ 714 return se->ops->load_state(f, se->opaque, version_id); 715 } 716 return vmstate_load_state(f, se->vmsd, se->opaque, version_id); 717 } 718 719 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 720 { 721 int64_t old_offset, size; 722 723 old_offset = qemu_ftell_fast(f); 724 se->ops->save_state(f, se->opaque); 725 size = qemu_ftell_fast(f) - old_offset; 726 727 if (vmdesc) { 728 json_prop_int(vmdesc, "size", size); 729 json_start_array(vmdesc, "fields"); 730 json_start_object(vmdesc, NULL); 731 json_prop_str(vmdesc, "name", "data"); 732 json_prop_int(vmdesc, "size", size); 733 json_prop_str(vmdesc, "type", "buffer"); 734 json_end_object(vmdesc); 735 json_end_array(vmdesc); 736 } 737 } 738 739 static void vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 740 { 741 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 742 if (!se->vmsd) { 743 vmstate_save_old_style(f, se, vmdesc); 744 return; 745 } 746 vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 747 } 748 749 void savevm_skip_section_footers(void) 750 { 751 skip_section_footers = true; 752 } 753 754 /* 755 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 756 */ 757 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 758 uint8_t section_type) 759 { 760 qemu_put_byte(f, section_type); 761 qemu_put_be32(f, se->section_id); 762 763 if (section_type == QEMU_VM_SECTION_FULL || 764 section_type == QEMU_VM_SECTION_START) { 765 /* ID string */ 766 size_t len = strlen(se->idstr); 767 qemu_put_byte(f, len); 768 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 769 770 qemu_put_be32(f, se->instance_id); 771 qemu_put_be32(f, se->version_id); 772 } 773 } 774 775 /* 776 * Write a footer onto device sections that catches cases misformatted device 777 * sections. 778 */ 779 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 780 { 781 if (!skip_section_footers) { 782 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 783 qemu_put_be32(f, se->section_id); 784 } 785 } 786 787 /** 788 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 789 * command and associated data. 790 * 791 * @f: File to send command on 792 * @command: Command type to send 793 * @len: Length of associated data 794 * @data: Data associated with command. 795 */ 796 void qemu_savevm_command_send(QEMUFile *f, 797 enum qemu_vm_cmd command, 798 uint16_t len, 799 uint8_t *data) 800 { 801 trace_savevm_command_send(command, len); 802 qemu_put_byte(f, QEMU_VM_COMMAND); 803 qemu_put_be16(f, (uint16_t)command); 804 qemu_put_be16(f, len); 805 qemu_put_buffer(f, data, len); 806 qemu_fflush(f); 807 } 808 809 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 810 { 811 uint32_t buf; 812 813 trace_savevm_send_ping(value); 814 buf = cpu_to_be32(value); 815 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 816 } 817 818 void qemu_savevm_send_open_return_path(QEMUFile *f) 819 { 820 trace_savevm_send_open_return_path(); 821 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 822 } 823 824 /* We have a buffer of data to send; we don't want that all to be loaded 825 * by the command itself, so the command contains just the length of the 826 * extra buffer that we then send straight after it. 827 * TODO: Must be a better way to organise that 828 * 829 * Returns: 830 * 0 on success 831 * -ve on error 832 */ 833 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 834 { 835 uint32_t tmp; 836 837 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 838 error_report("%s: Unreasonably large packaged state: %zu", 839 __func__, len); 840 return -1; 841 } 842 843 tmp = cpu_to_be32(len); 844 845 trace_qemu_savevm_send_packaged(); 846 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 847 848 qemu_put_buffer(f, buf, len); 849 850 return 0; 851 } 852 853 /* Send prior to any postcopy transfer */ 854 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 855 { 856 uint64_t tmp[2]; 857 tmp[0] = cpu_to_be64(getpagesize()); 858 tmp[1] = cpu_to_be64(1ul << qemu_target_page_bits()); 859 860 trace_qemu_savevm_send_postcopy_advise(); 861 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 16, (uint8_t *)tmp); 862 } 863 864 /* Sent prior to starting the destination running in postcopy, discard pages 865 * that have already been sent but redirtied on the source. 866 * CMD_POSTCOPY_RAM_DISCARD consist of: 867 * byte version (0) 868 * byte Length of name field (not including 0) 869 * n x byte RAM block name 870 * byte 0 terminator (just for safety) 871 * n x Byte ranges within the named RAMBlock 872 * be64 Start of the range 873 * be64 Length 874 * 875 * name: RAMBlock name that these entries are part of 876 * len: Number of page entries 877 * start_list: 'len' addresses 878 * length_list: 'len' addresses 879 * 880 */ 881 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 882 uint16_t len, 883 uint64_t *start_list, 884 uint64_t *length_list) 885 { 886 uint8_t *buf; 887 uint16_t tmplen; 888 uint16_t t; 889 size_t name_len = strlen(name); 890 891 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 892 assert(name_len < 256); 893 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 894 buf[0] = postcopy_ram_discard_version; 895 buf[1] = name_len; 896 memcpy(buf + 2, name, name_len); 897 tmplen = 2 + name_len; 898 buf[tmplen++] = '\0'; 899 900 for (t = 0; t < len; t++) { 901 stq_be_p(buf + tmplen, start_list[t]); 902 tmplen += 8; 903 stq_be_p(buf + tmplen, length_list[t]); 904 tmplen += 8; 905 } 906 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 907 g_free(buf); 908 } 909 910 /* Get the destination into a state where it can receive postcopy data. */ 911 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 912 { 913 trace_savevm_send_postcopy_listen(); 914 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 915 } 916 917 /* Kick the destination into running */ 918 void qemu_savevm_send_postcopy_run(QEMUFile *f) 919 { 920 trace_savevm_send_postcopy_run(); 921 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 922 } 923 924 bool qemu_savevm_state_blocked(Error **errp) 925 { 926 SaveStateEntry *se; 927 928 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 929 if (se->vmsd && se->vmsd->unmigratable) { 930 error_setg(errp, "State blocked by non-migratable device '%s'", 931 se->idstr); 932 return true; 933 } 934 } 935 return false; 936 } 937 938 static bool enforce_config_section(void) 939 { 940 MachineState *machine = MACHINE(qdev_get_machine()); 941 return machine->enforce_config_section; 942 } 943 944 void qemu_savevm_state_header(QEMUFile *f) 945 { 946 trace_savevm_state_header(); 947 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 948 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 949 950 if (!savevm_state.skip_configuration || enforce_config_section()) { 951 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 952 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 953 } 954 955 } 956 957 void qemu_savevm_state_begin(QEMUFile *f, 958 const MigrationParams *params) 959 { 960 SaveStateEntry *se; 961 int ret; 962 963 trace_savevm_state_begin(); 964 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 965 if (!se->ops || !se->ops->set_params) { 966 continue; 967 } 968 se->ops->set_params(params, se->opaque); 969 } 970 971 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 972 if (!se->ops || !se->ops->save_live_setup) { 973 continue; 974 } 975 if (se->ops && se->ops->is_active) { 976 if (!se->ops->is_active(se->opaque)) { 977 continue; 978 } 979 } 980 save_section_header(f, se, QEMU_VM_SECTION_START); 981 982 ret = se->ops->save_live_setup(f, se->opaque); 983 save_section_footer(f, se); 984 if (ret < 0) { 985 qemu_file_set_error(f, ret); 986 break; 987 } 988 } 989 } 990 991 /* 992 * this function has three return values: 993 * negative: there was one error, and we have -errno. 994 * 0 : We haven't finished, caller have to go again 995 * 1 : We have finished, we can go to complete phase 996 */ 997 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 998 { 999 SaveStateEntry *se; 1000 int ret = 1; 1001 1002 trace_savevm_state_iterate(); 1003 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1004 if (!se->ops || !se->ops->save_live_iterate) { 1005 continue; 1006 } 1007 if (se->ops && se->ops->is_active) { 1008 if (!se->ops->is_active(se->opaque)) { 1009 continue; 1010 } 1011 } 1012 /* 1013 * In the postcopy phase, any device that doesn't know how to 1014 * do postcopy should have saved it's state in the _complete 1015 * call that's already run, it might get confused if we call 1016 * iterate afterwards. 1017 */ 1018 if (postcopy && !se->ops->save_live_complete_postcopy) { 1019 continue; 1020 } 1021 if (qemu_file_rate_limit(f)) { 1022 return 0; 1023 } 1024 trace_savevm_section_start(se->idstr, se->section_id); 1025 1026 save_section_header(f, se, QEMU_VM_SECTION_PART); 1027 1028 ret = se->ops->save_live_iterate(f, se->opaque); 1029 trace_savevm_section_end(se->idstr, se->section_id, ret); 1030 save_section_footer(f, se); 1031 1032 if (ret < 0) { 1033 qemu_file_set_error(f, ret); 1034 } 1035 if (ret <= 0) { 1036 /* Do not proceed to the next vmstate before this one reported 1037 completion of the current stage. This serializes the migration 1038 and reduces the probability that a faster changing state is 1039 synchronized over and over again. */ 1040 break; 1041 } 1042 } 1043 return ret; 1044 } 1045 1046 static bool should_send_vmdesc(void) 1047 { 1048 MachineState *machine = MACHINE(qdev_get_machine()); 1049 bool in_postcopy = migration_in_postcopy(migrate_get_current()); 1050 return !machine->suppress_vmdesc && !in_postcopy; 1051 } 1052 1053 /* 1054 * Calls the save_live_complete_postcopy methods 1055 * causing the last few pages to be sent immediately and doing any associated 1056 * cleanup. 1057 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1058 * all the other devices, but that happens at the point we switch to postcopy. 1059 */ 1060 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1061 { 1062 SaveStateEntry *se; 1063 int ret; 1064 1065 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1066 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1067 continue; 1068 } 1069 if (se->ops && se->ops->is_active) { 1070 if (!se->ops->is_active(se->opaque)) { 1071 continue; 1072 } 1073 } 1074 trace_savevm_section_start(se->idstr, se->section_id); 1075 /* Section type */ 1076 qemu_put_byte(f, QEMU_VM_SECTION_END); 1077 qemu_put_be32(f, se->section_id); 1078 1079 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1080 trace_savevm_section_end(se->idstr, se->section_id, ret); 1081 save_section_footer(f, se); 1082 if (ret < 0) { 1083 qemu_file_set_error(f, ret); 1084 return; 1085 } 1086 } 1087 1088 qemu_put_byte(f, QEMU_VM_EOF); 1089 qemu_fflush(f); 1090 } 1091 1092 void qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only) 1093 { 1094 QJSON *vmdesc; 1095 int vmdesc_len; 1096 SaveStateEntry *se; 1097 int ret; 1098 bool in_postcopy = migration_in_postcopy(migrate_get_current()); 1099 1100 trace_savevm_state_complete_precopy(); 1101 1102 cpu_synchronize_all_states(); 1103 1104 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1105 if (!se->ops || 1106 (in_postcopy && se->ops->save_live_complete_postcopy) || 1107 (in_postcopy && !iterable_only) || 1108 !se->ops->save_live_complete_precopy) { 1109 continue; 1110 } 1111 1112 if (se->ops && se->ops->is_active) { 1113 if (!se->ops->is_active(se->opaque)) { 1114 continue; 1115 } 1116 } 1117 trace_savevm_section_start(se->idstr, se->section_id); 1118 1119 save_section_header(f, se, QEMU_VM_SECTION_END); 1120 1121 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1122 trace_savevm_section_end(se->idstr, se->section_id, ret); 1123 save_section_footer(f, se); 1124 if (ret < 0) { 1125 qemu_file_set_error(f, ret); 1126 return; 1127 } 1128 } 1129 1130 if (iterable_only) { 1131 return; 1132 } 1133 1134 vmdesc = qjson_new(); 1135 json_prop_int(vmdesc, "page_size", TARGET_PAGE_SIZE); 1136 json_start_array(vmdesc, "devices"); 1137 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1138 1139 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1140 continue; 1141 } 1142 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1143 trace_savevm_section_skip(se->idstr, se->section_id); 1144 continue; 1145 } 1146 1147 trace_savevm_section_start(se->idstr, se->section_id); 1148 1149 json_start_object(vmdesc, NULL); 1150 json_prop_str(vmdesc, "name", se->idstr); 1151 json_prop_int(vmdesc, "instance_id", se->instance_id); 1152 1153 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1154 vmstate_save(f, se, vmdesc); 1155 trace_savevm_section_end(se->idstr, se->section_id, 0); 1156 save_section_footer(f, se); 1157 1158 json_end_object(vmdesc); 1159 } 1160 1161 if (!in_postcopy) { 1162 /* Postcopy stream will still be going */ 1163 qemu_put_byte(f, QEMU_VM_EOF); 1164 } 1165 1166 json_end_array(vmdesc); 1167 qjson_finish(vmdesc); 1168 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1169 1170 if (should_send_vmdesc()) { 1171 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1172 qemu_put_be32(f, vmdesc_len); 1173 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1174 } 1175 qjson_destroy(vmdesc); 1176 1177 qemu_fflush(f); 1178 } 1179 1180 /* Give an estimate of the amount left to be transferred, 1181 * the result is split into the amount for units that can and 1182 * for units that can't do postcopy. 1183 */ 1184 void qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size, 1185 uint64_t *res_non_postcopiable, 1186 uint64_t *res_postcopiable) 1187 { 1188 SaveStateEntry *se; 1189 1190 *res_non_postcopiable = 0; 1191 *res_postcopiable = 0; 1192 1193 1194 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1195 if (!se->ops || !se->ops->save_live_pending) { 1196 continue; 1197 } 1198 if (se->ops && se->ops->is_active) { 1199 if (!se->ops->is_active(se->opaque)) { 1200 continue; 1201 } 1202 } 1203 se->ops->save_live_pending(f, se->opaque, max_size, 1204 res_non_postcopiable, res_postcopiable); 1205 } 1206 } 1207 1208 void qemu_savevm_state_cleanup(void) 1209 { 1210 SaveStateEntry *se; 1211 1212 trace_savevm_state_cleanup(); 1213 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1214 if (se->ops && se->ops->cleanup) { 1215 se->ops->cleanup(se->opaque); 1216 } 1217 } 1218 } 1219 1220 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1221 { 1222 int ret; 1223 MigrationParams params = { 1224 .blk = 0, 1225 .shared = 0 1226 }; 1227 MigrationState *ms = migrate_init(¶ms); 1228 MigrationStatus status; 1229 ms->to_dst_file = f; 1230 1231 if (migration_is_blocked(errp)) { 1232 ret = -EINVAL; 1233 goto done; 1234 } 1235 1236 qemu_mutex_unlock_iothread(); 1237 qemu_savevm_state_header(f); 1238 qemu_savevm_state_begin(f, ¶ms); 1239 qemu_mutex_lock_iothread(); 1240 1241 while (qemu_file_get_error(f) == 0) { 1242 if (qemu_savevm_state_iterate(f, false) > 0) { 1243 break; 1244 } 1245 } 1246 1247 ret = qemu_file_get_error(f); 1248 if (ret == 0) { 1249 qemu_savevm_state_complete_precopy(f, false); 1250 ret = qemu_file_get_error(f); 1251 } 1252 qemu_savevm_state_cleanup(); 1253 if (ret != 0) { 1254 error_setg_errno(errp, -ret, "Error while writing VM state"); 1255 } 1256 1257 done: 1258 if (ret != 0) { 1259 status = MIGRATION_STATUS_FAILED; 1260 } else { 1261 status = MIGRATION_STATUS_COMPLETED; 1262 } 1263 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1264 return ret; 1265 } 1266 1267 static int qemu_save_device_state(QEMUFile *f) 1268 { 1269 SaveStateEntry *se; 1270 1271 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1272 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1273 1274 cpu_synchronize_all_states(); 1275 1276 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1277 if (se->is_ram) { 1278 continue; 1279 } 1280 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1281 continue; 1282 } 1283 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1284 continue; 1285 } 1286 1287 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1288 1289 vmstate_save(f, se, NULL); 1290 1291 save_section_footer(f, se); 1292 } 1293 1294 qemu_put_byte(f, QEMU_VM_EOF); 1295 1296 return qemu_file_get_error(f); 1297 } 1298 1299 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1300 { 1301 SaveStateEntry *se; 1302 1303 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1304 if (!strcmp(se->idstr, idstr) && 1305 (instance_id == se->instance_id || 1306 instance_id == se->alias_id)) 1307 return se; 1308 /* Migrating from an older version? */ 1309 if (strstr(se->idstr, idstr) && se->compat) { 1310 if (!strcmp(se->compat->idstr, idstr) && 1311 (instance_id == se->compat->instance_id || 1312 instance_id == se->alias_id)) 1313 return se; 1314 } 1315 } 1316 return NULL; 1317 } 1318 1319 enum LoadVMExitCodes { 1320 /* Allow a command to quit all layers of nested loadvm loops */ 1321 LOADVM_QUIT = 1, 1322 }; 1323 1324 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1325 1326 /* ------ incoming postcopy messages ------ */ 1327 /* 'advise' arrives before any transfers just to tell us that a postcopy 1328 * *might* happen - it might be skipped if precopy transferred everything 1329 * quickly. 1330 */ 1331 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis) 1332 { 1333 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1334 uint64_t remote_hps, remote_tps; 1335 1336 trace_loadvm_postcopy_handle_advise(); 1337 if (ps != POSTCOPY_INCOMING_NONE) { 1338 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1339 return -1; 1340 } 1341 1342 if (!postcopy_ram_supported_by_host()) { 1343 return -1; 1344 } 1345 1346 remote_hps = qemu_get_be64(mis->from_src_file); 1347 if (remote_hps != getpagesize()) { 1348 /* 1349 * Some combinations of mismatch are probably possible but it gets 1350 * a bit more complicated. In particular we need to place whole 1351 * host pages on the dest at once, and we need to ensure that we 1352 * handle dirtying to make sure we never end up sending part of 1353 * a hostpage on it's own. 1354 */ 1355 error_report("Postcopy needs matching host page sizes (s=%d d=%d)", 1356 (int)remote_hps, getpagesize()); 1357 return -1; 1358 } 1359 1360 remote_tps = qemu_get_be64(mis->from_src_file); 1361 if (remote_tps != (1ul << qemu_target_page_bits())) { 1362 /* 1363 * Again, some differences could be dealt with, but for now keep it 1364 * simple. 1365 */ 1366 error_report("Postcopy needs matching target page sizes (s=%d d=%d)", 1367 (int)remote_tps, 1 << qemu_target_page_bits()); 1368 return -1; 1369 } 1370 1371 if (ram_postcopy_incoming_init(mis)) { 1372 return -1; 1373 } 1374 1375 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1376 1377 return 0; 1378 } 1379 1380 /* After postcopy we will be told to throw some pages away since they're 1381 * dirty and will have to be demand fetched. Must happen before CPU is 1382 * started. 1383 * There can be 0..many of these messages, each encoding multiple pages. 1384 */ 1385 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1386 uint16_t len) 1387 { 1388 int tmp; 1389 char ramid[256]; 1390 PostcopyState ps = postcopy_state_get(); 1391 1392 trace_loadvm_postcopy_ram_handle_discard(); 1393 1394 switch (ps) { 1395 case POSTCOPY_INCOMING_ADVISE: 1396 /* 1st discard */ 1397 tmp = postcopy_ram_prepare_discard(mis); 1398 if (tmp) { 1399 return tmp; 1400 } 1401 break; 1402 1403 case POSTCOPY_INCOMING_DISCARD: 1404 /* Expected state */ 1405 break; 1406 1407 default: 1408 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1409 ps); 1410 return -1; 1411 } 1412 /* We're expecting a 1413 * Version (0) 1414 * a RAM ID string (length byte, name, 0 term) 1415 * then at least 1 16 byte chunk 1416 */ 1417 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1418 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1419 return -1; 1420 } 1421 1422 tmp = qemu_get_byte(mis->from_src_file); 1423 if (tmp != postcopy_ram_discard_version) { 1424 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1425 return -1; 1426 } 1427 1428 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1429 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1430 return -1; 1431 } 1432 tmp = qemu_get_byte(mis->from_src_file); 1433 if (tmp != 0) { 1434 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1435 return -1; 1436 } 1437 1438 len -= 3 + strlen(ramid); 1439 if (len % 16) { 1440 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1441 return -1; 1442 } 1443 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1444 while (len) { 1445 uint64_t start_addr, block_length; 1446 start_addr = qemu_get_be64(mis->from_src_file); 1447 block_length = qemu_get_be64(mis->from_src_file); 1448 1449 len -= 16; 1450 int ret = ram_discard_range(mis, ramid, start_addr, 1451 block_length); 1452 if (ret) { 1453 return ret; 1454 } 1455 } 1456 trace_loadvm_postcopy_ram_handle_discard_end(); 1457 1458 return 0; 1459 } 1460 1461 /* 1462 * Triggered by a postcopy_listen command; this thread takes over reading 1463 * the input stream, leaving the main thread free to carry on loading the rest 1464 * of the device state (from RAM). 1465 * (TODO:This could do with being in a postcopy file - but there again it's 1466 * just another input loop, not that postcopy specific) 1467 */ 1468 static void *postcopy_ram_listen_thread(void *opaque) 1469 { 1470 QEMUFile *f = opaque; 1471 MigrationIncomingState *mis = migration_incoming_get_current(); 1472 int load_res; 1473 1474 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1475 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1476 qemu_sem_post(&mis->listen_thread_sem); 1477 trace_postcopy_ram_listen_thread_start(); 1478 1479 /* 1480 * Because we're a thread and not a coroutine we can't yield 1481 * in qemu_file, and thus we must be blocking now. 1482 */ 1483 qemu_file_set_blocking(f, true); 1484 load_res = qemu_loadvm_state_main(f, mis); 1485 /* And non-blocking again so we don't block in any cleanup */ 1486 qemu_file_set_blocking(f, false); 1487 1488 trace_postcopy_ram_listen_thread_exit(); 1489 if (load_res < 0) { 1490 error_report("%s: loadvm failed: %d", __func__, load_res); 1491 qemu_file_set_error(f, load_res); 1492 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1493 MIGRATION_STATUS_FAILED); 1494 } else { 1495 /* 1496 * This looks good, but it's possible that the device loading in the 1497 * main thread hasn't finished yet, and so we might not be in 'RUN' 1498 * state yet; wait for the end of the main thread. 1499 */ 1500 qemu_event_wait(&mis->main_thread_load_event); 1501 } 1502 postcopy_ram_incoming_cleanup(mis); 1503 1504 if (load_res < 0) { 1505 /* 1506 * If something went wrong then we have a bad state so exit; 1507 * depending how far we got it might be possible at this point 1508 * to leave the guest running and fire MCEs for pages that never 1509 * arrived as a desperate recovery step. 1510 */ 1511 exit(EXIT_FAILURE); 1512 } 1513 1514 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1515 MIGRATION_STATUS_COMPLETED); 1516 /* 1517 * If everything has worked fine, then the main thread has waited 1518 * for us to start, and we're the last use of the mis. 1519 * (If something broke then qemu will have to exit anyway since it's 1520 * got a bad migration state). 1521 */ 1522 migration_incoming_state_destroy(); 1523 1524 1525 return NULL; 1526 } 1527 1528 /* After this message we must be able to immediately receive postcopy data */ 1529 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1530 { 1531 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1532 trace_loadvm_postcopy_handle_listen(); 1533 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1534 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1535 return -1; 1536 } 1537 if (ps == POSTCOPY_INCOMING_ADVISE) { 1538 /* 1539 * A rare case, we entered listen without having to do any discards, 1540 * so do the setup that's normally done at the time of the 1st discard. 1541 */ 1542 postcopy_ram_prepare_discard(mis); 1543 } 1544 1545 /* 1546 * Sensitise RAM - can now generate requests for blocks that don't exist 1547 * However, at this point the CPU shouldn't be running, and the IO 1548 * shouldn't be doing anything yet so don't actually expect requests 1549 */ 1550 if (postcopy_ram_enable_notify(mis)) { 1551 return -1; 1552 } 1553 1554 if (mis->have_listen_thread) { 1555 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1556 return -1; 1557 } 1558 1559 mis->have_listen_thread = true; 1560 /* Start up the listening thread and wait for it to signal ready */ 1561 qemu_sem_init(&mis->listen_thread_sem, 0); 1562 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1563 postcopy_ram_listen_thread, mis->from_src_file, 1564 QEMU_THREAD_DETACHED); 1565 qemu_sem_wait(&mis->listen_thread_sem); 1566 qemu_sem_destroy(&mis->listen_thread_sem); 1567 1568 return 0; 1569 } 1570 1571 1572 typedef struct { 1573 QEMUBH *bh; 1574 } HandleRunBhData; 1575 1576 static void loadvm_postcopy_handle_run_bh(void *opaque) 1577 { 1578 Error *local_err = NULL; 1579 HandleRunBhData *data = opaque; 1580 1581 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1582 * in migration.c 1583 */ 1584 cpu_synchronize_all_post_init(); 1585 1586 qemu_announce_self(); 1587 1588 /* Make sure all file formats flush their mutable metadata */ 1589 bdrv_invalidate_cache_all(&local_err); 1590 if (local_err) { 1591 error_report_err(local_err); 1592 } 1593 1594 trace_loadvm_postcopy_handle_run_cpu_sync(); 1595 cpu_synchronize_all_post_init(); 1596 1597 trace_loadvm_postcopy_handle_run_vmstart(); 1598 1599 if (autostart) { 1600 /* Hold onto your hats, starting the CPU */ 1601 vm_start(); 1602 } else { 1603 /* leave it paused and let management decide when to start the CPU */ 1604 runstate_set(RUN_STATE_PAUSED); 1605 } 1606 1607 qemu_bh_delete(data->bh); 1608 g_free(data); 1609 } 1610 1611 /* After all discards we can start running and asking for pages */ 1612 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1613 { 1614 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1615 HandleRunBhData *data; 1616 1617 trace_loadvm_postcopy_handle_run(); 1618 if (ps != POSTCOPY_INCOMING_LISTENING) { 1619 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1620 return -1; 1621 } 1622 1623 data = g_new(HandleRunBhData, 1); 1624 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1625 qemu_bh_schedule(data->bh); 1626 1627 /* We need to finish reading the stream from the package 1628 * and also stop reading anything more from the stream that loaded the 1629 * package (since it's now being read by the listener thread). 1630 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1631 */ 1632 return LOADVM_QUIT; 1633 } 1634 1635 /** 1636 * Immediately following this command is a blob of data containing an embedded 1637 * chunk of migration stream; read it and load it. 1638 * 1639 * @mis: Incoming state 1640 * @length: Length of packaged data to read 1641 * 1642 * Returns: Negative values on error 1643 * 1644 */ 1645 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1646 { 1647 int ret; 1648 size_t length; 1649 QIOChannelBuffer *bioc; 1650 1651 length = qemu_get_be32(mis->from_src_file); 1652 trace_loadvm_handle_cmd_packaged(length); 1653 1654 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1655 error_report("Unreasonably large packaged state: %zu", length); 1656 return -1; 1657 } 1658 1659 bioc = qio_channel_buffer_new(length); 1660 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 1661 ret = qemu_get_buffer(mis->from_src_file, 1662 bioc->data, 1663 length); 1664 if (ret != length) { 1665 object_unref(OBJECT(bioc)); 1666 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1667 ret, length); 1668 return (ret < 0) ? ret : -EAGAIN; 1669 } 1670 bioc->usage += length; 1671 trace_loadvm_handle_cmd_packaged_received(ret); 1672 1673 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1674 1675 ret = qemu_loadvm_state_main(packf, mis); 1676 trace_loadvm_handle_cmd_packaged_main(ret); 1677 qemu_fclose(packf); 1678 object_unref(OBJECT(bioc)); 1679 1680 return ret; 1681 } 1682 1683 /* 1684 * Process an incoming 'QEMU_VM_COMMAND' 1685 * 0 just a normal return 1686 * LOADVM_QUIT All good, but exit the loop 1687 * <0 Error 1688 */ 1689 static int loadvm_process_command(QEMUFile *f) 1690 { 1691 MigrationIncomingState *mis = migration_incoming_get_current(); 1692 uint16_t cmd; 1693 uint16_t len; 1694 uint32_t tmp32; 1695 1696 cmd = qemu_get_be16(f); 1697 len = qemu_get_be16(f); 1698 1699 trace_loadvm_process_command(cmd, len); 1700 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1701 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1702 return -EINVAL; 1703 } 1704 1705 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1706 error_report("%s received with bad length - expecting %zu, got %d", 1707 mig_cmd_args[cmd].name, 1708 (size_t)mig_cmd_args[cmd].len, len); 1709 return -ERANGE; 1710 } 1711 1712 switch (cmd) { 1713 case MIG_CMD_OPEN_RETURN_PATH: 1714 if (mis->to_src_file) { 1715 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1716 /* Not really a problem, so don't give up */ 1717 return 0; 1718 } 1719 mis->to_src_file = qemu_file_get_return_path(f); 1720 if (!mis->to_src_file) { 1721 error_report("CMD_OPEN_RETURN_PATH failed"); 1722 return -1; 1723 } 1724 break; 1725 1726 case MIG_CMD_PING: 1727 tmp32 = qemu_get_be32(f); 1728 trace_loadvm_process_command_ping(tmp32); 1729 if (!mis->to_src_file) { 1730 error_report("CMD_PING (0x%x) received with no return path", 1731 tmp32); 1732 return -1; 1733 } 1734 migrate_send_rp_pong(mis, tmp32); 1735 break; 1736 1737 case MIG_CMD_PACKAGED: 1738 return loadvm_handle_cmd_packaged(mis); 1739 1740 case MIG_CMD_POSTCOPY_ADVISE: 1741 return loadvm_postcopy_handle_advise(mis); 1742 1743 case MIG_CMD_POSTCOPY_LISTEN: 1744 return loadvm_postcopy_handle_listen(mis); 1745 1746 case MIG_CMD_POSTCOPY_RUN: 1747 return loadvm_postcopy_handle_run(mis); 1748 1749 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1750 return loadvm_postcopy_ram_handle_discard(mis, len); 1751 } 1752 1753 return 0; 1754 } 1755 1756 struct LoadStateEntry { 1757 QLIST_ENTRY(LoadStateEntry) entry; 1758 SaveStateEntry *se; 1759 int section_id; 1760 int version_id; 1761 }; 1762 1763 /* 1764 * Read a footer off the wire and check that it matches the expected section 1765 * 1766 * Returns: true if the footer was good 1767 * false if there is a problem (and calls error_report to say why) 1768 */ 1769 static bool check_section_footer(QEMUFile *f, LoadStateEntry *le) 1770 { 1771 uint8_t read_mark; 1772 uint32_t read_section_id; 1773 1774 if (skip_section_footers) { 1775 /* No footer to check */ 1776 return true; 1777 } 1778 1779 read_mark = qemu_get_byte(f); 1780 1781 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1782 error_report("Missing section footer for %s", le->se->idstr); 1783 return false; 1784 } 1785 1786 read_section_id = qemu_get_be32(f); 1787 if (read_section_id != le->section_id) { 1788 error_report("Mismatched section id in footer for %s -" 1789 " read 0x%x expected 0x%x", 1790 le->se->idstr, read_section_id, le->section_id); 1791 return false; 1792 } 1793 1794 /* All good */ 1795 return true; 1796 } 1797 1798 void loadvm_free_handlers(MigrationIncomingState *mis) 1799 { 1800 LoadStateEntry *le, *new_le; 1801 1802 QLIST_FOREACH_SAFE(le, &mis->loadvm_handlers, entry, new_le) { 1803 QLIST_REMOVE(le, entry); 1804 g_free(le); 1805 } 1806 } 1807 1808 static int 1809 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1810 { 1811 uint32_t instance_id, version_id, section_id; 1812 SaveStateEntry *se; 1813 LoadStateEntry *le; 1814 char idstr[256]; 1815 int ret; 1816 1817 /* Read section start */ 1818 section_id = qemu_get_be32(f); 1819 if (!qemu_get_counted_string(f, idstr)) { 1820 error_report("Unable to read ID string for section %u", 1821 section_id); 1822 return -EINVAL; 1823 } 1824 instance_id = qemu_get_be32(f); 1825 version_id = qemu_get_be32(f); 1826 1827 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1828 instance_id, version_id); 1829 /* Find savevm section */ 1830 se = find_se(idstr, instance_id); 1831 if (se == NULL) { 1832 error_report("Unknown savevm section or instance '%s' %d", 1833 idstr, instance_id); 1834 return -EINVAL; 1835 } 1836 1837 /* Validate version */ 1838 if (version_id > se->version_id) { 1839 error_report("savevm: unsupported version %d for '%s' v%d", 1840 version_id, idstr, se->version_id); 1841 return -EINVAL; 1842 } 1843 1844 /* Validate if it is a device's state */ 1845 if (xen_enabled() && se->is_ram) { 1846 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1847 return -EINVAL; 1848 } 1849 1850 /* Add entry */ 1851 le = g_malloc0(sizeof(*le)); 1852 1853 le->se = se; 1854 le->section_id = section_id; 1855 le->version_id = version_id; 1856 QLIST_INSERT_HEAD(&mis->loadvm_handlers, le, entry); 1857 1858 ret = vmstate_load(f, le->se, le->version_id); 1859 if (ret < 0) { 1860 error_report("error while loading state for instance 0x%x of" 1861 " device '%s'", instance_id, idstr); 1862 return ret; 1863 } 1864 if (!check_section_footer(f, le)) { 1865 return -EINVAL; 1866 } 1867 1868 return 0; 1869 } 1870 1871 static int 1872 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1873 { 1874 uint32_t section_id; 1875 LoadStateEntry *le; 1876 int ret; 1877 1878 section_id = qemu_get_be32(f); 1879 1880 trace_qemu_loadvm_state_section_partend(section_id); 1881 QLIST_FOREACH(le, &mis->loadvm_handlers, entry) { 1882 if (le->section_id == section_id) { 1883 break; 1884 } 1885 } 1886 if (le == NULL) { 1887 error_report("Unknown savevm section %d", section_id); 1888 return -EINVAL; 1889 } 1890 1891 ret = vmstate_load(f, le->se, le->version_id); 1892 if (ret < 0) { 1893 error_report("error while loading state section id %d(%s)", 1894 section_id, le->se->idstr); 1895 return ret; 1896 } 1897 if (!check_section_footer(f, le)) { 1898 return -EINVAL; 1899 } 1900 1901 return 0; 1902 } 1903 1904 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 1905 { 1906 uint8_t section_type; 1907 int ret = 0; 1908 1909 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { 1910 ret = 0; 1911 trace_qemu_loadvm_state_section(section_type); 1912 switch (section_type) { 1913 case QEMU_VM_SECTION_START: 1914 case QEMU_VM_SECTION_FULL: 1915 ret = qemu_loadvm_section_start_full(f, mis); 1916 if (ret < 0) { 1917 goto out; 1918 } 1919 break; 1920 case QEMU_VM_SECTION_PART: 1921 case QEMU_VM_SECTION_END: 1922 ret = qemu_loadvm_section_part_end(f, mis); 1923 if (ret < 0) { 1924 goto out; 1925 } 1926 break; 1927 case QEMU_VM_COMMAND: 1928 ret = loadvm_process_command(f); 1929 trace_qemu_loadvm_state_section_command(ret); 1930 if ((ret < 0) || (ret & LOADVM_QUIT)) { 1931 goto out; 1932 } 1933 break; 1934 default: 1935 error_report("Unknown savevm section type %d", section_type); 1936 ret = -EINVAL; 1937 goto out; 1938 } 1939 } 1940 1941 out: 1942 if (ret < 0) { 1943 qemu_file_set_error(f, ret); 1944 } 1945 return ret; 1946 } 1947 1948 int qemu_loadvm_state(QEMUFile *f) 1949 { 1950 MigrationIncomingState *mis = migration_incoming_get_current(); 1951 Error *local_err = NULL; 1952 unsigned int v; 1953 int ret; 1954 1955 if (qemu_savevm_state_blocked(&local_err)) { 1956 error_report_err(local_err); 1957 return -EINVAL; 1958 } 1959 1960 v = qemu_get_be32(f); 1961 if (v != QEMU_VM_FILE_MAGIC) { 1962 error_report("Not a migration stream"); 1963 return -EINVAL; 1964 } 1965 1966 v = qemu_get_be32(f); 1967 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 1968 error_report("SaveVM v2 format is obsolete and don't work anymore"); 1969 return -ENOTSUP; 1970 } 1971 if (v != QEMU_VM_FILE_VERSION) { 1972 error_report("Unsupported migration stream version"); 1973 return -ENOTSUP; 1974 } 1975 1976 if (!savevm_state.skip_configuration || enforce_config_section()) { 1977 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 1978 error_report("Configuration section missing"); 1979 return -EINVAL; 1980 } 1981 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 1982 1983 if (ret) { 1984 return ret; 1985 } 1986 } 1987 1988 ret = qemu_loadvm_state_main(f, mis); 1989 qemu_event_set(&mis->main_thread_load_event); 1990 1991 trace_qemu_loadvm_state_post_main(ret); 1992 1993 if (mis->have_listen_thread) { 1994 /* Listen thread still going, can't clean up yet */ 1995 return ret; 1996 } 1997 1998 if (ret == 0) { 1999 ret = qemu_file_get_error(f); 2000 } 2001 2002 /* 2003 * Try to read in the VMDESC section as well, so that dumping tools that 2004 * intercept our migration stream have the chance to see it. 2005 */ 2006 2007 /* We've got to be careful; if we don't read the data and just shut the fd 2008 * then the sender can error if we close while it's still sending. 2009 * We also mustn't read data that isn't there; some transports (RDMA) 2010 * will stall waiting for that data when the source has already closed. 2011 */ 2012 if (ret == 0 && should_send_vmdesc()) { 2013 uint8_t *buf; 2014 uint32_t size; 2015 uint8_t section_type = qemu_get_byte(f); 2016 2017 if (section_type != QEMU_VM_VMDESCRIPTION) { 2018 error_report("Expected vmdescription section, but got %d", 2019 section_type); 2020 /* 2021 * It doesn't seem worth failing at this point since 2022 * we apparently have an otherwise valid VM state 2023 */ 2024 } else { 2025 buf = g_malloc(0x1000); 2026 size = qemu_get_be32(f); 2027 2028 while (size > 0) { 2029 uint32_t read_chunk = MIN(size, 0x1000); 2030 qemu_get_buffer(f, buf, read_chunk); 2031 size -= read_chunk; 2032 } 2033 g_free(buf); 2034 } 2035 } 2036 2037 cpu_synchronize_all_post_init(); 2038 2039 return ret; 2040 } 2041 2042 void hmp_savevm(Monitor *mon, const QDict *qdict) 2043 { 2044 BlockDriverState *bs, *bs1; 2045 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 2046 int ret; 2047 QEMUFile *f; 2048 int saved_vm_running; 2049 uint64_t vm_state_size; 2050 qemu_timeval tv; 2051 struct tm tm; 2052 const char *name = qdict_get_try_str(qdict, "name"); 2053 Error *local_err = NULL; 2054 AioContext *aio_context; 2055 2056 if (!bdrv_all_can_snapshot(&bs)) { 2057 monitor_printf(mon, "Device '%s' is writable but does not " 2058 "support snapshots.\n", bdrv_get_device_name(bs)); 2059 return; 2060 } 2061 2062 /* Delete old snapshots of the same name */ 2063 if (name && bdrv_all_delete_snapshot(name, &bs1, &local_err) < 0) { 2064 error_reportf_err(local_err, 2065 "Error while deleting snapshot on device '%s': ", 2066 bdrv_get_device_name(bs1)); 2067 return; 2068 } 2069 2070 bs = bdrv_all_find_vmstate_bs(); 2071 if (bs == NULL) { 2072 monitor_printf(mon, "No block device can accept snapshots\n"); 2073 return; 2074 } 2075 aio_context = bdrv_get_aio_context(bs); 2076 2077 saved_vm_running = runstate_is_running(); 2078 2079 ret = global_state_store(); 2080 if (ret) { 2081 monitor_printf(mon, "Error saving global state\n"); 2082 return; 2083 } 2084 vm_stop(RUN_STATE_SAVE_VM); 2085 2086 aio_context_acquire(aio_context); 2087 2088 memset(sn, 0, sizeof(*sn)); 2089 2090 /* fill auxiliary fields */ 2091 qemu_gettimeofday(&tv); 2092 sn->date_sec = tv.tv_sec; 2093 sn->date_nsec = tv.tv_usec * 1000; 2094 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2095 2096 if (name) { 2097 ret = bdrv_snapshot_find(bs, old_sn, name); 2098 if (ret >= 0) { 2099 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2100 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2101 } else { 2102 pstrcpy(sn->name, sizeof(sn->name), name); 2103 } 2104 } else { 2105 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2106 localtime_r((const time_t *)&tv.tv_sec, &tm); 2107 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2108 } 2109 2110 /* save the VM state */ 2111 f = qemu_fopen_bdrv(bs, 1); 2112 if (!f) { 2113 monitor_printf(mon, "Could not open VM state file\n"); 2114 goto the_end; 2115 } 2116 ret = qemu_savevm_state(f, &local_err); 2117 vm_state_size = qemu_ftell(f); 2118 qemu_fclose(f); 2119 if (ret < 0) { 2120 error_report_err(local_err); 2121 goto the_end; 2122 } 2123 2124 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2125 if (ret < 0) { 2126 monitor_printf(mon, "Error while creating snapshot on '%s'\n", 2127 bdrv_get_device_name(bs)); 2128 } 2129 2130 the_end: 2131 aio_context_release(aio_context); 2132 if (saved_vm_running) { 2133 vm_start(); 2134 } 2135 } 2136 2137 void qmp_xen_save_devices_state(const char *filename, Error **errp) 2138 { 2139 QEMUFile *f; 2140 QIOChannelFile *ioc; 2141 int saved_vm_running; 2142 int ret; 2143 2144 saved_vm_running = runstate_is_running(); 2145 vm_stop(RUN_STATE_SAVE_VM); 2146 global_state_store_running(); 2147 2148 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2149 if (!ioc) { 2150 goto the_end; 2151 } 2152 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 2153 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2154 ret = qemu_save_device_state(f); 2155 qemu_fclose(f); 2156 if (ret < 0) { 2157 error_setg(errp, QERR_IO_ERROR); 2158 } 2159 2160 the_end: 2161 if (saved_vm_running) { 2162 vm_start(); 2163 } 2164 } 2165 2166 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2167 { 2168 QEMUFile *f; 2169 QIOChannelFile *ioc; 2170 int ret; 2171 2172 /* Guest must be paused before loading the device state; the RAM state 2173 * will already have been loaded by xc 2174 */ 2175 if (runstate_is_running()) { 2176 error_setg(errp, "Cannot update device state while vm is running"); 2177 return; 2178 } 2179 vm_stop(RUN_STATE_RESTORE_VM); 2180 2181 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2182 if (!ioc) { 2183 return; 2184 } 2185 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 2186 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2187 2188 migration_incoming_state_new(f); 2189 ret = qemu_loadvm_state(f); 2190 qemu_fclose(f); 2191 if (ret < 0) { 2192 error_setg(errp, QERR_IO_ERROR); 2193 } 2194 migration_incoming_state_destroy(); 2195 } 2196 2197 int load_vmstate(const char *name) 2198 { 2199 BlockDriverState *bs, *bs_vm_state; 2200 QEMUSnapshotInfo sn; 2201 QEMUFile *f; 2202 int ret; 2203 AioContext *aio_context; 2204 2205 if (!bdrv_all_can_snapshot(&bs)) { 2206 error_report("Device '%s' is writable but does not support snapshots.", 2207 bdrv_get_device_name(bs)); 2208 return -ENOTSUP; 2209 } 2210 ret = bdrv_all_find_snapshot(name, &bs); 2211 if (ret < 0) { 2212 error_report("Device '%s' does not have the requested snapshot '%s'", 2213 bdrv_get_device_name(bs), name); 2214 return ret; 2215 } 2216 2217 bs_vm_state = bdrv_all_find_vmstate_bs(); 2218 if (!bs_vm_state) { 2219 error_report("No block device supports snapshots"); 2220 return -ENOTSUP; 2221 } 2222 aio_context = bdrv_get_aio_context(bs_vm_state); 2223 2224 /* Don't even try to load empty VM states */ 2225 aio_context_acquire(aio_context); 2226 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2227 aio_context_release(aio_context); 2228 if (ret < 0) { 2229 return ret; 2230 } else if (sn.vm_state_size == 0) { 2231 error_report("This is a disk-only snapshot. Revert to it offline " 2232 "using qemu-img."); 2233 return -EINVAL; 2234 } 2235 2236 /* Flush all IO requests so they don't interfere with the new state. */ 2237 bdrv_drain_all(); 2238 2239 ret = bdrv_all_goto_snapshot(name, &bs); 2240 if (ret < 0) { 2241 error_report("Error %d while activating snapshot '%s' on '%s'", 2242 ret, name, bdrv_get_device_name(bs)); 2243 return ret; 2244 } 2245 2246 /* restore the VM state */ 2247 f = qemu_fopen_bdrv(bs_vm_state, 0); 2248 if (!f) { 2249 error_report("Could not open VM state file"); 2250 return -EINVAL; 2251 } 2252 2253 qemu_system_reset(VMRESET_SILENT); 2254 migration_incoming_state_new(f); 2255 2256 aio_context_acquire(aio_context); 2257 ret = qemu_loadvm_state(f); 2258 qemu_fclose(f); 2259 aio_context_release(aio_context); 2260 2261 migration_incoming_state_destroy(); 2262 if (ret < 0) { 2263 error_report("Error %d while loading VM state", ret); 2264 return ret; 2265 } 2266 2267 return 0; 2268 } 2269 2270 void hmp_delvm(Monitor *mon, const QDict *qdict) 2271 { 2272 BlockDriverState *bs; 2273 Error *err; 2274 const char *name = qdict_get_str(qdict, "name"); 2275 2276 if (bdrv_all_delete_snapshot(name, &bs, &err) < 0) { 2277 error_reportf_err(err, 2278 "Error while deleting snapshot on device '%s': ", 2279 bdrv_get_device_name(bs)); 2280 } 2281 } 2282 2283 void hmp_info_snapshots(Monitor *mon, const QDict *qdict) 2284 { 2285 BlockDriverState *bs, *bs1; 2286 BdrvNextIterator it1; 2287 QEMUSnapshotInfo *sn_tab, *sn; 2288 bool no_snapshot = true; 2289 int nb_sns, i; 2290 int total; 2291 int *global_snapshots; 2292 AioContext *aio_context; 2293 2294 typedef struct SnapshotEntry { 2295 QEMUSnapshotInfo sn; 2296 QTAILQ_ENTRY(SnapshotEntry) next; 2297 } SnapshotEntry; 2298 2299 typedef struct ImageEntry { 2300 const char *imagename; 2301 QTAILQ_ENTRY(ImageEntry) next; 2302 QTAILQ_HEAD(, SnapshotEntry) snapshots; 2303 } ImageEntry; 2304 2305 QTAILQ_HEAD(, ImageEntry) image_list = 2306 QTAILQ_HEAD_INITIALIZER(image_list); 2307 2308 ImageEntry *image_entry, *next_ie; 2309 SnapshotEntry *snapshot_entry; 2310 2311 bs = bdrv_all_find_vmstate_bs(); 2312 if (!bs) { 2313 monitor_printf(mon, "No available block device supports snapshots\n"); 2314 return; 2315 } 2316 aio_context = bdrv_get_aio_context(bs); 2317 2318 aio_context_acquire(aio_context); 2319 nb_sns = bdrv_snapshot_list(bs, &sn_tab); 2320 aio_context_release(aio_context); 2321 2322 if (nb_sns < 0) { 2323 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns); 2324 return; 2325 } 2326 2327 for (bs1 = bdrv_first(&it1); bs1; bs1 = bdrv_next(&it1)) { 2328 int bs1_nb_sns = 0; 2329 ImageEntry *ie; 2330 SnapshotEntry *se; 2331 AioContext *ctx = bdrv_get_aio_context(bs1); 2332 2333 aio_context_acquire(ctx); 2334 if (bdrv_can_snapshot(bs1)) { 2335 sn = NULL; 2336 bs1_nb_sns = bdrv_snapshot_list(bs1, &sn); 2337 if (bs1_nb_sns > 0) { 2338 no_snapshot = false; 2339 ie = g_new0(ImageEntry, 1); 2340 ie->imagename = bdrv_get_device_name(bs1); 2341 QTAILQ_INIT(&ie->snapshots); 2342 QTAILQ_INSERT_TAIL(&image_list, ie, next); 2343 for (i = 0; i < bs1_nb_sns; i++) { 2344 se = g_new0(SnapshotEntry, 1); 2345 se->sn = sn[i]; 2346 QTAILQ_INSERT_TAIL(&ie->snapshots, se, next); 2347 } 2348 } 2349 g_free(sn); 2350 } 2351 aio_context_release(ctx); 2352 } 2353 2354 if (no_snapshot) { 2355 monitor_printf(mon, "There is no snapshot available.\n"); 2356 return; 2357 } 2358 2359 global_snapshots = g_new0(int, nb_sns); 2360 total = 0; 2361 for (i = 0; i < nb_sns; i++) { 2362 SnapshotEntry *next_sn; 2363 if (bdrv_all_find_snapshot(sn_tab[i].name, &bs1) == 0) { 2364 global_snapshots[total] = i; 2365 total++; 2366 QTAILQ_FOREACH(image_entry, &image_list, next) { 2367 QTAILQ_FOREACH_SAFE(snapshot_entry, &image_entry->snapshots, 2368 next, next_sn) { 2369 if (!strcmp(sn_tab[i].name, snapshot_entry->sn.name)) { 2370 QTAILQ_REMOVE(&image_entry->snapshots, snapshot_entry, 2371 next); 2372 g_free(snapshot_entry); 2373 } 2374 } 2375 } 2376 } 2377 } 2378 2379 monitor_printf(mon, "List of snapshots present on all disks:\n"); 2380 2381 if (total > 0) { 2382 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL); 2383 monitor_printf(mon, "\n"); 2384 for (i = 0; i < total; i++) { 2385 sn = &sn_tab[global_snapshots[i]]; 2386 /* The ID is not guaranteed to be the same on all images, so 2387 * overwrite it. 2388 */ 2389 pstrcpy(sn->id_str, sizeof(sn->id_str), "--"); 2390 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, sn); 2391 monitor_printf(mon, "\n"); 2392 } 2393 } else { 2394 monitor_printf(mon, "None\n"); 2395 } 2396 2397 QTAILQ_FOREACH(image_entry, &image_list, next) { 2398 if (QTAILQ_EMPTY(&image_entry->snapshots)) { 2399 continue; 2400 } 2401 monitor_printf(mon, 2402 "\nList of partial (non-loadable) snapshots on '%s':\n", 2403 image_entry->imagename); 2404 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL); 2405 monitor_printf(mon, "\n"); 2406 QTAILQ_FOREACH(snapshot_entry, &image_entry->snapshots, next) { 2407 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, 2408 &snapshot_entry->sn); 2409 monitor_printf(mon, "\n"); 2410 } 2411 } 2412 2413 QTAILQ_FOREACH_SAFE(image_entry, &image_list, next, next_ie) { 2414 SnapshotEntry *next_sn; 2415 QTAILQ_FOREACH_SAFE(snapshot_entry, &image_entry->snapshots, next, 2416 next_sn) { 2417 g_free(snapshot_entry); 2418 } 2419 g_free(image_entry); 2420 } 2421 g_free(sn_tab); 2422 g_free(global_snapshots); 2423 2424 } 2425 2426 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2427 { 2428 qemu_ram_set_idstr(mr->ram_block, 2429 memory_region_name(mr), dev); 2430 } 2431 2432 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2433 { 2434 qemu_ram_unset_idstr(mr->ram_block); 2435 } 2436 2437 void vmstate_register_ram_global(MemoryRegion *mr) 2438 { 2439 vmstate_register_ram(mr, NULL); 2440 } 2441