xref: /openbmc/qemu/migration/rdma.c (revision f7160f32)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <mrhines@us.ibm.com>
9  *  Jiuxing Liu <jl@us.ibm.com>
10  *  Daniel P. Berrange <berrange@redhat.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
28 #include "qemu/rcu.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
34 #include <netdb.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
37 #include "trace.h"
38 
39 /*
40  * Print and error on both the Monitor and the Log file.
41  */
42 #define ERROR(errp, fmt, ...) \
43     do { \
44         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
45         if (errp && (*(errp) == NULL)) { \
46             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
47         } \
48     } while (0)
49 
50 #define RDMA_RESOLVE_TIMEOUT_MS 10000
51 
52 /* Do not merge data if larger than this. */
53 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
54 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
55 
56 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
57 
58 /*
59  * This is only for non-live state being migrated.
60  * Instead of RDMA_WRITE messages, we use RDMA_SEND
61  * messages for that state, which requires a different
62  * delivery design than main memory.
63  */
64 #define RDMA_SEND_INCREMENT 32768
65 
66 /*
67  * Maximum size infiniband SEND message
68  */
69 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
70 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
71 
72 #define RDMA_CONTROL_VERSION_CURRENT 1
73 /*
74  * Capabilities for negotiation.
75  */
76 #define RDMA_CAPABILITY_PIN_ALL 0x01
77 
78 /*
79  * Add the other flags above to this list of known capabilities
80  * as they are introduced.
81  */
82 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
83 
84 #define CHECK_ERROR_STATE() \
85     do { \
86         if (rdma->error_state) { \
87             if (!rdma->error_reported) { \
88                 error_report("RDMA is in an error state waiting migration" \
89                                 " to abort!"); \
90                 rdma->error_reported = 1; \
91             } \
92             return rdma->error_state; \
93         } \
94     } while (0)
95 
96 /*
97  * A work request ID is 64-bits and we split up these bits
98  * into 3 parts:
99  *
100  * bits 0-15 : type of control message, 2^16
101  * bits 16-29: ram block index, 2^14
102  * bits 30-63: ram block chunk number, 2^34
103  *
104  * The last two bit ranges are only used for RDMA writes,
105  * in order to track their completion and potentially
106  * also track unregistration status of the message.
107  */
108 #define RDMA_WRID_TYPE_SHIFT  0UL
109 #define RDMA_WRID_BLOCK_SHIFT 16UL
110 #define RDMA_WRID_CHUNK_SHIFT 30UL
111 
112 #define RDMA_WRID_TYPE_MASK \
113     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
114 
115 #define RDMA_WRID_BLOCK_MASK \
116     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
117 
118 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
119 
120 /*
121  * RDMA migration protocol:
122  * 1. RDMA Writes (data messages, i.e. RAM)
123  * 2. IB Send/Recv (control channel messages)
124  */
125 enum {
126     RDMA_WRID_NONE = 0,
127     RDMA_WRID_RDMA_WRITE = 1,
128     RDMA_WRID_SEND_CONTROL = 2000,
129     RDMA_WRID_RECV_CONTROL = 4000,
130 };
131 
132 static const char *wrid_desc[] = {
133     [RDMA_WRID_NONE] = "NONE",
134     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
135     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
136     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
137 };
138 
139 /*
140  * Work request IDs for IB SEND messages only (not RDMA writes).
141  * This is used by the migration protocol to transmit
142  * control messages (such as device state and registration commands)
143  *
144  * We could use more WRs, but we have enough for now.
145  */
146 enum {
147     RDMA_WRID_READY = 0,
148     RDMA_WRID_DATA,
149     RDMA_WRID_CONTROL,
150     RDMA_WRID_MAX,
151 };
152 
153 /*
154  * SEND/RECV IB Control Messages.
155  */
156 enum {
157     RDMA_CONTROL_NONE = 0,
158     RDMA_CONTROL_ERROR,
159     RDMA_CONTROL_READY,               /* ready to receive */
160     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
161     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
162     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
163     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
164     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
165     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
166     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
167     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
168     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
169 };
170 
171 
172 /*
173  * Memory and MR structures used to represent an IB Send/Recv work request.
174  * This is *not* used for RDMA writes, only IB Send/Recv.
175  */
176 typedef struct {
177     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
178     struct   ibv_mr *control_mr;               /* registration metadata */
179     size_t   control_len;                      /* length of the message */
180     uint8_t *control_curr;                     /* start of unconsumed bytes */
181 } RDMAWorkRequestData;
182 
183 /*
184  * Negotiate RDMA capabilities during connection-setup time.
185  */
186 typedef struct {
187     uint32_t version;
188     uint32_t flags;
189 } RDMACapabilities;
190 
191 static void caps_to_network(RDMACapabilities *cap)
192 {
193     cap->version = htonl(cap->version);
194     cap->flags = htonl(cap->flags);
195 }
196 
197 static void network_to_caps(RDMACapabilities *cap)
198 {
199     cap->version = ntohl(cap->version);
200     cap->flags = ntohl(cap->flags);
201 }
202 
203 /*
204  * Representation of a RAMBlock from an RDMA perspective.
205  * This is not transmitted, only local.
206  * This and subsequent structures cannot be linked lists
207  * because we're using a single IB message to transmit
208  * the information. It's small anyway, so a list is overkill.
209  */
210 typedef struct RDMALocalBlock {
211     char          *block_name;
212     uint8_t       *local_host_addr; /* local virtual address */
213     uint64_t       remote_host_addr; /* remote virtual address */
214     uint64_t       offset;
215     uint64_t       length;
216     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
217     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
218     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
219     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
220     int            index;           /* which block are we */
221     unsigned int   src_index;       /* (Only used on dest) */
222     bool           is_ram_block;
223     int            nb_chunks;
224     unsigned long *transit_bitmap;
225     unsigned long *unregister_bitmap;
226 } RDMALocalBlock;
227 
228 /*
229  * Also represents a RAMblock, but only on the dest.
230  * This gets transmitted by the dest during connection-time
231  * to the source VM and then is used to populate the
232  * corresponding RDMALocalBlock with
233  * the information needed to perform the actual RDMA.
234  */
235 typedef struct QEMU_PACKED RDMADestBlock {
236     uint64_t remote_host_addr;
237     uint64_t offset;
238     uint64_t length;
239     uint32_t remote_rkey;
240     uint32_t padding;
241 } RDMADestBlock;
242 
243 static const char *control_desc(unsigned int rdma_control)
244 {
245     static const char *strs[] = {
246         [RDMA_CONTROL_NONE] = "NONE",
247         [RDMA_CONTROL_ERROR] = "ERROR",
248         [RDMA_CONTROL_READY] = "READY",
249         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
250         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
251         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
252         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
253         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
254         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
255         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
256         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
257         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
258     };
259 
260     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
261         return "??BAD CONTROL VALUE??";
262     }
263 
264     return strs[rdma_control];
265 }
266 
267 static uint64_t htonll(uint64_t v)
268 {
269     union { uint32_t lv[2]; uint64_t llv; } u;
270     u.lv[0] = htonl(v >> 32);
271     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
272     return u.llv;
273 }
274 
275 static uint64_t ntohll(uint64_t v) {
276     union { uint32_t lv[2]; uint64_t llv; } u;
277     u.llv = v;
278     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
279 }
280 
281 static void dest_block_to_network(RDMADestBlock *db)
282 {
283     db->remote_host_addr = htonll(db->remote_host_addr);
284     db->offset = htonll(db->offset);
285     db->length = htonll(db->length);
286     db->remote_rkey = htonl(db->remote_rkey);
287 }
288 
289 static void network_to_dest_block(RDMADestBlock *db)
290 {
291     db->remote_host_addr = ntohll(db->remote_host_addr);
292     db->offset = ntohll(db->offset);
293     db->length = ntohll(db->length);
294     db->remote_rkey = ntohl(db->remote_rkey);
295 }
296 
297 /*
298  * Virtual address of the above structures used for transmitting
299  * the RAMBlock descriptions at connection-time.
300  * This structure is *not* transmitted.
301  */
302 typedef struct RDMALocalBlocks {
303     int nb_blocks;
304     bool     init;             /* main memory init complete */
305     RDMALocalBlock *block;
306 } RDMALocalBlocks;
307 
308 /*
309  * Main data structure for RDMA state.
310  * While there is only one copy of this structure being allocated right now,
311  * this is the place where one would start if you wanted to consider
312  * having more than one RDMA connection open at the same time.
313  */
314 typedef struct RDMAContext {
315     char *host;
316     int port;
317 
318     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
319 
320     /*
321      * This is used by *_exchange_send() to figure out whether or not
322      * the initial "READY" message has already been received or not.
323      * This is because other functions may potentially poll() and detect
324      * the READY message before send() does, in which case we need to
325      * know if it completed.
326      */
327     int control_ready_expected;
328 
329     /* number of outstanding writes */
330     int nb_sent;
331 
332     /* store info about current buffer so that we can
333        merge it with future sends */
334     uint64_t current_addr;
335     uint64_t current_length;
336     /* index of ram block the current buffer belongs to */
337     int current_index;
338     /* index of the chunk in the current ram block */
339     int current_chunk;
340 
341     bool pin_all;
342 
343     /*
344      * infiniband-specific variables for opening the device
345      * and maintaining connection state and so forth.
346      *
347      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
348      * cm_id->verbs, cm_id->channel, and cm_id->qp.
349      */
350     struct rdma_cm_id *cm_id;               /* connection manager ID */
351     struct rdma_cm_id *listen_id;
352     bool connected;
353 
354     struct ibv_context          *verbs;
355     struct rdma_event_channel   *channel;
356     struct ibv_qp *qp;                      /* queue pair */
357     struct ibv_comp_channel *comp_channel;  /* completion channel */
358     struct ibv_pd *pd;                      /* protection domain */
359     struct ibv_cq *cq;                      /* completion queue */
360 
361     /*
362      * If a previous write failed (perhaps because of a failed
363      * memory registration, then do not attempt any future work
364      * and remember the error state.
365      */
366     int error_state;
367     int error_reported;
368     int received_error;
369 
370     /*
371      * Description of ram blocks used throughout the code.
372      */
373     RDMALocalBlocks local_ram_blocks;
374     RDMADestBlock  *dest_blocks;
375 
376     /* Index of the next RAMBlock received during block registration */
377     unsigned int    next_src_index;
378 
379     /*
380      * Migration on *destination* started.
381      * Then use coroutine yield function.
382      * Source runs in a thread, so we don't care.
383      */
384     int migration_started_on_destination;
385 
386     int total_registrations;
387     int total_writes;
388 
389     int unregister_current, unregister_next;
390     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
391 
392     GHashTable *blockmap;
393 
394     /* the RDMAContext for return path */
395     struct RDMAContext *return_path;
396     bool is_return_path;
397 } RDMAContext;
398 
399 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
400 #define QIO_CHANNEL_RDMA(obj)                                     \
401     OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
402 
403 typedef struct QIOChannelRDMA QIOChannelRDMA;
404 
405 
406 struct QIOChannelRDMA {
407     QIOChannel parent;
408     RDMAContext *rdmain;
409     RDMAContext *rdmaout;
410     QEMUFile *file;
411     bool blocking; /* XXX we don't actually honour this yet */
412 };
413 
414 /*
415  * Main structure for IB Send/Recv control messages.
416  * This gets prepended at the beginning of every Send/Recv.
417  */
418 typedef struct QEMU_PACKED {
419     uint32_t len;     /* Total length of data portion */
420     uint32_t type;    /* which control command to perform */
421     uint32_t repeat;  /* number of commands in data portion of same type */
422     uint32_t padding;
423 } RDMAControlHeader;
424 
425 static void control_to_network(RDMAControlHeader *control)
426 {
427     control->type = htonl(control->type);
428     control->len = htonl(control->len);
429     control->repeat = htonl(control->repeat);
430 }
431 
432 static void network_to_control(RDMAControlHeader *control)
433 {
434     control->type = ntohl(control->type);
435     control->len = ntohl(control->len);
436     control->repeat = ntohl(control->repeat);
437 }
438 
439 /*
440  * Register a single Chunk.
441  * Information sent by the source VM to inform the dest
442  * to register an single chunk of memory before we can perform
443  * the actual RDMA operation.
444  */
445 typedef struct QEMU_PACKED {
446     union QEMU_PACKED {
447         uint64_t current_addr;  /* offset into the ram_addr_t space */
448         uint64_t chunk;         /* chunk to lookup if unregistering */
449     } key;
450     uint32_t current_index; /* which ramblock the chunk belongs to */
451     uint32_t padding;
452     uint64_t chunks;            /* how many sequential chunks to register */
453 } RDMARegister;
454 
455 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
456 {
457     RDMALocalBlock *local_block;
458     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
459 
460     if (local_block->is_ram_block) {
461         /*
462          * current_addr as passed in is an address in the local ram_addr_t
463          * space, we need to translate this for the destination
464          */
465         reg->key.current_addr -= local_block->offset;
466         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
467     }
468     reg->key.current_addr = htonll(reg->key.current_addr);
469     reg->current_index = htonl(reg->current_index);
470     reg->chunks = htonll(reg->chunks);
471 }
472 
473 static void network_to_register(RDMARegister *reg)
474 {
475     reg->key.current_addr = ntohll(reg->key.current_addr);
476     reg->current_index = ntohl(reg->current_index);
477     reg->chunks = ntohll(reg->chunks);
478 }
479 
480 typedef struct QEMU_PACKED {
481     uint32_t value;     /* if zero, we will madvise() */
482     uint32_t block_idx; /* which ram block index */
483     uint64_t offset;    /* Address in remote ram_addr_t space */
484     uint64_t length;    /* length of the chunk */
485 } RDMACompress;
486 
487 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
488 {
489     comp->value = htonl(comp->value);
490     /*
491      * comp->offset as passed in is an address in the local ram_addr_t
492      * space, we need to translate this for the destination
493      */
494     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
495     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
496     comp->block_idx = htonl(comp->block_idx);
497     comp->offset = htonll(comp->offset);
498     comp->length = htonll(comp->length);
499 }
500 
501 static void network_to_compress(RDMACompress *comp)
502 {
503     comp->value = ntohl(comp->value);
504     comp->block_idx = ntohl(comp->block_idx);
505     comp->offset = ntohll(comp->offset);
506     comp->length = ntohll(comp->length);
507 }
508 
509 /*
510  * The result of the dest's memory registration produces an "rkey"
511  * which the source VM must reference in order to perform
512  * the RDMA operation.
513  */
514 typedef struct QEMU_PACKED {
515     uint32_t rkey;
516     uint32_t padding;
517     uint64_t host_addr;
518 } RDMARegisterResult;
519 
520 static void result_to_network(RDMARegisterResult *result)
521 {
522     result->rkey = htonl(result->rkey);
523     result->host_addr = htonll(result->host_addr);
524 };
525 
526 static void network_to_result(RDMARegisterResult *result)
527 {
528     result->rkey = ntohl(result->rkey);
529     result->host_addr = ntohll(result->host_addr);
530 };
531 
532 const char *print_wrid(int wrid);
533 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
534                                    uint8_t *data, RDMAControlHeader *resp,
535                                    int *resp_idx,
536                                    int (*callback)(RDMAContext *rdma));
537 
538 static inline uint64_t ram_chunk_index(const uint8_t *start,
539                                        const uint8_t *host)
540 {
541     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
542 }
543 
544 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
545                                        uint64_t i)
546 {
547     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
548                                   (i << RDMA_REG_CHUNK_SHIFT));
549 }
550 
551 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
552                                      uint64_t i)
553 {
554     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
555                                          (1UL << RDMA_REG_CHUNK_SHIFT);
556 
557     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
558         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
559     }
560 
561     return result;
562 }
563 
564 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
565                          void *host_addr,
566                          ram_addr_t block_offset, uint64_t length)
567 {
568     RDMALocalBlocks *local = &rdma->local_ram_blocks;
569     RDMALocalBlock *block;
570     RDMALocalBlock *old = local->block;
571 
572     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
573 
574     if (local->nb_blocks) {
575         int x;
576 
577         if (rdma->blockmap) {
578             for (x = 0; x < local->nb_blocks; x++) {
579                 g_hash_table_remove(rdma->blockmap,
580                                     (void *)(uintptr_t)old[x].offset);
581                 g_hash_table_insert(rdma->blockmap,
582                                     (void *)(uintptr_t)old[x].offset,
583                                     &local->block[x]);
584             }
585         }
586         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
587         g_free(old);
588     }
589 
590     block = &local->block[local->nb_blocks];
591 
592     block->block_name = g_strdup(block_name);
593     block->local_host_addr = host_addr;
594     block->offset = block_offset;
595     block->length = length;
596     block->index = local->nb_blocks;
597     block->src_index = ~0U; /* Filled in by the receipt of the block list */
598     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
599     block->transit_bitmap = bitmap_new(block->nb_chunks);
600     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
601     block->unregister_bitmap = bitmap_new(block->nb_chunks);
602     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
603     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
604 
605     block->is_ram_block = local->init ? false : true;
606 
607     if (rdma->blockmap) {
608         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
609     }
610 
611     trace_rdma_add_block(block_name, local->nb_blocks,
612                          (uintptr_t) block->local_host_addr,
613                          block->offset, block->length,
614                          (uintptr_t) (block->local_host_addr + block->length),
615                          BITS_TO_LONGS(block->nb_chunks) *
616                              sizeof(unsigned long) * 8,
617                          block->nb_chunks);
618 
619     local->nb_blocks++;
620 
621     return 0;
622 }
623 
624 /*
625  * Memory regions need to be registered with the device and queue pairs setup
626  * in advanced before the migration starts. This tells us where the RAM blocks
627  * are so that we can register them individually.
628  */
629 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
630 {
631     const char *block_name = qemu_ram_get_idstr(rb);
632     void *host_addr = qemu_ram_get_host_addr(rb);
633     ram_addr_t block_offset = qemu_ram_get_offset(rb);
634     ram_addr_t length = qemu_ram_get_used_length(rb);
635     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
636 }
637 
638 /*
639  * Identify the RAMBlocks and their quantity. They will be references to
640  * identify chunk boundaries inside each RAMBlock and also be referenced
641  * during dynamic page registration.
642  */
643 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
644 {
645     RDMALocalBlocks *local = &rdma->local_ram_blocks;
646     int ret;
647 
648     assert(rdma->blockmap == NULL);
649     memset(local, 0, sizeof *local);
650     ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
651     if (ret) {
652         return ret;
653     }
654     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
655     rdma->dest_blocks = g_new0(RDMADestBlock,
656                                rdma->local_ram_blocks.nb_blocks);
657     local->init = true;
658     return 0;
659 }
660 
661 /*
662  * Note: If used outside of cleanup, the caller must ensure that the destination
663  * block structures are also updated
664  */
665 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
666 {
667     RDMALocalBlocks *local = &rdma->local_ram_blocks;
668     RDMALocalBlock *old = local->block;
669     int x;
670 
671     if (rdma->blockmap) {
672         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
673     }
674     if (block->pmr) {
675         int j;
676 
677         for (j = 0; j < block->nb_chunks; j++) {
678             if (!block->pmr[j]) {
679                 continue;
680             }
681             ibv_dereg_mr(block->pmr[j]);
682             rdma->total_registrations--;
683         }
684         g_free(block->pmr);
685         block->pmr = NULL;
686     }
687 
688     if (block->mr) {
689         ibv_dereg_mr(block->mr);
690         rdma->total_registrations--;
691         block->mr = NULL;
692     }
693 
694     g_free(block->transit_bitmap);
695     block->transit_bitmap = NULL;
696 
697     g_free(block->unregister_bitmap);
698     block->unregister_bitmap = NULL;
699 
700     g_free(block->remote_keys);
701     block->remote_keys = NULL;
702 
703     g_free(block->block_name);
704     block->block_name = NULL;
705 
706     if (rdma->blockmap) {
707         for (x = 0; x < local->nb_blocks; x++) {
708             g_hash_table_remove(rdma->blockmap,
709                                 (void *)(uintptr_t)old[x].offset);
710         }
711     }
712 
713     if (local->nb_blocks > 1) {
714 
715         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
716 
717         if (block->index) {
718             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
719         }
720 
721         if (block->index < (local->nb_blocks - 1)) {
722             memcpy(local->block + block->index, old + (block->index + 1),
723                 sizeof(RDMALocalBlock) *
724                     (local->nb_blocks - (block->index + 1)));
725             for (x = block->index; x < local->nb_blocks - 1; x++) {
726                 local->block[x].index--;
727             }
728         }
729     } else {
730         assert(block == local->block);
731         local->block = NULL;
732     }
733 
734     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
735                            block->offset, block->length,
736                             (uintptr_t)(block->local_host_addr + block->length),
737                            BITS_TO_LONGS(block->nb_chunks) *
738                                sizeof(unsigned long) * 8, block->nb_chunks);
739 
740     g_free(old);
741 
742     local->nb_blocks--;
743 
744     if (local->nb_blocks && rdma->blockmap) {
745         for (x = 0; x < local->nb_blocks; x++) {
746             g_hash_table_insert(rdma->blockmap,
747                                 (void *)(uintptr_t)local->block[x].offset,
748                                 &local->block[x]);
749         }
750     }
751 
752     return 0;
753 }
754 
755 /*
756  * Put in the log file which RDMA device was opened and the details
757  * associated with that device.
758  */
759 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
760 {
761     struct ibv_port_attr port;
762 
763     if (ibv_query_port(verbs, 1, &port)) {
764         error_report("Failed to query port information");
765         return;
766     }
767 
768     printf("%s RDMA Device opened: kernel name %s "
769            "uverbs device name %s, "
770            "infiniband_verbs class device path %s, "
771            "infiniband class device path %s, "
772            "transport: (%d) %s\n",
773                 who,
774                 verbs->device->name,
775                 verbs->device->dev_name,
776                 verbs->device->dev_path,
777                 verbs->device->ibdev_path,
778                 port.link_layer,
779                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
780                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
781                     ? "Ethernet" : "Unknown"));
782 }
783 
784 /*
785  * Put in the log file the RDMA gid addressing information,
786  * useful for folks who have trouble understanding the
787  * RDMA device hierarchy in the kernel.
788  */
789 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
790 {
791     char sgid[33];
792     char dgid[33];
793     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
794     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
795     trace_qemu_rdma_dump_gid(who, sgid, dgid);
796 }
797 
798 /*
799  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
800  * We will try the next addrinfo struct, and fail if there are
801  * no other valid addresses to bind against.
802  *
803  * If user is listening on '[::]', then we will not have a opened a device
804  * yet and have no way of verifying if the device is RoCE or not.
805  *
806  * In this case, the source VM will throw an error for ALL types of
807  * connections (both IPv4 and IPv6) if the destination machine does not have
808  * a regular infiniband network available for use.
809  *
810  * The only way to guarantee that an error is thrown for broken kernels is
811  * for the management software to choose a *specific* interface at bind time
812  * and validate what time of hardware it is.
813  *
814  * Unfortunately, this puts the user in a fix:
815  *
816  *  If the source VM connects with an IPv4 address without knowing that the
817  *  destination has bound to '[::]' the migration will unconditionally fail
818  *  unless the management software is explicitly listening on the IPv4
819  *  address while using a RoCE-based device.
820  *
821  *  If the source VM connects with an IPv6 address, then we're OK because we can
822  *  throw an error on the source (and similarly on the destination).
823  *
824  *  But in mixed environments, this will be broken for a while until it is fixed
825  *  inside linux.
826  *
827  * We do provide a *tiny* bit of help in this function: We can list all of the
828  * devices in the system and check to see if all the devices are RoCE or
829  * Infiniband.
830  *
831  * If we detect that we have a *pure* RoCE environment, then we can safely
832  * thrown an error even if the management software has specified '[::]' as the
833  * bind address.
834  *
835  * However, if there is are multiple hetergeneous devices, then we cannot make
836  * this assumption and the user just has to be sure they know what they are
837  * doing.
838  *
839  * Patches are being reviewed on linux-rdma.
840  */
841 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
842 {
843     /* This bug only exists in linux, to our knowledge. */
844 #ifdef CONFIG_LINUX
845     struct ibv_port_attr port_attr;
846 
847     /*
848      * Verbs are only NULL if management has bound to '[::]'.
849      *
850      * Let's iterate through all the devices and see if there any pure IB
851      * devices (non-ethernet).
852      *
853      * If not, then we can safely proceed with the migration.
854      * Otherwise, there are no guarantees until the bug is fixed in linux.
855      */
856     if (!verbs) {
857         int num_devices, x;
858         struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
859         bool roce_found = false;
860         bool ib_found = false;
861 
862         for (x = 0; x < num_devices; x++) {
863             verbs = ibv_open_device(dev_list[x]);
864             if (!verbs) {
865                 if (errno == EPERM) {
866                     continue;
867                 } else {
868                     return -EINVAL;
869                 }
870             }
871 
872             if (ibv_query_port(verbs, 1, &port_attr)) {
873                 ibv_close_device(verbs);
874                 ERROR(errp, "Could not query initial IB port");
875                 return -EINVAL;
876             }
877 
878             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
879                 ib_found = true;
880             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
881                 roce_found = true;
882             }
883 
884             ibv_close_device(verbs);
885 
886         }
887 
888         if (roce_found) {
889             if (ib_found) {
890                 fprintf(stderr, "WARN: migrations may fail:"
891                                 " IPv6 over RoCE / iWARP in linux"
892                                 " is broken. But since you appear to have a"
893                                 " mixed RoCE / IB environment, be sure to only"
894                                 " migrate over the IB fabric until the kernel "
895                                 " fixes the bug.\n");
896             } else {
897                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
898                             " and your management software has specified '[::]'"
899                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
900                 return -ENONET;
901             }
902         }
903 
904         return 0;
905     }
906 
907     /*
908      * If we have a verbs context, that means that some other than '[::]' was
909      * used by the management software for binding. In which case we can
910      * actually warn the user about a potentially broken kernel.
911      */
912 
913     /* IB ports start with 1, not 0 */
914     if (ibv_query_port(verbs, 1, &port_attr)) {
915         ERROR(errp, "Could not query initial IB port");
916         return -EINVAL;
917     }
918 
919     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
920         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
921                     "(but patches on linux-rdma in progress)");
922         return -ENONET;
923     }
924 
925 #endif
926 
927     return 0;
928 }
929 
930 /*
931  * Figure out which RDMA device corresponds to the requested IP hostname
932  * Also create the initial connection manager identifiers for opening
933  * the connection.
934  */
935 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
936 {
937     int ret;
938     struct rdma_addrinfo *res;
939     char port_str[16];
940     struct rdma_cm_event *cm_event;
941     char ip[40] = "unknown";
942     struct rdma_addrinfo *e;
943 
944     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
945         ERROR(errp, "RDMA hostname has not been set");
946         return -EINVAL;
947     }
948 
949     /* create CM channel */
950     rdma->channel = rdma_create_event_channel();
951     if (!rdma->channel) {
952         ERROR(errp, "could not create CM channel");
953         return -EINVAL;
954     }
955 
956     /* create CM id */
957     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
958     if (ret) {
959         ERROR(errp, "could not create channel id");
960         goto err_resolve_create_id;
961     }
962 
963     snprintf(port_str, 16, "%d", rdma->port);
964     port_str[15] = '\0';
965 
966     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
967     if (ret < 0) {
968         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
969         goto err_resolve_get_addr;
970     }
971 
972     for (e = res; e != NULL; e = e->ai_next) {
973         inet_ntop(e->ai_family,
974             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
975         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
976 
977         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
978                 RDMA_RESOLVE_TIMEOUT_MS);
979         if (!ret) {
980             if (e->ai_family == AF_INET6) {
981                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
982                 if (ret) {
983                     continue;
984                 }
985             }
986             goto route;
987         }
988     }
989 
990     ERROR(errp, "could not resolve address %s", rdma->host);
991     goto err_resolve_get_addr;
992 
993 route:
994     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
995 
996     ret = rdma_get_cm_event(rdma->channel, &cm_event);
997     if (ret) {
998         ERROR(errp, "could not perform event_addr_resolved");
999         goto err_resolve_get_addr;
1000     }
1001 
1002     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1003         ERROR(errp, "result not equal to event_addr_resolved %s",
1004                 rdma_event_str(cm_event->event));
1005         perror("rdma_resolve_addr");
1006         rdma_ack_cm_event(cm_event);
1007         ret = -EINVAL;
1008         goto err_resolve_get_addr;
1009     }
1010     rdma_ack_cm_event(cm_event);
1011 
1012     /* resolve route */
1013     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1014     if (ret) {
1015         ERROR(errp, "could not resolve rdma route");
1016         goto err_resolve_get_addr;
1017     }
1018 
1019     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1020     if (ret) {
1021         ERROR(errp, "could not perform event_route_resolved");
1022         goto err_resolve_get_addr;
1023     }
1024     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1025         ERROR(errp, "result not equal to event_route_resolved: %s",
1026                         rdma_event_str(cm_event->event));
1027         rdma_ack_cm_event(cm_event);
1028         ret = -EINVAL;
1029         goto err_resolve_get_addr;
1030     }
1031     rdma_ack_cm_event(cm_event);
1032     rdma->verbs = rdma->cm_id->verbs;
1033     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1034     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1035     return 0;
1036 
1037 err_resolve_get_addr:
1038     rdma_destroy_id(rdma->cm_id);
1039     rdma->cm_id = NULL;
1040 err_resolve_create_id:
1041     rdma_destroy_event_channel(rdma->channel);
1042     rdma->channel = NULL;
1043     return ret;
1044 }
1045 
1046 /*
1047  * Create protection domain and completion queues
1048  */
1049 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1050 {
1051     /* allocate pd */
1052     rdma->pd = ibv_alloc_pd(rdma->verbs);
1053     if (!rdma->pd) {
1054         error_report("failed to allocate protection domain");
1055         return -1;
1056     }
1057 
1058     /* create completion channel */
1059     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1060     if (!rdma->comp_channel) {
1061         error_report("failed to allocate completion channel");
1062         goto err_alloc_pd_cq;
1063     }
1064 
1065     /*
1066      * Completion queue can be filled by both read and write work requests,
1067      * so must reflect the sum of both possible queue sizes.
1068      */
1069     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1070             NULL, rdma->comp_channel, 0);
1071     if (!rdma->cq) {
1072         error_report("failed to allocate completion queue");
1073         goto err_alloc_pd_cq;
1074     }
1075 
1076     return 0;
1077 
1078 err_alloc_pd_cq:
1079     if (rdma->pd) {
1080         ibv_dealloc_pd(rdma->pd);
1081     }
1082     if (rdma->comp_channel) {
1083         ibv_destroy_comp_channel(rdma->comp_channel);
1084     }
1085     rdma->pd = NULL;
1086     rdma->comp_channel = NULL;
1087     return -1;
1088 
1089 }
1090 
1091 /*
1092  * Create queue pairs.
1093  */
1094 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1095 {
1096     struct ibv_qp_init_attr attr = { 0 };
1097     int ret;
1098 
1099     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1100     attr.cap.max_recv_wr = 3;
1101     attr.cap.max_send_sge = 1;
1102     attr.cap.max_recv_sge = 1;
1103     attr.send_cq = rdma->cq;
1104     attr.recv_cq = rdma->cq;
1105     attr.qp_type = IBV_QPT_RC;
1106 
1107     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1108     if (ret) {
1109         return -1;
1110     }
1111 
1112     rdma->qp = rdma->cm_id->qp;
1113     return 0;
1114 }
1115 
1116 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1117 {
1118     int i;
1119     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1120 
1121     for (i = 0; i < local->nb_blocks; i++) {
1122         local->block[i].mr =
1123             ibv_reg_mr(rdma->pd,
1124                     local->block[i].local_host_addr,
1125                     local->block[i].length,
1126                     IBV_ACCESS_LOCAL_WRITE |
1127                     IBV_ACCESS_REMOTE_WRITE
1128                     );
1129         if (!local->block[i].mr) {
1130             perror("Failed to register local dest ram block!\n");
1131             break;
1132         }
1133         rdma->total_registrations++;
1134     }
1135 
1136     if (i >= local->nb_blocks) {
1137         return 0;
1138     }
1139 
1140     for (i--; i >= 0; i--) {
1141         ibv_dereg_mr(local->block[i].mr);
1142         rdma->total_registrations--;
1143     }
1144 
1145     return -1;
1146 
1147 }
1148 
1149 /*
1150  * Find the ram block that corresponds to the page requested to be
1151  * transmitted by QEMU.
1152  *
1153  * Once the block is found, also identify which 'chunk' within that
1154  * block that the page belongs to.
1155  *
1156  * This search cannot fail or the migration will fail.
1157  */
1158 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1159                                       uintptr_t block_offset,
1160                                       uint64_t offset,
1161                                       uint64_t length,
1162                                       uint64_t *block_index,
1163                                       uint64_t *chunk_index)
1164 {
1165     uint64_t current_addr = block_offset + offset;
1166     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1167                                                 (void *) block_offset);
1168     assert(block);
1169     assert(current_addr >= block->offset);
1170     assert((current_addr + length) <= (block->offset + block->length));
1171 
1172     *block_index = block->index;
1173     *chunk_index = ram_chunk_index(block->local_host_addr,
1174                 block->local_host_addr + (current_addr - block->offset));
1175 
1176     return 0;
1177 }
1178 
1179 /*
1180  * Register a chunk with IB. If the chunk was already registered
1181  * previously, then skip.
1182  *
1183  * Also return the keys associated with the registration needed
1184  * to perform the actual RDMA operation.
1185  */
1186 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1187         RDMALocalBlock *block, uintptr_t host_addr,
1188         uint32_t *lkey, uint32_t *rkey, int chunk,
1189         uint8_t *chunk_start, uint8_t *chunk_end)
1190 {
1191     if (block->mr) {
1192         if (lkey) {
1193             *lkey = block->mr->lkey;
1194         }
1195         if (rkey) {
1196             *rkey = block->mr->rkey;
1197         }
1198         return 0;
1199     }
1200 
1201     /* allocate memory to store chunk MRs */
1202     if (!block->pmr) {
1203         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1204     }
1205 
1206     /*
1207      * If 'rkey', then we're the destination, so grant access to the source.
1208      *
1209      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1210      */
1211     if (!block->pmr[chunk]) {
1212         uint64_t len = chunk_end - chunk_start;
1213 
1214         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1215 
1216         block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1217                 chunk_start, len,
1218                 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1219                         IBV_ACCESS_REMOTE_WRITE) : 0));
1220 
1221         if (!block->pmr[chunk]) {
1222             perror("Failed to register chunk!");
1223             fprintf(stderr, "Chunk details: block: %d chunk index %d"
1224                             " start %" PRIuPTR " end %" PRIuPTR
1225                             " host %" PRIuPTR
1226                             " local %" PRIuPTR " registrations: %d\n",
1227                             block->index, chunk, (uintptr_t)chunk_start,
1228                             (uintptr_t)chunk_end, host_addr,
1229                             (uintptr_t)block->local_host_addr,
1230                             rdma->total_registrations);
1231             return -1;
1232         }
1233         rdma->total_registrations++;
1234     }
1235 
1236     if (lkey) {
1237         *lkey = block->pmr[chunk]->lkey;
1238     }
1239     if (rkey) {
1240         *rkey = block->pmr[chunk]->rkey;
1241     }
1242     return 0;
1243 }
1244 
1245 /*
1246  * Register (at connection time) the memory used for control
1247  * channel messages.
1248  */
1249 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1250 {
1251     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1252             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1253             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1254     if (rdma->wr_data[idx].control_mr) {
1255         rdma->total_registrations++;
1256         return 0;
1257     }
1258     error_report("qemu_rdma_reg_control failed");
1259     return -1;
1260 }
1261 
1262 const char *print_wrid(int wrid)
1263 {
1264     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1265         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1266     }
1267     return wrid_desc[wrid];
1268 }
1269 
1270 /*
1271  * RDMA requires memory registration (mlock/pinning), but this is not good for
1272  * overcommitment.
1273  *
1274  * In preparation for the future where LRU information or workload-specific
1275  * writable writable working set memory access behavior is available to QEMU
1276  * it would be nice to have in place the ability to UN-register/UN-pin
1277  * particular memory regions from the RDMA hardware when it is determine that
1278  * those regions of memory will likely not be accessed again in the near future.
1279  *
1280  * While we do not yet have such information right now, the following
1281  * compile-time option allows us to perform a non-optimized version of this
1282  * behavior.
1283  *
1284  * By uncommenting this option, you will cause *all* RDMA transfers to be
1285  * unregistered immediately after the transfer completes on both sides of the
1286  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1287  *
1288  * This will have a terrible impact on migration performance, so until future
1289  * workload information or LRU information is available, do not attempt to use
1290  * this feature except for basic testing.
1291  */
1292 //#define RDMA_UNREGISTRATION_EXAMPLE
1293 
1294 /*
1295  * Perform a non-optimized memory unregistration after every transfer
1296  * for demonstration purposes, only if pin-all is not requested.
1297  *
1298  * Potential optimizations:
1299  * 1. Start a new thread to run this function continuously
1300         - for bit clearing
1301         - and for receipt of unregister messages
1302  * 2. Use an LRU.
1303  * 3. Use workload hints.
1304  */
1305 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1306 {
1307     while (rdma->unregistrations[rdma->unregister_current]) {
1308         int ret;
1309         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1310         uint64_t chunk =
1311             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1312         uint64_t index =
1313             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1314         RDMALocalBlock *block =
1315             &(rdma->local_ram_blocks.block[index]);
1316         RDMARegister reg = { .current_index = index };
1317         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1318                                  };
1319         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1320                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1321                                    .repeat = 1,
1322                                  };
1323 
1324         trace_qemu_rdma_unregister_waiting_proc(chunk,
1325                                                 rdma->unregister_current);
1326 
1327         rdma->unregistrations[rdma->unregister_current] = 0;
1328         rdma->unregister_current++;
1329 
1330         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1331             rdma->unregister_current = 0;
1332         }
1333 
1334 
1335         /*
1336          * Unregistration is speculative (because migration is single-threaded
1337          * and we cannot break the protocol's inifinband message ordering).
1338          * Thus, if the memory is currently being used for transmission,
1339          * then abort the attempt to unregister and try again
1340          * later the next time a completion is received for this memory.
1341          */
1342         clear_bit(chunk, block->unregister_bitmap);
1343 
1344         if (test_bit(chunk, block->transit_bitmap)) {
1345             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1346             continue;
1347         }
1348 
1349         trace_qemu_rdma_unregister_waiting_send(chunk);
1350 
1351         ret = ibv_dereg_mr(block->pmr[chunk]);
1352         block->pmr[chunk] = NULL;
1353         block->remote_keys[chunk] = 0;
1354 
1355         if (ret != 0) {
1356             perror("unregistration chunk failed");
1357             return -ret;
1358         }
1359         rdma->total_registrations--;
1360 
1361         reg.key.chunk = chunk;
1362         register_to_network(rdma, &reg);
1363         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1364                                 &resp, NULL, NULL);
1365         if (ret < 0) {
1366             return ret;
1367         }
1368 
1369         trace_qemu_rdma_unregister_waiting_complete(chunk);
1370     }
1371 
1372     return 0;
1373 }
1374 
1375 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1376                                          uint64_t chunk)
1377 {
1378     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1379 
1380     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1381     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1382 
1383     return result;
1384 }
1385 
1386 /*
1387  * Set bit for unregistration in the next iteration.
1388  * We cannot transmit right here, but will unpin later.
1389  */
1390 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1391                                         uint64_t chunk, uint64_t wr_id)
1392 {
1393     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1394         error_report("rdma migration: queue is full");
1395     } else {
1396         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1397 
1398         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1399             trace_qemu_rdma_signal_unregister_append(chunk,
1400                                                      rdma->unregister_next);
1401 
1402             rdma->unregistrations[rdma->unregister_next++] =
1403                     qemu_rdma_make_wrid(wr_id, index, chunk);
1404 
1405             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1406                 rdma->unregister_next = 0;
1407             }
1408         } else {
1409             trace_qemu_rdma_signal_unregister_already(chunk);
1410         }
1411     }
1412 }
1413 
1414 /*
1415  * Consult the connection manager to see a work request
1416  * (of any kind) has completed.
1417  * Return the work request ID that completed.
1418  */
1419 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1420                                uint32_t *byte_len)
1421 {
1422     int ret;
1423     struct ibv_wc wc;
1424     uint64_t wr_id;
1425 
1426     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1427 
1428     if (!ret) {
1429         *wr_id_out = RDMA_WRID_NONE;
1430         return 0;
1431     }
1432 
1433     if (ret < 0) {
1434         error_report("ibv_poll_cq return %d", ret);
1435         return ret;
1436     }
1437 
1438     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1439 
1440     if (wc.status != IBV_WC_SUCCESS) {
1441         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1442                         wc.status, ibv_wc_status_str(wc.status));
1443         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1444 
1445         return -1;
1446     }
1447 
1448     if (rdma->control_ready_expected &&
1449         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1450         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1451                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1452         rdma->control_ready_expected = 0;
1453     }
1454 
1455     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1456         uint64_t chunk =
1457             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1458         uint64_t index =
1459             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1460         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1461 
1462         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1463                                    index, chunk, block->local_host_addr,
1464                                    (void *)(uintptr_t)block->remote_host_addr);
1465 
1466         clear_bit(chunk, block->transit_bitmap);
1467 
1468         if (rdma->nb_sent > 0) {
1469             rdma->nb_sent--;
1470         }
1471 
1472         if (!rdma->pin_all) {
1473             /*
1474              * FYI: If one wanted to signal a specific chunk to be unregistered
1475              * using LRU or workload-specific information, this is the function
1476              * you would call to do so. That chunk would then get asynchronously
1477              * unregistered later.
1478              */
1479 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1480             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1481 #endif
1482         }
1483     } else {
1484         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1485     }
1486 
1487     *wr_id_out = wc.wr_id;
1488     if (byte_len) {
1489         *byte_len = wc.byte_len;
1490     }
1491 
1492     return  0;
1493 }
1494 
1495 /* Wait for activity on the completion channel.
1496  * Returns 0 on success, none-0 on error.
1497  */
1498 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1499 {
1500     struct rdma_cm_event *cm_event;
1501     int ret = -1;
1502 
1503     /*
1504      * Coroutine doesn't start until migration_fd_process_incoming()
1505      * so don't yield unless we know we're running inside of a coroutine.
1506      */
1507     if (rdma->migration_started_on_destination &&
1508         migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1509         yield_until_fd_readable(rdma->comp_channel->fd);
1510     } else {
1511         /* This is the source side, we're in a separate thread
1512          * or destination prior to migration_fd_process_incoming()
1513          * after postcopy, the destination also in a seprate thread.
1514          * we can't yield; so we have to poll the fd.
1515          * But we need to be able to handle 'cancel' or an error
1516          * without hanging forever.
1517          */
1518         while (!rdma->error_state  && !rdma->received_error) {
1519             GPollFD pfds[2];
1520             pfds[0].fd = rdma->comp_channel->fd;
1521             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1522             pfds[0].revents = 0;
1523 
1524             pfds[1].fd = rdma->channel->fd;
1525             pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1526             pfds[1].revents = 0;
1527 
1528             /* 0.1s timeout, should be fine for a 'cancel' */
1529             switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1530             case 2:
1531             case 1: /* fd active */
1532                 if (pfds[0].revents) {
1533                     return 0;
1534                 }
1535 
1536                 if (pfds[1].revents) {
1537                     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1538                     if (!ret) {
1539                         rdma_ack_cm_event(cm_event);
1540                     }
1541 
1542                     error_report("receive cm event while wait comp channel,"
1543                                  "cm event is %d", cm_event->event);
1544                     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1545                         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1546                         return -EPIPE;
1547                     }
1548                 }
1549                 break;
1550 
1551             case 0: /* Timeout, go around again */
1552                 break;
1553 
1554             default: /* Error of some type -
1555                       * I don't trust errno from qemu_poll_ns
1556                      */
1557                 error_report("%s: poll failed", __func__);
1558                 return -EPIPE;
1559             }
1560 
1561             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1562                 /* Bail out and let the cancellation happen */
1563                 return -EPIPE;
1564             }
1565         }
1566     }
1567 
1568     if (rdma->received_error) {
1569         return -EPIPE;
1570     }
1571     return rdma->error_state;
1572 }
1573 
1574 /*
1575  * Block until the next work request has completed.
1576  *
1577  * First poll to see if a work request has already completed,
1578  * otherwise block.
1579  *
1580  * If we encounter completed work requests for IDs other than
1581  * the one we're interested in, then that's generally an error.
1582  *
1583  * The only exception is actual RDMA Write completions. These
1584  * completions only need to be recorded, but do not actually
1585  * need further processing.
1586  */
1587 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1588                                     uint32_t *byte_len)
1589 {
1590     int num_cq_events = 0, ret = 0;
1591     struct ibv_cq *cq;
1592     void *cq_ctx;
1593     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1594 
1595     if (ibv_req_notify_cq(rdma->cq, 0)) {
1596         return -1;
1597     }
1598     /* poll cq first */
1599     while (wr_id != wrid_requested) {
1600         ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1601         if (ret < 0) {
1602             return ret;
1603         }
1604 
1605         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1606 
1607         if (wr_id == RDMA_WRID_NONE) {
1608             break;
1609         }
1610         if (wr_id != wrid_requested) {
1611             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1612                        wrid_requested, print_wrid(wr_id), wr_id);
1613         }
1614     }
1615 
1616     if (wr_id == wrid_requested) {
1617         return 0;
1618     }
1619 
1620     while (1) {
1621         ret = qemu_rdma_wait_comp_channel(rdma);
1622         if (ret) {
1623             goto err_block_for_wrid;
1624         }
1625 
1626         ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1627         if (ret) {
1628             perror("ibv_get_cq_event");
1629             goto err_block_for_wrid;
1630         }
1631 
1632         num_cq_events++;
1633 
1634         ret = -ibv_req_notify_cq(cq, 0);
1635         if (ret) {
1636             goto err_block_for_wrid;
1637         }
1638 
1639         while (wr_id != wrid_requested) {
1640             ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1641             if (ret < 0) {
1642                 goto err_block_for_wrid;
1643             }
1644 
1645             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1646 
1647             if (wr_id == RDMA_WRID_NONE) {
1648                 break;
1649             }
1650             if (wr_id != wrid_requested) {
1651                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1652                                    wrid_requested, print_wrid(wr_id), wr_id);
1653             }
1654         }
1655 
1656         if (wr_id == wrid_requested) {
1657             goto success_block_for_wrid;
1658         }
1659     }
1660 
1661 success_block_for_wrid:
1662     if (num_cq_events) {
1663         ibv_ack_cq_events(cq, num_cq_events);
1664     }
1665     return 0;
1666 
1667 err_block_for_wrid:
1668     if (num_cq_events) {
1669         ibv_ack_cq_events(cq, num_cq_events);
1670     }
1671 
1672     rdma->error_state = ret;
1673     return ret;
1674 }
1675 
1676 /*
1677  * Post a SEND message work request for the control channel
1678  * containing some data and block until the post completes.
1679  */
1680 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1681                                        RDMAControlHeader *head)
1682 {
1683     int ret = 0;
1684     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1685     struct ibv_send_wr *bad_wr;
1686     struct ibv_sge sge = {
1687                            .addr = (uintptr_t)(wr->control),
1688                            .length = head->len + sizeof(RDMAControlHeader),
1689                            .lkey = wr->control_mr->lkey,
1690                          };
1691     struct ibv_send_wr send_wr = {
1692                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1693                                    .opcode = IBV_WR_SEND,
1694                                    .send_flags = IBV_SEND_SIGNALED,
1695                                    .sg_list = &sge,
1696                                    .num_sge = 1,
1697                                 };
1698 
1699     trace_qemu_rdma_post_send_control(control_desc(head->type));
1700 
1701     /*
1702      * We don't actually need to do a memcpy() in here if we used
1703      * the "sge" properly, but since we're only sending control messages
1704      * (not RAM in a performance-critical path), then its OK for now.
1705      *
1706      * The copy makes the RDMAControlHeader simpler to manipulate
1707      * for the time being.
1708      */
1709     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1710     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1711     control_to_network((void *) wr->control);
1712 
1713     if (buf) {
1714         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1715     }
1716 
1717 
1718     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1719 
1720     if (ret > 0) {
1721         error_report("Failed to use post IB SEND for control");
1722         return -ret;
1723     }
1724 
1725     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1726     if (ret < 0) {
1727         error_report("rdma migration: send polling control error");
1728     }
1729 
1730     return ret;
1731 }
1732 
1733 /*
1734  * Post a RECV work request in anticipation of some future receipt
1735  * of data on the control channel.
1736  */
1737 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1738 {
1739     struct ibv_recv_wr *bad_wr;
1740     struct ibv_sge sge = {
1741                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1742                             .length = RDMA_CONTROL_MAX_BUFFER,
1743                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1744                          };
1745 
1746     struct ibv_recv_wr recv_wr = {
1747                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1748                                     .sg_list = &sge,
1749                                     .num_sge = 1,
1750                                  };
1751 
1752 
1753     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1754         return -1;
1755     }
1756 
1757     return 0;
1758 }
1759 
1760 /*
1761  * Block and wait for a RECV control channel message to arrive.
1762  */
1763 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1764                 RDMAControlHeader *head, int expecting, int idx)
1765 {
1766     uint32_t byte_len;
1767     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1768                                        &byte_len);
1769 
1770     if (ret < 0) {
1771         error_report("rdma migration: recv polling control error!");
1772         return ret;
1773     }
1774 
1775     network_to_control((void *) rdma->wr_data[idx].control);
1776     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1777 
1778     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1779 
1780     if (expecting == RDMA_CONTROL_NONE) {
1781         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1782                                              head->type);
1783     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1784         error_report("Was expecting a %s (%d) control message"
1785                 ", but got: %s (%d), length: %d",
1786                 control_desc(expecting), expecting,
1787                 control_desc(head->type), head->type, head->len);
1788         if (head->type == RDMA_CONTROL_ERROR) {
1789             rdma->received_error = true;
1790         }
1791         return -EIO;
1792     }
1793     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1794         error_report("too long length: %d", head->len);
1795         return -EINVAL;
1796     }
1797     if (sizeof(*head) + head->len != byte_len) {
1798         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1799         return -EINVAL;
1800     }
1801 
1802     return 0;
1803 }
1804 
1805 /*
1806  * When a RECV work request has completed, the work request's
1807  * buffer is pointed at the header.
1808  *
1809  * This will advance the pointer to the data portion
1810  * of the control message of the work request's buffer that
1811  * was populated after the work request finished.
1812  */
1813 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1814                                   RDMAControlHeader *head)
1815 {
1816     rdma->wr_data[idx].control_len = head->len;
1817     rdma->wr_data[idx].control_curr =
1818         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1819 }
1820 
1821 /*
1822  * This is an 'atomic' high-level operation to deliver a single, unified
1823  * control-channel message.
1824  *
1825  * Additionally, if the user is expecting some kind of reply to this message,
1826  * they can request a 'resp' response message be filled in by posting an
1827  * additional work request on behalf of the user and waiting for an additional
1828  * completion.
1829  *
1830  * The extra (optional) response is used during registration to us from having
1831  * to perform an *additional* exchange of message just to provide a response by
1832  * instead piggy-backing on the acknowledgement.
1833  */
1834 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1835                                    uint8_t *data, RDMAControlHeader *resp,
1836                                    int *resp_idx,
1837                                    int (*callback)(RDMAContext *rdma))
1838 {
1839     int ret = 0;
1840 
1841     /*
1842      * Wait until the dest is ready before attempting to deliver the message
1843      * by waiting for a READY message.
1844      */
1845     if (rdma->control_ready_expected) {
1846         RDMAControlHeader resp;
1847         ret = qemu_rdma_exchange_get_response(rdma,
1848                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1849         if (ret < 0) {
1850             return ret;
1851         }
1852     }
1853 
1854     /*
1855      * If the user is expecting a response, post a WR in anticipation of it.
1856      */
1857     if (resp) {
1858         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1859         if (ret) {
1860             error_report("rdma migration: error posting"
1861                     " extra control recv for anticipated result!");
1862             return ret;
1863         }
1864     }
1865 
1866     /*
1867      * Post a WR to replace the one we just consumed for the READY message.
1868      */
1869     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1870     if (ret) {
1871         error_report("rdma migration: error posting first control recv!");
1872         return ret;
1873     }
1874 
1875     /*
1876      * Deliver the control message that was requested.
1877      */
1878     ret = qemu_rdma_post_send_control(rdma, data, head);
1879 
1880     if (ret < 0) {
1881         error_report("Failed to send control buffer!");
1882         return ret;
1883     }
1884 
1885     /*
1886      * If we're expecting a response, block and wait for it.
1887      */
1888     if (resp) {
1889         if (callback) {
1890             trace_qemu_rdma_exchange_send_issue_callback();
1891             ret = callback(rdma);
1892             if (ret < 0) {
1893                 return ret;
1894             }
1895         }
1896 
1897         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1898         ret = qemu_rdma_exchange_get_response(rdma, resp,
1899                                               resp->type, RDMA_WRID_DATA);
1900 
1901         if (ret < 0) {
1902             return ret;
1903         }
1904 
1905         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1906         if (resp_idx) {
1907             *resp_idx = RDMA_WRID_DATA;
1908         }
1909         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1910     }
1911 
1912     rdma->control_ready_expected = 1;
1913 
1914     return 0;
1915 }
1916 
1917 /*
1918  * This is an 'atomic' high-level operation to receive a single, unified
1919  * control-channel message.
1920  */
1921 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1922                                 int expecting)
1923 {
1924     RDMAControlHeader ready = {
1925                                 .len = 0,
1926                                 .type = RDMA_CONTROL_READY,
1927                                 .repeat = 1,
1928                               };
1929     int ret;
1930 
1931     /*
1932      * Inform the source that we're ready to receive a message.
1933      */
1934     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1935 
1936     if (ret < 0) {
1937         error_report("Failed to send control buffer!");
1938         return ret;
1939     }
1940 
1941     /*
1942      * Block and wait for the message.
1943      */
1944     ret = qemu_rdma_exchange_get_response(rdma, head,
1945                                           expecting, RDMA_WRID_READY);
1946 
1947     if (ret < 0) {
1948         return ret;
1949     }
1950 
1951     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1952 
1953     /*
1954      * Post a new RECV work request to replace the one we just consumed.
1955      */
1956     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1957     if (ret) {
1958         error_report("rdma migration: error posting second control recv!");
1959         return ret;
1960     }
1961 
1962     return 0;
1963 }
1964 
1965 /*
1966  * Write an actual chunk of memory using RDMA.
1967  *
1968  * If we're using dynamic registration on the dest-side, we have to
1969  * send a registration command first.
1970  */
1971 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1972                                int current_index, uint64_t current_addr,
1973                                uint64_t length)
1974 {
1975     struct ibv_sge sge;
1976     struct ibv_send_wr send_wr = { 0 };
1977     struct ibv_send_wr *bad_wr;
1978     int reg_result_idx, ret, count = 0;
1979     uint64_t chunk, chunks;
1980     uint8_t *chunk_start, *chunk_end;
1981     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1982     RDMARegister reg;
1983     RDMARegisterResult *reg_result;
1984     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1985     RDMAControlHeader head = { .len = sizeof(RDMARegister),
1986                                .type = RDMA_CONTROL_REGISTER_REQUEST,
1987                                .repeat = 1,
1988                              };
1989 
1990 retry:
1991     sge.addr = (uintptr_t)(block->local_host_addr +
1992                             (current_addr - block->offset));
1993     sge.length = length;
1994 
1995     chunk = ram_chunk_index(block->local_host_addr,
1996                             (uint8_t *)(uintptr_t)sge.addr);
1997     chunk_start = ram_chunk_start(block, chunk);
1998 
1999     if (block->is_ram_block) {
2000         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2001 
2002         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2003             chunks--;
2004         }
2005     } else {
2006         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2007 
2008         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2009             chunks--;
2010         }
2011     }
2012 
2013     trace_qemu_rdma_write_one_top(chunks + 1,
2014                                   (chunks + 1) *
2015                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2016 
2017     chunk_end = ram_chunk_end(block, chunk + chunks);
2018 
2019     if (!rdma->pin_all) {
2020 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2021         qemu_rdma_unregister_waiting(rdma);
2022 #endif
2023     }
2024 
2025     while (test_bit(chunk, block->transit_bitmap)) {
2026         (void)count;
2027         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2028                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2029 
2030         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2031 
2032         if (ret < 0) {
2033             error_report("Failed to Wait for previous write to complete "
2034                     "block %d chunk %" PRIu64
2035                     " current %" PRIu64 " len %" PRIu64 " %d",
2036                     current_index, chunk, sge.addr, length, rdma->nb_sent);
2037             return ret;
2038         }
2039     }
2040 
2041     if (!rdma->pin_all || !block->is_ram_block) {
2042         if (!block->remote_keys[chunk]) {
2043             /*
2044              * This chunk has not yet been registered, so first check to see
2045              * if the entire chunk is zero. If so, tell the other size to
2046              * memset() + madvise() the entire chunk without RDMA.
2047              */
2048 
2049             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2050                 RDMACompress comp = {
2051                                         .offset = current_addr,
2052                                         .value = 0,
2053                                         .block_idx = current_index,
2054                                         .length = length,
2055                                     };
2056 
2057                 head.len = sizeof(comp);
2058                 head.type = RDMA_CONTROL_COMPRESS;
2059 
2060                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2061                                                current_index, current_addr);
2062 
2063                 compress_to_network(rdma, &comp);
2064                 ret = qemu_rdma_exchange_send(rdma, &head,
2065                                 (uint8_t *) &comp, NULL, NULL, NULL);
2066 
2067                 if (ret < 0) {
2068                     return -EIO;
2069                 }
2070 
2071                 acct_update_position(f, sge.length, true);
2072 
2073                 return 1;
2074             }
2075 
2076             /*
2077              * Otherwise, tell other side to register.
2078              */
2079             reg.current_index = current_index;
2080             if (block->is_ram_block) {
2081                 reg.key.current_addr = current_addr;
2082             } else {
2083                 reg.key.chunk = chunk;
2084             }
2085             reg.chunks = chunks;
2086 
2087             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2088                                               current_addr);
2089 
2090             register_to_network(rdma, &reg);
2091             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2092                                     &resp, &reg_result_idx, NULL);
2093             if (ret < 0) {
2094                 return ret;
2095             }
2096 
2097             /* try to overlap this single registration with the one we sent. */
2098             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2099                                                 &sge.lkey, NULL, chunk,
2100                                                 chunk_start, chunk_end)) {
2101                 error_report("cannot get lkey");
2102                 return -EINVAL;
2103             }
2104 
2105             reg_result = (RDMARegisterResult *)
2106                     rdma->wr_data[reg_result_idx].control_curr;
2107 
2108             network_to_result(reg_result);
2109 
2110             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2111                                                  reg_result->rkey, chunk);
2112 
2113             block->remote_keys[chunk] = reg_result->rkey;
2114             block->remote_host_addr = reg_result->host_addr;
2115         } else {
2116             /* already registered before */
2117             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2118                                                 &sge.lkey, NULL, chunk,
2119                                                 chunk_start, chunk_end)) {
2120                 error_report("cannot get lkey!");
2121                 return -EINVAL;
2122             }
2123         }
2124 
2125         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2126     } else {
2127         send_wr.wr.rdma.rkey = block->remote_rkey;
2128 
2129         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2130                                                      &sge.lkey, NULL, chunk,
2131                                                      chunk_start, chunk_end)) {
2132             error_report("cannot get lkey!");
2133             return -EINVAL;
2134         }
2135     }
2136 
2137     /*
2138      * Encode the ram block index and chunk within this wrid.
2139      * We will use this information at the time of completion
2140      * to figure out which bitmap to check against and then which
2141      * chunk in the bitmap to look for.
2142      */
2143     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2144                                         current_index, chunk);
2145 
2146     send_wr.opcode = IBV_WR_RDMA_WRITE;
2147     send_wr.send_flags = IBV_SEND_SIGNALED;
2148     send_wr.sg_list = &sge;
2149     send_wr.num_sge = 1;
2150     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2151                                 (current_addr - block->offset);
2152 
2153     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2154                                    sge.length);
2155 
2156     /*
2157      * ibv_post_send() does not return negative error numbers,
2158      * per the specification they are positive - no idea why.
2159      */
2160     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2161 
2162     if (ret == ENOMEM) {
2163         trace_qemu_rdma_write_one_queue_full();
2164         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2165         if (ret < 0) {
2166             error_report("rdma migration: failed to make "
2167                          "room in full send queue! %d", ret);
2168             return ret;
2169         }
2170 
2171         goto retry;
2172 
2173     } else if (ret > 0) {
2174         perror("rdma migration: post rdma write failed");
2175         return -ret;
2176     }
2177 
2178     set_bit(chunk, block->transit_bitmap);
2179     acct_update_position(f, sge.length, false);
2180     rdma->total_writes++;
2181 
2182     return 0;
2183 }
2184 
2185 /*
2186  * Push out any unwritten RDMA operations.
2187  *
2188  * We support sending out multiple chunks at the same time.
2189  * Not all of them need to get signaled in the completion queue.
2190  */
2191 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2192 {
2193     int ret;
2194 
2195     if (!rdma->current_length) {
2196         return 0;
2197     }
2198 
2199     ret = qemu_rdma_write_one(f, rdma,
2200             rdma->current_index, rdma->current_addr, rdma->current_length);
2201 
2202     if (ret < 0) {
2203         return ret;
2204     }
2205 
2206     if (ret == 0) {
2207         rdma->nb_sent++;
2208         trace_qemu_rdma_write_flush(rdma->nb_sent);
2209     }
2210 
2211     rdma->current_length = 0;
2212     rdma->current_addr = 0;
2213 
2214     return 0;
2215 }
2216 
2217 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2218                     uint64_t offset, uint64_t len)
2219 {
2220     RDMALocalBlock *block;
2221     uint8_t *host_addr;
2222     uint8_t *chunk_end;
2223 
2224     if (rdma->current_index < 0) {
2225         return 0;
2226     }
2227 
2228     if (rdma->current_chunk < 0) {
2229         return 0;
2230     }
2231 
2232     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2233     host_addr = block->local_host_addr + (offset - block->offset);
2234     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2235 
2236     if (rdma->current_length == 0) {
2237         return 0;
2238     }
2239 
2240     /*
2241      * Only merge into chunk sequentially.
2242      */
2243     if (offset != (rdma->current_addr + rdma->current_length)) {
2244         return 0;
2245     }
2246 
2247     if (offset < block->offset) {
2248         return 0;
2249     }
2250 
2251     if ((offset + len) > (block->offset + block->length)) {
2252         return 0;
2253     }
2254 
2255     if ((host_addr + len) > chunk_end) {
2256         return 0;
2257     }
2258 
2259     return 1;
2260 }
2261 
2262 /*
2263  * We're not actually writing here, but doing three things:
2264  *
2265  * 1. Identify the chunk the buffer belongs to.
2266  * 2. If the chunk is full or the buffer doesn't belong to the current
2267  *    chunk, then start a new chunk and flush() the old chunk.
2268  * 3. To keep the hardware busy, we also group chunks into batches
2269  *    and only require that a batch gets acknowledged in the completion
2270  *    qeueue instead of each individual chunk.
2271  */
2272 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2273                            uint64_t block_offset, uint64_t offset,
2274                            uint64_t len)
2275 {
2276     uint64_t current_addr = block_offset + offset;
2277     uint64_t index = rdma->current_index;
2278     uint64_t chunk = rdma->current_chunk;
2279     int ret;
2280 
2281     /* If we cannot merge it, we flush the current buffer first. */
2282     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2283         ret = qemu_rdma_write_flush(f, rdma);
2284         if (ret) {
2285             return ret;
2286         }
2287         rdma->current_length = 0;
2288         rdma->current_addr = current_addr;
2289 
2290         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2291                                          offset, len, &index, &chunk);
2292         if (ret) {
2293             error_report("ram block search failed");
2294             return ret;
2295         }
2296         rdma->current_index = index;
2297         rdma->current_chunk = chunk;
2298     }
2299 
2300     /* merge it */
2301     rdma->current_length += len;
2302 
2303     /* flush it if buffer is too large */
2304     if (rdma->current_length >= RDMA_MERGE_MAX) {
2305         return qemu_rdma_write_flush(f, rdma);
2306     }
2307 
2308     return 0;
2309 }
2310 
2311 static void qemu_rdma_cleanup(RDMAContext *rdma)
2312 {
2313     int idx;
2314 
2315     if (rdma->cm_id && rdma->connected) {
2316         if ((rdma->error_state ||
2317              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2318             !rdma->received_error) {
2319             RDMAControlHeader head = { .len = 0,
2320                                        .type = RDMA_CONTROL_ERROR,
2321                                        .repeat = 1,
2322                                      };
2323             error_report("Early error. Sending error.");
2324             qemu_rdma_post_send_control(rdma, NULL, &head);
2325         }
2326 
2327         rdma_disconnect(rdma->cm_id);
2328         trace_qemu_rdma_cleanup_disconnect();
2329         rdma->connected = false;
2330     }
2331 
2332     if (rdma->channel) {
2333         qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2334     }
2335     g_free(rdma->dest_blocks);
2336     rdma->dest_blocks = NULL;
2337 
2338     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2339         if (rdma->wr_data[idx].control_mr) {
2340             rdma->total_registrations--;
2341             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2342         }
2343         rdma->wr_data[idx].control_mr = NULL;
2344     }
2345 
2346     if (rdma->local_ram_blocks.block) {
2347         while (rdma->local_ram_blocks.nb_blocks) {
2348             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2349         }
2350     }
2351 
2352     if (rdma->qp) {
2353         rdma_destroy_qp(rdma->cm_id);
2354         rdma->qp = NULL;
2355     }
2356     if (rdma->cq) {
2357         ibv_destroy_cq(rdma->cq);
2358         rdma->cq = NULL;
2359     }
2360     if (rdma->comp_channel) {
2361         ibv_destroy_comp_channel(rdma->comp_channel);
2362         rdma->comp_channel = NULL;
2363     }
2364     if (rdma->pd) {
2365         ibv_dealloc_pd(rdma->pd);
2366         rdma->pd = NULL;
2367     }
2368     if (rdma->cm_id) {
2369         rdma_destroy_id(rdma->cm_id);
2370         rdma->cm_id = NULL;
2371     }
2372 
2373     /* the destination side, listen_id and channel is shared */
2374     if (rdma->listen_id) {
2375         if (!rdma->is_return_path) {
2376             rdma_destroy_id(rdma->listen_id);
2377         }
2378         rdma->listen_id = NULL;
2379 
2380         if (rdma->channel) {
2381             if (!rdma->is_return_path) {
2382                 rdma_destroy_event_channel(rdma->channel);
2383             }
2384             rdma->channel = NULL;
2385         }
2386     }
2387 
2388     if (rdma->channel) {
2389         rdma_destroy_event_channel(rdma->channel);
2390         rdma->channel = NULL;
2391     }
2392     g_free(rdma->host);
2393     rdma->host = NULL;
2394 }
2395 
2396 
2397 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2398 {
2399     int ret, idx;
2400     Error *local_err = NULL, **temp = &local_err;
2401 
2402     /*
2403      * Will be validated against destination's actual capabilities
2404      * after the connect() completes.
2405      */
2406     rdma->pin_all = pin_all;
2407 
2408     ret = qemu_rdma_resolve_host(rdma, temp);
2409     if (ret) {
2410         goto err_rdma_source_init;
2411     }
2412 
2413     ret = qemu_rdma_alloc_pd_cq(rdma);
2414     if (ret) {
2415         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2416                     " limits may be too low. Please check $ ulimit -a # and "
2417                     "search for 'ulimit -l' in the output");
2418         goto err_rdma_source_init;
2419     }
2420 
2421     ret = qemu_rdma_alloc_qp(rdma);
2422     if (ret) {
2423         ERROR(temp, "rdma migration: error allocating qp!");
2424         goto err_rdma_source_init;
2425     }
2426 
2427     ret = qemu_rdma_init_ram_blocks(rdma);
2428     if (ret) {
2429         ERROR(temp, "rdma migration: error initializing ram blocks!");
2430         goto err_rdma_source_init;
2431     }
2432 
2433     /* Build the hash that maps from offset to RAMBlock */
2434     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2435     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2436         g_hash_table_insert(rdma->blockmap,
2437                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2438                 &rdma->local_ram_blocks.block[idx]);
2439     }
2440 
2441     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2442         ret = qemu_rdma_reg_control(rdma, idx);
2443         if (ret) {
2444             ERROR(temp, "rdma migration: error registering %d control!",
2445                                                             idx);
2446             goto err_rdma_source_init;
2447         }
2448     }
2449 
2450     return 0;
2451 
2452 err_rdma_source_init:
2453     error_propagate(errp, local_err);
2454     qemu_rdma_cleanup(rdma);
2455     return -1;
2456 }
2457 
2458 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2459 {
2460     RDMACapabilities cap = {
2461                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2462                                 .flags = 0,
2463                            };
2464     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2465                                           .retry_count = 5,
2466                                           .private_data = &cap,
2467                                           .private_data_len = sizeof(cap),
2468                                         };
2469     struct rdma_cm_event *cm_event;
2470     int ret;
2471 
2472     /*
2473      * Only negotiate the capability with destination if the user
2474      * on the source first requested the capability.
2475      */
2476     if (rdma->pin_all) {
2477         trace_qemu_rdma_connect_pin_all_requested();
2478         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2479     }
2480 
2481     caps_to_network(&cap);
2482 
2483     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2484     if (ret) {
2485         ERROR(errp, "posting second control recv");
2486         goto err_rdma_source_connect;
2487     }
2488 
2489     ret = rdma_connect(rdma->cm_id, &conn_param);
2490     if (ret) {
2491         perror("rdma_connect");
2492         ERROR(errp, "connecting to destination!");
2493         goto err_rdma_source_connect;
2494     }
2495 
2496     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2497     if (ret) {
2498         perror("rdma_get_cm_event after rdma_connect");
2499         ERROR(errp, "connecting to destination!");
2500         rdma_ack_cm_event(cm_event);
2501         goto err_rdma_source_connect;
2502     }
2503 
2504     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2505         perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2506         ERROR(errp, "connecting to destination!");
2507         rdma_ack_cm_event(cm_event);
2508         goto err_rdma_source_connect;
2509     }
2510     rdma->connected = true;
2511 
2512     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2513     network_to_caps(&cap);
2514 
2515     /*
2516      * Verify that the *requested* capabilities are supported by the destination
2517      * and disable them otherwise.
2518      */
2519     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2520         ERROR(errp, "Server cannot support pinning all memory. "
2521                         "Will register memory dynamically.");
2522         rdma->pin_all = false;
2523     }
2524 
2525     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2526 
2527     rdma_ack_cm_event(cm_event);
2528 
2529     rdma->control_ready_expected = 1;
2530     rdma->nb_sent = 0;
2531     return 0;
2532 
2533 err_rdma_source_connect:
2534     qemu_rdma_cleanup(rdma);
2535     return -1;
2536 }
2537 
2538 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2539 {
2540     int ret, idx;
2541     struct rdma_cm_id *listen_id;
2542     char ip[40] = "unknown";
2543     struct rdma_addrinfo *res, *e;
2544     char port_str[16];
2545 
2546     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2547         rdma->wr_data[idx].control_len = 0;
2548         rdma->wr_data[idx].control_curr = NULL;
2549     }
2550 
2551     if (!rdma->host || !rdma->host[0]) {
2552         ERROR(errp, "RDMA host is not set!");
2553         rdma->error_state = -EINVAL;
2554         return -1;
2555     }
2556     /* create CM channel */
2557     rdma->channel = rdma_create_event_channel();
2558     if (!rdma->channel) {
2559         ERROR(errp, "could not create rdma event channel");
2560         rdma->error_state = -EINVAL;
2561         return -1;
2562     }
2563 
2564     /* create CM id */
2565     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2566     if (ret) {
2567         ERROR(errp, "could not create cm_id!");
2568         goto err_dest_init_create_listen_id;
2569     }
2570 
2571     snprintf(port_str, 16, "%d", rdma->port);
2572     port_str[15] = '\0';
2573 
2574     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2575     if (ret < 0) {
2576         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2577         goto err_dest_init_bind_addr;
2578     }
2579 
2580     for (e = res; e != NULL; e = e->ai_next) {
2581         inet_ntop(e->ai_family,
2582             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2583         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2584         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2585         if (ret) {
2586             continue;
2587         }
2588         if (e->ai_family == AF_INET6) {
2589             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2590             if (ret) {
2591                 continue;
2592             }
2593         }
2594         break;
2595     }
2596 
2597     if (!e) {
2598         ERROR(errp, "Error: could not rdma_bind_addr!");
2599         goto err_dest_init_bind_addr;
2600     }
2601 
2602     rdma->listen_id = listen_id;
2603     qemu_rdma_dump_gid("dest_init", listen_id);
2604     return 0;
2605 
2606 err_dest_init_bind_addr:
2607     rdma_destroy_id(listen_id);
2608 err_dest_init_create_listen_id:
2609     rdma_destroy_event_channel(rdma->channel);
2610     rdma->channel = NULL;
2611     rdma->error_state = ret;
2612     return ret;
2613 
2614 }
2615 
2616 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2617                                             RDMAContext *rdma)
2618 {
2619     int idx;
2620 
2621     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2622         rdma_return_path->wr_data[idx].control_len = 0;
2623         rdma_return_path->wr_data[idx].control_curr = NULL;
2624     }
2625 
2626     /*the CM channel and CM id is shared*/
2627     rdma_return_path->channel = rdma->channel;
2628     rdma_return_path->listen_id = rdma->listen_id;
2629 
2630     rdma->return_path = rdma_return_path;
2631     rdma_return_path->return_path = rdma;
2632     rdma_return_path->is_return_path = true;
2633 }
2634 
2635 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2636 {
2637     RDMAContext *rdma = NULL;
2638     InetSocketAddress *addr;
2639 
2640     if (host_port) {
2641         rdma = g_new0(RDMAContext, 1);
2642         rdma->current_index = -1;
2643         rdma->current_chunk = -1;
2644 
2645         addr = g_new(InetSocketAddress, 1);
2646         if (!inet_parse(addr, host_port, NULL)) {
2647             rdma->port = atoi(addr->port);
2648             rdma->host = g_strdup(addr->host);
2649         } else {
2650             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2651             g_free(rdma);
2652             rdma = NULL;
2653         }
2654 
2655         qapi_free_InetSocketAddress(addr);
2656     }
2657 
2658     return rdma;
2659 }
2660 
2661 /*
2662  * QEMUFile interface to the control channel.
2663  * SEND messages for control only.
2664  * VM's ram is handled with regular RDMA messages.
2665  */
2666 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2667                                        const struct iovec *iov,
2668                                        size_t niov,
2669                                        int *fds,
2670                                        size_t nfds,
2671                                        Error **errp)
2672 {
2673     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2674     QEMUFile *f = rioc->file;
2675     RDMAContext *rdma;
2676     int ret;
2677     ssize_t done = 0;
2678     size_t i;
2679     size_t len = 0;
2680 
2681     RCU_READ_LOCK_GUARD();
2682     rdma = atomic_rcu_read(&rioc->rdmaout);
2683 
2684     if (!rdma) {
2685         return -EIO;
2686     }
2687 
2688     CHECK_ERROR_STATE();
2689 
2690     /*
2691      * Push out any writes that
2692      * we're queued up for VM's ram.
2693      */
2694     ret = qemu_rdma_write_flush(f, rdma);
2695     if (ret < 0) {
2696         rdma->error_state = ret;
2697         return ret;
2698     }
2699 
2700     for (i = 0; i < niov; i++) {
2701         size_t remaining = iov[i].iov_len;
2702         uint8_t * data = (void *)iov[i].iov_base;
2703         while (remaining) {
2704             RDMAControlHeader head;
2705 
2706             len = MIN(remaining, RDMA_SEND_INCREMENT);
2707             remaining -= len;
2708 
2709             head.len = len;
2710             head.type = RDMA_CONTROL_QEMU_FILE;
2711 
2712             ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2713 
2714             if (ret < 0) {
2715                 rdma->error_state = ret;
2716                 return ret;
2717             }
2718 
2719             data += len;
2720             done += len;
2721         }
2722     }
2723 
2724     return done;
2725 }
2726 
2727 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2728                              size_t size, int idx)
2729 {
2730     size_t len = 0;
2731 
2732     if (rdma->wr_data[idx].control_len) {
2733         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2734 
2735         len = MIN(size, rdma->wr_data[idx].control_len);
2736         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2737         rdma->wr_data[idx].control_curr += len;
2738         rdma->wr_data[idx].control_len -= len;
2739     }
2740 
2741     return len;
2742 }
2743 
2744 /*
2745  * QEMUFile interface to the control channel.
2746  * RDMA links don't use bytestreams, so we have to
2747  * return bytes to QEMUFile opportunistically.
2748  */
2749 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2750                                       const struct iovec *iov,
2751                                       size_t niov,
2752                                       int **fds,
2753                                       size_t *nfds,
2754                                       Error **errp)
2755 {
2756     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2757     RDMAContext *rdma;
2758     RDMAControlHeader head;
2759     int ret = 0;
2760     ssize_t i;
2761     size_t done = 0;
2762 
2763     RCU_READ_LOCK_GUARD();
2764     rdma = atomic_rcu_read(&rioc->rdmain);
2765 
2766     if (!rdma) {
2767         return -EIO;
2768     }
2769 
2770     CHECK_ERROR_STATE();
2771 
2772     for (i = 0; i < niov; i++) {
2773         size_t want = iov[i].iov_len;
2774         uint8_t *data = (void *)iov[i].iov_base;
2775 
2776         /*
2777          * First, we hold on to the last SEND message we
2778          * were given and dish out the bytes until we run
2779          * out of bytes.
2780          */
2781         ret = qemu_rdma_fill(rdma, data, want, 0);
2782         done += ret;
2783         want -= ret;
2784         /* Got what we needed, so go to next iovec */
2785         if (want == 0) {
2786             continue;
2787         }
2788 
2789         /* If we got any data so far, then don't wait
2790          * for more, just return what we have */
2791         if (done > 0) {
2792             break;
2793         }
2794 
2795 
2796         /* We've got nothing at all, so lets wait for
2797          * more to arrive
2798          */
2799         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2800 
2801         if (ret < 0) {
2802             rdma->error_state = ret;
2803             return ret;
2804         }
2805 
2806         /*
2807          * SEND was received with new bytes, now try again.
2808          */
2809         ret = qemu_rdma_fill(rdma, data, want, 0);
2810         done += ret;
2811         want -= ret;
2812 
2813         /* Still didn't get enough, so lets just return */
2814         if (want) {
2815             if (done == 0) {
2816                 return QIO_CHANNEL_ERR_BLOCK;
2817             } else {
2818                 break;
2819             }
2820         }
2821     }
2822     return done;
2823 }
2824 
2825 /*
2826  * Block until all the outstanding chunks have been delivered by the hardware.
2827  */
2828 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2829 {
2830     int ret;
2831 
2832     if (qemu_rdma_write_flush(f, rdma) < 0) {
2833         return -EIO;
2834     }
2835 
2836     while (rdma->nb_sent) {
2837         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2838         if (ret < 0) {
2839             error_report("rdma migration: complete polling error!");
2840             return -EIO;
2841         }
2842     }
2843 
2844     qemu_rdma_unregister_waiting(rdma);
2845 
2846     return 0;
2847 }
2848 
2849 
2850 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2851                                          bool blocking,
2852                                          Error **errp)
2853 {
2854     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2855     /* XXX we should make readv/writev actually honour this :-) */
2856     rioc->blocking = blocking;
2857     return 0;
2858 }
2859 
2860 
2861 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2862 struct QIOChannelRDMASource {
2863     GSource parent;
2864     QIOChannelRDMA *rioc;
2865     GIOCondition condition;
2866 };
2867 
2868 static gboolean
2869 qio_channel_rdma_source_prepare(GSource *source,
2870                                 gint *timeout)
2871 {
2872     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2873     RDMAContext *rdma;
2874     GIOCondition cond = 0;
2875     *timeout = -1;
2876 
2877     RCU_READ_LOCK_GUARD();
2878     if (rsource->condition == G_IO_IN) {
2879         rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2880     } else {
2881         rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2882     }
2883 
2884     if (!rdma) {
2885         error_report("RDMAContext is NULL when prepare Gsource");
2886         return FALSE;
2887     }
2888 
2889     if (rdma->wr_data[0].control_len) {
2890         cond |= G_IO_IN;
2891     }
2892     cond |= G_IO_OUT;
2893 
2894     return cond & rsource->condition;
2895 }
2896 
2897 static gboolean
2898 qio_channel_rdma_source_check(GSource *source)
2899 {
2900     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2901     RDMAContext *rdma;
2902     GIOCondition cond = 0;
2903 
2904     RCU_READ_LOCK_GUARD();
2905     if (rsource->condition == G_IO_IN) {
2906         rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2907     } else {
2908         rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2909     }
2910 
2911     if (!rdma) {
2912         error_report("RDMAContext is NULL when check Gsource");
2913         return FALSE;
2914     }
2915 
2916     if (rdma->wr_data[0].control_len) {
2917         cond |= G_IO_IN;
2918     }
2919     cond |= G_IO_OUT;
2920 
2921     return cond & rsource->condition;
2922 }
2923 
2924 static gboolean
2925 qio_channel_rdma_source_dispatch(GSource *source,
2926                                  GSourceFunc callback,
2927                                  gpointer user_data)
2928 {
2929     QIOChannelFunc func = (QIOChannelFunc)callback;
2930     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2931     RDMAContext *rdma;
2932     GIOCondition cond = 0;
2933 
2934     RCU_READ_LOCK_GUARD();
2935     if (rsource->condition == G_IO_IN) {
2936         rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2937     } else {
2938         rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2939     }
2940 
2941     if (!rdma) {
2942         error_report("RDMAContext is NULL when dispatch Gsource");
2943         return FALSE;
2944     }
2945 
2946     if (rdma->wr_data[0].control_len) {
2947         cond |= G_IO_IN;
2948     }
2949     cond |= G_IO_OUT;
2950 
2951     return (*func)(QIO_CHANNEL(rsource->rioc),
2952                    (cond & rsource->condition),
2953                    user_data);
2954 }
2955 
2956 static void
2957 qio_channel_rdma_source_finalize(GSource *source)
2958 {
2959     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
2960 
2961     object_unref(OBJECT(ssource->rioc));
2962 }
2963 
2964 GSourceFuncs qio_channel_rdma_source_funcs = {
2965     qio_channel_rdma_source_prepare,
2966     qio_channel_rdma_source_check,
2967     qio_channel_rdma_source_dispatch,
2968     qio_channel_rdma_source_finalize
2969 };
2970 
2971 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
2972                                               GIOCondition condition)
2973 {
2974     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2975     QIOChannelRDMASource *ssource;
2976     GSource *source;
2977 
2978     source = g_source_new(&qio_channel_rdma_source_funcs,
2979                           sizeof(QIOChannelRDMASource));
2980     ssource = (QIOChannelRDMASource *)source;
2981 
2982     ssource->rioc = rioc;
2983     object_ref(OBJECT(rioc));
2984 
2985     ssource->condition = condition;
2986 
2987     return source;
2988 }
2989 
2990 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
2991                                                   AioContext *ctx,
2992                                                   IOHandler *io_read,
2993                                                   IOHandler *io_write,
2994                                                   void *opaque)
2995 {
2996     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2997     if (io_read) {
2998         aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
2999                            false, io_read, io_write, NULL, opaque);
3000     } else {
3001         aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3002                            false, io_read, io_write, NULL, opaque);
3003     }
3004 }
3005 
3006 struct rdma_close_rcu {
3007     struct rcu_head rcu;
3008     RDMAContext *rdmain;
3009     RDMAContext *rdmaout;
3010 };
3011 
3012 /* callback from qio_channel_rdma_close via call_rcu */
3013 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3014 {
3015     if (rcu->rdmain) {
3016         qemu_rdma_cleanup(rcu->rdmain);
3017     }
3018 
3019     if (rcu->rdmaout) {
3020         qemu_rdma_cleanup(rcu->rdmaout);
3021     }
3022 
3023     g_free(rcu->rdmain);
3024     g_free(rcu->rdmaout);
3025     g_free(rcu);
3026 }
3027 
3028 static int qio_channel_rdma_close(QIOChannel *ioc,
3029                                   Error **errp)
3030 {
3031     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3032     RDMAContext *rdmain, *rdmaout;
3033     struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3034 
3035     trace_qemu_rdma_close();
3036 
3037     rdmain = rioc->rdmain;
3038     if (rdmain) {
3039         atomic_rcu_set(&rioc->rdmain, NULL);
3040     }
3041 
3042     rdmaout = rioc->rdmaout;
3043     if (rdmaout) {
3044         atomic_rcu_set(&rioc->rdmaout, NULL);
3045     }
3046 
3047     rcu->rdmain = rdmain;
3048     rcu->rdmaout = rdmaout;
3049     call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3050 
3051     return 0;
3052 }
3053 
3054 static int
3055 qio_channel_rdma_shutdown(QIOChannel *ioc,
3056                             QIOChannelShutdown how,
3057                             Error **errp)
3058 {
3059     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3060     RDMAContext *rdmain, *rdmaout;
3061 
3062     RCU_READ_LOCK_GUARD();
3063 
3064     rdmain = atomic_rcu_read(&rioc->rdmain);
3065     rdmaout = atomic_rcu_read(&rioc->rdmain);
3066 
3067     switch (how) {
3068     case QIO_CHANNEL_SHUTDOWN_READ:
3069         if (rdmain) {
3070             rdmain->error_state = -1;
3071         }
3072         break;
3073     case QIO_CHANNEL_SHUTDOWN_WRITE:
3074         if (rdmaout) {
3075             rdmaout->error_state = -1;
3076         }
3077         break;
3078     case QIO_CHANNEL_SHUTDOWN_BOTH:
3079     default:
3080         if (rdmain) {
3081             rdmain->error_state = -1;
3082         }
3083         if (rdmaout) {
3084             rdmaout->error_state = -1;
3085         }
3086         break;
3087     }
3088 
3089     return 0;
3090 }
3091 
3092 /*
3093  * Parameters:
3094  *    @offset == 0 :
3095  *        This means that 'block_offset' is a full virtual address that does not
3096  *        belong to a RAMBlock of the virtual machine and instead
3097  *        represents a private malloc'd memory area that the caller wishes to
3098  *        transfer.
3099  *
3100  *    @offset != 0 :
3101  *        Offset is an offset to be added to block_offset and used
3102  *        to also lookup the corresponding RAMBlock.
3103  *
3104  *    @size > 0 :
3105  *        Initiate an transfer this size.
3106  *
3107  *    @size == 0 :
3108  *        A 'hint' or 'advice' that means that we wish to speculatively
3109  *        and asynchronously unregister this memory. In this case, there is no
3110  *        guarantee that the unregister will actually happen, for example,
3111  *        if the memory is being actively transmitted. Additionally, the memory
3112  *        may be re-registered at any future time if a write within the same
3113  *        chunk was requested again, even if you attempted to unregister it
3114  *        here.
3115  *
3116  *    @size < 0 : TODO, not yet supported
3117  *        Unregister the memory NOW. This means that the caller does not
3118  *        expect there to be any future RDMA transfers and we just want to clean
3119  *        things up. This is used in case the upper layer owns the memory and
3120  *        cannot wait for qemu_fclose() to occur.
3121  *
3122  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
3123  *                  sent. Usually, this will not be more than a few bytes of
3124  *                  the protocol because most transfers are sent asynchronously.
3125  */
3126 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3127                                   ram_addr_t block_offset, ram_addr_t offset,
3128                                   size_t size, uint64_t *bytes_sent)
3129 {
3130     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3131     RDMAContext *rdma;
3132     int ret;
3133 
3134     RCU_READ_LOCK_GUARD();
3135     rdma = atomic_rcu_read(&rioc->rdmaout);
3136 
3137     if (!rdma) {
3138         return -EIO;
3139     }
3140 
3141     CHECK_ERROR_STATE();
3142 
3143     if (migration_in_postcopy()) {
3144         return RAM_SAVE_CONTROL_NOT_SUPP;
3145     }
3146 
3147     qemu_fflush(f);
3148 
3149     if (size > 0) {
3150         /*
3151          * Add this page to the current 'chunk'. If the chunk
3152          * is full, or the page doen't belong to the current chunk,
3153          * an actual RDMA write will occur and a new chunk will be formed.
3154          */
3155         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3156         if (ret < 0) {
3157             error_report("rdma migration: write error! %d", ret);
3158             goto err;
3159         }
3160 
3161         /*
3162          * We always return 1 bytes because the RDMA
3163          * protocol is completely asynchronous. We do not yet know
3164          * whether an  identified chunk is zero or not because we're
3165          * waiting for other pages to potentially be merged with
3166          * the current chunk. So, we have to call qemu_update_position()
3167          * later on when the actual write occurs.
3168          */
3169         if (bytes_sent) {
3170             *bytes_sent = 1;
3171         }
3172     } else {
3173         uint64_t index, chunk;
3174 
3175         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3176         if (size < 0) {
3177             ret = qemu_rdma_drain_cq(f, rdma);
3178             if (ret < 0) {
3179                 fprintf(stderr, "rdma: failed to synchronously drain"
3180                                 " completion queue before unregistration.\n");
3181                 goto err;
3182             }
3183         }
3184         */
3185 
3186         ret = qemu_rdma_search_ram_block(rdma, block_offset,
3187                                          offset, size, &index, &chunk);
3188 
3189         if (ret) {
3190             error_report("ram block search failed");
3191             goto err;
3192         }
3193 
3194         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3195 
3196         /*
3197          * TODO: Synchronous, guaranteed unregistration (should not occur during
3198          * fast-path). Otherwise, unregisters will process on the next call to
3199          * qemu_rdma_drain_cq()
3200         if (size < 0) {
3201             qemu_rdma_unregister_waiting(rdma);
3202         }
3203         */
3204     }
3205 
3206     /*
3207      * Drain the Completion Queue if possible, but do not block,
3208      * just poll.
3209      *
3210      * If nothing to poll, the end of the iteration will do this
3211      * again to make sure we don't overflow the request queue.
3212      */
3213     while (1) {
3214         uint64_t wr_id, wr_id_in;
3215         int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3216         if (ret < 0) {
3217             error_report("rdma migration: polling error! %d", ret);
3218             goto err;
3219         }
3220 
3221         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3222 
3223         if (wr_id == RDMA_WRID_NONE) {
3224             break;
3225         }
3226     }
3227 
3228     return RAM_SAVE_CONTROL_DELAYED;
3229 err:
3230     rdma->error_state = ret;
3231     return ret;
3232 }
3233 
3234 static void rdma_accept_incoming_migration(void *opaque);
3235 
3236 static void rdma_cm_poll_handler(void *opaque)
3237 {
3238     RDMAContext *rdma = opaque;
3239     int ret;
3240     struct rdma_cm_event *cm_event;
3241     MigrationIncomingState *mis = migration_incoming_get_current();
3242 
3243     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3244     if (ret) {
3245         error_report("get_cm_event failed %d", errno);
3246         return;
3247     }
3248     rdma_ack_cm_event(cm_event);
3249 
3250     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3251         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3252         if (!rdma->error_state &&
3253             migration_incoming_get_current()->state !=
3254               MIGRATION_STATUS_COMPLETED) {
3255             error_report("receive cm event, cm event is %d", cm_event->event);
3256             rdma->error_state = -EPIPE;
3257             if (rdma->return_path) {
3258                 rdma->return_path->error_state = -EPIPE;
3259             }
3260         }
3261 
3262         if (mis->migration_incoming_co) {
3263             qemu_coroutine_enter(mis->migration_incoming_co);
3264         }
3265         return;
3266     }
3267 }
3268 
3269 static int qemu_rdma_accept(RDMAContext *rdma)
3270 {
3271     RDMACapabilities cap;
3272     struct rdma_conn_param conn_param = {
3273                                             .responder_resources = 2,
3274                                             .private_data = &cap,
3275                                             .private_data_len = sizeof(cap),
3276                                          };
3277     struct rdma_cm_event *cm_event;
3278     struct ibv_context *verbs;
3279     int ret = -EINVAL;
3280     int idx;
3281 
3282     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3283     if (ret) {
3284         goto err_rdma_dest_wait;
3285     }
3286 
3287     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3288         rdma_ack_cm_event(cm_event);
3289         goto err_rdma_dest_wait;
3290     }
3291 
3292     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3293 
3294     network_to_caps(&cap);
3295 
3296     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3297             error_report("Unknown source RDMA version: %d, bailing...",
3298                             cap.version);
3299             rdma_ack_cm_event(cm_event);
3300             goto err_rdma_dest_wait;
3301     }
3302 
3303     /*
3304      * Respond with only the capabilities this version of QEMU knows about.
3305      */
3306     cap.flags &= known_capabilities;
3307 
3308     /*
3309      * Enable the ones that we do know about.
3310      * Add other checks here as new ones are introduced.
3311      */
3312     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3313         rdma->pin_all = true;
3314     }
3315 
3316     rdma->cm_id = cm_event->id;
3317     verbs = cm_event->id->verbs;
3318 
3319     rdma_ack_cm_event(cm_event);
3320 
3321     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3322 
3323     caps_to_network(&cap);
3324 
3325     trace_qemu_rdma_accept_pin_verbsc(verbs);
3326 
3327     if (!rdma->verbs) {
3328         rdma->verbs = verbs;
3329     } else if (rdma->verbs != verbs) {
3330             error_report("ibv context not matching %p, %p!", rdma->verbs,
3331                          verbs);
3332             goto err_rdma_dest_wait;
3333     }
3334 
3335     qemu_rdma_dump_id("dest_init", verbs);
3336 
3337     ret = qemu_rdma_alloc_pd_cq(rdma);
3338     if (ret) {
3339         error_report("rdma migration: error allocating pd and cq!");
3340         goto err_rdma_dest_wait;
3341     }
3342 
3343     ret = qemu_rdma_alloc_qp(rdma);
3344     if (ret) {
3345         error_report("rdma migration: error allocating qp!");
3346         goto err_rdma_dest_wait;
3347     }
3348 
3349     ret = qemu_rdma_init_ram_blocks(rdma);
3350     if (ret) {
3351         error_report("rdma migration: error initializing ram blocks!");
3352         goto err_rdma_dest_wait;
3353     }
3354 
3355     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3356         ret = qemu_rdma_reg_control(rdma, idx);
3357         if (ret) {
3358             error_report("rdma: error registering %d control", idx);
3359             goto err_rdma_dest_wait;
3360         }
3361     }
3362 
3363     /* Accept the second connection request for return path */
3364     if (migrate_postcopy() && !rdma->is_return_path) {
3365         qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3366                             NULL,
3367                             (void *)(intptr_t)rdma->return_path);
3368     } else {
3369         qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3370                             NULL, rdma);
3371     }
3372 
3373     ret = rdma_accept(rdma->cm_id, &conn_param);
3374     if (ret) {
3375         error_report("rdma_accept returns %d", ret);
3376         goto err_rdma_dest_wait;
3377     }
3378 
3379     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3380     if (ret) {
3381         error_report("rdma_accept get_cm_event failed %d", ret);
3382         goto err_rdma_dest_wait;
3383     }
3384 
3385     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3386         error_report("rdma_accept not event established");
3387         rdma_ack_cm_event(cm_event);
3388         goto err_rdma_dest_wait;
3389     }
3390 
3391     rdma_ack_cm_event(cm_event);
3392     rdma->connected = true;
3393 
3394     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3395     if (ret) {
3396         error_report("rdma migration: error posting second control recv");
3397         goto err_rdma_dest_wait;
3398     }
3399 
3400     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3401 
3402     return 0;
3403 
3404 err_rdma_dest_wait:
3405     rdma->error_state = ret;
3406     qemu_rdma_cleanup(rdma);
3407     return ret;
3408 }
3409 
3410 static int dest_ram_sort_func(const void *a, const void *b)
3411 {
3412     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3413     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3414 
3415     return (a_index < b_index) ? -1 : (a_index != b_index);
3416 }
3417 
3418 /*
3419  * During each iteration of the migration, we listen for instructions
3420  * by the source VM to perform dynamic page registrations before they
3421  * can perform RDMA operations.
3422  *
3423  * We respond with the 'rkey'.
3424  *
3425  * Keep doing this until the source tells us to stop.
3426  */
3427 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3428 {
3429     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3430                                .type = RDMA_CONTROL_REGISTER_RESULT,
3431                                .repeat = 0,
3432                              };
3433     RDMAControlHeader unreg_resp = { .len = 0,
3434                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3435                                .repeat = 0,
3436                              };
3437     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3438                                  .repeat = 1 };
3439     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3440     RDMAContext *rdma;
3441     RDMALocalBlocks *local;
3442     RDMAControlHeader head;
3443     RDMARegister *reg, *registers;
3444     RDMACompress *comp;
3445     RDMARegisterResult *reg_result;
3446     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3447     RDMALocalBlock *block;
3448     void *host_addr;
3449     int ret = 0;
3450     int idx = 0;
3451     int count = 0;
3452     int i = 0;
3453 
3454     RCU_READ_LOCK_GUARD();
3455     rdma = atomic_rcu_read(&rioc->rdmain);
3456 
3457     if (!rdma) {
3458         return -EIO;
3459     }
3460 
3461     CHECK_ERROR_STATE();
3462 
3463     local = &rdma->local_ram_blocks;
3464     do {
3465         trace_qemu_rdma_registration_handle_wait();
3466 
3467         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3468 
3469         if (ret < 0) {
3470             break;
3471         }
3472 
3473         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3474             error_report("rdma: Too many requests in this message (%d)."
3475                             "Bailing.", head.repeat);
3476             ret = -EIO;
3477             break;
3478         }
3479 
3480         switch (head.type) {
3481         case RDMA_CONTROL_COMPRESS:
3482             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3483             network_to_compress(comp);
3484 
3485             trace_qemu_rdma_registration_handle_compress(comp->length,
3486                                                          comp->block_idx,
3487                                                          comp->offset);
3488             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3489                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3490                              (unsigned int)comp->block_idx,
3491                              rdma->local_ram_blocks.nb_blocks);
3492                 ret = -EIO;
3493                 goto out;
3494             }
3495             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3496 
3497             host_addr = block->local_host_addr +
3498                             (comp->offset - block->offset);
3499 
3500             ram_handle_compressed(host_addr, comp->value, comp->length);
3501             break;
3502 
3503         case RDMA_CONTROL_REGISTER_FINISHED:
3504             trace_qemu_rdma_registration_handle_finished();
3505             goto out;
3506 
3507         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3508             trace_qemu_rdma_registration_handle_ram_blocks();
3509 
3510             /* Sort our local RAM Block list so it's the same as the source,
3511              * we can do this since we've filled in a src_index in the list
3512              * as we received the RAMBlock list earlier.
3513              */
3514             qsort(rdma->local_ram_blocks.block,
3515                   rdma->local_ram_blocks.nb_blocks,
3516                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3517             for (i = 0; i < local->nb_blocks; i++) {
3518                 local->block[i].index = i;
3519             }
3520 
3521             if (rdma->pin_all) {
3522                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3523                 if (ret) {
3524                     error_report("rdma migration: error dest "
3525                                     "registering ram blocks");
3526                     goto out;
3527                 }
3528             }
3529 
3530             /*
3531              * Dest uses this to prepare to transmit the RAMBlock descriptions
3532              * to the source VM after connection setup.
3533              * Both sides use the "remote" structure to communicate and update
3534              * their "local" descriptions with what was sent.
3535              */
3536             for (i = 0; i < local->nb_blocks; i++) {
3537                 rdma->dest_blocks[i].remote_host_addr =
3538                     (uintptr_t)(local->block[i].local_host_addr);
3539 
3540                 if (rdma->pin_all) {
3541                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3542                 }
3543 
3544                 rdma->dest_blocks[i].offset = local->block[i].offset;
3545                 rdma->dest_blocks[i].length = local->block[i].length;
3546 
3547                 dest_block_to_network(&rdma->dest_blocks[i]);
3548                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3549                     local->block[i].block_name,
3550                     local->block[i].offset,
3551                     local->block[i].length,
3552                     local->block[i].local_host_addr,
3553                     local->block[i].src_index);
3554             }
3555 
3556             blocks.len = rdma->local_ram_blocks.nb_blocks
3557                                                 * sizeof(RDMADestBlock);
3558 
3559 
3560             ret = qemu_rdma_post_send_control(rdma,
3561                                         (uint8_t *) rdma->dest_blocks, &blocks);
3562 
3563             if (ret < 0) {
3564                 error_report("rdma migration: error sending remote info");
3565                 goto out;
3566             }
3567 
3568             break;
3569         case RDMA_CONTROL_REGISTER_REQUEST:
3570             trace_qemu_rdma_registration_handle_register(head.repeat);
3571 
3572             reg_resp.repeat = head.repeat;
3573             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3574 
3575             for (count = 0; count < head.repeat; count++) {
3576                 uint64_t chunk;
3577                 uint8_t *chunk_start, *chunk_end;
3578 
3579                 reg = &registers[count];
3580                 network_to_register(reg);
3581 
3582                 reg_result = &results[count];
3583 
3584                 trace_qemu_rdma_registration_handle_register_loop(count,
3585                          reg->current_index, reg->key.current_addr, reg->chunks);
3586 
3587                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3588                     error_report("rdma: 'register' bad block index %u (vs %d)",
3589                                  (unsigned int)reg->current_index,
3590                                  rdma->local_ram_blocks.nb_blocks);
3591                     ret = -ENOENT;
3592                     goto out;
3593                 }
3594                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3595                 if (block->is_ram_block) {
3596                     if (block->offset > reg->key.current_addr) {
3597                         error_report("rdma: bad register address for block %s"
3598                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3599                             block->block_name, block->offset,
3600                             reg->key.current_addr);
3601                         ret = -ERANGE;
3602                         goto out;
3603                     }
3604                     host_addr = (block->local_host_addr +
3605                                 (reg->key.current_addr - block->offset));
3606                     chunk = ram_chunk_index(block->local_host_addr,
3607                                             (uint8_t *) host_addr);
3608                 } else {
3609                     chunk = reg->key.chunk;
3610                     host_addr = block->local_host_addr +
3611                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3612                     /* Check for particularly bad chunk value */
3613                     if (host_addr < (void *)block->local_host_addr) {
3614                         error_report("rdma: bad chunk for block %s"
3615                             " chunk: %" PRIx64,
3616                             block->block_name, reg->key.chunk);
3617                         ret = -ERANGE;
3618                         goto out;
3619                     }
3620                 }
3621                 chunk_start = ram_chunk_start(block, chunk);
3622                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3623                 /* avoid "-Waddress-of-packed-member" warning */
3624                 uint32_t tmp_rkey = 0;
3625                 if (qemu_rdma_register_and_get_keys(rdma, block,
3626                             (uintptr_t)host_addr, NULL, &tmp_rkey,
3627                             chunk, chunk_start, chunk_end)) {
3628                     error_report("cannot get rkey");
3629                     ret = -EINVAL;
3630                     goto out;
3631                 }
3632                 reg_result->rkey = tmp_rkey;
3633 
3634                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3635 
3636                 trace_qemu_rdma_registration_handle_register_rkey(
3637                                                            reg_result->rkey);
3638 
3639                 result_to_network(reg_result);
3640             }
3641 
3642             ret = qemu_rdma_post_send_control(rdma,
3643                             (uint8_t *) results, &reg_resp);
3644 
3645             if (ret < 0) {
3646                 error_report("Failed to send control buffer");
3647                 goto out;
3648             }
3649             break;
3650         case RDMA_CONTROL_UNREGISTER_REQUEST:
3651             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3652             unreg_resp.repeat = head.repeat;
3653             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3654 
3655             for (count = 0; count < head.repeat; count++) {
3656                 reg = &registers[count];
3657                 network_to_register(reg);
3658 
3659                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3660                            reg->current_index, reg->key.chunk);
3661 
3662                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3663 
3664                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3665                 block->pmr[reg->key.chunk] = NULL;
3666 
3667                 if (ret != 0) {
3668                     perror("rdma unregistration chunk failed");
3669                     ret = -ret;
3670                     goto out;
3671                 }
3672 
3673                 rdma->total_registrations--;
3674 
3675                 trace_qemu_rdma_registration_handle_unregister_success(
3676                                                        reg->key.chunk);
3677             }
3678 
3679             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3680 
3681             if (ret < 0) {
3682                 error_report("Failed to send control buffer");
3683                 goto out;
3684             }
3685             break;
3686         case RDMA_CONTROL_REGISTER_RESULT:
3687             error_report("Invalid RESULT message at dest.");
3688             ret = -EIO;
3689             goto out;
3690         default:
3691             error_report("Unknown control message %s", control_desc(head.type));
3692             ret = -EIO;
3693             goto out;
3694         }
3695     } while (1);
3696 out:
3697     if (ret < 0) {
3698         rdma->error_state = ret;
3699     }
3700     return ret;
3701 }
3702 
3703 /* Destination:
3704  * Called via a ram_control_load_hook during the initial RAM load section which
3705  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3706  * on the source.
3707  * We've already built our local RAMBlock list, but not yet sent the list to
3708  * the source.
3709  */
3710 static int
3711 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3712 {
3713     RDMAContext *rdma;
3714     int curr;
3715     int found = -1;
3716 
3717     RCU_READ_LOCK_GUARD();
3718     rdma = atomic_rcu_read(&rioc->rdmain);
3719 
3720     if (!rdma) {
3721         return -EIO;
3722     }
3723 
3724     /* Find the matching RAMBlock in our local list */
3725     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3726         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3727             found = curr;
3728             break;
3729         }
3730     }
3731 
3732     if (found == -1) {
3733         error_report("RAMBlock '%s' not found on destination", name);
3734         return -ENOENT;
3735     }
3736 
3737     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3738     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3739     rdma->next_src_index++;
3740 
3741     return 0;
3742 }
3743 
3744 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3745 {
3746     switch (flags) {
3747     case RAM_CONTROL_BLOCK_REG:
3748         return rdma_block_notification_handle(opaque, data);
3749 
3750     case RAM_CONTROL_HOOK:
3751         return qemu_rdma_registration_handle(f, opaque);
3752 
3753     default:
3754         /* Shouldn't be called with any other values */
3755         abort();
3756     }
3757 }
3758 
3759 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3760                                         uint64_t flags, void *data)
3761 {
3762     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3763     RDMAContext *rdma;
3764 
3765     RCU_READ_LOCK_GUARD();
3766     rdma = atomic_rcu_read(&rioc->rdmaout);
3767     if (!rdma) {
3768         return -EIO;
3769     }
3770 
3771     CHECK_ERROR_STATE();
3772 
3773     if (migration_in_postcopy()) {
3774         return 0;
3775     }
3776 
3777     trace_qemu_rdma_registration_start(flags);
3778     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3779     qemu_fflush(f);
3780 
3781     return 0;
3782 }
3783 
3784 /*
3785  * Inform dest that dynamic registrations are done for now.
3786  * First, flush writes, if any.
3787  */
3788 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3789                                        uint64_t flags, void *data)
3790 {
3791     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3792     RDMAContext *rdma;
3793     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3794     int ret = 0;
3795 
3796     RCU_READ_LOCK_GUARD();
3797     rdma = atomic_rcu_read(&rioc->rdmaout);
3798     if (!rdma) {
3799         return -EIO;
3800     }
3801 
3802     CHECK_ERROR_STATE();
3803 
3804     if (migration_in_postcopy()) {
3805         return 0;
3806     }
3807 
3808     qemu_fflush(f);
3809     ret = qemu_rdma_drain_cq(f, rdma);
3810 
3811     if (ret < 0) {
3812         goto err;
3813     }
3814 
3815     if (flags == RAM_CONTROL_SETUP) {
3816         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3817         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3818         int reg_result_idx, i, nb_dest_blocks;
3819 
3820         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3821         trace_qemu_rdma_registration_stop_ram();
3822 
3823         /*
3824          * Make sure that we parallelize the pinning on both sides.
3825          * For very large guests, doing this serially takes a really
3826          * long time, so we have to 'interleave' the pinning locally
3827          * with the control messages by performing the pinning on this
3828          * side before we receive the control response from the other
3829          * side that the pinning has completed.
3830          */
3831         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3832                     &reg_result_idx, rdma->pin_all ?
3833                     qemu_rdma_reg_whole_ram_blocks : NULL);
3834         if (ret < 0) {
3835             fprintf(stderr, "receiving remote info!");
3836             return ret;
3837         }
3838 
3839         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3840 
3841         /*
3842          * The protocol uses two different sets of rkeys (mutually exclusive):
3843          * 1. One key to represent the virtual address of the entire ram block.
3844          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3845          * 2. One to represent individual chunks within a ram block.
3846          *    (dynamic chunk registration enabled - pin individual chunks.)
3847          *
3848          * Once the capability is successfully negotiated, the destination transmits
3849          * the keys to use (or sends them later) including the virtual addresses
3850          * and then propagates the remote ram block descriptions to his local copy.
3851          */
3852 
3853         if (local->nb_blocks != nb_dest_blocks) {
3854             fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3855                     "Your QEMU command line parameters are probably "
3856                     "not identical on both the source and destination.",
3857                     local->nb_blocks, nb_dest_blocks);
3858             rdma->error_state = -EINVAL;
3859             return -EINVAL;
3860         }
3861 
3862         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3863         memcpy(rdma->dest_blocks,
3864             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3865         for (i = 0; i < nb_dest_blocks; i++) {
3866             network_to_dest_block(&rdma->dest_blocks[i]);
3867 
3868             /* We require that the blocks are in the same order */
3869             if (rdma->dest_blocks[i].length != local->block[i].length) {
3870                 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3871                         "vs %" PRIu64, local->block[i].block_name, i,
3872                         local->block[i].length,
3873                         rdma->dest_blocks[i].length);
3874                 rdma->error_state = -EINVAL;
3875                 return -EINVAL;
3876             }
3877             local->block[i].remote_host_addr =
3878                     rdma->dest_blocks[i].remote_host_addr;
3879             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3880         }
3881     }
3882 
3883     trace_qemu_rdma_registration_stop(flags);
3884 
3885     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3886     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3887 
3888     if (ret < 0) {
3889         goto err;
3890     }
3891 
3892     return 0;
3893 err:
3894     rdma->error_state = ret;
3895     return ret;
3896 }
3897 
3898 static const QEMUFileHooks rdma_read_hooks = {
3899     .hook_ram_load = rdma_load_hook,
3900 };
3901 
3902 static const QEMUFileHooks rdma_write_hooks = {
3903     .before_ram_iterate = qemu_rdma_registration_start,
3904     .after_ram_iterate  = qemu_rdma_registration_stop,
3905     .save_page          = qemu_rdma_save_page,
3906 };
3907 
3908 
3909 static void qio_channel_rdma_finalize(Object *obj)
3910 {
3911     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3912     if (rioc->rdmain) {
3913         qemu_rdma_cleanup(rioc->rdmain);
3914         g_free(rioc->rdmain);
3915         rioc->rdmain = NULL;
3916     }
3917     if (rioc->rdmaout) {
3918         qemu_rdma_cleanup(rioc->rdmaout);
3919         g_free(rioc->rdmaout);
3920         rioc->rdmaout = NULL;
3921     }
3922 }
3923 
3924 static void qio_channel_rdma_class_init(ObjectClass *klass,
3925                                         void *class_data G_GNUC_UNUSED)
3926 {
3927     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3928 
3929     ioc_klass->io_writev = qio_channel_rdma_writev;
3930     ioc_klass->io_readv = qio_channel_rdma_readv;
3931     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3932     ioc_klass->io_close = qio_channel_rdma_close;
3933     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3934     ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3935     ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3936 }
3937 
3938 static const TypeInfo qio_channel_rdma_info = {
3939     .parent = TYPE_QIO_CHANNEL,
3940     .name = TYPE_QIO_CHANNEL_RDMA,
3941     .instance_size = sizeof(QIOChannelRDMA),
3942     .instance_finalize = qio_channel_rdma_finalize,
3943     .class_init = qio_channel_rdma_class_init,
3944 };
3945 
3946 static void qio_channel_rdma_register_types(void)
3947 {
3948     type_register_static(&qio_channel_rdma_info);
3949 }
3950 
3951 type_init(qio_channel_rdma_register_types);
3952 
3953 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3954 {
3955     QIOChannelRDMA *rioc;
3956 
3957     if (qemu_file_mode_is_not_valid(mode)) {
3958         return NULL;
3959     }
3960 
3961     rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
3962 
3963     if (mode[0] == 'w') {
3964         rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
3965         rioc->rdmaout = rdma;
3966         rioc->rdmain = rdma->return_path;
3967         qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
3968     } else {
3969         rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
3970         rioc->rdmain = rdma;
3971         rioc->rdmaout = rdma->return_path;
3972         qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
3973     }
3974 
3975     return rioc->file;
3976 }
3977 
3978 static void rdma_accept_incoming_migration(void *opaque)
3979 {
3980     RDMAContext *rdma = opaque;
3981     int ret;
3982     QEMUFile *f;
3983     Error *local_err = NULL;
3984 
3985     trace_qemu_rdma_accept_incoming_migration();
3986     ret = qemu_rdma_accept(rdma);
3987 
3988     if (ret) {
3989         fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
3990         return;
3991     }
3992 
3993     trace_qemu_rdma_accept_incoming_migration_accepted();
3994 
3995     if (rdma->is_return_path) {
3996         return;
3997     }
3998 
3999     f = qemu_fopen_rdma(rdma, "rb");
4000     if (f == NULL) {
4001         fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4002         qemu_rdma_cleanup(rdma);
4003         return;
4004     }
4005 
4006     rdma->migration_started_on_destination = 1;
4007     migration_fd_process_incoming(f, &local_err);
4008     if (local_err) {
4009         error_reportf_err(local_err, "RDMA ERROR:");
4010     }
4011 }
4012 
4013 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4014 {
4015     int ret;
4016     RDMAContext *rdma, *rdma_return_path = NULL;
4017     Error *local_err = NULL;
4018 
4019     trace_rdma_start_incoming_migration();
4020 
4021     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4022     if (ram_block_discard_is_required()) {
4023         error_setg(errp, "RDMA: cannot disable RAM discard");
4024         return;
4025     }
4026 
4027     rdma = qemu_rdma_data_init(host_port, &local_err);
4028     if (rdma == NULL) {
4029         goto err;
4030     }
4031 
4032     ret = qemu_rdma_dest_init(rdma, &local_err);
4033 
4034     if (ret) {
4035         goto err;
4036     }
4037 
4038     trace_rdma_start_incoming_migration_after_dest_init();
4039 
4040     ret = rdma_listen(rdma->listen_id, 5);
4041 
4042     if (ret) {
4043         ERROR(errp, "listening on socket!");
4044         goto err;
4045     }
4046 
4047     trace_rdma_start_incoming_migration_after_rdma_listen();
4048 
4049     /* initialize the RDMAContext for return path */
4050     if (migrate_postcopy()) {
4051         rdma_return_path = qemu_rdma_data_init(host_port, &local_err);
4052 
4053         if (rdma_return_path == NULL) {
4054             goto err;
4055         }
4056 
4057         qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
4058     }
4059 
4060     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4061                         NULL, (void *)(intptr_t)rdma);
4062     return;
4063 err:
4064     error_propagate(errp, local_err);
4065     if (rdma) {
4066         g_free(rdma->host);
4067     }
4068     g_free(rdma);
4069     g_free(rdma_return_path);
4070 }
4071 
4072 void rdma_start_outgoing_migration(void *opaque,
4073                             const char *host_port, Error **errp)
4074 {
4075     MigrationState *s = opaque;
4076     RDMAContext *rdma_return_path = NULL;
4077     RDMAContext *rdma;
4078     int ret = 0;
4079 
4080     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4081     if (ram_block_discard_is_required()) {
4082         error_setg(errp, "RDMA: cannot disable RAM discard");
4083         return;
4084     }
4085 
4086     rdma = qemu_rdma_data_init(host_port, errp);
4087     if (rdma == NULL) {
4088         goto err;
4089     }
4090 
4091     ret = qemu_rdma_source_init(rdma,
4092         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4093 
4094     if (ret) {
4095         goto err;
4096     }
4097 
4098     trace_rdma_start_outgoing_migration_after_rdma_source_init();
4099     ret = qemu_rdma_connect(rdma, errp);
4100 
4101     if (ret) {
4102         goto err;
4103     }
4104 
4105     /* RDMA postcopy need a seprate queue pair for return path */
4106     if (migrate_postcopy()) {
4107         rdma_return_path = qemu_rdma_data_init(host_port, errp);
4108 
4109         if (rdma_return_path == NULL) {
4110             goto return_path_err;
4111         }
4112 
4113         ret = qemu_rdma_source_init(rdma_return_path,
4114             s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4115 
4116         if (ret) {
4117             goto return_path_err;
4118         }
4119 
4120         ret = qemu_rdma_connect(rdma_return_path, errp);
4121 
4122         if (ret) {
4123             goto return_path_err;
4124         }
4125 
4126         rdma->return_path = rdma_return_path;
4127         rdma_return_path->return_path = rdma;
4128         rdma_return_path->is_return_path = true;
4129     }
4130 
4131     trace_rdma_start_outgoing_migration_after_rdma_connect();
4132 
4133     s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4134     migrate_fd_connect(s, NULL);
4135     return;
4136 return_path_err:
4137     qemu_rdma_cleanup(rdma);
4138 err:
4139     g_free(rdma);
4140     g_free(rdma_return_path);
4141 }
4142